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WORD-OF-MOUTH COMMUNICATION 
AND SOCIAL LEARNING* 

GLENN ELLISON AND DREW FUDENBERG 

This paper studies the way that word-of-mouth communication aggregates the 
information of individual agents. We find that the structure of the communication 
process determines whether all agents end up making identical choices, with less 
communication making this conformity more likely. Despite the players' naive 
decision rules and the stochastic decision environment, word-of-mouth communica- 
tion may lead all players to adopt the action that is on average superior. These 
socially efficient outcomes tend to occur when each agent samples only a few others. 

I. INTRODUCTION 

Economic agents must often make decisions without knowing 
the costs and benefits of the possible choices. Given the frequency 
with which such situations arise, it is understandable that agents 
often choose not to perform studies or experiments, but instead 
rely on whatever information they have obtained via casual 
word-of-mouth communication. Reliance on this sort of easily 
obtained information appears to be common in circumstances 
ranging from consumers choosing restaurants or auto mechanics 
to business managers evaluating alternative organizational 
structures. 

This paper studies two related environments in arguing that 
individuals' reliance on word-of-mouth communication has inter- 
esting implications for their aggregate behavior. First, motivated 
by the diffusion of new technologies, we consider a choice between 
two competing products with unequal qualities or payoffs, and 
show that the structure of communication is important in determin- 
ing whether the population as a whole is likely to learn to use the 
superior product. Second, we consider a choice between two 
products or practices that are equally good, and ask whether 
consumers are likely to "herd" onto a single choice, or whether 
"diversity" will obtain even in the long run. 

We explore the implications of word-of-mouth communication 
in a simple nonstrategic environment. There is a large population 
of identical players, each of whom repeatedly chooses between two 
possible actions. Each player's payoff is determined by his own 
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actions and some stochastic shocks, but is not influenced by the 
actions chosen by others, so there are no direct or "strategic" 
reasons that the player's choice should depend on the choices of 
others. The only reason the players' actions are linked is because of 
the way that information is transmitted. To model the difficulties 
that might arise when choosing between technologies or methods 
of organization, we assume that payoffs can only be learned from 
experience. Further, payoffs in each period are subject to both 
common shocks (e.g., weather, business conditions, time-varying 
quality) and idiosyncratic ones. Because of the idiosyncratic compo- 
nent it seems sensible that players would want to collect informa- 
tion from others. 

In this environment we examine the implications of exoge- 
nously specified rules for behavior. This involves two separate 
departures from rationality. First, motivated by the idea that the 
decision problem at hand is but one of many informed by the same 
set of casual conversations, we do not model the acquisition of 
information as an optimal search problem. Instead, we simply 
assume that in each period each player hears of the current 
experiences of a random sample of N other players and treat N as 
an exogenous parameter describing possible communication struc- 
tures. Second, we specify a simple model for boundedly rational 
choice given the information players acquire. The population 
displays inertia, with a fraction of the players ignoring the informa- 
tion they receive in a given period (or not inquiring at all) and 
continuing with their previous choice. The players who do consider 
switching pick the action that appears to give the highest average 
payoff given their most recent experience and the reports they have 
heard in the current period. Moreover, we impose the "must-see" 
restriction that players who only obtain reports about the choice 
they are currently using do not contemplate switching, even if all 
observed payoffs to their current choice are low.' 

These naive rules are intended to capture the essence of 
word-of-mouth communication. Some economic agents are prob- 
ably more sophisticated than this, and it would be interesting to 
explore the implications of more sophisticated, but still boundedly 
rational behavior rules. However, given the complexity of the 

1. We feel that this assumption is plausible on behavioral grounds. It can also 
be derived as the outcome of rational Bayesian learning in the neighborhood of the 
efficient state, as in the closely related model of Banerjee and Fudenberg [1994]. 
Banerjee [1993] offers a different explanation for the must-see property by 
appealing to unmodeled but unlikely states of the world. 
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decision problems, we find the extreme simplicity of the behavior 
we study at least as plausible as the complex behavior required by 
the standard "fully rational" approach, which requires players to 
update optimally from a consistent and common prior distribution 
over the possible structures of payoffs and noise processes. 

Our most basic conclusion is that the structure of the word-of- 
mouth process affects the tendency of a population to display 
conformity or diversity, with less communication (that is, smaller 
but nonzero samples for each individual) making conformity more 
likely. Despite the players' naive behavior and the complex stochas- 
tic environment of our model, we find that word-of-mouth commu- 
nication may allow efficient social learning in the sense that all 
players eventually adopt the action which is on average superior. 
Surprisingly, these socially efficient outcomes tend to occur only 
when each individual receives very little information. 

At first sight it may be surprising that, in contrast to our 
previous paper on boundedly rational learning [Ellison and Fuden- 
berg 1993], social learning in this model can lead to long-run 
efficiency in the absence of explicit popularity weighting. The 
explanation is that the must-see restriction incorporates a form of 
popularity weighting, as it implies that players tend not to hear 
about unpopular technologies, and hence allows these to die out. 
Previous models of word-of-mouth communication include the 
contagion model, Smallwood and Conlisk's [1979] model of replace- 
ment on breakdown, Satterthwaite's [1979] model of reputation 
goods, and Kirman's [1993] model of search by ants. Our model 
differs from these papers both in the structure of the environment 
in which people learn and the form of the players' behavioral rules. 
Typically, previous work has assumed that the aggregate perfor- 
mance of each choice is fixed over time and that players always 
adopt whichever choice they hear about regardless of how its 
performance compares with their own experience. In these re- 
spects, our model is closer to that of our [1993] paper, although the 
environment is more complex due to the addition of idiosyncratic 
noise. Indeed, the simplest unweighted single population model of 
Ellison and Fudenberg may be thought of as the limiting case of the 
model presented here as the sample size N becomes infinite: 
word-of-mouth sampling with an infinite sample allows each player 
to average out the idiosyncratic shocks, but not the common one, 
and so in the limit the players all choose the technology that had 
the higher average payoff in the previous period. 
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In addition to the differences in the decision environment and 
decision rules, our analysis is also somewhat different from most of 
the previous literature in its focus on a categorization of the 
dynamic pattern of the market shares of the two choices. We begin 
with the case where the average payoffs are identical. Here we 
distinguish two possibilities. If all consumers eventually make the 
same choice (formally, if the market share of one choice converges 
to one), we say that the population exhibits "conformity." If 
instead the market shares perpetually fluctuate or settle down to a 
nontrivial split, we say that the population exhibits diversity. Our 
main conclusion, presented in Section IV, is that sufficiently 
limited word-of-mouth communication results in conformity. When 
players receive more information, i.e., when N is large, the system 
exhibits diversity. 

In the case where the choices have unequal payoffs, we 
distinguish three possible patterns of behavior. First, as before, the 
population may exhibit diversity. Second, we may have efficient 
social learning with everyone adopting the superior choice. Finally, 
there is "inefficient herding" if everyone eventually adopts the 
same choice but the common choice is not necessarily optimal. 

