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Abstract

This paper presents a novel approach for word sense disambiguation. The underlying

algorithm has two main components: (1) pattern learning from available sense-tagged corpora

(SemCor), from dictionary definitions (WordNet) and from a generated corpus (GenCor); and

(2) instance based learning with automatic feature selection, when training data is available

for a particular word. The ideas described in this paper were implemented in a system

that achieves excellent performance on the data provided during the Senseval-2 evaluation

exercise, for both English all words and English lexical sample tasks.

1 Introduction

Word Sense Disambiguation (WSD) does not need any more an introduction and

particularly not in a special issue on WSD evaluation. It is well known that WSD

constitutes one of the hardest problems in natural language processing, yet is

a necessary step in a large range of applications including machine translation,

knowledge acquisition, coreference, information retrieval and others. This fact

motivates a continuously increasing number of researchers to develop WSD systems

and devote time for finding solutions to this challenging problem.

The system presented here was initially designed for the semantic disambiguation

of all words in open text. The Senseval competitions provided a good environment

for supervised systems, and this fact motivated us to improve our system with the

capability of incorporating larger training data sets when available.

There are two important modules in this system. The first one uses pattern

learning that relies on machine readable dictionaries and sense-tagged corpora to

tag all words in open text. The second module is triggered only for words with large

training data, as was the case with the words from the lexical sample tasks. It uses

an instance-based learning algorithm with automatic feature selection.

To our knowledge, both pattern learning and automatic feature selection are

novel approaches in the WSD field, and they led to very good results during the

Senseval-2 evaluation exercise.
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Fig. 1. System architecture.

2 System description

The WSD algorithm used in this system has the capability of tagging words when no

specific sense-tagged corpus is available, automatically scaling up to larger training

data when provided. Figure 1 shows the system architecture. There are two main

components: (1) pattern learning from available sense-tagged corpora and dictionary

definitions; and (2) instance-based learning with automatic feature selection. The

two modules are preceded by a preprocessing phase that includes compound concept

identification, followed by a default phase that assigns the most frequent sense as a

last resort, when no other previous methods could be applied.

During the preprocessing stage, SGML tags are eliminated, the text is tokenized,

part of speech tags are assigned using Brill tagger (Brill 1995), and Named Entities

(NE) are identified with an in-house implementation of an NE recognizer. To identify

collocations, we determine sequences of words that form compound concepts defined

in WordNet. There are two possible problems with this approach. The first concerns

subsuming concepts, as in ‘United States’ and ‘United States of America’ . In such

cases, priority is given to the longest sequence of words. The second possible conflict

regards overlapping concepts, like the two different compounds ‘English Channel’

and ‘Channel Tunnel’ found in the text ‘English Channel Tunnel’ . Here, we break

the tie by keeping the last encountered collocation, with the only reason for this

decision being the ease of implementation.

In the second stage, patterns are learned from WordNet, SemCor and GenCor,

which is a large sense-tagged corpus automatically built via a set of heuristics

(Mihalcea 2002). If additional training data is available, patterns may be filtered

through a validation process. Practically, patterns are applied on the sense-tagged

data, and they are kept only if no counter-examples are found in the training sets

provided.
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The third step consists of a learning mechanism with automatic feature selection.

This step is initiated only for words with a sufficiently large number of examples, as

it was the case with the words in the Senseval lexical sample tasks.

3 Pattern learning for large vocabulary WSD

Pattern learning and matching is a technique that was successfully used in other

NLP tasks, including the disambiguation of confusable word pairs (Brill 2000) and

shallow parsing (Argamon, Dagan and Krymolowski 1998).

Within our system, the pattern learning module is intended for solving the semantic

ambiguity of all words in open text. To this end, we build disambiguation patterns

using SemCor, WordNet and GenCor. Several processing steps were required to

transform the first two resources into a corpus useful for the task of open text WSD.

Moreover, these lexical resources coupled with a set of heuristics are used as seeds

for generating a new sense-tagged corpus called GenCor.

SemCor To our knowledge, SemCor (Miller, Leacock, Randee and Bunker 1993)

is the only sense-tagged corpus freely available that tags all words in open text.

