
 Open access Proceedings Article DOI:10.1145/800125.804029

Word problems requiring exponential time(Preliminary Report) — Source link

L. J. Stockmeyer, A. R. Meyer

Published on: 30 Apr 1973 - Symposium on the Theory of Computing

Topics: NP, Computational complexity theory, Function problem, Theory of computation and NP-easy

Related papers:

 The complexity of theorem-proving procedures

 Introduction to Automata Theory, Languages, and Computation

 Computers and Intractability: A Guide to the Theory of NP-Completeness

 The equivalence problem for regular expressions with squaring requires exponential space

 The polynomial-time hierarchy☆

Share this paper:

View more about this paper here: https://typeset.io/papers/word-problems-requiring-exponential-time-preliminary-report-
267el49znp

https://typeset.io/
https://www.doi.org/10.1145/800125.804029
https://typeset.io/papers/word-problems-requiring-exponential-time-preliminary-report-267el49znp
https://typeset.io/authors/l-j-stockmeyer-xipbyushm3
https://typeset.io/authors/a-r-meyer-45a4u6cg9p
https://typeset.io/conferences/symposium-on-the-theory-of-computing-31rfzork
https://typeset.io/topics/np-2h91sf77
https://typeset.io/topics/computational-complexity-theory-1lo7eda5
https://typeset.io/topics/function-problem-14m0cbzx
https://typeset.io/topics/theory-of-computation-3sgu14by
https://typeset.io/topics/np-easy-6mx0dmvh
https://typeset.io/papers/the-complexity-of-theorem-proving-procedures-31ffp3ir5d
https://typeset.io/papers/introduction-to-automata-theory-languages-and-computation-42magdtsae
https://typeset.io/papers/computers-and-intractability-a-guide-to-the-theory-of-np-25fplzw7ir
https://typeset.io/papers/the-equivalence-problem-for-regular-expressions-with-hcbfcwte48
https://typeset.io/papers/the-polynomial-time-hierarchy-2vdwp5b4mn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/word-problems-requiring-exponential-time-preliminary-report-267el49znp
https://twitter.com/intent/tweet?text=Word%20problems%20requiring%20exponential%20time(Preliminary%20Report)&url=https://typeset.io/papers/word-problems-requiring-exponential-time-preliminary-report-267el49znp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/word-problems-requiring-exponential-time-preliminary-report-267el49znp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/word-problems-requiring-exponential-time-preliminary-report-267el49znp
https://typeset.io/papers/word-problems-requiring-exponential-time-preliminary-report-267el49znp

Word Problems Requiring Exponential Time~ Preliminary Report

L.J. Stockmeyer and A.R. Meyer
Massachusetts Institute of Technology

I. INTRODUCTION

The equivalence problem for Kleene's regular
expressions has several effective solutions, all of
which are computationally inefficient. In [I], we
showed that this inefficiency is an inherent pro-
perty of the problem by showing that the problem
of membership in any arbitrary context-sensitive
language was easily reducible to the equivalence
problem for regular expressions. We also showed
that with a squaring abbreviation (writing (E) 2
for E.E) the equivalence problem for expressions
required computing space exponential in the size
of the expressions.

In this paper we consider a number of similar
decidable word problems from automata theory and
logic whose inherent computational complexity can
be precisely characterized in terms of time or
space requirements on deterministic or nondetermin-
istic Turing machines. The definitions of the word
problems and a table summarizing their complexity
appears in the next section. More detailed comments
and an outline of some of the proofs follows in the
remaining sections. Complete proofs will appear in
the forthcoming papers [9, I0, 13]. In the final
section we describe some open problems.

2. WORD PROBLEMS AND REDUCIBILITIES

We consider word problems involvSng (I) regu-
la=-like expressions for subsets of ~, where ~ is
a finite set of letters, (2) similar expressions
for subsets of the nonnegative integers N, and (3)
certain closed formulas related to the predicate
calculus.

Regular-llke expressions over ~ are well-formed
parenthesized expressions involving constants ~ E
~, and the empty string k, binary operations •
(concatenation), U (union), and unary operations
• (Kleene star), m(complement relative to ~), and

2(squaring). For any regular-like expression E,

the set L(E) c~* described by E is defined induc-
tively in the obvious way, e.g.,

e(~) = [~) for ~ E ~,

L((Ei. E2)) = L(Ei).L(E2) ,

L((E) 2) = L(E).L(E),

L~(E)) = ~ - L(E), etc.

For any set ~ of letters and set of operations
c [., U, *, m, 2), define

MEMBER(~,~) = [(x, E) I x E ~, E is a regu-
lar-like expression over ~ containing only opera-
tions in~, and x E L(E)],

INEQ(~, e) = ((El, E 2) I E 1 and E 2 are regu-

lar-llke expressions over ~ containing only opera-
tions in~ and L(E I) ~ L(E2) }.