To understand how these regions arise, it is instructive to 
think of the superior average payoff as a force pushing all players 
toward using the better choice. The long-run behavior of the 
system is then determined by how this force combines with the 
word-of-mouth process's "inherent" favoring of conformity or 
diversity. When the sample size N is large, we show in Section V 
that the diversity forces are overwhelming, and the first case 
obtains. When N is smaller, there is efficient social learning, as a 
not too strong tendency toward diversity and the superior payoff 
combine to prevent convergence to the inferior extreme while 
allowing convergence to the superior extreme. For some parameter 
values, very small N produces inefficient herding. We find, how- 
ever, that this behavior is rare when significant inertia is present, 
as it may be that even N = 1 is large enough to produce efficient 
learning. 

To assess the robustness of our conclusions, we examine two 
related models in Section VI. In the first variant, players practice 
popularity weighting, combining information about payoffs that 
they obtain from their samples with information about overall 
market shares. We find that the same basic patterns of behavior 
occur, although efficient social learning may now require that the 
players see larger samples. Our second variant supposes that the 
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common shock to the system changes more frequently than any 
individual player observes the system, so that when information is 
obtained about someone's most recent experience it may reflect the 
payoffs of a previous date. In this way, we think of the players' 
sampling process as taking advantage of a social memory of past 
payoffs. This might be expected to give a clearer advantage to the 
product which is better on average, and possibly make larger 
samples more efficient. In examining the extreme cases of two 
period and infinite memories, we find that sampling only one other 
player is still efficient, but note that learning may be nearly 
efficient with large sample sizes as well. 

II. THE MODEL 

We examine word-of-mouth communication and social learn- 
ing in the context of a population of agents who are faced with a 
choice between two competing products, technologies, or practices, 
which we label f and g. There is a continuum of identical agents, 
and each chooses between the two products at a discrete set of 
points in time, t = 1,2,3.... The aggregate behavior of the 
population at each point in time can be summarized by a "state" 
variable xt, giving the fraction of the population who are using 
technology g. Our model does not attempt to explain the very first 
adoptions of a new technology. Rather, we take the initial state x0 
to be exogenous, and focus on the social learning reflected in the 
subsequent patterns of the market share movements. 

The specification of the payoffs provided by the products 
incorporates a number of elements which complicate decision- 
making in technology adoption problems. We assume that the 
payoff to consumer i using brand f at date t is ft + Eift, and that i's 
payoff to using brand g at date t is gt + Eigt. Here the Ei.t represent 
player-specific idiosyncratic shocks, which could correspond to 
variations both in the quality of individual units of the product, 
and its suitability for the consumer in question. (For example, they 
may reflect both whether a restaurant meal is well cooked, and 
whether the customer ordered the right entree given the way he is 
feeling on a particular day.) We suppose that the Ei.t are i.i.d. both 
over time and across consumers, which implies that there are no 
persistent differences between individuals.2 For computational 

2. This involves a standard abuse of the law of large numbers. 
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convenience we further assume that each E has a normal distribu- 
tion with mean 0 and standard deviation a. 

Common shocks, i.e., factors affecting the relative payoffs of 
the two products for all consumers, are represented by allowing 
ot =-- - ft to be random. We assume that the Ot are also i.i.d. and 
independent of the individual specific shocks, and that the mar- 
ginal distribution over Ot is binomial, with probabilityp, 0 < p < 1, 
that Ot = 0 > 0, and probability 1 - p that Ot = -0 < 0.3 The 
common shocks might reflect the impact of weather conditions on 
two agricultural technologies, the different effect of changing 
economic conditions on firms who have chosen one of two business 
practices, or variation in the quality of the designs that two firms 
produce in a given model year. 

Given the distribution of the shocks, the probability that g is 
better than f for player i at date t is p Prob(Eigt - Eift > -0) + 

(1 - p) Prob(Eigt - Eift > 0). 

Note that even if p = 1, so that at each time t brand g has a 
higher expected payoff, the probability that g does better than f for 
a given individual may be less that one due to the idiosyncratic 
shocks. Note also that this formulation places no restriction on the 
distributions of the mean payoffs ft and -, but only on their 
difference which allows for the possibility that the quality of both 
products is increasing over time. The individual means will not 
matter until we consider an extension of the model in subsection 
VI.2. 

In choosing between the two alternatives, the agents in our 
model are assumed to follow exogenously specified, boundedly 
rational behavior rules that incorporate the notions that there is 
inertia in consumer choices, and that consumers use the informa- 
tion gathered by word-of-mouth communication in a simple way, 
without the explicit considerations of the information they would 
see in each possible state of the world that is required in a Bayesian 
Nash equilibrium. 

Inertia is modeled with the assumption that, at each date t > 
0, some fraction a, 0 < a < 1, of the agents decide to reevaluate 
their choice.4 When agents do reevaluate their choice, they ask N 
other individuals chosen at random from the population distribu- 

3. The assumed symmetry between payoffs in the good and bad state reduces 
the number of cases we must discuss but does not significantly change our 
qualitative conclusions. 

4. A more realistic model would specify that consumers are more likely to 
switch if they are dissatisfied with their current choice; that is, if their current 
payoff is low. 
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tion about their current choice and current payoff. The sampling 
agents then compute the average payoff of the two alternatives in 
their sample, and choose whichever one had the higher average 
payoff. This extremely simple decision rule ignores both the precise 
stochastic structure of the payoffs, and the implicit information 
that may be conveyed by the relative popularity of the two choices. 
Consequently, it may be more plausible in complex and novel 
environments. 

Several aspects of this rule deserve emphasis. First, a player 
who is currently using one choice cannot switch to the other one 
unless he talks to someone who is using it. As remarked above, this 
implies that the system incorporates a form of "popularity weight- 
ing," where the weight is decreasing in N. Second, players weigh 
observations of other players' experience as heavily as they weight 
their own. Since the individual-specific shocks are assumed to be 
i.i.d., this behavior is consistent with the model, and the more 
plausible case where one's experience is more relevant corresponds 
to a model with persistent individual shocks. Third, customers use 
only current information in making decisions. The lack of informa- 
tion on other agents' past payoffs may be justified by saying that 
agents simply do not pay attention to others' casual comments 
about products they are not considering buying at the time. The 
agents' failure to incorporate their own past experience is harder to 
justify fully, although it is perhaps not unreasonable, for example, 
for consumers facing a choice between computers or other products 
for which mean quality levels change so rapidly that it is hard to 
compare the quality of products purchased at different times. To a 
degree, we use this extreme assumption simply to capture the idea 
that boundedly rational consumers will not fully incorporate all 
historical information. 

Our analysis of the model focuses on the dynamic pattern of 
the market shares of the two products over time. Since the 
aggregate shock Ot takes on only two values, and we have supposed 
that the aggregate distribution of idiosyncratic shocks over the 
continuum of consumers is deterministic, there are only two 
possible values of x,+1 for each value of x. For example, when N = 1, 
the evolution of the system is given by 

(1) x1 

1(1 - a)xt + ao[xt(xt + (1 - xt)q+) + (1 - xt)xtq+] with prob. p 
=(1- a)xt + a[xt(xt + (1 -xt)q-) + (1 -xt)xtq- withprob. 1 -p, 
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where q+ is the probability that a randomly drawn g-user had a 
higher payoff than a randomly drawn f-user when Ot = 0, and q - is 
the analogous term when Ot = -0. 

