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Abstract 

 

There are numerous models of how speech segmentation may proceed in infants acquiring 

their first language. We present a framework for considering the relative merits and 

limitations of these various approaches. We then present a model of speech segmentation that 

aims to reveal important sources of information for speech segmentation, and capture 

psycholinguistic constraints on children’s language perception. The model constructs a 

lexicon based on information about utterance boundaries and deduces phonotactic constraints 

from the discovered lexicon. Compared to other models of speech segmentation, our model 

performs well in terms of accuracy, computational tractability, and the number of components 

of the model. Finally, our model also reflects psycholinguistic effects of language learning, in 

terms of the early advantage for segmentation provided by the child’s name, and by revealing 

the overlap in usefulness of information for segmentation and for grammatical categorisation 

of the language. 
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Introduction 

The speech that infants hear is generally produced in a continuous stream, without 

pauses that reliably indicate where words begin and end. Indeed, if pauses do occur, then this 

can be at misleading points in speech, occurring within words before consonants with long 

voice onsets (Slis, 1970), though pauses are also frequent between phrases in speech 

(Wightman, Shattuck-Hufnagel, Ostendorf, & Price, 1992). The problem of speech 

segmentation has therefore been characterised as words occurring in a ‘sea of sound’ (Saffran, 

2001) from which lexical items have to be identified and extracted. Consequently, an array of 

subtle, interacting, probabilistic indicators to word boundaries have been proposed as cues 

that assist in solving the segmentation problem, including cues such as lexical stress and 

prosodic patterns across utterances (Curtin, Mintz, & Christiansen, 2005; Cutler & Carter, 

1987; Johnson & Juszcyk, 2001), transitional probabilities between syllables (Saffran, Aslin, 

& Newport, 1996), and phonotactic constraints between phonemes (Hockema, 2006; Mattys, 

White, & Melhorn, 2005). 

Several computational models have been proposed to account for the developmental 

processes involved in early speech segmentation. Some of these models take as input raw 

speech, and such approaches have produced up to 54% accuracy on very small corpora (e.g., 

Roy & Pentland, 2002). An alternative approach is to take as input unsegmented phonological 

transcriptions of speech (e.g., Batchelder, 2002; Brent, 1999; Brent & Cartwright, 1996; 

Frank, Goldwater, Mansinghka, Griffiths, & Tenenbaum, 2007). These latter models 

considerably simplify the complexities of the raw speech input in identifying phonemes or 

phoneme features, but they do highlight the potential statistical sources of information useful 

for reflecting word boundaries in child-directed speech (CDS), and have been successfully 

related to psycholinguistic studies of children’s language acquisition. 

Previous developmental models of speech segmentation differ substantially across a 

umber of parameters, including whether the model builds a lexicon, segments words by 
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clustering smaller units or breaking down larger units, or incorporates external constraints on 

performance (see Batchelder, 2002, for a review). From a developmental psycholinguistics 

perspective, it is not clear which model(s) should be preferred. In this paper, we therefore first 

propose a set of psychologically-motivated criteria for assessing developmental models of 

speech segmentation before presenting our own computational model. 

 

Criteria for Assessing Developmental Models of Speech Segmentation 

Precision and recall 

Previous work on speech segmentation has quite rightly focused on assessing computational 

models in terms of their ability to correctly segment a corpus into words, as determined by an 

objective parse of the speech. The best performance of developmental models of speech 

segmentation appear to be converging to approximately three quarters of words in CDS 

corpora. However, it is unclear what level of segmentation performance best reflects the 

child’s ability. Nonetheless, all else being equal, a model that shows it can exploit information 

in a way that maximises the correct segmentation of a CDS corpus is to be preferred. When 

all else is not equal, then roughly similar performance to comparable models provides a useful 

benchmark level. 

Computational tractability 

The second criterion concerns the plausibility of the model as a reflection of the cognitive 

processing of the infant learning the language. The model should be computationally tractable 

– memory limitations should be observed, and optimal learning should not be assumed. 

Critical for computational tractability is whether the model is incremental or whether the 

whole corpus must be considered in segmenting a particular utterance. Thus, an incremental 

model – in which the segmentation of a target utterance depends only on what has preceded 

the utterance in the child’s exposure – is to be preferred. However, there may be incremental 
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approximations of models that process the whole corpus, and thus preferring an incremental 

model as a decision criterion requires proof that a ‘batch’ model would not operate effectively 

in an incremental mode. Moreover, everything else being equal, a model that requires small 

memory capacity, and limited search and computational resources, is preferable. Models that 

require close approximation to optimal learning conditions – where all the input can be stored 

and accessed simultaneously – should be rejected as models of the infant’s cognitive process, 

though they may have substantial value in reflecting the potential information present in the 

child’s language input. 

