
Word Spotting in the Wild

Kai Wang and Serge Belongie

Department of Computer Science and Engineering
University of California, San Diego

{kaw006,sjb}@cs.ucsd.edu

Abstract. We present a method for spotting words in the wild, i.e., in
real images taken in unconstrained environments. Text found in the wild
has a surprising range of difficulty. At one end of the spectrum, Optical
Character Recognition (OCR) applied to scanned pages of well format-
ted printed text is one of the most successful applications of computer
vision to date. At the other extreme lie visual CAPTCHAs – text that
is constructed explicitly to fool computer vision algorithms. Both tasks
involve recognizing text, yet one is nearly solved while the other remains
extremely challenging. In this work, we argue that the appearance of
words in the wild spans this range of difficulties and propose a new word
recognition approach based on state-of-the-art methods from generic ob-
ject recognition, in which we consider object categories to be the words
themselves. We compare performance of leading OCR engines – one open
source and one proprietary – with our new approach on the ICDAR Ro-
bust Reading data set and a new word spotting data set we introduce in
this paper: the Street View Text data set. We show improvements of up
to 16% on the data sets, demonstrating the feasibility of a new approach
to a seemingly old problem.

1 Introduction

Finding words in images is an fundamental computer vision problem, and is es-
pecially challenging when dealing with images acquired in the wild. The field of
Optical Character Recognition (OCR) has a long history and has emerged as
one of the most successful practical applications of computer vision. However,
text found in the wild can take on a great variety of appearances, and in many
cases can prove difficult for conventional OCR techniques. Figure 1 shows ex-
amples of text on a spectrum of difficulty levels. When we consider the extreme
cases, the performance of OCR engines is known to be excellent when given
scanned text and very poor on text that is highly obscured. Indeed, the fact
that OCR has difficulty reading such text is the basis for systems that prevent
automated software bots from abusing internet resources, which are known as
CAPTCHAs [1]. Depending on the particular instance, text found in the wild
can appear similar to a scanned page, similar to a CAPTCHA, or somewhere
in-between.

Our use of the phrase in the wild is analogous to Labeled Faces in the Wild
(LFW) [2]: a data set constructed to study face recognition in unconstrained

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 591–604, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

592 K. Wang and S. Belongie

Fig. 1. This figure shows examples of images of words ordered by difficulty. In the
extreme cases, the behavior of OCR engines is well understood: it is highly accurate
when reading scanned text (far left) and is inaccurate when reading a CAPTCHA[1]
(far right). In between these two extremes sits text found in the wild. Due to its
unconstrained nature, in some cases the image text is similar to scanned text and can
be read, while in others it cannot.

settings. Similar to text reading, face recognition under controlled settings is a
well understood problem with numerous effective algorithms. However, as LFW
shows, the variation in lighting, pose, imaging device, etc., introduce challenges
for recognition systems. Much as that dataset acted as a catalyst for renewing
progress in face recognition, an important goal of this work is to spur interest in
the problem of spotting words in the wild.

The word spotting problem contrasts with general text reading in that the goal
is to identify specific words. Ideally, there would be no distinction between the
standard text reading and word spotting; spotting words would simply amount to
filtering the output from OCR engines to catch the words of interest. However,
due to the challenges presented by text found in the wild, we approach the
word spotting problem directly, where we are presented with an image and a
lexicon of words to spot. We evaluate the performance of conventional OCR
engines and also present a new method rooted in ideas from object recognition.
In our new approach, we treat each word in a lexicon as an object category and
perform word category recognition. Figure 2(a) shows an analogy to generic
object recognition: just as instances of the object category vehicle can look
vastly different from image to image, the word ‘door’ can also take on a variety
of appearances depending on the font, lighting, and pose in a scene. In this
formulation, we can leverage techniques that have been designed to be robust
for recognizing generic categories and apply them to word recognition.

Our contributions are the following. (1) We introduce the Street View Text
data set: an outdoor image text data set annotated with a list of local busi-
ness names per image. (2) We benchmark conventional OCR engines on our
new data set and the existing ICDAR Robust Reading image text database
[3]. (3) We present a new word spotting approach that imports techniques from
generic object recognition and significantly outperforms conventional OCR based
methods.

Word Spotting in the Wild 593

(a) Word recognition. (b) Pictorial structure for words.