To understand the top line of this equation, suppose that Ot = 

0. Recall first that each period a fraction (1 - a) of the consumers 
do not consider switching. Since a fraction xt of these are currently 
using g, there will be at least (1 - a)xt consumers using g next 
period. Of the a consumers who do consider switching, three 
subsets choose g with positive probability. Those who use g and 
meet another g-user choose g with probability one, while those who 
use g and meet an f-user and those who use f and meet a g-user 
both choose g with probability q +. Multiplying these probabilities 
by the corresponding masses, which are oax', oaxt(l - xt), and 
oixt(l - xt), respectively, yields the top line of equation (1); the 
bottom line is the same with q - replacing q +. 

For larger values of N, the system has the same general form, 
with xt+1 = H+ (xt) when Ot = 0+, and xt+1 = H- (xt) when Ot = 0-, but 
the form of the equations H becomes more complicated in two 
related ways. First, the binomial distribution for the consumer's 
word-of-mouth sampling is replaced by a multinomial (Nxt) distri- 
bution; e.g., the probability that k of N consumers sampled use g is 

( l)xt(1 - xt)(N-k). Second, for each value of k, there are different 
numbers corresponding to q + and q -, namely the probability that 
brand g has a higher average payoff than f in a sample of 
kg's andN - k f's. 

Consequently, the general form of the dynamics is 

(1 a)Xt + a(XtN+ + z1k!(N + - 
1k)!lXt (-Xt)N-k 

\f t/ + 1 N + + - - A)/} 
X 1/k + 1I(N + 1 - k))) with probability p 

Xteri =(1- s xth + sandaX+ + cumulatki dt xti)Nfk 

X D r~/k+ 1N+ 1- k))) with probability 1-p 

where 'P is the standard normal cumulative distribution function. 
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III. LOCK-ON AND HERDING: A LOCAL ANALYSIS 

We have not been able to completely determine the long-run 
dynamics of our model. Rather than simplify the model further, we 
have chosen to provide a partial characterization. In particular, our 
results concern only the question of whether the system will 
converge to one of its endpoints, in which case we will say that it 
exhibits "lock-on" or "herding," or whether to the contrary there 
will be long-run diversity in the sense that both choices continue to 
be used by nonnegligible fractions of the population. 

A great practical advantage of this sort of characterization is 
that it only requires a local analysis of the system in the neighbor- 
hood of its endpoints. In this section we temporarily defer any 
discussion of our word-of-mouth learning model to present a 
mathematical result which greatly simplifies such analyses. Essen- 
tially, the lemma shows that when one is trying to determine 
whether a member of a class of Markov processes can converge to 
an extreme point, one can work instead with a linearized version of 
the system. Given the complexity of our model, the ability to work 
with a linear approximation will be an advantage. 

LEMMA 1. Letxt be a Markov process on (0,1) with 

H1 (xt) with probability p 
Xt+i = 1H2(xt) with probability (1 - p) 

Suppose that in a neighborhood of 0, Hi(xt) = yixt + o(xt), with 
Y2 < 1 < Yi. 
(a) If 

p log (Y2) 

1 - p log (-Y1) 

then xt cannot converge to 0 with positive probability. 
(b) If 

p log (Y2) 
< -_ 

1i- p log (-Y1)' 

then there are strictly positive 8 and E such that 
Prob [xt-->OIxo ?!]2 E. 

(c) If 

p log (Y2) 
> -_ 

i - p log (-Y1) 

there is anx* > O such that for allx0 > 0, Prob [xt < x* Vt lxo] = 0. 
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Remark. The proof is deferred to Appendix A; the following 
discussion tries to provide an intuition. Since this lemma concerns 
approximately linear systems, the best way to understand it is to 
first understand the case of systems that are exactly linear. Such 
systems are sufficient to make a crucial point: when the step size is 
proportional to the state, as it is in the models of this paper, the 
appropriate notion of "negative drift" to use for determining 
whether the system converges to zero is not the usual supermartin- 
gale condition that E(xt+1 Ixt) < xt, but rather that the log of the 
system has negative drift; that is, that E(log (xt+1) Ixt) < log (xt). In 
particular, a system with positive drift in the usual sense can still 
be certain to converge to zero. This explains the role of the 
logarithms in the various expression in our theorems. 

To see why this is so, consider the case where x, is a Markov 
process on [0,) and the functions Hi are exactly linear, so that 
Hi(x) = yix. Let Zt = log (xt), and note that if xt -- 0, then Zt oo. 

Moreover, the evolution of zt is given by 

IZt + log (y1) with probp 
Zt+il Zt + log (Y2) with prob 1- p 

so that Zt is the sum of the i.i.d. increments log (-yl) and log (Y2), 

with probabilities p and 1 - p, respectively. If p log (-yl) + (1 - p) 
log (Y2) = log (YP7Y2-P) > 0, then by the strong law of large numbers 
Zt converges to oo with probability 1, and hence xt converges to oo, 
which is the basis of the proof of (a) and (c). If p log (-yl) + (1 - p) 
log (y2) < 0, then by the strong law Zt converges to -oo, and so xt 
converges to 0, which is the basis of the proof of (b). 

Once the analysis of the linear system is understood, it 
remains to explain why the linear approximation methods we use 
are valid. Basically, if the log has negative drift, then not only does 
the exactly linear system converge to zero, there is a positive 
probability that it will converge without ever moving to the right of 
its initial position. Along such paths the error in ignoring terms of 
higher order in x is bounded, and we can conclude that the 
approximately linear system converges to zero as well. 

To conclude this section, we return to our model to give the 
linearized form of its dynamics, which is 

(2) xt+ 1 

J(1 - ao + ac(N + 1)q+(N))xt + o(xt) with prob.p 

=(1 - a + a(N + 1)q-(N))xt + o(xt) with prob. 1 - p, 
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where 

q+(N) = 4? 0(~+l N q + N) = 

(10 + 1/N)1 

is the probability that the payoff to a random individual using g 
exceeds the average payoff of N individuals using f, conditional on 
Ot = 0, and 

q-(N) = (1 / N q 
0 ~r0(l 1+l 1/ N) 

denotes the same probability conditional on Ot = -0. 

To understand these equations intuitively, note that in period 
t + 1 the number of g-users will consist of the (1 - a)xt who 
previously used g and did not consider switching, plus a fraction of 
those who did consider switching. When xt is near zero, the number 
of players who considered switching and observed both choices f 
and g is a(N + 1)xt to first order in x. (This is the sum of almost all 
of the g-users who consider switching, who have mass oixt plus a 
share Nxt of the a(1 - xt) f-users who consider switching.) The 
sample of each of these players most likely consists of one g-user 
and N f-users. With such a sample, the probability that the average 
payoff to g is higher than the average payoff to f is q + (N) or q - (N) 
depending on the realization of the common shock. 

Lemma 1 shows that this approximation can be used to 
determine the behavior in the neighborhood of zero. Roughly 
speaking, the true system has positive probability of converging to 
zero if and only if the system in (2) has positive probability of 
converging to zero. 