The Senseval-2 English tasks decided to use WordNet 1.7 sense inventory, while

SemCor was available only for earlier versions of WordNet. We had therefore to

process this corpus and map the WordNet 1.6 senses to their corresponding senses

in WordNet 1.7.1

WordNet Besides being a large sense inventory, WordNet (Miller 1995) can also

be used as a source of examples for the different semantic meanings of a word,

through the definitions and examples rendered for each word sense. The main idea

in generating a sense-tagged corpus out of WordNet is very simple. It is based on

the underlying assumption that each example pertains to a word belonging to the

current synset, thereby allowing us to assign the correct sense to at least one word

in each example. For instance, the example given for mother #4 is ‘necessity is the

mother of invention’ , where the word mother can be tagged with its appropriate

sense.

GenCor is a generated sense-tagged corpus. More details on how GenCor is

generated are presented in Mihalcea (2002). The algorithm underneath GenCor

combines and extends the approaches proposed by Yarowsky (1995) and Mihalcea

and Moldovan (1999) to obtain large collections of sense-tagged examples. Shortly,

the generation algorithm is iterative and consists of three main steps:

• Step 1. Create a set of seeds, consisting of noun phrases and verb-noun

constructs, extracted from:

1.1 SemCor

1.2 Sense-tagged examples in WordNet

1 SemCor 1.6 is available for download from the WordNet site, http://www.cogsci.
princeton.edu/˜wn/. SemCor 1.7 can be downloaded from http://www.seas.smu.edu/
˜rada/semcor
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1.3 Sense-tagged examples created with the principles described in Mihalcea

and Moldovan (1999). These are examples found on the Web by searching

for related unambiguous words. Currently, we only use monosemous

synonyms, hypernyms or hyponyms for any given word. For instance,

sense-tagged examples for mother#2 may be obtained by searching for

its monosemous hypernym barm , and then replace barm with mother in

all the examples that are retrieved.

• Step 2. Search the Web for each sequence of words in the seeds set.

• Step 3. In the documents that are retrieved, disambiguate words in a small text

snippet surrounding the searching seed, using the main ideas of the algorithm

in Mihalcea and Moldovan (2000). In this algorithm, words are disambiguated

based on their relation with other words in their immediate vicinity. To this

end, we rely on the synonymy and hypernymy relations, as defined in WordNet.

For example, mother and parent found close to each other are disambiguated

based on their relation parent#1 is-hypernym mother#1 . Similarly, car in the

immediate vicinity of railcar may be annotated as car#2 , since car#2 and

railcar#1are synonyms in WordNet. Noun phrases and verb noun constructs

including the newly disambiguated words form new seeds that are added to

the seeds set. Go back to step 2.

Example ‘blooming plant#2’ is a noun phrase extracted from SemCor as part of

the initial set of seeds. A search on the Web for this construct results in several

texts, including ‘(2) Florist item means a cut flower, potted plant, blooming plant,

inside foliage plant, bedding plant, corsage flower, cut foliage, floral decoration, or

live decorative material’ . In this text, we disambiguate all instances of plant , and

obtain the following new seeds: potted plant#2 , foliage plant#2 , bedding plant#2 .

Subsequent searches for these seeds will result in additional texts where new seeds

may be extracted. The generation process continues for several iterations, and stops

when a certain a priori established number of tagged examples is obtained. For

instance, the corpus generated for the English all words task during Senseval-2

consisted of about 160,000 examples.

Once we create this large corpus with examples of word meanings, we can start

to extract patterns. For each semantically tagged word found in the corpus, patterns

are constructed including the word itself and its local context. The local context is

formed with a window of maximum N words to the left and M words to the right

of the word of interest (currently, M = N = 2).

Each word in the corpus is represented by its base form, its part of speech, its

sense2, if there is any provided, and its hypernym, again if the sense is known. We

have therefore the following format for each pattern word: baseform/POS/offset/

hypernym-offset . Any of these word components can be unspecified, and therefore

denoted with the symbol ‘∗’. A count is also associated with every pattern, indicating

the number of times it occurs in the corpus.

2 The sense is specified through the synset offset. The benefit of this notation is that we enable
synonym matches, e.g. mother#1 and female parent#1 both have the offset 08284239.
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Additionally, a set of constraints is applied to filter out meaningless patterns.