Fig. 2. The left figure (a) shows our analogy to the generic object classification prob-
lem. In both cases, individual instances of the same class can take on vastly different
appearances. The right figure (b) is an illustration of modeling the word ‘PUBLIC’
using a pictorial structure.

2 Motivating Applications

Accurate word spotting plays an important role in systems for image retrieval
and navigation. Research in Content Based Image Retrieval (CBIR) [4] has ex-
plored different forms of querying large image collections, including queries by
keyword and image example. Integrating a word spotting component enables
queries by word occurrence, returning images in which the specified words ap-
pear. The work of [5] describes a system that allows for retrieval of historical
documents based on handwritten word spotting.

Word spotting is an essential component of a vision based navigation system.
In our case, this arises in the form of developing assistive technologies for the
blind. Two broad goals of the project are to develop a computer vision system
that can benefit the blind and visually impaired communities, and to study the
challenges of performing vision-based navigation in real world environments. For
navigation, it is important to be able to spot specific keywords in order to guide
a blind user. Detecting keywords on signage can be used, for example, to direct a
user to the correct aisle in a supermarket while detecting words from a shopping
list can be used to locate specific products.

3 Dataset

We introduce the Street View Text1 (SVT) data set harvested from Google
Street View2. Image text in this data exhibits high variability and often has low
resolution. Figure 3 shows examples from the SVT set and a histogram of word
heights. In dealing with outdoor street level imagery, we note two characteristics.
(1) Image text often comes from business signage and (2) business names are
easily available through geographic business searches. These factors make the
SVT set uniquely suited for word spotting in the wild: given a street view image,
the goal is to identify words from nearby businesses.

1 http://vision.ucsd.edu/project/grocr
2 http://maps.google.com

http://vision.ucsd.edu/project/grocr
http://maps.google.com

594 K. Wang and S. Belongie

Fig. 3. Examples from our Street View Text (SVT) data set and a histogram of word
heights. The words appearing in this data set have high variability in appearance, suffer
effects of cast shadows, and often have low resolution. The median height is 55 pixels.

Data Collection. We used Amazon’s Mechanical Turk3 to harvest and label
the images from Google Street View. To build the data set, we created several
Human Intelligence Tasks (HITs) to be completed on Mechanical Turk. We refer
to those that work on these HITs as workers.

Harvest images. Workers are assigned a unique city and are requested to acquire
20 images that contain text from Google Street view. They were instructed to:
(1) perform a Search Nearby:* on their city, (2) examine the businesses in the
search results, and (3) look at the associated street view for images containing
text from the business name. If words are found, they compose the scene to
minimize skew, save a screen shot, and record the business name and address.

Image annotation. Workers are presented with an image and a list of candidate
words to label with bounding boxes. This contrasts with the ICDAR Robust
Reading data set in that we only label words associated with businesses. We used
Alex Sorokin’s Annotation Toolkit4 to support bounding box image annotation.
All images were labeled by three workers, and bounding boxes were accepted
when at least two workers agreed with sufficient overlap.

For each image, we obtained a list of local business names using the Search

Nearby:* in Google Maps at the image’s address. We stored the top 20 business
results for each image, typically resulting in 50 unique words. To summarize,
the SVT data set consists of images collected from Google Street View, where
each image is annotated with bounding boxes around words from businesses
around where the image was taken. The data set contains 350 total images
(from 20 different cities) and 725 total labeled words. We split the data into a
training set of 100 images and test set of 250 images, resulting in 211 and 514
words in the train and test sets. In correspondence with ICDAR, we divide our
benchmark into SVT-SPOT (word locating), SVT-WORD (word recognition),
and SVT-CHAR (character recognition). In this work, we address SVT-WORD.
In total, the cost of acquiring the data from Mechanical Turk was under $500
USD.
3 http://mturk.com
4 http://vision.cs.uiuc.edu/annotation/

http://mturk.com
http://vision.cs.uiuc.edu/annotation/

Word Spotting in the Wild 595

4 Related Work

4.1 Scanned Document OCR

The topic of OCR has been well studied [6] [7] and existing commercial products
are in widespread use. One example is Google Book Search5, which has scanned
more than 10 million volumes6, making them accessible for full text searches.
Another example is the Kurzweil National Federation of the Blind (KNFB)
reader.7 The KNFB reader is an OCR engine that runs on a mobile phone
and allows a person who is visually impaired to read printed text from an image
taken by the camera. The key to high performance for the KNFB reader is having
a high quality camera built into the mobile phone and a feedback loop to assist
the user in taking pictures in an ideal setting, thereby minimizing the effects of
motion blur, lighting, and skew.