IV. CONFORMITY VERSUS DIVERSITY WITH Two EQUALLY 
EFFICIENT CHOICES 

This section begins our analysis of word-of-mouth learning by 
examining the special case in which p = 1/2, so that the payoffs to 
the two choices have the same distribution, and hence are equally 
efficient.5 Hence there is nothing for the players to learn, although 
the players do not realize this. By abstracting from the forces that 
favor the adoption of a superior product, this simple model allows 

5. Note that the mean payoffs to the two choices still fluctuate-the two 
choices have the same ex ante mean but one or the other can do better ex post in a 
given period. 
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us to highlight the effect of learning rules in determining when a 
market is likely to be dominated by a single product, practice, or 
technology. Also, the simplicity of this case makes it a useful 
introduction to the more general analysis of the next section. 

Theorem 1 below shows that the system exhibits conformity 
when players gather very little information, and exhibits diversity 
when the word-of-mouth communication is more extensive. To 
understand the mechanism behind this result, it helps to note first 
that when each player talks to exactly one other player, there will 
be equally many players using f who hear about g and using g who 
hear about f. Given the symmetry of the payoffs, the popularity ofg 
will thus move up or down in equal increments depending on the 
realization of the common shock. For example, when g is unpopu- 
lar, the dynamics might dictate that g will either decrease in 
popularity by 50 percent or increase in popularity by 50 percent. 
Because (1/2)(3/2) = 3/4 < 1, the system has negative "log drift" in the 
sense explained in the previous section, and so such dynamics 
imply that unpopular actions tend to die out. 

In contrast, when players obtain more word-of-mouth informa- 
tion, unpopular technologies tend to make comebacks. Suppose 
that g is very unpopular and the sample size N is large. While 
nearly all g-users who consider switching in a given period will see 
an f-user, the size of this group will still be small. Because the 
number of f-users is much larger, there will be many more f-users 
who hear about g than vice versa. Hence, favorable draws of the 
common shock obtained by g-users will cause a large number of 
players to switch to g, while unfavorable draws will cause only a 
few players to switch away from g. As a result, unpopular 
technologies will not die out, and the system will exhibit diversity. 

THEOREM 1. Whenp = 1/2, 

(a) The state cannot converge to an endpoint if 

-log (1 + a((N + 1)q- (N) - 1)) 

log (1 + a((N + 1)q+(N) - 1)) 

(b) The state converges to an endpoint with probability 1 if 
1 < Q(a,N). In this case the system has positive probability of 
converging to either endpoint. 
(c) There is a unique N*(a) such that Q(a,N*(a)) = 1. 
Further, N * is increasing in a, and N*(a) > iVa provided that 
0 > 0. 
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(d) For N < N*() the system exhibits herding; i.e., the state 
converges to an endpoint with probability one. For N > N*(a) 
the state does not converge, and so the system exhibits 
diversity. 

Proof. For part (a), rewrite equation (2) as 

(2't) - =IXt(1 + a[(N + l)q+(N) - 1]) with probabilityp 
)xt+l lXt(1 + al[(N+ 1)q-(N)- 1]) withprobability1 -p. 

If (N + 1)q - (N) > 1, then in the neighborhood of 0 the state 
increases at each date regardless of the realization of 0. Clearly, the 
state cannot converge to zero in this case. If (N + 1)q - (N) < 1 and 
Q(aN) < 1, applying part (a) of Lemma 1 yields the same 
conclusion.6 Symmetry then implies that the state cannot converge 
to one. 

For part (b), suppose that 1 < Q(a,N) and let A be the (tail) 
event that xt does not converge to either 0 or 1, and suppose that A 
has positive probability. By Paul Levy's zero-or-one law (see, e.g., 
Chung [1974], p. 341), limt,, prob (A Ixt) = 1A a.e., where 1A is the 
indicator function on A. Lemma 1(b) shows that there is an E > 0 
and anx' > 0 such that Prob (AIxt <x' orxt> 1 -x') < 1 - E. 

Hence if {xtj does not converge to an endpoint, then with probabil- 
ity one there must be a T such thatxt E (x',1 - x') for all t > T. But 
for all xt in this interval, the state can move to some xt < x' in a 
finite number of steps, and the probability that this occurs is 
bounded away from zero. Thus, by theorem 9.5.2 of Chung, there is 
probability zero that the state remains in (x ',1 - x') infinitely often 
without making infinitely many transitions to the region [O,x'], 
and so the set A must be empty. 

For part (c), define Q*(ot,N) = (1 - oa + ot(N + 1)q+(N))(1 - a + 
oa(N + 1)q- (N)) = (1 - a)2 + at(1 - ao)(N + 1) + a2(N + 
1)2q+(N)q-(N), where the last equality follows from q+(N) + 
q-(N) = 1. Since Q* is obtained by multiplying through Q = 1 by 
its denominator and then exponentiating, Q *(ot,N) = 1 if and only 
if Q (ot,N) = 1. We first check that for any a there is at least one N 
that solves Q*(a,N) = 1. This follows from the computations 
Q*(ot,1) = 1 - (2aq+(1) - at)2 < 1 and limN,, Q*(a,N) = oo, and 
the observation that Q* is a continuous function. 

Appendix 2 shows that Q* = 1 implies aQ*IN > 0, and hence 
there is a unique N*((a) such that Q*(a,N*(a)) = 1. Appendix 2 also 

6. Lemma 1 does not apply if (N + 1)q-(N) > 1, as the lemma supposes that 
Y2 < 1. 
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shows that aQ*(a,N*(a))Iaa < 0 so that N* is an increasing 
function. Finally, since Q*(a,1) < 1, we have N*(a) > 1 provided 
that 0 > 0. 

QED 

The shape of the curve N *(a) depends on the relative size of 
the aggregate and idiosyncratic shocks, which we measure by -9 = 
0/a. When N is below the curve N* (a), the system converges to a 
state of conformity, where all consumers use the same product. 
Intuitively, the fewer other consumers each consumer samples, the 
less likely the consumer is to observe and then adopt a product with 
a small market share, so that when N is small a product with a very 
small share will tend to be driven from the market. If N lies above 
this curve, the state does not converge (provided that 0 > 0), so 
that the market shares are always changing, and do not approach a 
state where one product captures the entire market. Figure I 
displays the graph of N*(a) for the case q = 2. 

A particularly strong form of diversity obtains when N is very 
large. Let N be the solution to N = l/q-(N) - 1. (The solution 

(0 
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exists and is unique.7) If N > N (which is about 40 when N = 2 and 
about 5 when q = 1), then not only does the system not converge to 
conformity, it never even enters a neighborhood of a state where 
everyone uses the same product. This is because, when N is this 
large, the state moves toward the center when it is near an 
endpoint, even if the common shock favors the more prevalent 
choice. This occurs because the support of the idiosyncratic noise is 
large enough that, even when the common shock favors product g, 
some users of product f will receive payoffs that exceed that 
period's mean payoff to g, and those g-users whose only observa- 
tion of f is favorable will switch, so each f-user who receives a 
favorable draw will cause Ng-users to switch. 

As shown in Theorem 1, N * (a) is increasing in a. The intuition 
for this is that the system is more likely to lock on when it takes 
large jumps; and so as a increases larger N's become consistent 
with the system locking on to a state of conformity. 