For instance, based on the observation that patterns like 〈the/DT/∗/∗ rest/NN/

11411361/∗〉 (obtained for N = 1,M = 0) usually lack meaningful information, we

filter out all patterns consisting of a DT-NN sequence. These constraints are basically

indicators of what word combinations are not allowed in the patterns set. In addition

to DT-NN, patterns may not consist of a modal followed by a verb (MD-VB), a

noun followed by a conjunction (NN-CC), and others.

When trying to disambiguate a word, we first search for all available patterns that

would match the current context. A pattern is said to match the current context

if: (1) all words in the pattern are retrieved in the local context in the same order

and at the same relative distance with respect to the target word; and (2) each

pattern word has a complete or partial match with its corresponding context word.

A complete match is obtained when all specified word components are matched.

If only a subset of the pattern word components find a match among the corres-

ponding context word components, then we have a partial match, and a smaller

score is assigned, as shown in the PatternMatching function below. If more than

one pattern is available, then the decision of which pattern to apply is based

on the pattern strength . The strength of a pattern is evaluated in terms of (1)

the number of specified components, (2) the number of occurrences and (3) the

length of the pattern. For example, 〈the/DT/∗/∗ modal/JJ/01551759/∗ age/NN/∗/∗

at/IN/∗/∗〉 is considered to be stronger than 〈modal/JJ/01551759/∗ age/NN/∗/∗〉.
Also, 〈clear/JJ/00406603/∗ water/NN/12281250/∗〉 is stronger than 〈clear/JJ/∗/∗

water/NN/12281250/∗〉. The hypernym is also provided for the purpose of allowing

generalizations. For instance, 〈∗/NN/∗/03507584 door/NN/02746251/∗〉 matches

‘kitchen door’ as well as ‘bedroom door’ (03507584 is the offset for room #1 ). The

PatternMatching function below illustrates the main steps performed during pattern

matching.

function PatternMatching(word W)

find patterns Pi containing W

if at least one pattern found

then

for each pattern Pi

Score(Pi) = 0

for each word WPi
in the pattern, WPi

�= W

Score (Pi) + = ScorePatternWord (WPi
)

if Score (Pi) �= 0 for at least one pattern

then return sense for W from pattern Pi with Score (Pi) = MAX

else

for all senses s of W

if ∃ hypernym (Ws)

if PatternMatching (Ws) �= 0

then return s

return 0



348 R. F. Mihalcea

function ScorePatternWord(word WPi
)

try to match pattern word WPi
on current context

if complete match then return 4

if word + POS match then return 3

if offset + POS match then return 3

if hypernym-offset match then return 2

if POS match then return 1

Another important step performed during the all words disambiguation task is

sense propagation. The patterns do not guarantee a complete coverage of all words

in input text, and therefore additional methods are required. We use a cache-like

procedure that relies on the ‘one sense per discourse’ paradigm to assign to each

ambiguous word the sense of its closest occurrence, if any exists. The words left

ambiguous at this point are assigned by default the first sense in WordNet.

4 Learning with automatic feature selection

Learning mechanisms for disambiguating word sense have a long tradition in the

WSD field, including a large range of algorithms and feature types. Most of the

efforts in the WSD field have been concentrated so far towards supervised learning

algorithms, and these are the methods that achieve the best performance at the

cost of low recall (they address only few, pre-selected words). Each sense-tagged

occurrence of a particular word is transformed into a feature vector, suitable

for an automatic learning process. Two main decisions need to be taken when

designing such a system: the set of features to be used and the learning algorithm.

Commonly used features include surrounding words and their part of speech, context

keywords (Ng and Lee 1996) or context bigrams (Pedersen 2001), and various

syntactic properties (Fellbaum, Palmer, Dang, Delfs and Wolf 2001), etc. As for the

learning methodology, a large range of algorithms have been used, including neural

networks (Leacock, Chodorow and Miller 1998), decision trees (Pedersen 2001),

decision lists (Yarowsky 2000), memory-based learning (Veenstra, van den Bosch,

Buchholz, Daelemans and Zavrel 2000), and others. An experimental comparison

of seven learning algorithms used to disambiguate the meaning of the word line

is presented in Mooney (1996). See also Yarowsky and Florian (2002) in this

issue.