A critical step for OCR accuracy is image binarization for character segmen-
tation. The survey of [8] identifies incorrect segmentation as one of the major
contributors to errors in using conventional OCR on scanned documents. Pre-
vious work on classifying hand written digits from the MNIST data set has
shown that when the correct segmentation is provided, it is possible to achieve
recognition rates nearing that of humans.8 The task of separating out individ-
ual characters was also identified in [9] as one of the distinguishing features of
CAPTCHAs being difficult for OCR while remaining manageable for humans.
Character segmentation is a significant challenge that conventional OCR engines
face when dealing with words in the wild.

4.2 Image Text OCR

OCR in non-scanned images is a relatively new area and has seen increasing
attention [10] [11] [12]. Existing work on image text typically breaks the process
into two subtasks: text detection and word recognition. Advances have been
made in detecting image text using an AdaBoost-based approach [13]. In that
work, detected text regions are sent to a conventional OCR engine to be decoded.
Others have explored the problem of improving recognition rates by combining
outputs of several different OCR engines to get a more robust reading [14].

The works that are most similar to ours are that of [15] and [5]. In [15], the au-
thors investigated methods of breaking visual CAPTCHAs. In their CAPTCHA
experiments, the problem was also one of word spotting: categorize the image
of a word as one of a list of possible keywords. Our new approach highlights
the similarities between words in the wild and with visual CAPTCHAs. In [5],
the authors performed word spotting in scanned handwritten historical docu-
ments. To perform word spotting, they clustered words together by appearance,

5 http://books.google.com/
6 http://googleblog.blogspot.com/2009/10/tale-of-10000000-books.html
7 http://www.knfbreader.com/
8 http://yann.lecun.com/exdb/mnist/index.html

http://books.google.com/
http://googleblog.blogspot.com/2009/10/tale-of-10000000-books.html
http://www.knfbreader.com/
http://yann.lecun.com/exdb/mnist/index.html

596 K. Wang and S. Belongie

Fig. 4. Word spotting overview. This is an illustration of a word spotting system
with two steps: text detection [13] and word recognition. In this work, we focus on
the latter problem where the input is an image region and a lexicon of words. In
our Street View Text data set, the lexicon was created out of local business searches
around where the image was acquired. We run character detectors to discover possible
character locations and then score words in our lexicon by modeling them as pictorial
structures.

manually provided labels to clusters, and propagated the labels to the cluster
members, allowing them to create a word index to browse a large corpus.

In our methods, we draw on work done using part-based methods for object
recognition; in particular, the modeling of objects using pictorial structures [16]
[17]. We also build on the work of [18], who studied the use of various features
and classification methods to classify individually cropped characters.

5 Word Recognition

In our approach, we first perform character detection for every letter in an al-
phabet and evaluate the configuration scores for the words in our lexicon to find
the most suitable one. Our method is designed to be used in conjunction with
a text detector. In our description, we use the term ‘input image’ to mean the
cropped out image region around a word provided by a text detector. Figure 4
shows a diagram of this pipeline.

5.1 Character Recognition

Character recognition in images was recently studied in [18]. In their work,
they benchmarked different features and classification algorithms for recognizing
cropped characters. In our experiments, we test our character detector using the
same data and methodology, and list accuracies next to those from their work.
For our character detector, we use Histograms of Oriented Gradient (HOG) [19]
features with a nearest neighbor classifier.

Character classification: To compare two images of cropped characters, we first
resize them to take on the same height and aspect ratio, then densely calculate
their HOG features. Each character is now represented as an array of dimension
m × n × d where m and n are the number of rows and columns after spatial
binning, and d is the number of dimensions in each histogram. We measure
the similarity between characters by performing Normalized Cross Correlation

Word Spotting in the Wild 597

(NCC) between each dimension and averaging the scores. Since the characters
were resized to be the same dimension, the result is a single number. This is the
value we use for nearest neighbor classification.

Character detection: To perform character detection over an input image we
take all the training examples for a particular character class, resize them to
the height of the input image (while maintaining aspect ratio), and compare the
character’s HOG features to those of the input. Between each training example
and the input, we again calculate the NCC between each HOG dimension and
combine them again by averaging. The result will be a list of scores measuring
the similarity of a template to each location in the input image. This is done for
all the training examples of a class, and the results are combined together per
class by taking the max at each location. We perform non-maximum suppression
to discover peaks and consider those as candidate character locations.