External components 

Some models may include external components that do not emerge from the basic processing 

principles of that model. As an example, Frank et al. (2007) and Brent and Cartwright (1996) 

use a vowel constraint, whereby a candidate lexical item must contain a vowel to be 

considered. For these specific models, this qualifies as an external constraint, as it is a 

constraint applied to the model, and which cannot be inferred from the language exposure 

alone. We suggest that, all else being equal, a model with few external components is to be 

preferred for reasons of parsimony. 

Psycholinguistic features 

Perhaps the most important criterion of all for the assessment of the models is the extent to 

which they can reflect psycholinguistic observations of the infant learning to segment speech. 

For example, Brent (1999) demonstrated that certain predictions of a computational model of 

segmentation can be tested in experimental studies of language learning (e.g., Dahan & Brent, 

1999), and Perruchet and Vinter (1998) explicitly tested the artificial languages of Saffran et 

al. (1996) to determine whether a chunking strategy, elicited by transitional probabilities, 

could account for participants’ segmentation performance based on these materials. The 

particular psycholinguistic effects we feature for our modelling are reported in the next 

section, where we outline the basic principles of our model’s functioning. 
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Sources of Information in Child-Directed Speech 

Our model aims to advance on previous models with respect to these criteria for assessing 

developmental models of speech segmentation, though there is a large degree of overlap 

between our approach and previous models of speech processing. One advantage is that we 

provide a model that is computationally tractable, in that it does not assume a large lexicon, 

nor does it require multiple, competing decisions about the match between the lexicon and the 

utterance string. Furthermore, the model is incremental in its processing of utterances. Along 

with the Perruchet and Vinter (1998) PARSER model, the memory resources and 

computational requirements are minimal. However, unlike PARSER, our model can process 

at the phoneme level, and does not require the syllable structure to be provided to the model. 

The second advantage we claim for our approach is that it does not require additional 

constraints that lie outwith the model’s discovery of the lexicon itself. The third advantage of 

our modelling approach is an attempt to draw together the modelling approach with features 

of infant speech processing that highlights what may be the important aspects of CDS that are 

formative for language learning (though see also Batchelder 2002). In particular, we focus on 

two features of CDS that we believe are critical for language learning: utterance boundaries 

and the interspersal of high frequency words in speech.  

Utterance boundaries provide a rich source of information about word boundaries, 

represented either by physical pauses in speech, or indicated by alternations between 

conversational partners. Though MacWhinney and Snow (1985) estimated that only about 

one in seven words were spoken in isolation in CDS, this still presents a potentially large 

number of words that can then be bootstrapped into segmenting multi-word utterances. From 

the English CDS section of the CHILDES corpus, of 1,369,574 utterances, 358,397 (26.2%) 

are single word utterances; Table 1 shows proportions of utterances of various lengths in 

words. Relying solely on utterance boundaries to indicate word boundaries, however, is likely 
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to be insufficient for infant speech segmentation (Brent & Cartwright, 1996). First, though a 

large proportion of utterances consist of a single word, the majority of utterances are multi-

word sequences and there are no proposed methods for distinguishing between single- and 

multi-word utterances (Christophe, Dupoux, Bertoncini, & Mehler, 1994). Second, many 

words very rarely occur as single-word utterances, such as determiners (e.g., ‘the’ only occurs 

129 times as a single word utterance in the combined CHILDES corpus of English CDS).  

< Insert Table 1 around here > 

Although highly frequent function words seldom occur as single word utterances, other 

high frequency words may occur in isolation a substantial number of times. Proper names, for 

instance, can occur frequently as single-word utterances in CDS, and have been proposed to 

be important for assisting the learning of other words from the child’s speech input. In the set 

of corpora we use for the analyses in this paper, the child’s own name occurred as a single-

word utterance a total of 1.3% of all utterances in the combined corpora. Importantly, though, 

as much as 23.7% of the occurrences of the proper name were in a single-word utterance.  

But what contribution do utterance boundaries make alongside the wealth of other cues to 

indicate word boundaries available in speech? Though accurate speech segmentation clearly 

does not involve processing each utterance as a separate lexical item, this does not preclude 

the possibility that learning to segment speech may at least be facilitated by such information. 

Several models of speech segmentation have included utterance boundary information as 

input to the model (Aslin, Woodward, LaMendola & Bever, 1996; Batchelder, 2002; Brent, 

1999; Brent & Cartwright, 1996; Christiansen, Allen, & Seidenberg, 1998), whereas other 

models incorporate it as an upper bound on the possible length of a candidate word (Perruchet 

& Vinter, 1998). 