Integer expressions are well-formed parenthe-
sized expressions involving nonegatlve integer
constants written in radix notation (say base two),
binary operations + (addition), U (union), and the
unary operation m (complement relative to N). For
any integer expression E, the set L(E) c N
described by E is defined inductively as follows:

L(m) = [m] for m E N ,

L((E 1 U E2)) = L(E l) U L(E2),

L((~ I + E2)) = [m+n I m E L(E I) and

n ~ L(E2)) ,

L(-I(E)) = N- L(E).

For any set of operations ~ c [+, U,ml,
define

__~_-MEMBER(~) = [(x, E) Ixls the binary repr
resentatlon of some integer n,
E is an integer expression
containing only operations in
o,and n E L(E).},

__N-INE~,~) = [(El, E 2) I E 1 and E 2 are integer

expressions containing only oper-
ations in~ and L(Ei) ~ L(E2) }.

%Work reported here was supported in part by Project
MAC, an MIT research program sponsored by the
Advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract
Number NO0014-70-A-0362-0006 and the National Science
Foundation under contract number GH00-4327. Repro-
duction in whole or in part is permitted for any
purpose of the United States Goverrmnent.

Finally, we consider Boolean expressions
involving doubly subscripted Boolean variables x. .

l,j
with i,j ~ 1 written in base two notation, and the
usual Boolean operations, A (and), V (or), ~ (nega-
tion), m (equivalence), D (implication), and Boolean
constants 0, I. In describing Boolean expressions
we write X i for the sequence of variablesx. ,x.,z ,

1,1 l
...; ZXi for Zx ; etc. These l~Xi,2 ~xi,3 xi,3'

abbreviations do not appear in the Boolean expres-
sions themselves. We use the notation A(Xi,...,Xk)

to indicate a Boolean expression containing no
variable xi, j such that i > k.

Define for k ~ I,

B__k = [A(X 1 ~) ! ~I VX2 ~X3 "'"

QkXk[A(Xi %) = i]}

where Qk = Z if k is odd and Qk = V if k is even.

For example, B I corresponds to the satisfiable

formulas of propositional calculus. Define

co

B~ = U B k.
-- k=l

Let IEQ denote the set of valid sentences in
the first order theoTy-of equality.

We shall classify the complexity of sets of
words in terms of two binary relations ~log and

~log-lin' called log-space reducibility, and log-

linear reducibility, respectively.

Let ~, 4 be finite sets of letters and f:

~* 4 4" a function. We say that f is l~-space
computable iff there is a deterministic Turlng
machine with a two-way read-only input tape, a one-
way output tape and one two-way re~d-wrlte working
tape, which started with any x 6 ~ on its input
tape will halt having written f(x) on its output

and having visited at most log21x I tape tape
squares on its work tape, where Ix| is the length
of x.

w ,
Let A c ~ , B c 4 be sets of words.

Definition. A ~log B iff there is a log-space oom-

putable function f such that (Vx 6 ~)[x 6 A = f(x)
6 B]. If in addition there is a constant c > 0

such that If(x) I ~ e. lxl for all x 6 ~*, then

A Nl0~.li n B.

We assume the reader is familiar with the
notion of nondeterministic Turing machines [of. 2].
Briefly, the time required for a nondeterministlc
machine to accept an input x is the length (number
of steps) in the shortest accepting computation; a
set A of inputs words is said to be accepted in time

t by a nondeterministic Turing machine~, where
t: N 4 N , iff for all input words x, (I) x 6 A
there is an accepting computation of ~ started on

input x, and (2) x 6 A = there is an accepting
computation of 90~ on x of length ~ t(Ixl). Similar
definitions apply for space.

The main properties of these reducibilities
are stated in the next two lemmas.

Lemma 2.1. ~log and ~log-lin are transitive
relations.

Lemma 2.2. If A ~log B (A ~log-lin B) and there is

~deterministic
a [nondetermlnistic2 Turing machine accepting B in

time ~ t and space ~ s, then there is a polynomial
p (and constant c > 0) such that A is accepted by
(deterministic)~ .

a luring machine in time ~ t'
~nondeterministic>

where

t'(n) = p(n)omax[t(j) I J ~ p(n))

(t'(n) = p(n)omax[t(j) I J ~ c'n])

and space ~ s' where

s'(n) = log2n + maxis(j) [j ~ p(n)]

(s'(n) = log2n + max[s(j) I J ~ c.n]).

To outline the proof of Lemma 2.1, suppose

A c ~ , B c 4 , C c F and A ~log-lin B via f:

~* 4 A* and B glog-lln C via g: A* 4 F . Clearly

x c A = g(f(x)) 6 F , so one need only show that
g oo~ [~%og-e~a~= computable. The difficulty is
that the obvious Turing machine which given x on
its input tape prints g(f(x)) on its output tape
must write f(x) on its work tape and so may use

I i

more than log21x I tape squares. However, instead

of writing f(x) on its work-tape, a machine with
input x can simulate the computation of g at argu-
ment f(x) by recording on its work tape an instant-
aneous description of the computation of g and the
position j in f(x) which the input head would
occupy if the input were actually f(x). Since j

lfCx) 1 ~ c.]x], only log2]x] + log 2 c extra

squares on the work tape are ~equi~ed Co r~c~d j
To simulate another step in the computation of
g(f(x)), the machine with input x computes the

jth digit of f(x) using only log2[x [work tape

squares, which is possible since f can be computed
in log space. Hence, from x on the input =ape,
f(g(x)) can be printed on the output tape using
proportional to log21x I work tape squares. The

compgt@tion can then actually be done using only
log2[x I work-tape squares using a larger set of

symbols on the work-tape (of. [2]).