For our system, we have decided for an instance based algorithm with information

gain feature weighting. The reasons for this decision are threefold. First, it has been

advocated that forgetting exceptions is harmful for language learning applications

(Daelemans, van den Bosch and Zavrel 1999), and instance-based algorithms are

known for their property of taking into consideration every single training example

when making a classification decision. Secondly, instance-based learning algorithms

have been successfully used in WSD applications (Veenstra et al. 2000). Finally, this

type of algorithms is efficient in terms of training and testing time. We initially used
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the MLC++
3 implementation, and later on switched to Timbl (Daelemans, Zavrel,

ven der Sloot and van den Bosch 2001).

Even more important than the choice of learning methodology is the selection

of features to be employed during the learning process. Our intuition was that

different sets of features have different effects depending on the ambiguous word

considered. Usually, features are weighted using weighting schemes that are based

on information gain, gain ratio, chi-squared or other information content measures.

Still, weights are computed independently for each feature and therefore this strategy

does not always guarantee to provide the best results. Sometimes it is better to leave

features out than assign them even a small weight (Daelemans et al. 2001). We need

therefore to identify efficient criteria for feature selection.

Feature selection is a technique that has been successfully used in other Artificial

Intelligence applications. Cardie (1996) proposes a linguistic and cognitive biased

approach for relative pronoun resolution. In Aha and Bankert’s (1994) system,

features are selected using searching algorithms, with increased performance obtained

in the problem of cloud types classification. In all these applications, performing

feature selection prior to the learning phase was found to be a helpful factor towards

increased performance.

For our system, features are automatically selected using a forward search

algorithm. The classic approach used so far in WSD was to build word experts via a

learning process that determines the values for a pre-selected set of features. Instead,

we first learn the set of features that would best model the word characteristics,

and therefore exploit at maximum the idiosyncratic nature of words. It is only at a

second stage that we actually create the word experts by determining the values for

the set of features previously selected.

Using this approach, we combine the advantages of instance based learning

mechanisms that have the useful property of ‘not forgetting exceptions’ , with an

optimized feature selection scheme. One could argue that decision trees have the

capability of selecting relevant features, but it has been shown (Almuallim and

Dietterich 1991) that irrelevant features significantly affect the performance of

decision trees as well.

The algorithm for automatic feature selection is sketched below.

functionAutomatic Feature Selection

generate a pool of features PF = {Fi}
initialize the set of selected features with the empty set SF = {Ø}
extract training and testing corpora for the given target ambiguous word.

loop: for each feature Fi ∈ PF

run a 10-fold cross validation on the training set; each example in the

training set contains the features in SF and the feature Fi.

determine the feature Fi leading to the best accuracy
remove Fi from PF and add it to SF

goto loop until no improvements are obtained

3 Machine Learning library available at http://www.sgi.com/tech/mlc.
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5 Features that are good indicators of word sense

Three types of features are distinguished:

1. 0-param features, which can be used or not, without any parameters to set. For

example, the part of speech of a surrounding word is a 0-param feature, since

a learning example can either contain or omit this feature, without having to

indicate a specific parameter.

2. 1-param features, which, once selected, have one variable parameter that can

be set to a specific value (alternatively, this parameter may be left with its

default value). As an example, consider the context feature (CF), which adds as

attributes the words in a surrounding window of length K. Deciding the value

for K implicitly means setting one parameter for this feature.

3. 2-param features with two parameters associated. For example, one can select

MX keywords as representative for the context of an ambiguous word, where

a keyword is defined as a word occurring at least MN times. Therefore, two

parameters have to be set for this feature, MX and MN.

The features that we employed so far are presented below. They form the pool

of features PF from which features are selected using the algorithm described in

section 4. In the following, the ambiguous word is denoted with AW :

CW Current word (0-param) The word AW itself, exactly as it occurs in the text.

Notation: CW

CP Current part of speech (0-param) The part of speech of the word AW .