This is done for every character class to create a list of character locations
with discrete spatial positions. Next, we use this list of detections to evaluate
the configuration of strings in our lexicon to the input image.

5.2 Word Configuration

After performing character detection, we consider each word in our lexicon and
measure its character configuration within the input image. We represent a word
using a pictorial structure [16] [17]. A pictorial structure is a mass-spring model
that takes into account costs of matching individual parts to image locations
and their relative placement. A word is naturally broken down into character
‘parts’ and takes on a simple chain structure. Figure 2(b) shows an example of
a string as a pictorial structure.

We formulate the problem of optimal character placement in an image of text
in the following way. Let G = (V, E) be an undirected graph representing a
string S. The vertices V = {v1, ..., vn} correspond to characters in S where n is
the length of S. Edges (vi, vj) ∈ E connect letters that are adjacent in S. This
creates a conceptual spring between pairs of letters. We use the terms parent
and child to refer to the left and right nodes in a pair of adjacent characters.
Let L = (l1, ..., ln) represent a particular configuration of characters in an image
where li is the spatial [x, y]⊤ coordinate placement of character vi.

We measure cost mi(li) as one minus the similarity score of a character detec-
tion calculated in the previous step. To calculate the deformation cost di,j(li, lj),
we use our domain knowledge of character layout. We expect a child character
to appear one character width away from its parent. Let the expressions w(li)
and h(li) represent the width and height of a character detection at location li.
Let l∗i = li + [w(li), 0]⊤ represent the expected position of a child of li. We spec-
ify a covariance matrix that normalizes the deformation cost to the dimensions

of the parent character: Σ =

[

w(li) 0
0 h(li)

]

. Our deformation cost is calculated

598 K. Wang and S. Belongie

as: di,j(li, lj) =
√

(l∗i − lj)⊤Σ−1(l∗i − lj). The objective function for our optimal
character configuration for a string S is computed as:

L∗ = argmin
L

⎛

⎝θ

n
∑

i=1

mi(li) + (1 − θ)
∑

(vi,vj)∈E

dij(li, lj)

⎞

⎠ (1)

The parameter θ controls the balance between part match cost and deforma-
tion cost. The result is a configuration L∗ that represents the optimal character
placement for reading S in an image. Solving for L∗ can be done efficiently using
dynamic programming as described in [17]. We refer to this configuration cost
as Dc(L).

The score generated by L∗ can take into account a local measure of coherence
between a string and an image, but is uninformed of higher order and global con-
figuration costs. To supplement the score configuration score, we also incorporate
other domain knowledge-influenced measures into our final match score.

– Horizontal span: Given our input is an image of a cropped word from a
character detector, we assume that a suitable string is one whose characters
span most of the input image. We calculate this as the horizontal range of
the character configurations divided by the width of the input image and
call it Ds(L).

– Character distribution: Character spacing within a single string should be
consistent, and we factor this into the final score by measuring the standard
deviation of the spacing between every pair of adjacent characters in the
string, which we refer to as Dd(L).

The final cost D is a weighted sum of these terms: D(L) = α1Dc(L)+α2Ds(L)+
α3Dd(L) where α1 + α2 + α3 = 1. Through validation on our training data, we
determined reasonable parameters to be θ = .9, α1 = .5, α2 = .4, and α3 = .1.
These parameters were used in both the ICDAR and SVT benchmarks.

6 Experiments

We evaluate the performance of our character recognizer in isolation and our
word recognition system as a whole on existing public image text data sets.
The data sets we use are from the ICDAR 2003 Robust Reading challenge [3],
Chars74K [18], and our SVT data set. In our experiments, we compare to results
attained using conventional OCR systems ABBYY FineReader 9.0 and Tesseract
OCR9, referred to as ABBYY and TESS. In using the OCR engines, we exper-
imented with pre-thresholding the images using the technique from [13], where
they performed locally adaptive thresholding with a heuristic for a parameter
sweep at each pixel. However, we found that deferring the thresholding task to
the individual OCR engines resulted in better accuracy, and so we only report
those results. In all our experiments, we resized images to take on a height of 50
pixels and used 4 × 4 pixel cells with 10 orientation bins for the HOG features.