Note that if f is log-space computable, then f
is necessarily polynomial time computable. So in
particular, If(x)I ~ p(Ix]) for some polynomial p.
With this observation, the preceding argument may
also be used to show that Klog is transitive.

The proof of Lemma 2.2 is similar, and is
omitted.

We remark that A ~log B = A ~ B where ~ is

polynomial time reducibility defined by Karp [4].
We believe that all of the particular polynomial
time reductions described in [4] are actually log
space reducibilities, although it would be surpris-
ing if log space and polynomial time were the same
in general.

Let ~ be a family of sets of words, and ~ a
transitive relation on all sets of words. We say
that ~ K C iff B ~ C for all B E ~. C is i-complete
in ~ iff ~ ~ C and C 6 ~. For example, let ~ be
the family of sets recognizable in nondeterministie
exponential time, i.e., A 6 ~ iff there is a con-
stant a > I and a nondeterminlstic Turing machine

which accepts A in time ~ an; let C be a set such
that ~ ~log-lin C. Standard diagonal arguments

imply the existence of a set A E ~ such that any

deterministic Turing machine accepting A requires
I !

time ~ 2 ~xl for infinitely many inputs x. The
contrapositive of Lemma 2 immediately implies that
there is a constant b > 1 such that any determin-
istic Turing machine accepting C requires time

II
b 'x' for infinitely many inputs I xl . In fact,
Seiferas [5], extending methods of Ibarra [6] and
Cook [7], has shown that for I ~ a I < a2, there

exists a set B recognizable in nondetermlnistlc

time ~ a2n but not in nondeterminlstic time ~ aln ,

so that C requires time k b n for some constant b >
1 and infinitely many n even on nondeterministic
machines.

In general, from the fact that $ is reducible
to C by a computationally efficient reducibility,
one can immediately deduce that the computational
complexity of C must be approximately as large as
the computational complexity of any member of ~.
Additional properties about the complexity of C,
for example that any machine recognizing C can be
"sped-up" effectively on infinitely many inputs in
the sense of Blum [8], can also be proved in most
cases. A full treatment of these properties of
efficient redueibilities will appear in subsequent
papers.

The following table summarizes our main results
on the word problems defined above. For each set C
and family ~ in the tabl~ ~ is reducible to C by
the indicated reducibility, and an upper bound on
the complexity of C appears in the final column.

Complexity of Word Problems

INEQ({0, I], [U,. ,-~])

INEQ([e, 11, {U,.,2,*))

INEQ((O,II, (U,.,2))

INEQ([0, i], [U,',*])

INEQ({O, I), [U,.])

MEMBER([O,I], (U,',2 ,_~})

B
tO

IEQ

B k

N-INEQ ([U,+,-~])

N-MEMBER([U,+,~})

N-INEQ([U,+])

N-MEMBER ([U, +])

INEQ ({ O], [U,. ,2,-~))

INEQ([01, [O, ",*})

i ~Q([o) ,. [u , . ,~})

I~ reducible to C I

log-lin

log-lin

log-lin

log-lin

log

log

log

log

log

log

log

log

log

log

2

space 222"" ")log2n

exponential space

nondeterminls tlc
exponential time

nondeterminis tic
l i n e a r space

~ P

polynomial space

polynomial space

~o lynam, t a 1- -~p,,~c e

polynomial space

NIP

polynomial space

~P

Upper Bound on C

space ~2."

complete

complete

complete

complete

P

complete

complete

complete

complete

complete

complete

complete

complete

complete

P

Following Cook [3] and Karp [4], we let ~
denote the family of sets of words A such that A
is accepted by a deterministic (nondeterministic)
Turing machine in time bounded by a polynomial.

The classes ~ for k ~ 0 are defined in [I] and

discussed in section ~ below.

3. REGULAR-LIKE EXPRESSIONS OVER {0,I}

The proofs that INEQ({O,I}, {U,o,2,*]) is log-
linear complete in exponential space, and that
INEQ([O,II, [U,',*}) is log-linear complete in non-
deterministic linear space have appeared in [I].
Complete proofs of all the results concerning regu-
lar-like expressions over {0,I~ (i.e. the first six
table entries) will appear in [9] and [I0]. Here
we shall indicate the proof of only the following

Theorem 3.1. The family of sets of words recogni-
zable in nondeterministic exponential time is log-

linear reducible to INEQ({0,1}, (U,.,2}).