Notation: CP

CF Contextual features (1-param) The words and parts of speech of the K words

surrounding AW (Bruce and Wiebe 1999). Notation: CF[=K], default-3

COL Collocations (1-param) Collocations formed with maximum K words sur-

rounding AW (Ng and Lee 1996). Notation: COL[=K], default = 3

HNP Head of noun phrase 2 (0-param) The head of the noun phrase to which AW

belongs, if any. Notation: HNP

SK Sense specific keywords (2-param) Maximum MX keywords occurring at

least MN times are determined for each sense of the ambiguous word. The

value of this feature is either 0 or 1, depending whether the current example

contains one of the determined keywords or not (Ng and Lee 1996). Notation:

SK[=MN,MX], default = 5,5

B Bigrams (2-param) Maximum MX bigrams occurring at least MN times are

determined for all training examples. The value of this feature is either 0 or

1, depending if the current example contains one of the determined bigrams

or not. Bigrams are ordered using the Dice coefficient, which gives a measure

of association among two words in a corpus. Pedersen (2001) gives several

alternatives for measures used in bigrams selection. Notation: B[=MN,MX],

default = 5,20

Other In addition, we have a set of eleven other features that refer to surrounding

words with a given part of speech: Verb before (VB 0-param), Verb after

(VA 0-param), Noun before (NB 0-param), Noun after (NA 0-param), Named
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Entity before (NEB 0-param), Named Entity after (NEA 0-param), Preposition

before (PB 0-param), Preposition after (PA 0-param), Pronoun before (PRB

0-param), Pronoun after (PRA 0-param), Determiner before (DT 0-param).

New features can be easily added to the pool, with no changes required in the

main algorithm. We have initially tested the system on the Senseval-1 data, in an

non-competitional environment, when there was enough time to parse the data. Two

additional features were considered at that time to help towards performance. We

decided not to use them in the current experiments, mainly for time considerations,

since parsing is a highly computationally intensive task.

PPT Parse path (1-param) Maximum K parsing labels found on the path to the

top of the parse tree (sentence top). Notation: PPT[=K], default=10 . For

instance, given the parse tree (S(NP(JJ big) (NN house))), the value for this

feature for the noun house is NN, NP, S .

SPC Same parse phrase components (1-param) Maximum K parse components found

in the same phrase as AW . Notation: SPC[=K], default=3 . For the example

above, this feature would be set to JJ, NN .

6 Results on SENSEVAL-2 data

The overall performance of the system on the data provided during the English

all words task was 69% for fine-grained scoring, and 69.8% for coarse-grained

scoring. On the English lexical sample data, we obtain 63.8% for fine-grained scoring,

and 71.2% for coarse-grained scoring. These results rank this system as the best

performing one in the ranking made before the deadline. See Edmonds and Cotton

(2002) for details on Senseval-2.

Tables 1–3 present the results obtained during the lexical sample task, for 73

ambiguous words, including 29 nouns, 15 adjectives and 29 verbs. For each word,

the table shows: the number of examples in the training and test sets; the features

automatically selected as a result of applying the algorithm in section 4; the 10-

fold cross validation precision obtained on training data with the selected features

set; the precision for fine-grained and coarse-grained scoring as computed by the

Senseval-2 organizers. Collocations are identified since the preprocessing stage and

the learning process is applied separately on each concept4; due to space limitations,

the table shows only features and results obtained for single words.

For the 1-param and 2-param features, there is a range of values allowed for their

parameters: [1–5] for the 1-param features, and [1–10] for the 2-param features.

This means that, for instance, CF can be set to CF= 1, CF= 2, CF= 3, CF= 4

or CF= 5. The selection of the best value is performed empirically using the same

cross-validation algorithm.

4 Training and testing corpora are extracted for each ambiguous word. This means that
examples pertaining to the multiword ‘dress down’ are separated from the examples for the
single word ‘dress’.
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Table 1. Training and test sizes, optimal feature sets and precisions (10-fold on