In this simple case of equally efficient choices, we can also 
determine the relationship between the relative sizes of the 
aggregate and idiosyncratic shocks, as measured by aj, and the 
tendency for the system to exhibit conformity or diversity. When 
there are only common shocks, (a = oo), we have q+(N) _ 1 and 
q-(N) 0, so that N*((a) = 1/(1 - a). When q is very small, so the 
idiosyncratic shocks dominate, q + and q - are both approximately 
1/2, and so N* (a) is slightly greater than 1 for all a. These two curves 
are graphed in Figure II, along with the previously displayed curve 
for 9 = 2. Note that the long-run behavior of the system is 
independent of r when a is small: the system then exhibits 
conformity for N = 1, and diversity for N ? 2. 

The conclusion that, with substantial inertia, conformity 
obtains only for the extreme case of N = 1 might seem to indicate 
that conformity is unlikely, at least absent an efficiency explana- 
tion. Yet even this degree of conformity may be surprising, given 
that players have no memory and always gravitate toward the 
choice which did better in the previous period. Our interpretation 
of this result is that the combination of limited word-of-mouth 
communication and our implicit "must-see-to-use" assumption 

7. It is suffiucient to show that (N + 1)q-(N) is increasing whenever 
(N + 1)q-(N) = 1. The calculations in Appendix 2 show that (d/dN)(N + 1) 
q (N) = q-(N) - u,(u)I2N. Substituting -1 + l1q-(N) for N, and using u4(u) < 

ie, it is straightforward to check that this expression is positive. 
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generate a tendency toward conformity that is not present when 
players sample more broadly. 

Appendix 2 shows that aQ*(a,N*(a))/ar < 0, so as the 
importance of the common shocks increases, the system converges 
to uniformity for a larger set of parameter values. This should be 
fairly intuitive: because both choices are equally good, in the 
absence of a common shock there is no force that favors one choice 
over the other. Indeed, in the extreme case q = 0 where common 
shocks are absent, the system is deterministic, and converges to 
x = 1/2 for any N ? 2. (For N = 1 the system becomes xt+i = xt.) 

V. PAYOFF-RELEVANT CHOICES AND EFFICIENT SOCIAL LEARNING 

We now turn our attention to the diffusion of unequal 
technologies. In contrast to the situations studied in the previous 
section, the long-run outcome here may have substantial efficiency 
consequences. Technological change has generally been regarded 
as accounting for a significant fraction of growth, and we believe 
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that models of learning may help explain why the diffusion of 
innovations has so often been found to be slow and incomplete.8 

We now refine conformity into two subcategories: we will say 
that a population exhibits inefficient herding if in the long run 
everyone uses the inferior technology, and that it exhibits "efficient 
social learning" if in the long run everyone uses the superior 
choice. 

Formally, we examine here the general model of Section II for 
the case ofp > 1/2, so that technology g is superior in the sense that 
it is better more than half of the time. For example, this superior 
technology could take the form of a new agricultural practice that 
outperforms the old one for a wide range of weather conditions, or 
a new management practice that is superior for a large set of 
economic conditions. 

The behavior of our model is most easily understood by 
thinking of the diffusion process as being affected by two forces. 
First, the fact that g is better more often tends to make g grow in 
popularity, although given the players' inability to aggregate 
information, this force is of limited strength. Second, we have the 
tendency of word-of-mouth communication to produce conformity 
or diversity depending on the number of "friends" that the agents 
contact. As we will see, these forces can combine to produce 
efficient social learning despite the naive behavior we have as- 
sumed at the individual level. This occurs when the tendency of 
limited word-of-mouth communication to produce conformity is 
sufficiently strong so that in combination with the force of superior 
payoffs it allows g to dominate, while at the same time the tendency 
for conformity is too weak to allow inefficient herding on f. 

Theorem 2 provides a complete characterization of the behav- 
ior of the model. In general, all three behaviors are possible. As we 
will see later, however, the model typically exhibits diversity when 
the word-of-mouth communication is extensive, and efficient social 
learning when players receive less information. 

THEOREM 2. Suppose thatp > 1/2. 

(i) If [p/(1 - p)] < Q(a,N), the system exhibits inefficient 
herding: the state converges to an endpoint with probabil- 
ity one, and converges to everyone using the inferior productf 
with positive probability from all initial conditions. 

8. See, e.g., Griliches [1957, 1994] and Mansfield [1968] for empirical studies. 
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(ii) If [(1 - p)/p] < Q(a,N) < [p1(l - p)], the system exhib- 
its efficient social learning; i.e., it converges with probabil- 
ity one to the state where everyone uses g. 

(iii) If [(1 - p)/p] > Q(a,N), the system exhibits diversity, as 
the state does not converge to either endpoint. Moreover, 
if q ? 0, the system does not converge to any determinis- 
tic limit; more precisely, Prob(3x s.t. xt -> x) = 0. 

Proof of Theorem 2. 

(i) This follows Lemma 1 in the same way as the proof of 
Theorem 1(a). (To analyze convergence to x = 1, make the 
change of variablesy = 1 - x.) 

(ii) From Lemma 1(c), there is an x > 0 such that Probi[xt < 
xVt Ixo] = 0 for all x0. From Lemma 1(b) there is an e> 0 
and a XE < 1 such that Probl[xt -> 1 Ixo ? XE] ? e. More- 
over, for any x E [xXE], there is probability bounded away 
from zero that xt increases in every period until it reaches 
a state greater than or equal to xE, and the number of 
steps in this transition is finite. Hence whenever the 
system is below xE, it has positive probability of passing 
above it; and each time it does so, it has probability at 
least E of converging to 1. Hence from Theorem 9.5.4 of 
Chung [1974], the system converges to 1 almost surely. 

(iii) From Lemma 1(c) the system cannot converge to any 
point below some x > 0 or to any point above some x- < 1, 
and the system has steps that are bounded away from 
zero in the interval [xil. 

QED 

Theorem 2 shows that, as in the previous section, the long-run 
behavior of the system for a fixed level of q is summarized by size of 
Q(a,N). Figure III displays numerical plots of the curves N and N 
defined by 

Q(aN(a)) = (1 - p)/p 

Q(aN(a)) = p/(1 - p) 

for the parameter values p = 0.6 and r = 2. We have not been able 
to prove that N and N must be curves in general, but this seems to 
be the case in our numerical computations.9 

9. The results of the last section and a continuity argument show that N must 
be a curve forp's sufficiently near to 1/2. 
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Looking at Figure III, in the top region where N > N(a) the 
system exhibits diversity, as before. In the bottom region, where 
N < N(a), the system exhibits conformity or "two-sided herding," 
with the state eventually converging to one of the endpoints, and 
both endpoints having positive probability of being selected. This 
behavior is much like the conformity case of the previous section; 
the one new feature is that the state can converge to the inferior 
choice. However, unlike in the previous section, this two-sided 
herding cannot occur for very small values of a as now N < N(a) 
may require that N < 1: when f, say, is an inferior choice, there is a 
smaller set of parameter values where the state can converge to f. 

The most novel aspect of Figure III is the intermediate region 
where N(a) < N < N(a). Here the system exhibits a form of 
efficient social learning, in the sense that all of the agents 
eventually adopt and stick with the superior product. Intuitively, 
because players using a word-of-mouth decision rule are unlikely to 
switch to an unpopular product (at least if N is not too large), the 
state has a tendency to be absorbed by an endpoint whenever a 
neighborhood of that endpoint is reached. A payoff difference 
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between the products provides an additional force favoring the 
superior choice, which increases the probability of converging to 
the superior choice, and can reduce or eliminate the probability of 
converging to the opposite, inferior, extreme. 