Note that regular-like expressions involving
2

only the operations U,', can define only finite
sets of words, so that the decidability of INEQ([0,

I}, {U,',2]) is trivial. Todescri~elarge finite sets,

one can use the identftles A n+l = An.A and A 2n =

2 (A) ~aowrlte a regular-like expression F such that
L(F) = L(E) t~, IF1 iS bounded by a constant times
IEI'logpn,. and F involves only U,°, 2 and the
0peratiDns in E for any regular-like expression
E and n ~ O.

Let ~ be a nondeterministic Turing machine

* 2 n" which accepts a set A c (0,11 in time ~ It
will he sufficient to show that A ~log-lin INEQ(~,

[U,.,21), where ~ is a finite set of letters in-
cluding symbols for the states and symbols of ~

contains a symbol # denoting a blank tape squar~
and ~ contains a symbol ~ which serves as an end
marker.

As in [I], let Comps(x) be the set of accepting

computations of ~ on x, that is, Comps(x) consists

of words of the form #I I #12 ~ ... #Ik# where I I

is the initial instantaneous description (i.d.) of
~On input x, I k contains an accepting state, and

lj+ I is a possible next i.d. following in one step

from I. for I ~ j < k ~ 2 !xl. No i.d. of ~ need be
J

longer than 2.2 n + i, so there is no loss of gen-
erality in adding the technical requirement that
each of the i.d.'s be surrounded by blanks to be
of exactly length 2.2 n + I.

2 n
Thus, the initial i.d. for x would be ~ 'qO'~"

n
62 -n where qO is the start state of ~ and n = Ix I.

Note that no word in ComB(x) is longer than

a(n) = 4 n+2. We shall show how to construct from
x a regular-like expression E over ~ involving

x k)b(n)
only U,.,2 such that L(Ex) = (~ U -Comps(x)

for a certain integer b(n) ~ a(n). Hence,

x E A = Comps(x) ~ # ~ L(E x) @ (~ U k)b(n!

Moreover, it will be apparent from the con-
struction that the function mapping x to the pair
(Ex, expression for (~ U k)b(n)) is log-space

computable and that the length of these expressions
is proportional to n. Hence A ~log-lin INEQ(~,

{U,.,2]).

To construct E we wish to describe a finite
x

set of words containing all words in ~ of length
a(n) except those in Comps(x). Let s = rz-(~]

for any c 6 ~ and say x = XlX 2 ... x where x. 6
n i [0,1~.

Now words may f a i l to be i n Comps(X) because

they "start wrong". These words can be described
as follows:

"too short": (~ U k) 2"2n+2

"doesn't start with ~": ~.(~ U k) a(n)

"doesn't start with enough blanks":

#'(~ U k)2P-l°~'(~ U k) a(n),

2 n
"doesn't start with ~ q0 x":

2 n ~ ~
~ "(q0 U q0"(~l U Xl'(X 2 U x2' (.. • (Xn. 1

U Xn.l'X n) ...))))'(~ U k) a(n),

"not enough blanks following x":

~2n+n+2.(~ u x)2n-n-l.~.(~ u x) a(n),

"missing the second ~": ~'2n+2"~'(~ U k) a(n).

A word may also fall to be in Comps(x) because

it "ends: wrong". These words can be descirbed as
follows:

ii. "doesn't halt in the accepting state qa

2.2n+I
(~U k)a(n).~. ((~ U k)-{~,qa]) .#,

"doesn't end with @": (~ U k)a(n)'~.

Finally, a word may fail to be in ComB(X)

because the consecutive i.d.'s do not conform to
the possible moves of ~. In particular, the defin-
ition of ~ determines for every three symbols ~I'

~2' ~3 E ~ a set N(~i~2~3) of words of length three

such that if ~i~2~3 appears in a word in ComB(x),

then only words in N(C~l~2Cr3) may appear one i.d.

length to the right of crlc;2~3 • The words not in

Comps(x) because they "move wrong" can now be des-

cribed as follows:

(~ U k)a(n).u.(~ U k) a(n)

where

U = U ~i'(Y2'~3"~ ° 2n-l" (~-N(c~icr2cT 3))

cYi,~2,~3
6Z

The union of the sets given by the expressions
above contains all words over ~ of length ~ a(n)
except those in Comps(x). It also contains certain

longer words, none of which however is longer than

b(n) = 2.a(n) + 2.2 n + 5. Thus, the words which
are "too long" are

~a(n) + I • (~ U k) b(n)-a(n)'l.

The regular-like expression E is thus simply
x

the union of the regular-like expressions corres-
wr ,i pondlng to the words which "start ong , ."end

wrong", "move wrong", or are "too long". T

4. POLYNOMIAL TIME QUANTIFIERS

In [I] we defined an analogue to the arithmetic

hierarchy in which P plays the role of the recursive

sets ~i was defined to be ~ and ~+I was defined

as the family of sets of words accepted in non-
deterministic polynomial time by Turing machines

with oracles for sets in~. The analogy to the

arithmetic hierarchy is made more explicit in the
next theorem, which is stated without proof.