training data, fine-grained and coarse-grained on test data) for 29 nouns

Size Senseval score
10-fold

Word.pos Train Test Features valid. Fine Coarse

art.n 194 98 CF = 1 HNP B= 2,5 VB NB 60.6% 71.4% 74.5%

authority.n 183 92 CW CP COL= 1 VB NB 62.2% 70.7% 91.3%

bar.n 264 151 CW CP CF= 1 COL= 1 60.8% 62.3% 74.5%

B=5,3 VB NB NEA

bum.n 80 45 CW NA NEA 86.2% 77.8% 80.0%

chair.n 137 69 CW 92.3% 85.5% 88.4%

channel.n 138 73 CP NB 43.0% 46.6% 56.2%

child.n 129 64 CW CP CF= 1 COL= 1 76.1% 68.8% 68.8%

B=5,3 NB NEB DT

church.n 128 64 CW CP CF= 2 COL= 1 B= 5,1 64.4% 56.2% 56.2%

circuit.n 169 85 CP CF= 3 B = 5,1 VB 51.6% 58.8% 62.4%

day.n 289 145 CP CF= 2 HNP NEB PB 78.0% 76.1% 77.3%

detention.n 63 32 any 94.0% 87.5% 87.5%

dyke.n 58 28 CW CF= 2 SK = 5,2 91.4% 89.3% 89.3%

facility.n 114 58 CP COL= 1 VB PRB 74.5% 79.3% 98.3%

fatigue.n 76 43 CP B= 5,3 NB 86.6% 88.4% 90.7%

feeling.n 102 51 CP CF= 1 COL = 3 HNP NEA 64.0% 74.5% 74.5%

grip.n 100 51 CP CF= 3 COL = 2 PB DT 60.0% 41.2% 58.8%

hearth.n 64 32 CP CF= 1 HNP 66.7% 75.0% 87.5%

holiday.n 62 31 CP 96.0% 93.5% 96.8%

lady.n 103 53 CW HNP 84.0% 88.7% 94.3%

material.n 140 69 CW CP COL= 1 B= 2,5 VA NEA 53.3% 56.5% 60.9%

mouth.n 118 60 CP COL= 1 VB NB PB 65.7% 65.0% 93.3%

nation.n 75 37 CP 80.0% 54.1% 54.1%

nature.n 92 46 CP DT 58.0% 69.6% 80.4%

post.n 150 79 CW CP CF= 1 COL= 2 74.6% 64.6% 68.4%

restraint.n 91 45 CP COL= 2 HNP 67.3% 62.2% 71.1%

B=2,5 VB NB PA

sense.n 107 53 CP CF= 1 B = 3,3 NEB PB 74.5% 75.5% 74.4%

spade.n 64 33 CP CF= 1 COL = 2 94.0% 97.0% 97.0%

stress.n 78 39 CP COL= 2 B = 5,2 68.0% 64.1% 89.7%

yew.n 57 28 CF = 1 94.0% 89.3% 100.0%

Total.n 3,523 1,759 – – 69.5% 76.6%

When no training data is provided (as was the case with the Senseval-2 verb

‘keep going’ ), the first sense is applied by default. Also, when the training set size is

smaller than 15 examples, we do not use the automatic feature selection algorithm;

we use instead a default set of features (CW CP CF= 1 COL= 1).

6.1 Discussion

The all words task owes its performance to SemCor, WordNet, GenCor, the pattern

learning procedure, the cache-like sense propagation algorithm and the simple ‘most
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Table 2. Training and test sizes, optimal feature sets and precisions (10-fold on

training data, fine-grained and coarse-grained on test data) for 15 adjectives

Size Senseval score
10-fold

Word.pos Train Test Features valid. Fine Coarse

blind.a 105 55 HNP 70.0% 85.5% 85.5%

colourless.a 68 35 CW CP CF= 1 COL= 1 SK = 3,3 85.7% 48.6% 48.6%

cool.a 103 52 CF= 1 COL = 2 HNP 56.1% 51.9% 51.9%

VB PB PRB DT

faithful.a 47 23 CW 68.0% 87.0% 87.0%

fine.a 139 70 CP CF= 2 HNP B= 5,1 NA 46.0% 54.3% 54.3%

fit.a 57 29 CF= 1 B = 3,3 VB NA 85.0% 82.8% 82.8%

free.a 165 82 CP CF= 1 COL = 2 65.0% 58.5% 58.5%

graceful.a 56 29 CW 87.0% 79.3% 79.3%

green.a 190 94 CP VA 80.0% 79.8% 79.8%

local.a 75 38 CP NA 88.0% 81.6% 81.6%

natural.a 205 103 CP CF= 1 HNP VB NB NEB PRA 50.0% 56.3% 56.3%

oblique.a 56 29 CW CP CF= 1 COL= 4 B= 3,3 84.0% 86.2% 86.2%

simple.a 130 66 CP CF= 1 COL = 2 HNP 53.3% 53.0% 53.0%

NA PB PRA DT

solemn.a 52 25 CP COL= 1 DT 92.8% 96.0% 96.0%

vital.a 74 38 CW CP NB 88.7% 94.7% 94.7%

Total.a 1,535 768 – – 68.8% 68.8%

frequent sense’ heuristic. We address all open class words in open text, and therefore