Our model utilises utterance boundaries to determine, in an incremental fashion, word 

boundaries in continuous speech, we term this the ‘Phonotactics from Utterances Determine 

Distributional Lexical Elements’ (or PUDDLE) model of speech segmentation. The PUDDLE 
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model initially treats each utterance as a lexical item, but breaks up longer utterances into 

shorter lexical items if another stored lexical item is a part of the longer utterance. Indeed, 

Dahan and Brent (1999) showed that, for adults listening to an artificial language, a novel 

utterance will be processed as a lexical item providing it contains no known words. The 

segmented sections of the longer utterance are then each entered as separate lexical items.  

However, matching utterances within other utterances is not sufficient for a model of 

segmentation, as short, frequently occurring utterances are likely to be segmented within 

larger word-level chunks resulting in an over-segmentation of words into their segmental 

phonology. As an example, given the utterances: ‘oh’, and ‘no’, the unconstrained model will 

store ‘oh’ as a candidate lexical item, and then divide up ‘no’ into ‘n’ and ‘o’, as, in terms of 

their phonological transcription, the ‘o’ matches the stored utterance ‘oh’. Then, all future 

occurrences of utterances containing ‘n’ will be divided, resulting eventually in a set of 

lexical candidates that are the individual phonemes of English. To overcome such over-

segemtation, our model incorporates a boundary constraint derived from its lexicon (as 

described below). 

There were several, related aims to our computational model of segmentation in terms of 

connecting with the developmental literature on language learning. First, we wanted to 

indicate that single-word utterances are identifiable in speech, and can be extracted as lexical 

items from CDS corpora. Second, we wanted to explore which words emerge as those earliest 

identified, and which are consequently the most useful indicators of word boundaries. If a 

small set of frequent words can be accurately identified by the model, then these may be 

useful for carving up the rest of the speech stream into its constituent words, just as frequent 

words are useful for determining grammatical categories of the content words that surround 

them (Monaghan, Christiansen, & Chater, 2007). In this respect, too, we wanted to determine 

whether the child’s name is one of these early-identified words. Third, we wanted to plot the 

model’s discovery of words over time. Children learn language in an item-based manner 
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where frequently co-occurring words are initially processed as single words (MacWhinney, 

1982; Tomasello, 2002), and only later are they distinguished into their constituents (see also 

Bannard & Matthews, 2008, for an empirical demonstration of this phenomenon). 

We now present the PUDDLE model of speech segmentation, and report its 

performance on 6 corpora of English CDS. Testing the model on several CDS corpora 

presents an advance on previous models of speech segmentation that have typically focused 

on a single corpus (e.g., models reviewed in Brent, 1999), and provides insight into the 

generalisability of the model’s performance across corpora, as well as highlighting distinctive 

properties of CDS in terms of their influence on speech segmentation performance, such as 

the use of proper nouns. 

 

The PUDDLE Model of Speech Segmentation 

Method 

Algorithm. The model has two components: a lexicon, and a list of beginning and ending 

phoneme pairs, generated from the lexicon. The model begins by inputting the first utterance 

into the lexicon. The model searches through the current utterance starting at the first 

phoneme, and testing whether there is a match with any of the stored lexical items. If there is 

a match then the word is extracted, the phonemes occurring before the matched word are 

taken to constitute a new lexical item, and search for the next lexical item in the utterance 

recommences at the first phoneme in the utterance following the matched word. If there is no 

match at a particular phoneme position, then the model proceeds to the next phoneme in the 

utterance string, until the end of the utterance is reached. If the end of the utterance is reached 

without a match, then the phonemes following the last match of a word in the utterance are 

taken to be a new lexical item. The next utterance is then presented to the model. 

< Insert Figure 1 around here > 



Segmenting puddles 

 10 

 As an example, consider the set of utterances ‘kitty’, ‘that’s right kitty yes’, ‘look 

kitty’, illustrated in Figure 1. The model will begin with the /k/ in the first utterance ‘kitty’. 

The lexicon is empty, so there are no matches, and the model will move on to consider /I/ 

from the first utterance. There is again no match, and so the model will proceed through to the 

end of the utterance with no matches and will code the entire utterance – in this case the string 

‘kitty’ – as a lexical item. At the end of processing the first utterance, then, there is one item 

in the lexicon. Then the model proceeds to the second utterance, and attempts to match any of 

the lexical items with each phoneme in turn. There is just one match: ‘kitty’ matches at the 

/k/, and the string preceding the match – ‘that’s right’  – will be entered into the lexicon. 

Then, for the remaining phonemes in the second utterance, comprising the word ‘yes’, the 

model will attempt to match with the set of lexical items starting at each phoneme in turn. 