Let P(x I ,Xk) be a predicate on words in

for some ~. We say that P is polynomial time com-
putable if [Xl~X2~ ... ~k I e(x I Xk)}

is a set of words recognizable in deterministic
polynomial time where ~ is a symbol not in ~.

Theorem 4.1. For k ~ I, aset of words A is in~

iff there is a deterministic polynomial time com-
putable predicate P(X,Yl,Y2,...,y k) and a polynomial
p such that

%Theorem I was stimulated by John Brzozowski's
remark that our use of Kleene * in [I] was very
restricted and might therefore be removable. We
are also grateful to Harry Hunt who pointed out
that the function N used in [I] should actually
have been a mapping from words to sets of words
as in the construction given here.

A = [x I ZYl VY2 ~Y3 "'" QkYk[P(X'Yl Yk)]]

where the quantifiers range over Yi 6 ~* such that

lyll p(Ixl>.

The following theorem was stated and proved in
slightly weaker form in [i].

Theorem 4.2. For k ~ I, the set B k is Klog-Compl-

ere in ~k"

In fact, the construction given in [II] for
converting an arbitrary propositional formula to
disjunctive form in polynomial time while preser-
vlng validity may be extended to show that the set
of disjunctive (conjunctive) form formulas in B k

is log-space complete when k is even (odd).

It remains an open question whether the con-

tainment of ~ ~ in ~ ~+I is proper. Nevertheless,

believe the "hierarchy" of ~ classes is tech- we

nleally useful for classifying the complexity of

problems. In the next section we describe a word

which is complete in ~,p. problem
m

The set Bco = 0 B k is the natural analogue to

k=l
the c0-Jump of the empty set in reeurslve function
theory. The following theorem reveals a surprising
relationship between the polynomial time hierarchy
and polynomial space.

Theorem 4.3. Bco is ~log-Complete in polynomial
space.

Proof. To show that polynomial space is ~log Bco,

let ~ be a Turing machine which accepts some set
w

L c [0,I} in space K p(n) for some polynomial p.
In the computation of ~ on input x, no instantan.-
eous description is longer than 1 + p(Ixl). We
choose an encoding of the states and symbols of
into words in [0,I]*, so that any instantaneous
description of ~ in its computation on input x will
be a wordy£ [0,I]* such that IYl = q(x) for some
polynomial q depending on ~ p, and the encoding,
but not depending on x.

As in [I] z _[3], one can construct a Boolean
formula AO,n(U,V) where U = Ul, u 2 Un and V =

Vl,V2,...,v n are sequerces of Boolean variables

and n = q(Ixl)such that

AO, n(U,V) UlU2...u and VlV 2 ... v are the
n n

encodings of i.d.'s of ~ and

VlV2...v follows from UlU2...u n n
in at most one s tep of ~JJL

Moreover, for fixed ~, the length of A0, n is
bounded by a polynomial in n.

By quantifying over some of the_variables, one
can now construct formulas A k (U,V) for k ~ 0
such that ,n

,n (~,~) and VlV2...v n are A k ~ UlU2...u n

the encodings of i.d.'s of ~I
and VlV2...v n follows from

• k

UlU 2...u n ~n g 2 steps of !~.

Moreover, the length of Ak, n(U,V) is bounded by

k+l times a polynomial in n. This follows by in-
duction from the equivalence

Ak+l,n(B,9) = (~)(V~)(V~)[((~=~ ^ ~ =

v (~ = ~ ^ ~ = ~)) =A~,n~% ~)],

where we have used U = Y as an abbreviation for the

formula (u I ~ yl) A (u 2 ~ y2) A ... A (u n ~ yn).

(We note the similarity of this construction to
Sa~itch's proof that nondeterminlstlc space n is
contained in deterministic space n2[12].)

Now since ~ requires space ~ p, there is a
constant c > I such that ~ accepts an input word x

iff ~ accepts x in time ~ c p(Ixl). Let Ix(U) be .
a Boolean formula which equals one Iff UlU2...u n is

the encoding of initial i.d. of ~ on x, and let
F(V) be the Boolean formula which equals one iff
VlV2...v n is the encoding of an accepting i.d. of

~. Then, x 6 L ~ ~accepts x in ~ c P(IXT) steps

= (~) (Z ~) [I x (U) A F(V) A Alog2c, p(Ixl),n(U,v)] .

The Boolean formula on the righthand side of the
above equivalence is of length bounded by a poly-
nomial in Ixl, and can be rewritten as a formula
E such that x 6 L = E E B by renaming the vari-
X X

ables appropriately. We shall leave it to the
reader to convince himself that the functlonmapping
x to E x is log-space computable. Hence L ~log B .

It is also not hard to show that B is recognizable

in deterministic linear space, which completes the
proof.