a recall of 100% is obtained on this data. From this, a coverage of 40.23% is due to

pattern learning, 7.84% to sense propagation, and the rest of 51.93% is attained by

tagging words with their most frequent sense. If only the last procedure is applied on

the entire data set, the overall precision drops to 63.89%, which may be considered

as a baseline for this task.

To determine the contribution of the various knowledge sources, and find the

raise in precision brought by the use of GenCor, we performed two comparative

experiments: one where only SemCor and WordNet were employed as sources of

tagged data, and a second one where GenCor was used in addition to these two

resources. The overall precision obtained during the first experiment was 65.1%,

while the second experiment led to a precision of 69.3%, therefore more than 4%

precision are gained due to GenCor.

The disambiguation of the words in the lexical sample task relies mainly on the

Senseval training data and the instance based learning algorithm with automatic

feature selection, which provides complete coverage of the test data. Table 4 lists the

number of times each feature was used in the semantic disambiguation of nouns,

verbs and adjectives. The most often used features turn out to be CW, CP, CF

and COL, which are also the features most frequently mentioned in the literature.

Almost all words took advantage of the current part of speech (CP) feature. This

is in agreement with Stevenson and Wilks (2001), who have emphasized the major
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Table 3. Training and test sizes, optimal feature sets and precisions (10-fold on