Figure IV illustrates the way the three regions change as p 
increases from 0.55 to 0.70, again with q = 2. As seen in the figure, 
increasing p increases p/(1 - p), which shifts the curve N down, 
and decreases (1 - p)/p, which shifts the curve N up. Thus, the 
"efficient learning region" N(a) < N < N(a) where the state 
converges to the better choice increases, and the two other regions 
both shrink. 

Three properties of the efficient learning region are worth 
noting. First, the curve N*(a) of the previous section (which 
corresponds to p = 1/2) lies within the efficient learning region for 
any p > 1/2, and indeed N = N*(a) is the unique value of N which 
leads to the efficient choice for all values of p. We will therefore 
refer to sampling N* (a) people as the uniformly optimal rule. 

Second, N(a) is less that 1 when a is not too large, where "too 
large" is 0.2 forp = 0.55 and increases inp. Since N(a) > N*(a) > 
1, N = 1 leads to efficient learning for a wide range of a's provided 
that the two choices are not too similar.10 

Third, Q (a,N) < (1 - p)/p for all N > N, where N is the 
number defined in the last section such that N > N implies the 
state moves toward the center with probability one when it is 
sufficiently near the endpoints. Hence, the curve provides an upper 
bound on the efficient learning region which is independent of p. 
When N exceeds this level, the forces that prevent convergence are 
strong enough to prevent efficient learning even if one technology 
is always better than the other; i.e., if its mean payoff is better with 
probability one.11 

The long-run dynamics of this model are fairly similar to those 
in the model with explicit popularity weighting we considered in 
our earlier paper [Ellison and Fudenberg 1993], where players 
were assumed to be less willing to switch to an unpopular choice. In 
that model, as in this one, there are three regions of parameter 
space. With very little popularity weighting, the system oscillates, 

10. More formally, Q(a,1) is continuous in a, and limb-o Q(ao,1) = 1, so for 
sufficiently small a we have Q(a,1) E ((1 - p)Ip,p/(l - p), andN = 1 yields efficient 
social learning. Here "sufficiently small" is about 0.5(!) forp = 0.65, and about 0.2 
forp = 0.55; asp approaches 0.5 the required a's shrink to 0. 

11. But note that N depends on the magnitude 0 of the payoff difference: as 0 
increases, the probability q- decreases. 
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just as it does here when N is large. (Indeed, in the limit as N and q 
go to infinity, the word-of-mouth model converges to the zero- 
popularity-weighting case of the previous paper.) With very substan- 
tial popularity weighting, the system always converges, but can 
converge to the wrong choice, which corresponds to small N here.12 
Finally, for an intermediate amount of popularity weighting, the 
state always converges to the better choice. Unlike with word-of- 
mouth decisions, though, there is a single value of the popularity 
weighting that ensures the long-run outcome is efficient. 

VI. MORE COMPLEX DECISION RULES 

To test the robustness of our qualitative conclusions, we now 
consider two more complex variants of the word-of-mouth decision 
rule. 

1. Popularity Weighting 

The first variant we consider supposes that players use 
popularity weighting of the kind we considered in Ellison and 
Fudenberg [1993]: players who observe the average payoffs tg and 
4tf chose g if Ot - V > m(1 - 2xt). Note that this rule supposes 

that agents observe the aggregate popularity xt in the entire 
population, but learn the payoffs of the agents they talk to directly. 
This seems plausible to us, as popularity is easier to communicate 
than a level of satisfaction, and also may be well proxied by the 
consumer's observations of, e.g., the relative numbers of different 
brands of cars on the road to work. 

Intuitively, popularity weighting increases the forces favoring 
convergence to an endpoint, and so should increase the set of 
parameters for which convergence occurs. Thus, beginning from a 
situation of no popularity weighting, i.e., m = 0, a small increase in 
m, holding N constant, should increase the efficiency of the system 
if (a,N) lies just above the curve N that determines the upper 
boundary of the optimal learning region, and an increase in m with 
N constant should decrease the long-run efficiency of the system 
starting at a point (a,N) that lies just above the curve N that 
determines the lower boundary of the optimal learning region. 
Moreover, a nonnegligible amount of popularity weighting could 
shift the curve N up enough so that it lies above the point (0,1), 
reversing our conclusion that N = 1 is optimal when the inertia is 

12. But, unlike the previous paper, this case may not arise if a is small. 
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high. Consequently, when players use popularity weights, larger 
sample sizes may be optimal. 

All of these intuitions turn out to be correct. To state the 
conclusions formally, let 

0 - m \ -0 - m\ 
q+(Nm) = (? F1 ~+l 

O 
N- and q (N,M) = (- 

U 
O 

m+ 1/N) 

be the analogs of q+ and q- when players use popularity weighting, 
let 

-log (1 + 
&((N 

+ 1)q-(N,m) - 1)) 
log (1 + o&((N + 1)q+(N,m) - 1)) 

and let N* (om) be the solution to Q(a,N,m) = 1. (Calculations 
similar to those of Section IV show that a solution exists and is 
unique.) As in Section V, N = N*(a,m) is the one sampling rule that 
guarantees efficient social learning uniformly over all values ofp. 

THEOREM 3. Suppose thatp > 1/2. 

(i) If [p1(1 - p)] < Q(a,N,m), the state converges to an 
endpoint with probability one, and exhibits inefficient 
herding, as the state converges to the inferior choice with 
positive probability from initial conditions sufficiently 
close to 0. If m is large enough, this inefficient herding can 
occur with probability one for some initial conditions. 

(ii) If [(1 - p)/p] < Q(a,N,m) < [p/(1 - p)], there is efficient 
social learning: the system converges with probability one 
to the state where everyone uses g. 

(iii) If [(1 - p)/p] > Q(a,N,m), the system does not converge 
to either endpoint. Moreover, if ? # 0, the system does not 
converge to any deterministic limit; more precisely, 
Prob(3x s.t. xt -> x) = 0. 

(iv) Q(oa,N,m) is increasing in m wherever it is defined and 
nonnegative, so that a small increase in m, holding other 
parameters constant, either causes a change from case 
(iii) to case (ii) or a change from case (ii) to case (i), or has 
no effect on which of the three cases prevails. Moreover, 
the uniformly optimal sampling rule N*(a,m) is increas- 
ing in m. 

Since the analysis closely follows that of the previous sections, 
we omit the proof. Figure V graphs N and N from m = 0 and m = 0, 
with (o = 0.50 and p = 0.6. (Thus, the case m = 0 repeats Figure 
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III.) Note that with popularity weighting in this example, the 
optimal sample size N is about three. The one qualitative change 
caused by popularity weights is that for small N and large enough 
m the system is certain to lock on to the nearest endpoint whenever 
it starts out sufficiently close to it. 