Essentially the same constructlon may be used
to prove that polynomial space is ~log IEQ. A

polynomial space upper bound on IEQ follows from
the well-known fact that a first-order formula
with n quantlfiers and no predicates other than
equality is valid iff it is valid for domains of
all cardinalities between 1 and n.

Corollary 4.4. IEQ is ~log-eomplete in polynomial
space.

5. INTEGER EXPRESSIONS

We shall prove in this section that N-MEMBER
({U,+)) ~s ~. -co=pleta in ~ and that

log
N-INEQ({U,+}) is Nlog-eomplete in ~2. The latter

is an example of ~ reasonably n~tural deelsion

proD~em for which the ~ classes provide a precise

complexity characterization.

The proofs that N-INEQ({U,+,m]) and N-MEMBER
({U,+,~)) are ~log-Complete in polynomial space

involve a combination of the techniques used in
Theorem 5.2 below and Theorem 4.2, but are too
long to present here. They will appear in [13].

For simplicity we shall identify nonnegative
integers with their binary representations, e.g.,
Ixl for x E N means the number of digits in the
binary representation of x.

Lenmma 5.1. N-MEMBER([U,+}) 6 o~.

Proof. Let x be a nonnegatlve integer, and let E
be an integer expression. Define a "proof" that
(x,E) E N-MEMBER([U,+}) reeurslvely as follows:

(x,x) is a proof of (x,x); if P1 is a proof of

(Xl,El) and P2 is a proof of ~2,E2), then (Pi,P2)

is a proof of (Xl+X2,(El+E2)); if P1 is a proof of

(x,E), then P1 is also a proof of (x,(E U F)) and

of (x,(F U E)) for any integer expression F. Let
Q(x,E,P) be the predicate which is true iff P is a
proof of (x,E). It is not hard to see that Q is
computable in deterministic polynomial time, and
that if Q(x,E,P). then IPI is bounded by a poly-
nomial in Ixl + IEI. It follows that x E L(E) iff
ZP[Q(x,E,P) and IP I ~ polynomial (Ixl + IEI)], so

by Theorem 4.1, N-MEMBER({U,+}) E ~I =~

Theorem 5. I. N-MEMBER({U,+]) is ~log-Complete
in ~P.

Proof. Karp [4] has shown that KNAPSACK ~log-COm-

plete in ~, where KNAPSACK = {(al,a 2 an,b) I

n > O, a i 6 N for I ~ i ~ n, b 6 N, and i~ I alz i =

b for some integers z i E [0,11 for I ~ i ~ n}.

But (al,a2,...,an, b) E KNAPSACK =

(b,(a I U 0)+(a 2 U 0) +...+ (a n U 0)) E N-MEMBER

((u,+}):

Hence, KNAPSACK ~log N-MEMBER({U,+}), which

completes the proof.

Theorem 5.2• N-INEQ([U,+~) is Klog-Complete in

4

Proof. A simple induction on the length of integer
expressions implies that if L(E) ~ L(F), then there
is a z E N such that z E L(E) ~ z ~ L(F), and Izl
IEI + IFI. Hence, e(E) ~ L(F) ~ ~z[~Pi[Q(z,E,P~]=

-~qP2[Q(z,F,P#]] where Q is the predicate defined in

Lemma 5.1, and all quantifiers range over words
whose length is bounded by a polynomial in IEI +
IFI. Thus, Theorem 4.1 and standard manipulation

of quantifiers implies that N-INEQ({U,+]) 6 ~2"

To complete the proof, we shall show that B 2

~log N-INEQ({U,+)).

Let A(Xi,X2) be a Boolean formula, which by the

remark following Theorem 4.2 may be assumed to be
in disjunctive form.

For simplicity assume the variables in A are
xi, j for i = 1,2 and I K j ~ n. Let D k be the set

of literals (variables or their negations)in the

k th disjunct of A for I K k ~ m. Let [G E D k] = I

if G E Dk; [G E D k] = 0 if G ~ D k. For each liter-

al G, define I(~) E N to be

I(G) = k~l [G 6 Dklbk where b = 22+Fl°g2 n].

m bk '
Let a = k~l and for I ~ i ~ m let F i be the

integer expression

F i = (b i U 0) + (b i U 0) +...+ (b i U O)

where the term (b i U 0) occurs 2n-I times. Finall~
define integer expressions

n

E 1 = na + k~l ((a-I(Xl;k)) U (a-I~-~l,k))),

n m
E 2 = (k~ I (l(x2, k) U l(-~2,k)))+ (i~l Fi)"

mote that if y E L(E I) then y = k~l akbk where

n K a k ~ 2n, and there is an assignment to the

Boolean variables XI in A such that for i ~ k K m,

a k = 2n iff no Xi literal in D k is assigned the

value 0. Similarl[, for any assignment to the
Boolean variables X 2 in A, there is a y E L(E 2)

m akbk such that y = k~l where a k = 2n if some X2

literal in D k is assigned value O, and a k may have

any value < 2n otherwise.