training data, fine-grained and coarse-grained on test data) for 29 verbs

Size Senseval score
10-fold

Word.pos Train Test Features valid. Fine Coarse

begin.v 557 280 CF = 1 NA 80.40% 87.5% 87.5%

call.v 132 66 CF = 1 COL = 2 VB NB DT 70.00% 40.9% 66.7%

carry.v 132 66 CW CP COL= 1 NB 35.00% 39.4% 50.0%

collaborate.v 57 30 CW CP CF= 1 95.80% 90.0% 90.0%

develop.v 133 69 CW CP B= 2,5 NA PB 22.50% 36.2% 49.3%

draw.v 82 41 CF = 2 COL = 2 NEB 11.00% 31.7% 43.9%

dress.v 119 59 CP CF = 1 NB NA PB 57.50% 57.6% 86.4%

drift.v 63 32 CW CP CF= 2 COL= 3 HNP 22.00% 59.4% 62.5%

NEB PA

drive.v 84 42 CW CP CF= 2 PRA DT 45.00% 52.4% 69.0%

face.v 186 93 CP 84.00% 81.7% 90.3%

ferret.v 2 1 any – 100.0% 100.0%

find.v 132 68 CP CF = 2 SK = 5,2 10.00% 29.4% 39.7%

keep.v 133 67 CP B = 3,3 38.00% 44.8% 46.3%

leave.v 132 66 CP CF = 1 COL = 3 NEA 28.90% 47.0% 53.0%

live.v 129 67 CP NA 63.00% 67.2% 68.7%

match.v 86 42 CW CP HNP SK = 5,5 NA 26.40% 40.5% 59.5%

play.v 129 66 CW CP CF= 4 COL= 4 VB NA 21.00% 50.0% 51.5%

pull.v 122 60 CP COL = 1 HNP B= 2,10 23.00% 48.3% 68.3%

SK = 5,5

replace.v 86 45 CP COL = 3 SK = 5,1 B= 3,2 54.00% 44.4% 88.9%

see.v 131 69 CW CP CF= 2 SK = 4,4 PB 23.00% 37.7% 42.0%

serve.v 100 51 CP CF = 4 HNP B= 5,5 VA 36.00% 49.0% 54.9%

NEB PRB PRA

strike.v 104 54 CW CP CF= 2 NEB 23.00% 38.9% 51.9%

train.v 125 63 CW CP CF= 2 COL= 4 NA 34.00% 41.3% 52.4%

PB PA DT

treat.v 88 44 CP CF = 3 COL = 2 VB 36.00% 63.6% 79.5%

NEA PA PRB PRA

turn.v 131 67 CP CF = 2 VB NA PA PRB 30.70% 35.8% 53.7%

use.v 147 76 CW CP NA VA PRB 65.00% 72.4% 84.2%

wander.v 100 50 CP PA 81.00% 74.0% 90.0%

wash.v 25 12 CW CP CF= 2 COL= 2 32.00% 66.7% 83.3%

SK = 3,5 NEA

work.v 119 60 CW CP CF= 2 COL= 2 42.00% 43.3% 58.3%

B=3,3 NA PA

Total.v 3,673 1,857 – – 56.4% 67.0%

role played by part of speech in WSD. It is interesting to observe that in terms of

words in context, bigrams seem to be more effective than simple keywords. Also,

the best setting for the CF feature was found to be a one or two word window.

In terms of average number of features, the semantic disambiguation of nouns

requires the smallest number of features (3.7), followed by adjectives (4.4) and verbs
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Table 4. Feature distribution for nouns, verbs, adjectives

Part of speech

Noun Verb Adjective Total

Words 29 29 15 73

Features

CW 10 13 9 32

CP 22 25 14 61

CF 14 18 8 40

COL 13 12 6 31

HNP 6 4 5 15

SK 1 6 3 10

B 10 6 3 19

VB 7 4 3 14

VA 1 2 1 4

NB 8 3 2 13

NA 1 10 4 15

NEB 3 4 1 8

NEA 4 3 0 7

PB 4 4 2 10

PA 1 6 0 7

PRB 1 4 1 6

PRA 0 3 2 5

DT 3 3 3 9

Total 109 130 67 306

(4.5). These statistics are not yet conclusive, since they are computed for a small

number of words, but they are indicative of the complexity of the task for various

parts of speech. Further investigations and larger amounts of data will eventually

confirm this preliminary conclusion.

Several interesting cases were encountered in the Senseval-2 data, justifying our

approach of using automatic feature selection. The influence of a feature greatly

depends on the target word: a feature can increase the precision for a word, while

making things worse for another word. For instance, a word such as free does not

benefit from the SK feature, whereas colourless gains almost 7% in precision when

this feature is used.

free.a[CW CP CF=1 SK=3,3] → 57.85%

free.a[CW CP CF=1] → 63.57%

colorless.a[CW CP CF=1] → 78.57%

colorless.a[CW CP CF=1 SK=3,3] → 85.71%

Another interesting example is the noun chair , which was disambiguated with

high precision by simply using the Current Word (CW) feature. This is explained by
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the fact that the most frequent senses are Chair meaning person and chair meaning

furniture, and therefore the distinction between lower and upper case spellings makes

the distinction among the different meanings of this word.

The noun detention has the same precision computed during the 10-fold cross

validation runs, independent of the feature or combination of features used. This is

because out of its two senses, one sense occurs in 97% of the examples, and hence

it statistically dominates the other sense. There were several other interesting cases,

including the adjective local which gained 20% in precision by simply using the

feature NA, the word faithful which is best disambiguated with the CW feature, and

others.

The system was also tested on the Senseval-1 data (Kilgarriff and Palmer 2000),

where the disambiguation task was performed with respect to Hector dictionary.

The overall result achieved on this data was comparable to the one reported by the

best performing system. Besides proving the validity of our approach, this fact also

proves that our system is not tight in any ways to the sense inventory or data format.

Going from Senseval-1 to Senseval-2 required only minimal changes in the system,

mainly in the preprocessing phase (to accept as input the new data format) and in

the postprocessing phase (to output the answer sense keys in the format required).

7 Conclusion

Pattern learning and automatic feature selection are new approaches in the WSD

field. They have been implemented in a system that was evaluated on the Senseval-2

data, with an excellent performance in both English all words and English lexical

sample tasks.

Patterns represent a great way of capturing contexts representative for a word

meaning. The usage of hypernyms as one of the pattern components gives us the

means for generalization beyond words explicitly expressed in text.

In supervised learning algorithms, instance based learning with feature weighting

provides a performance comparable with the best results achieved so far in word

sense disambiguation. Its performance is greatly increased if coupled with an

algorithm for automatic feature selection. This process is completely automated

and it practically creates a classifier tailored to the behaviour of each ambiguous

word.
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