There are no matches, and so ‘yes’ will then be entered as a new lexical item. So, at the end of 

the second utterance there are three candidate lexical items. For the third utterance, the model 

will attempt to match all the lexical items ‘kitty’, ‘that’s right’, and ‘yes’ at each phoneme 

position. Once again, there is only one match at the second /k/, and so ‘look’ will also be 

entered as a new lexical item. (Note that utterances and lexical items are encoded as phoneme 

sequences, the terms in speech-marks and the transcriptions in Figure 1, indicate a short-hand 

version of these phoneme sequences for ease of interpretation.) 

Each item in the model’s lexicon has associated with it an activity level, as in the 

PARSER model (Perruchet & Vinter, 1998). Each time a word is matched in an utterance its 

activity increases by 1, as shown in Figure 1 for the word ‘kitty’ when matched in the second 

utterance. For new lexical items, activity is initially set at 1. To simulate forgetting of the 

lexical items, a decay parameter can be used such that the activity of every lexical item 

reduced by a set amount each time a new utterance was presented. This has the effect of long 

utterances that are rarely repeated dropping out of the lexicon, but words that occur frequently 

maintaining a high activity level. Pilot studies indicated that setting the decay rate too high 
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resulted in a very small lexicon, and consequently under-segmentation of the corpus, hence 

precision was high but recall was low. In the following simulations, we report the results 

when decay is 0, indicating the model’s performance when the learning capacity of word 

items was high. 

A further parameter that influences the model’s performance is the order in which the 

lexical items are searched for matches. We assume that the lexical items most available to be 

matched to input speech are those that occur with the highest frequency of identification in 

the child’s previous exposure, and so we sorted the candidate lexicon according to the activity 

of each lexical item. 

To reduce over-segmentation, phonotactic information about legal word boundaries 

was derived from the model’s lexicon and used as a boundary constraint. Once a word 

produced a match in the utterance, the match was processed only if the phonemes around the 

matched segment were represented already within the lexicon as possible word endings or 

word beginnings. We implemented this by requiring that the two phonemes preceding the 

matched segment ended one of the candidate words in the lexicon and the two phonemes 

succeeding the matched segment began one of the candidate words. If the lexical item was 

shorter than two phonemes in length, then it did not contribute to the beginnings and endings 

list. Figure 1 illustrates that a list of all the beginning and ending phoneme pairs is constructed 

from the lexicon. Listeners are sensitive to whether pairs of phonemes are likely to occur 

within or across word boundaries (Mattys et al., 2005) and the distributions of within- and 

between-word phoneme bigrams is potentially valuable information for speech segmentation 

(Hockema, 2006). This constraint was important in order to prevent individual phonemes 

becoming candidate lexical items. In the example above, ‘kitty’ would only be matched in 

‘that’s right kitty yes’ if the last two phonemes of ‘right’ and the first two phonemes of ‘yes’ 

ended and began words in the lexicon, respectively. If there had been no input prior to the 

first utterance in this example then all three utterances would have been entered as lexical 
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items, and the beginnings and endings of these utterances only would be listed as potential 

word boundaries. 

Corpus preparation. We selected six English CDS corpora from the CHILDES database 

(MacWhinney, 2000): Eve (Brown, 1973), Peter (Bloom, Hood, & Lightbown, 1974), Naomi 

(Sachs, 1983), Nina (Suppes, 1974), Anne and Aran (Theakston, Lieven, Pine, & Rowland, 

2001). We only included speech spoken in the presence of children aged 2;6 or younger, and 

only adult speech was included. The corpora are orthographically transcribed in the 

CHILDES database, including indicators of speech pauses in the transcription. Pauses and 

changes in speaker were encoded as utterance boundaries. The numbers of utterances, words, 

and phonemes in each corpus are shown in Table 2. 

< Insert Table 2 around here > 

To generate the spoken form of the speech, we streamed the orthographic transcription 

through the Festival speech synthesiser (Black, Clark, Richmond, King, & Zen, 1990) which 

produced a sequence of phonemes for each utterance, together with a separate transcription 

that also included objective marking of which phonemes were generated for each word. This 

method of phonological transcription has the advantage that some phoneme variation 

according to part-of-speech context was encoded within the corpus, for instance, ‘a’ was 

pronounced either as /eI/ as a noun and /@/ when used as a determiner, similarly, ‘uses’ was 

pronounced with a /z/ as a verb and /s/ as a noun. The resulting input is therefore closer to the 

actual speech that children hear than what was used in most previous simulations of speech 

segmentation (e.g., Batchhelder, 2002; Brent, 1999; Brent & Cartwright, 1996; Christiansen 

et al., 1998; Hockema, 2006; Venkataraman, 2001), in which the same citation form (taken 

from a pronunciation dictionary) is used every time a word occurs independent of its context 

(though see Aslin et al., 1996, for a similar approach). Also, influences of lexical stress on 

vowel pronunciation were also encoded by Festival in the speech, so that when unstressed, 

vowels were often realised as schwa (see, e.g., Gerken, 1996). 
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Scoring. The model’s performance was measured on blocks of 1000 utterances. The model’s 

performance was scored on-line as the model proceeded through the corpus, so the model’s 

performance was determined on portions of the corpus that it had not yet been exposed to. 