One can now show that

A(XI'X2) ~ B2 ~ ~i ~2[A(XI'X2) = 0]

L(Ei) c L(E2)

((E 1 U E2),E 2) ~ N-INEQ
((U , +]) .

We note that the function mapping A(Xi,X2) to

((E I U E2),E p) is log-space computable, which
~Ompletes the proof.

6. REGULAR-LIKE EXPRESSIONS OVER {01

Regular-like expressions over [0] resemble
integer expressions in that if we define for A c

0 the set N(A) d~f [Ixl I x E A} c N, then N(Ai.A 2)

= N(A) + N(B), N(-A) = N-N(A), etc. Using squaring
and concatenation, one can construct for any n E N
a regular-like expression E over [01 such that
N(L(E)) = {hi and IEI is proportional to log2n,

which yields a log-llnear reduction from integer
expression problems to regular-like expression

problems. For example, the proof that INEQ([0],

[U,',2,~}) is ~log-COmplete in polynomial space is

a simple corollary of the fact that N-INEQ([u,+,~])
is ~log-COmplete in polynomial space. A detailed

proof will appear in [131.

The contrast between regular-like expressions
over [0~ and those over [0,I I is best illustrated
by the ease involving the operations U, ", and 9.
Inequivalence over [0,11 with these operations is
enormously hard to decide, while inequivalence over
[0) with these operations is trivial from our point
of view, i.e., is decidable in deterministic poly-
nomial tlme, because a regular-like expression of
length n over [01 with operations U, ", ~ defines
a finite set of words or the complement of a
finite set of words of length at most n. Details
will appear in [13].

When the squaring operation is not used, word
problems for regular-like expressions over {01 seem
to require somewhat different methods from either
integer expressions or regular-like expressions
over [0,I}. The following theorem is an example.

Theorem 6.1. INEQ([0 I, [U,.,*}) is ~log-Complete
in~

Proof. By "expression" in this proof we shall mean
regular-like expression over [0} involving only
the operations., U, *.

To test whether L(E) # L(F) in nondeterminlstlc
polynomial time, construct~ro~ expresslons ~ a~dF
nondeterministic finite automata A E with at most

!E I states and AFWlthat most IFI states. If

L(E) ~ L(F), then standard results i~ ~utoma~a
theory imply that there is an n ~ 2 |E| + 2 IF

such that O n 6 L(E) = O n ~ L(F). Nondeterminis-
tically "guess" the binary representation of n,
and test whether there is a path in the transition
graph of A E and A F of length n to accepting

states. This latter test can be carried out deter-
ministically in time bounded by a polynomial in
Inl by successively squaring and multiplying the
connection matrices for the transition graphs of

A E and A F. The entire procedure thus can be

carried out in nondeterminlstic time bounded by a
polynomial in IEI + IFI.

To prove completeness, let SAT be the set of
satisfiable Boolean formulas in conjunctive form
with exactly three literals per conjunct. Cook
[3] has shown that~Klog SAT, and we shall show

that SAT ~log INEQ([0], [U,',*}).

Let A(X I) be a Boolean formula in conjunctive

form with three literals per conjunct. Let C k be

the set of literals in the k th conjunct, I ~ k ~ m.
Say that A has n distinct variables, so that an
assigmnent to the variables can be represented as
a binary vector of length n. Let pl,P2,...,pn be

the first n primes. If z 6 N is congruent to 0 or
I modulo Pi for i ~ i ~ n, we shall say z satisfies

A if the assigrmnent (z mod PI' z mod P2"'" z modp~

satisfies A.

Let E 0 be the expression such that L(E0) =

[0z I z E N does not encode an assigr~ent] =

[0~ I (Zk ~ ~[z ~ 0(mOdPk) and z ~ I mod(Pk)]].

n Pk'l
E0 = kQ1 jQa [0J'(0Pk)*]

For each conjunct Ck~ we construct an expression

E k such that if 0 z E L(Ek) and z is an asslgr~nent

then z does not assign the value 1 to any literal
in C k. For example, if C k = [Xl, r, -~l,s' Xl,t]

for 1 ~ r,s,t ~ n and r~s,t distinct~ let z k be

the unique integer such that 0 K z k < prPsPt ,

z k ~ O(mod pr), z k ~ 1 (mod p~), and z k ~ 0 (modPt),

Then

E k = 0Zk.(0PrPsPt) *.

Now it is not hard to show that A(Xi) is sat-

isfiable = (Zz 6 N)[z encodes an assigrm~ent to A

and 0 z ~ L(E k) for I ~ k ~ m] ~ L(E 0 U k~ I E k) ¢
w

0 .

The reader can verify that the mapping from

A(Xl) to (E 0 U k~ I Ek, 0") is log-space computable,

which completes the proof.

7. CONCLUSIONS AND OPEN PROBLEMS

We have demonstrated that the inherent compu-
tational complexity of a large selection of word
problems from automata theory, logic and arithmetic
can be characterized precisely. Our results to
date are summarized in the table in section 2.