9 http://code.google.com/p/tesseract-ocr/

http://code.google.com/p/tesseract-ocr/

Word Spotting in the Wild 599

6.1 Character Classification Results

We benchmarked our character classifier on the Chars74K-5, Chars74K-15, and
ICDAR03-CH data sets. The Chars74K-5 and Chars74K-15 contained 5 and 15
training instances per class, respectively, while the test sets included the same
15 instances of each character class. The ICDAR03-CH data set is the character
classification subproblem from the ICDAR Robust Reading data set. In all data
sets, the characters included upper and lowercase letters, and digits 0 through 9;
in total 62 symbols. Our evaluation methodology mirrored that of [18] and our
results are reported next to theirs in Table 1.

In Table 1, our classifier is labeled as HOG+NN and is displayed in bold
in the first row. The next three rows are reproduced from [18]. The first is
Multiple Kernel Learning (MKL), which is a combination of a number of features
described in [18]. In that work, results for MKL were only reported on the
Chars74K-15, accounting for the dashes in the other two columns. The next
two rows show performance using features from Geometric Blur (GB) [20] and
Shape Context (SC) [21], and classified using Nearest-Neighbor (NN) as reported
in [18]. The methods listed were the ones that performed best from [18].

Table 1. Results for character classification. Our HOG+NN approach performs best on
the three benchmarks, demonstrating the benefit of using HOG features for character
classification.

Feature Chars74K-5 Chars74K-15 ICDAR03-CH

HOG+NN 45.33 ± .99 57.5 51.5

MKL - 55.26 -
GB+NN 36.9 ± 1.0 47.09 27.81
SC+NN 26.1 ± 1.6 34.41 18.32

ABBYY 18.7 18.7 21.2
TESS 17.3 17.3 17.4

Our HOG+NN classifier outperforms those tested in [18] in all three bench-
marks, and more significantly on the Chars74K-5 and ICDAR03-CH. How-
ever, we note that any suitable classification technique that can produce a list
of discrete character detections can be substituted into the word recognition
pipeline.

6.2 Word Recognition Results

We ran experiments on the ICDAR03-WORD and SVT-WORD data sets: the
word recognition benchmarks of both data sets. Unlike SVT-WORD, ICDAR03-
WORD is not explicitly structured for word spotting. Therefore, in our experi-
ments, we construct lexicons synthetically using the ground truth. In both bench-
marks, we use the exact same parameter settings and character training data,
from ICDAR. In our comparisons to ABBYY and TESS, we provided the lex-
icons in the form of custom dictionaries and corrected OCR output to be the
word with the smallest edit-distance in the lexicon.

600 K. Wang and S. Belongie

Table 2. Number of trials for each lexicon size

Lexicon size 64 128 256 512 1065

Trials 16 8 4 2 1

64 128 256 512 1065 (all)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Lexicon size

A
c
c
u
ra

c
y

PICT

ABBYY

TESS

(a) (b)

Fig. 5. Subfigure (a) shows the performance of our method PICT, and OCR engines
Abbyy FineReader 9.0 (ABBYY) and Tesseract OCR (TESS) on the ICDAR word
benchmark. In this experiment, synthetic lexicons were created out of the ground truth
in each run. We provided custom dictionaries to ABBYY and TESS and corrected their
output to the nearest lexicon word by edit-distance. The y-axis marks word recognition
accuracy and the x-axis marks the lexicon size. The full test size is 1,065 word images.
In subfigure (b), the examples above the line are those that PICT only recognizes
correctly, and the examples below are when all methods fail.

ICDAR Robust Reading: Word Recognition. In this experiment, we com-
pare our approach, labeled as PICT, to the OCR engines ABBYY and TESS
on ICDAR03-WORD. For simplicity, we filtered out words containing symbols
other than letters and numbers, leaving 1,065 testing images. To formulate this
problem as word spotting, we constructed tests of various sizes where we built
synthetic lexicons out of the ground truth words for a particular test run. We
divided the test set according to Table 2.

For each size k, we took all our testing data, randomized the order, and tested
on contiguous chunks of size k until all of the test data was used. For example,
when k = 64, we randomized the order of the test data and sampled sections of
64 images at a time (16 sections). We evaluated the three systems on each group
of images where the lexicon consisted of words only from that set.

Figure 5 shows the word recognition results. The results are averaged over all
the trials for each lexicon size. In our results, we see that at a lexicon size of
1,065, PICT significantly outperforms both OCR engines by over 15% and has
more than 30% improvement when limiting the lexicon size to 64.