The model’s segmentation was compared to the segmentation that reflected the orthographic 

transcription into words from the original corpus. We computed true positives, false positives, 

and false negatives in the model’s segmentation. True positives were words that were 

correctly segmented by the model – a word boundary occurred immediately before and after 

the word but with no incorrect boundaries in between.  False positives were sequences 

segmented by the model that did not match to individual words in the festival segmentation. 

False negatives were words in the Festival segmentation that were not correctly segmented by 

the model. To quantify the performance of the model we used the complementary measures of 

precision and recall, which have been used as conservative measures of model performance 

in previous research (e.g., Batchelder, 2002; Brent & Cartwright, 1996; Christiansen et al., 

1998; Hockema, 2006; Venkataraman, 2001). Precision was computed as true positives 

divided by the sum of true positives and false positives. Recall was computed as true positives 

divided by the sum of true positives and false negatives. Thus, precision provides a measure 

of how many of the words that the model found are actual words, whereas recall indicates 

how many of the words in the corpus the model was able to find. 

 As a baseline, we created a ’word-length model’ (e.g., Brent & Cartwright, 1996; 

Christiansen et al., 1998) that randomly inserted word boundaries into the speech stream 

given the correct number of word boundaries found across the whole corpus. Note that this 

baseline provides information about how many words there are in the corpus but not where 

the boundaries occur, so it is likely to perform better than a truly random baseline that lacks 

this information. 

Results and Discussion 
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The model’s performance was assessed for each 1000 utterance block in each corpus, up to 

the first 10,000 utterances had been processed. For corpora smaller than 10,000 utterances, 

performance for the final block of 1,000 utterances was repeatedly reported. Figure 2 reports 

the model’s segmentation performance on each corpus with zero decay, compared to the word 

length segmentation baseline. At the 10,000 utterance block, the improvement over baseline 

performance was significant for both precision, t(5) = 71.25, p < .0001, and recall, t(5) = 

61.98, p < .0001. The model was also highly significantly different from chance for precision 

and recall at all points in training, from 1000 to 10,000 utterance exposures, all t >= 10, all p 

< .0005. 

< Insert Figure 2 about here> 

The model’s performance was consistent in its precision and recall across the different 

CDS corpora. The worst performance of the model was for the Naomi corpus, which was the 

smallest, so the model’s training had completed by approximately 8,000 utterance exposures. 

Yet, the model’s performance even on this corpus was .70 precision and .70 recall, compared 

to .11 precision and .09 recall baseline. The best performance of the model was on the Aran 

corpus, with .76 precision and .79 recall, compared to .11 and .10 baselines for precision and 

recall, respectively. 

Though the model represented an extremely simple algorithm for discovering words, it 

compared well to more complex incremental models of speech segmentation (Batchelder, 

2002; Brent, 1999; Venkataraman, 2001). After 10,000 words had been processed for a single 

CDS corpus, precision and recall was approximately .75-.80 for the BMDP1 model (see 

Figures 3 and 4 in Brent, 1999). In the same paper, other algorithms were also compared, and 

all performed substantially worse than the PUDDLE model: the SRN model of Christiansen et 

al (1998): precision .40-.45, recall .40-.45; Olivier (1968): precision .50-.55, recall .35-.40. 

Venkataraman (2001) reports slightly reduced precision and recall for the BMDP1 (Brent, 

1999) model for a similarly derived CDS corpus of .65-.70 and .70-.75, respectively, and the 
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best performance of his model with a trigram-based algorithm performed with precision .70-

.75 and recall .70-.75. Batchelder (2002) reported precision and recall in a similar range for 

her model with the word length constraint set to its optimal level on one corpora, but other 

corpora tested yielded slightly reduced precision and recall. 

 However, despite our model being quantitatively comparable to other methods in 

terms of precision and recall of segmentation performance, it is the qualitative behaviour of 

the model that we wish to focus on. Tables 3 and 4 show the model’s performance in terms of 

the 20 most highly activated words in the lexicon for the six corpora after 1000 and 10000 

utterance exposures. Evident from the Tables are that the model very early in training 

identifies words with a high degree of precision. After 1000 utterances, the model identifies 

no false positives in the top-20 words in each corpus, but includes several frequently 

occurring word sequences as potential word candidates (so counting as misses in the 

analyses), such as ‘isn’t it’, ‘you tell me’, and ‘that’s right’. By 10000 word utterances nearly 

all of these have been correctly broken down into their constituent words, so that across the 

top-20 words in all 6 corpora, only three remain (2 for Aran and 1 for Naomi). 