2. Infrequent Sampling and Social Memory 

In the models we have considered so far, word-of-mouth 
sampling generated information on the performance of the various 
choices in the previous period. These models thus implicitly 
supposed that the N players each agent sampled have all observed 
the payoffs in the previous period, presumably because they 
themselves had used the products then. As a further check on the 
robustness of our conclusions, we now consider a model in which 
individuals observe the payoffs less frequently, so that the individu- 
als in an agent's sample may report observations from a number of 
different past periods, and the sampling process incorporates a 
form of "social memory" that can reduce the effect of the common 
shocks. This social memory might be expected to give a clearer 
advantage to the product that is better on average, as it reduces the 
probability that unrepresentative draws push the system in the 
wrong direction. Social memory might also be expected to make 
larger sample sizes more efficient than in the model without social 
memory, where large sample sizes preclude fully efficient social 
learning. Without social memory a large sample can still be 
misleading due to an unrepresentative value of the common shock, 
but a large sample with a large social memory should lead almost 
all of the agents to choose the better action. As we will see, both of 
these intuitions are essentially correct. 

Allowing for social memory requires players to compare 
payoffs to fin one period with those tog in another. For this reason, 
we find it easiest to specialize the distribution of payoffs so that the 
common shock affects the payoffs to f andg symmetrically. That is, 
we suppose that g = Ot/2, ft = Ot/2. 

We begin with the case of a two-period social memory. For 
simplicity, we assume that a fraction a of the players consider 
switching every other period. This leads to a Markov process with 
three realizations for the common shocks, 0, 1, and 2, correspond- 
ing to the number of times the common shock took on the value 0 in 
the previous two periods. In a neighborhood of x = 0, the system 
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then evolves according to 

FXt(1 - a + a(N + 1)q+(N)) + o(xt) withprobabilityp2 

Xt+= Xt(1 - at + a(N + 1)/2) + o(xt) withprobability2p(1 -p) 

Xt(1 - ot + ot(N + 1)q-(N)) + o(xt) with probability (1 _ p)2. 

In this system the transitions for realization 0 and 2 are the 
same as those for the realizations -0 and 0, respectively, in the 
original model. In realization 1, players who see both actions played 
are equally likely to think that either is better. 

This system takes on a particularly simple form if N = 1, for 
then in realization 1 the system does not move. (To see why, note 
that there are just as many f-players who observe g-players as 
g-players who observe f-players, and that in realization 1, the 
probability that one draw of g beats one draw of f is 1/2.) The same 
arguments as in the proof of Proposition 2 show that there is 
efficient social learning with p > 1/2 if 

p2/(l - p)2 > Q(aL,1) > (1 - p)2/p2, 

which is the previous condition with p2 replacingp, and (1 - p)2 

replacing (1 - p). Since this is a weaker condition, N = 1 will still 
yield efficient social learning provided that a is not too large. 

With larger sample sizes, the behavior of the model is more 
complicated, because it is no longer true that the system remains 
constant (xt+l = xt) following the realization of one draw of each 
value of the shock. For instance, with very large samples, almost all 
players will have both f-users and g-users in their samples, and 
since in realization 1 the payoffs off and g are drawn from the same 
distribution, half of these players will adopt each technology.13 This 
provides an additional force favoring diversity, instead of the null 
transition that occurs in state 1 when N = 1. For this reason, it is 
no longer necessarily true that efficient learning occurs for any 
parameter values that yield efficient learning with one-period social 
memory, and indeed we have found examples where increasing 
social memory from 1 to 2, holding other parameters constant, 
causes long-run behavior to switch from efficient learning to 
diversity. However, increasing the social memory cannot allow 
inefficient herding to occur when it would not occur previously.14 

13. Remember that the distribution of the idiosyncratic shocks is normal and 
so is symmetric. 

14. For the special case of two-period social memory, we can show that the 
long-run outcome is as if the regions shown in Figure III are shifted down, so that 
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Now we turn to the limit case of an infinite social memory, 
which we model by supposing that the distribution of experience in 
the population is deterministic, with a fraction p of the g-users 
having experience based 0+ and fraction (1 - p) having experience 
based on 0. Hence the aggregate system is deterministic and its 
evolution is given by 

(3) xt+= (1 - ao)xt + ao Prob(g > fjN,xt), 

where the probability term in (3) is the probability that the average 
realized payoff to g exceeds the average realized payoff to f in a 
sample of N + 1 players drawn from a population where xt of the 
players use g. (If no players in the sample use g, g's average realized 
payoff in the sample is minus infinity.) 

In a neighborhood of x = 0, equation (3) can be approximated 
by 

Xt+= Xt [1 - ao + ao(N + 1)(pq + (N) + (1 - p)q - (N))] + o(xt), 
where c + (N) is the probability that a single draw from the 
favorable distribution of g exceeds the average of N draws from the 
distribution of f. 

Thus, the state converges to 0 if p +(N) + (1 - p)q-(N) < 
1/(1 + N), and the state cannot converge to zero if the reverse 
inequality holds. Ifp < 1/2, this inequality is satisfied for N = 1. To 
see this, note that 

I0\ 
pq+(l) + (1 -p)q-(l) =p2(,)+ 2p(l -p)- 

+ (1 -P)2(1 - ( ) 

This expression will be less than 1/2 if the (weighted) average of the 
first and third term is less than 1/2. Because p2 < (1 - 

p)29 

FD(0/ov2) > 1/2, and the fact that the unweighted average of these 
two terms is 1/2, this is true. Hence under infinite social memory 
N = 1 yields efficiency for any value of the inertia parameter a, 
while N = 1 and large a can lead to inefficient herding without 
social memory. Intuitively, the social memory averages out the 
unrepresentative draws that can otherwise lead to inefficient 
herding when ao is large. 

some parameters that previously corresponded to inefficient herding lead to efficient 
learning, and some parameters that corresponded to efficient learning lead to 
diversity. The calculations are available on request. 
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There is still diversity as N grows, since q + is at least 1/2, and so 
the inequality above cannot be satisfied for any N > - 1 + 2/p. We 
should note, though, that this observation may say more about the 
inclusiveness of our notion of diversity than about the long-run 
behavior of the system. When N is large andp < 1/2, the system does 
not converge to zero, but its steady state is very near to this point. 
The intuition for this is simple. If players receive large samples 
from the population distribution, and that distribution corre- 
sponds to the long-run distribution of 0, then most players should 
receive representative samples and hence make the payoff- 
maximizing choice. Thus, while large samples continue to preclude 
exact efficiency, the efficiency cost of large samples is low when the 
social memory is large. 

(More formally, suppose that p < 1/2, and that there is a 
sequence of steady states x * that remains bounded away from zero 
as N goes to infinity. Then for any E> 0, there is an N' such that if 
the sample size N is greater than N' and the system is at the steady 
state xN, at least (1 - e) of the players will have samples that 
contain many draws of both f and g, and, moreover, have average 
payoffs in the sample for each technology that are within (2p - 1) 
0/3 of their theoretical average payoffs. Hence, at least (1 - e) of 
the players will choose the better technology, and so x* can be at 
most E, which contradicts the hypothesis that the steady states 
were bounded away from 0.) 

VII. CONCLUSION 

This paper has studied a simple model of word-of-mouth 
communication. We find that, despite the naive play of individuals, 
this type of information flow may lead to efficient learning on the 
social level, and that social learning is often most efficient when 
communication between agents is fairly limited. When the choices 
are equally good on average, so that efficiency is not an issue, either 
herding or diversity can occur, with herding more likely with small 
sample sizes. These qualitative conclusions are largely independent 
of the composition of the noise, and are fairly robust to some 
obvious changes in the specification of the model although popular- 
ity weighting can make larger sample sizes optimal. 