Street View Text: Word Recognition. In this benchmark, we tested AB-
BYY, TESS, and PICT on our Street View Text benchmark. On the SVT
benchmark, PICT used the exact same training data and parameters as used
in ICDAR03-WORD. No character training data from SVT was used. The test

Word Spotting in the Wild 601

Fig. 6. In our analysis, we use a simple and intuitive heuristic based on edge detec-
tion to group images into EASY and HARD. The EASY examples are typically those
whose characters are well outlined, and the HARD ones typically contain more broken
characters and edges from the background and shadows. This is a coarse estimate of
those images that are more CAPTCHA-like.

size was 514 word images and each image had an associated list of businesses
to categorize from. The accuracies for TESS, ABBYY, and PICT were 31.5%,
47.7%, and 59.0% respectively. Our PICT approach shows significant improve-
ment over the OCR engines.

Implementation Details: The system was implemented in C++ using the
OpenCV framework. Average processing time to run PICT was under six seconds
on an Intel Core 2 processor.

7 Error Analysis

In an attempt to better understand the complexity of image text as it relates
to the performance of conventional OCR, we introduce a simple diagnostic to
gauge image difficulty. In both ICDAR and SVT data sets, there are examples
of words that span the difficulty spectrum: some are well-suited for OCR while
others present a challenge approaching that of a CAPTCHA. In our analysis,
we separate the data into two groups, ‘EASY’ and ‘HARD’, based on a simple
heuristic that is independent of either OCR engine. The intuition behind our
heuristic is that easy examples are likely to have continuous edges around each
character and few spurious edges from the background. We ran a Canny edge
detector [22] on the the data and separated the images by calculating the number
of continuous edges divided by the image’s aspect ratio. This value represents
approximately the number of line segments in a space typically occupied by
one to two characters. We placed images with values between 1 and 3.5 into
the EASY category, and all others into the HARD category; see Figure 6 for
examples of each category. In the EASY category, we can see that the edges
around characters are often reliably traced, whereas in the HARD category,
many edges are picked up from the background and shadows. Table 3 shows the
breakdown of results after separating the data.

While this is not meant to be a definitive method for categorizing the data
– indeed, there could be a more sophisticated heuristic to accurately identify

602 K. Wang and S. Belongie

Table 3. This table shows the breakdown of results after applying our image diagnostic
to categorize images as EASY and HARD. The proportion of the easy data for ICDAR
and SVT data sets were 40% and 33% respectively.

ICDAR (1065) SVT

METHOD ALL EASY (40%) HARD (60%) ALL EASY (33%) HARD (67%)

TESS 35.0 41.7 30.5 31.5 43.2 25.8

ABBYY 42.8 56.9 33.4 47.7 62.7 40.3

PICT 59.2 65.0 55.3 59.0 63.9 56.8

Table 4. This table shows the breakdown of how often the two OCR engines determine
the that image does not contain readable text. This situation constitutes a large portion
of the overall errors in each engine.

ICDAR (1065) SVT

METHOD ALL EASY (40%) HARD (60%) ALL EASY (33%) HARD (67%)

TESS 33.8 32.6 34.6 46.5 42.0 48.4

ABBYY 45.2 34.5 52.4 44.6 29.6 51.9

Fig. 7. This figure shows some advantages of using part based object detection. In
the images of ‘MARLBORO’ and ‘STUFF’, character segmentation is extremely chal-
lenging because of the cast shadows and letter designs. Using the character detection
approach allows us to avoid explicit segmentation and instead relies on local peaks from
our character detector. The configuration of the word ‘Marriott’ shows how a pictorial
structure model is tolerant of minor errors in the part detections. We can see that even
though the first ‘r’ is not in the correct position, the total configuration cost for the
word is better than that of the others associated with that image.

text that can be read at scanned document levels – it is a simple and intuitive
measure of image text complexity and provides a coarse estimate of how difficult
an image of text is to segment. We can see all the methods perform significantly
better on the EASY subset and the OCR methods suffer greater reductions on
the HARD subset.