< Insert Tables 3 and 4 around here > 

 Also of note in the most highly activated words in each corpus is the presence of the 

child’s name. Even after a small amount of exposure – to 1000 utterances – the child’s name 

had been identified and occurred in the top-20 most highly activated words for 4 of the 6 

corpora. For the other corpora, ’Aran’ was identified in the lexicon but occurred as the 36th 

word, and ‘Nina’ was 44th. By 10000 utterances, the child’s name maintains its prominence, 

and in 5 of the 6 corpora it occurs in the top-20 most highly activated words, and for the other 

corpus, ‘Aran’ occurs 33rd in the lexicon. 

 The identity of the other words that were most highly activated, and formed the basis 

of the model’s segmentation performance, also provide qualitative data about the model’s 

performance. They were generally the words that occurred with the highest frequency in the 
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corpus and were principally constituted of pronouns and determiners, but also included some 

prepositions, conjunctions, interjections, and high frequency verbs. Whereas some of these 

words can occur as single word utterances (such as proper names and interjections), other 

words, as noted earlier, such as determiners seldom occur in isolation. ’The’, for instance, was 

reliably identified as a word in the model and occurred in the top-20 for all 6 corpora. 

 Though there is a correspondence with the frequency of the word’s occurrence, this 

was not the only factor influencing it becoming highly activated, and a consequent basis for 

segmenting words that occur around it. The distributional pattern of the word is also 

important for determining whether it becomes highly activated in the lexicon. In previous 

work, we have found that certain words are more useful than others for indicating the 

grammatical category of words with which they co-occur. In order to determine whether the 

same words that are useful for indicating grammatical categories in language learning are the 

same as those identified early, and useful for, speech segmentation, we examined the top-20 

words for each corpus in terms of whether they were words that significantly distinguished 

nouns and verbs (data from Monaghan et al., 2007). The words were: he, we, are, no, your, 

that’s, in, do, is, to, a, the, and you. The analyses indicated that many of these words were 

highly activated in the PUDDLE model’s lexicon. The final column of Tables 3 and 4 

indicates how many of these thirteen word cues were in the top-20 highly activated word in 

each corpus. The words useful for segmentation substantially overlap with those distributional 

word cues useful for grammatical categorisation. 

 

General Discussion 

The PUDDLE model of speech segmentation was designed to provide an explicit test of how 

far utterance boundaries alone can provide a bootstrap into identifying word boundaries from 

continuous CDS. Considering each utterance as a potential word candidate, the model 

discovered which utterances were single-word utterances accurately, and the rarer multiple-
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word occurrences were less highly activated as candidates for the lexicon. Using these 

identified words, the model was successful in segmenting the speech corpora to a level of 

precision and recall similar to other, more sophisticated models that assume substantially 

more computational complexity and memory load for the child. Another important 

component of the model was the boundary constraint, which required that, before a lexical 

candidate could be entered into the lexicon, the boundaries around the candidate in the speech 

must form a legal phonotactic context. In pilot modelling, we found that this constraint was 

necessary in order for the language to be segmented effectively. However, the boundaries 

were discovered by the model as a consequence of establishing a lexicon, and so the 

constraint was not external to the model’s functioning, but emerged as a consequence of its 

functioning. No other constraints were found to be required in order for the model to learn to 

an effective level.  

 In terms of the five criteria for assessing developmental models of speech 

segmentation, our model fulfils many of them more effectively than other models of 

segmentation (see Table 5). This is not a simple consequence of the decisions we made about 

the assessment criteria, which we see as more generic principles that ought to apply to models 

of other domains of language acquisition (see, e.g., Brent, 1996; Christiansen & Chater, 

2001). We intend these criteria as a snapshot of the current state of the field, rather than a 

criticism of previous models of segmentation. The extent to which each model meets the 

criteria in Table 5 was not always possible to deduce from the relevant papers, and thus we 

have sought to err on the side of caution in our ratings.  

< Insert Table 5 around here > 

For the reasonable precision and recall, the connectionist models (Christiansen et al., 

1998) and Olivier’s (1968) model fall short of the levels of performance of the other 

approaches. We imagine that the Perruchet and Vinter (1998) model will also perform poorly 

on this criterion if the model is given free reign on phoneme transcriptions rather than 
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syllables, for similar reasons to those we outlined for the PUDDLE model’s failure without 

the boundary constraint. In terms of computational tractability, we contend the Batchelder 

(2002) and Venkatamaran (2001) models will require highly computationally intensive 

processing particularly after extensive training. This is because all possible individual 

segments and their combinations are stored in the lexicon (though in the case of Batchelder’s 

model, a decay parameter can remove them from the lexical store). Such a store can become 

extremely large very quickly, and a model that does not consider all possible combinations of 

sequences of segments should be preferred. Brent and Cartwright’s (1996) model and the 