We believe that the methods used here will have
wide applicability in computational mathematics.
Our results already imply that previous efforts to
find efficient procedures for testing equivalence
of regular expressions or minimizing nondetermin-
istic finite automata (cf. [14], [15], [16]) were
foredoomed• Recent studies by ourselves and co-
workers of decision procedures for logical theories
show that our methods are applicable to nearly all
of the classical decidability results in logic,and

that moreover with the exception of the proposi-
tional calculus and some theories resembling the
first order theory of equality, all these decidable
theories can be proved to require exponential or
greater time• Although certain of the word problems
considered in this paper are somewhat arbitrarily
constructed, we have studied them in the hope that
the methods of proof will extend to algebra, topo-
logy and other areas where decision procedures
arise, and will curtail wasted effort in searching
for efficient procedures when none exist.

One can easily generate several dozen word
problems which are variants of those considered in
this paper by considering different subsets of the
operations we have defined or inventing similar
ones. We hesitate to reco~mlend this entire class
of problems as an interesting research topic, but
two problems we are interested in are

Open Problem: Characterize the computational

complexity of INEQ([O}, [U,',*,2]) and INEQ([O],
[U,',*,~]). In particular are they recognizable in

.2 n

time K 22.. "~k for any fixed k? We conjecture
an affirmative answer to the latter question by
reducing these problems to Presburger arithmetic
(cf. 17).

Define polynomial expressions over finite sets
o_~ integers recursively as follows: (Xl,X2,...,x n)

is an expression and ~(Xl,...,Xn)) = Ix I ,Xn]

• are nonnegative integers where n ~ I and Xl,.. ,x n

expressed in binary notation; if E and F are
expressions and n E N is expressed in binary nota-
tion, then (E + F), (E-F), (ExF)I and (E) n are
expressions and L((E+F)~ = [x+y ~ x 6 L(E) and y 6
L(F)}, L((E-F)) ~ [x-y | x 6 L(E) and y 6 L(F)],
L((EXF)) = [xXy I x 6 L(E) and y E L(F)}, and

L((E) n) = [xn I x 6 L(E)].

Open problem: Characterize the computational
complexity of the equivalence problem for poly-
nomial expressions over finite sets of integers•

I.

2.

3.

4.

5.

REFERENCES

Meyer, A.R. and L.J. Stockmeyen. The Equivalence
Problem for Regular Expressions with Squaring Requires
Exponential Space, 13th Annual IEEE Symp. on
Switchir~ and Automata Theory, Oct., 1972,125-129.

Hopcroft, J. and J. U]iman. Formal Languages
and their Relation t__oAutomata, Addison-Wesley,
c. 1969~ 242pp.

Cook, S. The Complexity of Theorem-Proving
Procedures, Conf. Rec. 3rd ACM Symp. o__nTheory
of Computing, 1970, 151-158.

Karp, R. Reducibility Among Combinatorial
Problems, in Complexity of Computer Computations,
R.E. Miller and J.W. Thatcher, ed., Plenum Press,
N.Y., 85-104.

Seiferas, J. Translations in the Nondeterministic
Tape and Time Hierarchies, i_~ preparation.

B

6. Ibarra, O. A Note Conuerning Nondeterministic
Tape Complexities, JACM, Vol. 19, 1972, 608-612.

7. Cook, S. A Hierarchy for Nondeterministic Time
Complexity, Conf. Rec. 4th ACM Symp. o__n Theory
o_~ Computing, 1972, 187-192.

8. Blum, M. On Effective Procedures for Speeding
Up Algorithms, JACM Vol. 18, 1971, 290-305.

9. Meyer, A. and Stockmeyer, L. Some Inherently
Difficult Word Problems, Part I, to appear in
Journal of Computer an_~ System Sciences.

I0. Meyer, A. and Stockmeyer, L. Nonelementary Word
Problems in Automata and Logic, to be presented
at the Amer. Math. Soc. Symp. on the Complexity
of Computation, New York, April 1973.

II. Bauer, M., D. Brand, M. Fischer, A. Meyer, and
M. Paterson. A Note on Disjunctive Form Taut-
ologies, SIGACT NEWS, 1973, to appear.

12. Savitch, W. Relationships Between Nondeter-
ministic and Deterministic Tape Complexities,
J. Computer and System Sciences Vol. 4, 1970,
Y77-192.

13. Stochneyer, L. Some Inherently Difficult Word
Problems, Part II, i__n preparation.

14. Brzozowski, J.A. Derivatives of Regular
Expressions, JACM Vol. l!, 1964, 481-494.

15. Wiener, P. and T. Kameda. On the Reduction of
Non-Deterministic Automata, Tech. Report No. 57,
Dept. of Electrical Engineering, Princeton
University, 1968.

16. Ginzburg, A. A Procedure for Checking Equality
of Regular Expressions, JACM, Vol 14, 355-362.

17. Oppen, D.C. Elementary Bounds for Presburger
Arithmetic, this volume.