In addition to our specific conclusions, we hope that our 
analysis demonstrates that boundedly rational learning models are 
an interesting and tractable way to understand some aspects of 
social learning. 
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APPENDIX 1 

LEMMA 1. Letxt be a Markov process on (0,1) with 

fHi(xt) with probability p 

t+i 1H2(xt) with probability (1 - p)J 

Suppose that Hi(xt) = yixt + o(xt), with Y2 < 1 < y. 
(a) If 

p log (Y2) 

i-p log('y1) 

then xt cannot converge to 0 with positive probability. 
(b) If 

p log (Y2) 

i - p log (y1)' 

then there are strictly positive 8 and E such that 

Prob[xt--Ojxo <?] ? E. 

(c) If 

p -log (Y2) 

i- p log (y1) 

there is ax* > O such that for allx0 > 0, Prob [xt < x*Vtxo] = 

0. 

Proof of Lemma 1. (a) for any E such that 0 < E < Y2, define 
Hi (x) = yix - Ex, and choose 8 > 0 such that, for i = 1, 2, Hi (x) < 

Hi(x) whenever x < 8. If for some initial condition x0 there is 

positive probability that xt -> 0, then from the same initial 
condition there is a T such that there is positive probability that of 
the event {xt -> 0 and xt < 8 for all t 2 T}. For each realization of 
the process {xt}, let i(t) = 1 if xt = Hl(xt-1), and let i(t) = 2 if xt = 

H2(xt-1). 
Define a new stochastic process {jy} on (O,oo) by 

Yt = Xt for all t < T 

At=H~t -: 1 ) for all t > T. 

We claim that since the event {xt -> 0 and xt < 8 for all t 2 T} 
has positive probability, then so does the event yt -> 0. To see this, 
note that on this event, YT < 8 and YT < XT. Suppose that for all t 
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from T to T + sYT+s < 8 andyT+s < XT+s. Then 

YT+s+1 = Hi(T+S+1)(YT+S) < H(T+S+1(XT+s) 

< Hi(T+s+l)(XT+s) = XT+s+l <68 

and so by induction the first event implies the second one. 
Next, if yt -* 0, then the process zt defined by zt = log yt must 

converge to -oo. Moreover, we have ZT+s = YT + Is= UT where the 
UT are i.i.d. binomial random variables, taking on the values 
log(y1 - E) and log (Y2 - E) with probabilities p and (1 -p), 
respectively. 

Thus, the strong law of large numbers implies that the 
conditional probability that zt converges to - o must be 0 if E(UT) > 

0; i.e., ifp log (-y1 - E) + (1 - p) log (Y2 - E) > 0. If, as hypothesized 
in part (a) of the lemma, [p/(1 - p)] > [log (-y2)/log (,y)], then this 
inequality holds true for all sufficiently small E, which proves part 
(a). 

The argument for part (c) of the Lemma is nearly identical. 
Again, letEbe such thatp log (y1 - E) + (1 - p) log (Y2 - E) > O and 
choose 8 so that Hi6(x) < Hi(x) whenever x < 6. Let x* = 8, and 
define It}I as above with T = 0. If xt < x *Vt, thenyt < x*Vt as well. 
Because {yAj converges to infinity with probability one, this event 
has probability zero. 

(b) Suppose that 

p log (Y2) 

1 -p log (y1) 

and choose E such that 

p log (Y2 + E) 

i - <p log('y + E) 

Let Hif(x) = y x + Ex, and choose 8 > 0 such that, for i = 1,2, 
HiE(x) > Hi(x) for x < 6. Define a new stochastic process by {yt} on 
(0,) by 

Yo = X0 

Yt = Hi'(tr)(yt-1) for all t > 1. 

By the strong law, yt converges to 0 with probability 1. 
Moreover, if x0 < 8, there is a positive probability of the event 
{yt -> 0 and yt < 8 Vtt}. An induction like the one in part (a) shows 
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that this event implies that Xt converges to 0 as well, which 
completes the proof of part (b). 

APPENDIX 2: SIGNING THE PARTIAL DERIVATIVES OF Q* 

(i) Proof that (dQ*/dN)(a,N*(a)) > 0. Recall (from the proof 
of Theorem 1) that Q*(oN) = (1 - at)2 + oa(l - oa)(N + 1) + 
at2(N + 1)2q + (N)q - (N). Taking the partial derivative yields 

dQ* 
(Al) dQ = a(l - a) + at22(N + 1)q+(N)q-(N) aN 

+ o2(N + 1)2q+(N) aq(N) + oa2(N + 1)2q-(N) aNM. 

Using the change of variables 

0 
U l + 1/N 

we have 

a a uC(u) 
aN aN 2N(N+ 1) 

and 

d u4(u) 

aNyq(N) = 2N(N + 1)' 

where 4, the normal density, is the derivative of the normal c.d.f. 
F. Substituting into (Al) shows that it is sufficient to verify 

(A2) 1 - a + 2a(N + 14(u)4(-u) 
N+ 1 

> a 2N u4(u)(t(U) - (-U)) 

when N = N*(a). 
Solving the quadratic equation that defines N*, we find that 

-0a(l - a) + Va2(1 - a)2 + 4a3(2 - a)(u4(-u) 

N*(a^) + 1 = 2a^24?(u)4( - u) 

Substituting into (A2) then yields 

- a)2 + 4a(2 - a)(uW(-u) 
N*(ao) + 1 

2N*(at) x u(u)(t(u) - 
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Using ao < 1, 2 - ot > 1, (1 - oa)2 > 0, (N + 1)/2N < 1, ?D(u) > 
(?(u) - ID(-u))2, and 4+(u) = 4)(-u), it suffices that 

(A3) [U2 4(U)2/t(U)] < 4. 

For u > -2, the left-hand side is at most (u4(u))2/?(-2). 
Using 4)' = -u4), the numerator of this last expression is maxi- 
mized at u = 1, so that the value of the left-hand side of (A3) is 
bounded by (21TeF(-2))-1, which is less than 4. 

For u < -2 we use the fact that ?(u) > 4(U)I(u2 - 1)/u31 
(see, e.g., Ross [1984], p. 161). Thus, [u24.(u)2/F(u)] < V3U34.(U). 
The maximum on the interval u < -2 occurs at -2, where the 
left-hand side of (A3) is 32e-2/3V2m, which again is less than 4. 

The other partial derivatives are easier to sign. 
Writing 

Q*(ot,N) = 1 + ot[(N - 1) + ot((N + 1)q+(N) - 1)((N + 1)q-(N) - 1)], 

we have 

Q* (0t,N*(ot)) = ot[((N + 1)q+(N) - 1)((N + 1)q -(N) - 1)] dat 
+ (Q*(ot,N*(o)) - u)/a 

= Ot[I(N + 1)q+(N) - 1)((N + 1)q-(N) - 1)] 

= 1 - N*(a) < 0, 

where the first equality comes directly from Q*(agN*(a)) = 1, and 
the second uses that fact and the equation for Q*. Note that the 
inequality is strict for all 0 > 0. Finally, 

aQ* a - (otN*(ot)) = at2(N + 1)2 - (q + (N)q -(N)); 

this is negative for 0 > 0 because q+(N) > 1/2, q+(N) = 1 - q-(N), 
and aq+(N)/ a- > 0. 

QED 
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