Frank et al. (2007) models are both idealised learners, and so require simultaneous processing 

of the entire corpus, rather than taking an incremental approach, to achieve accurate speech 

segmentation performance. It is not, however, established that incremental versions of these 

models could not effectively learn to segment speech, and so the ‘N’ in Table 5 against 

computational tractability indicates that, in their current form, these models do not yet meet 

this criterion. In terms of external constraints, all the models except the connectionist models, 

Brent’s (1999) model, Venkataraman’s (2001) model, and the PUDDLE model have 

additional components that are not discovered by the model. For the final criterion, other 

models may be effective in simulating particular aspects of children’s performance in speech 

segmentation, but such explicit tests have not always been reported, so it is as yet unclear 

whether these other models would simulate the psycholinguistic effects on which we have 

focused.  

The future benchmark that merits most development, we believe, is the extent to which 

models can reflect what is known about the psycholinguistic properties of segmentation in 

infants and the hypotheses they raise for future studies in this regard. The PUDDLE model 

has indicated how proper nouns, in particular the child’s name, can emerge early in language 

processing as a word candidate, and can form a critical basis for speech segmentation of the 

words that occur around it. Bortfeld et al. (2005) showed that the words occurring 
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immediately after the child’s name were attended to more than words that occurred in other 

contexts. Our model demonstrates that this benefit of the child’s name can be discovered by a 

model of speech segmentation based on the distributional properties of the name. In the 

PUDDLE model, the child’s own name can be discovered early and can then act as a basis for 

the segmentation of words around it. As a caveat, however, the Bortfeld et al. (2005) study 

also showed that co-occurrence of a word with ‘mommy’ also demonstrated an advantage in 

terms of the infant’s learning of the target word. ‘Mommy’ occurs rarely in several of the 

CDS corpora in our study, and so was unlikely to emerge as useful cue for segmentation. In 

the Aran and Anne corpora it occurred zero times. It occurred most frequently in the Peter 

corpus, with a frequency of 1.3 per thousand words, and was identified as a word in the 

lexicon for the model but with low activation. However, the model is also sensitive to local 

aberrations in the occurrence of words, so if a lexical item occurs frequently in a portion of 

the corpus then it will increase in activation and consequently increase in its usefulness for 

segmenting other words with which it co-occurs. 

 An additional developmental psycholinguistic property of the model is its use of 

phonotactic information about legal word boundaries. Pilot studies of the model without this 

word boundary constraint resulted in oversegmentation of the speech into individual 

phonemes. An alternative to the boundary constraint would be to impose other constraints on 

legal segmentations of the speech, such as the vowel constraint, utilised by models such as 

Brent and Cartwright (1996). We prefer to use the boundary constraint, however, as this 

emerges from the discovered lexicon in the model itself rather than being an external property 

imposed on the model. Additionally, when we implemented the vowel constraint as a 

requirement that segmented words must contain at least one vowel, we found this constraint 

to be less effective as a supplement to the PUDDLE model than the boundary constraint. 

Introducing the vowel constraint, but omitting the boundary constraint, resulted in mean 

precision of .43 and recall of .52 after 10000 utterance exposures, so the boundary constraint 
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resulted in 20-30% better precision and recall in speech segmentation across the six corpora. 

Including both the vowel constraint and the boundary constraint resulted in performance 

similar to the boundary constraint alone: mean precision was .73, mean recall was .75. It may 

be that sensitivity to phonotactic constraints in language learners, in terms of word-internal 

phoneme pairs, may be a consequence of their importance as a constraint for constructing 

hypotheses about which phoneme sequences may constitute a word. 

 The errors that the model makes in its speech segmentation are also instructive in 

terms of the information potentially available to the child from their speech environment, and 

the range of computational processes that may react to this information. In particular, the 

undersegmentation of certain frequent phrases bears a resemblance to the item-based model 

of language learning proposed by Tomasello (2000). In the model’s performance at early 

stages of learning, several candidate words were multiple-word utterances that occurred 

frequently in the speech. Whereas the model eventually learned to accurately decompose 

these frequent co-occurrences into their constituent words, this indicates that the PUDDLE 

model’s utterance-based approach to segmentation is consistent with such developmental 

trends, which now have behavioural support (e.g., Bannard & Matthews, 2008). 