One reason for the significant performance drop of the OCR methods is that
proper character segmentation is likely more challenging on the HARD set. The
improvement in performance of the PICT model can be attributed to the fact
that it avoids character segmentation, instead relying on character detection in
a sliding window fashion. These detections are collected using a part based word

Word Spotting in the Wild 603

model designed that is robust to small errors. Figure 7 shows examples of these
situations. In the images for ‘MARLBORO’ and ‘STUFF’, they are complex in
appearance and suffer from cast shadows; as a result, accurate segmentation is
extremely challenging. However, the detection approach focuses on finding local
maxima in the response from the character classifier rather than segmentation.
In the ‘Marriott’ example, a single misdetected part, the letter ‘r’, still results
in word configuration score that allows it to be categorized correctly. While it
is the case that minor errors in character classification are corrected using edit-
distance for the OCR engines, we see from Table 4 that a common failure case is
when the OCR engine returns no reading at all, suggesting that significant errors
in segmentation can result in irrecoverable errors for OCR. The performance of
PICT on the HARD subsets is what sets it apart from the OCR methods.

8 Conclusion

In this paper we explored the problem of word spotting and evaluated different
methods to solve the problem. We have shown that approaching word spotting as
a form of object recognition has the benefits of avoiding character segmentation
– a common source of OCR errors – and is robust to small errors in character
detection. When dealing with words in the wild, it is often the case that accurate
segmentation is unattainable, and especially in these cases, our detection based
approach shows significant improvement. While there is still room for improve-
ment in performance, we have shown that framing the word spotting problem
as generic object recognition is a promising new direction.

Acknowledgments. We thank Boris Babenko and Steve Branson for helpful
conversations, and Grant Van Horn for assistance with data collection. This
material is based upon work supported by NSF CAREER Grant No. 0448615, an
NSF Graduate Research Fellowship, a Google Research Award, and the Amazon
AWS in Education Program.

References

1. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard AI prob-
lems for security. In: Eurocrypt (2003)

2. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. Technical
Report 07-49, University of Massachusetts, Amherst (2007)

3. Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R.: ICDAR 2003
robust reading competitions. In: ICDAR (2003)

4. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based
image retrieval at the end of the early years. IEEE Trans. PAMI 22, 1349–1380
(2000)

5. Rath, T.M., Manmatha, R.: Word image matching using dynamic time warping.
In: CVPR (2003)

6. Nagy, G.: At the frontiers of OCR. Proceedings of IEEE 80, 1093–1100 (1992)

604 K. Wang and S. Belongie

7. Mori, S., Suen, C.Y., Yamamoto, K.: Historical review of OCR research and de-
velopment. Document Image Analysis, 244–273 (1995)

8. Casey, R.G., Lecolinet, E.: A survey of methods and strategies in character seg-
mentation. IEEE Trans. PAMI 18, 690–706 (1996)

9. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Designing human friendly
human interaction proofs (HIPs). In: CHI (2005)

10. Wu, V., Manmatha, R., Riseman, E.M.: Textfinder: An automatic system to detect
and recognize text in images. IEEE Trans. PAMI 21, 1224–1229 (1999)

11. Sato, T., Kanade, T., Hughes, E.K., Smith, M.A., Satoh, S.: Video OCR: indexing
digital new libraries by recognition of superimposed captions. Multimedia Sys-
tems 7, 385–395 (1999)

12. Weinman, J.J., Learned-Miller, E., Hanson, A.R.: Scene text recognition using
similarity and a lexicon with sparse belief propagation. IEEE Trans. PAMI 31,
1733–1746 (2009)

13. Chen, X., Yuille, A.L.: Detecting and reading text in natural scenes. In: CVPR
(2004)

14. Vanhoucke, V., Gokturk, S.B.: Reading text in consumer digital photographs. In:
SPIE (2007)

15. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual
CAPTCHA. In: CVPR (2003)

16. Fischler, M., Elschlager, R.: The representation and matching of pictorial struc-
tures. IEEE Trans. on Computers 22, 67–92 (1973)

17. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition.
IJCV 61, 55–79 (2005)

18. de Campos, T., Babu, B., Varma, M.: Character recognition in natural images. In:
VISAPP (2009)

19. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR (2005)

20. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using
low distortion correspondence. In: CVPR (2005)

21. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. IEEE Trans. PAMI 24, 509–522 (2002)

22. Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 8,
679–698 (1986)

	Word Spotting in the Wild
	Introduction
	Motivating Applications
	Dataset
	Related Work
	Scanned Document OCR
	Image Text OCR

	Word Recognition
	Character Recognition
	Word Configuration

	Experiments
	Character Classification Results
	Word Recognition Results

	Error Analysis
	Conclusion
	References