 One of the insights generated from this model was that the words that emerged as 

useful for segmenting speech are precisely those that are also useful for indicating 

grammatical category. Peña, Bonatti, Nespor, and Mehler (2002) claimed that segmentation 

and learning of grammatical structure are separable and sequential processes in language 

learning. They claimed, on the basis of results from artificial language learning tasks, that 

generalisation of the grammar cannot occur before the problem of speech segmentation has 

been accomplished. However, their artificial language did not contain the distributional 

properties of natural language that the PUDDLE model indicates are potentially extremely 

useful for both speech segmentation and grammar learning. Instead, their model only 

contained transitional probability information, in non-adjacent syllables, to indicate word and 
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language structure. The PUDDLE model cannot reveal whether speech segmentation precedes 

grammatical category learning, but it does indicate that the same high frequency words within 

a natural language corpus can serve both these tasks and are discoverable extremely early in 

language acquisition.  

As may by now be apparent, the PUDDLE model we have presented is not inconsistent 

with other approaches to speech segmentation. Our aim was to highlight how models of 

segmentation can be informed, and in turn can inform, developmental studies of the cues that 

are useful and used by children in segmenting speech. In summary, this paper presents a novel 

framework for comparing developmental models of speech segmentation in qualitative as 

well as quantitative terms. Based on these criteria, the PUDDLE model performs comparably 

to other models in terms of precision and recall of segmentation and presents an advance on 

other models in its ability to reflect qualitative aspects of children’s early speech 

segmentation performance. The PUDDLE model suggests that when a child embarks on 

language acquisition she does not have to swim through a vast sea of sound to discover the 

words of her native language but instead is faced with the relatively easier (though nontrivial) 

task of looking for words in small puddles surrounded by helpful boundary information to 

facilitate segmentation. 
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Table 1. Proportion of utterances from child-directed speech of different lengths of words. 

Utterance Length (in Words) Proportion of Corpus 

1 

2 

3 

4 

5 

6 

7 

8 

>8 

.26 

.14 

.13 

.12 

.10 

.08 

.06 

.04 

.09 
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Table 2. Size and characteristics of each child-directed speech corpus. 

Corpus Number of utterances Mean words per 

utterance 

Mean phonemes per 

word 

Anne 27,474 3.37 3.07 

Aran 27,794 3.81 3.07 

Eve 17,327 3.55 3.05 

Naomi 8.318 3.56 3.12 

Nina 17,865 4.01 3.03 

Peter 20,091 3.61 3.01 
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Table 3. The most highly activated words in each corpus after 1000 utterance exposures. 

Corpus Top 20 ‘Words’ Word overlap with grammatical cues  

Anne a, there, you, in, it, what, are, is, no, that, 

anne, on, and, shall, sit, look, whoops, 

then, pardon, thank 

7 

Aran what, isn’t_it, yes, hm, that, what’s, 

come_on, a, are_you, and, it, is_it, one, 

there’s, erm, didn’t_we, that’s, do_you, 

is, bang 

5 

Eve what, you, yes, no, do, a, want, there, 

is_that, that, well, and, you_tell_me, 

where, would, eve 

5 

Naomi naomi, say, achey, yes, blanket, 

what’s_this, is, that’s, what, the, no, 

what’s, brush, birdie, that, broken, good, 

honey, goldie, yah 

4 

Nina what, is, a, where, that’s_right, yah, you, 

on, doing, are, do, shall, okay, that’s, 

these, let’s, happened, darlie*?, here, no 

7 

Peter see, you, a, what, there, is, it, peter, right, 

say, that, that’s, lets, are_you, the, yah, 

here, and, sit, look 

6 
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Table 4. The most highly activated words in each corpus after 10000 utterance exposures. 

Corpus Top 20 ‘Words’ Word overlap with grammatical cues 

Anne you, a, it, the, are, there, what, that, to, 

we, on, in, do, is, yah, right, one, no, 

going, anne 

10 

Aran you, it, are, is, what, to, that, the, I, we, a, 

going, there, and, on, hm, no, isn’t_it, in, 

come_on  

9 

Eve you, what, it, that, is, no, the, yes, I, a, on, 

eve, in, do, well, and, are, there, your, 

that’s 

9 

Naomi naomi, you, it, what, the, to, that, I, 

honey, on, no, ee*, yes, is, want, are, 

okay, do_you, that’s, right 

7 

Nina you, what, is, to, it, the, are, do, I, w*, on, 

did, where, in, that, a, put, no, this, nina 

9 

Peter you, it, the, that, there, a, what, is, in, see, 

to, put, I, on, mhm, no, right, can, an, 

peter 

7 
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Table 5. Criteria for assessing developmental models of speech segmentation. 

Model Reasonable 

precision 

and recall 

Computationally 

tractable 

No external 

components 

Psycholinguistic 

effects 

Batchelder 

(2002) 

Y N N Y 

Brent (1999) Y Y Y Y 

Brent & 

Cartwright 

(1996) 

Y N N Y 

 Christiansen 

et al. (1998) 

N Y Y Y 

Olivier (1968) N N ? ? 

Perruchet & 

Vinter (1998) 

N Y N Y 

Frank et al. 

(2007) 

Y N ? ? 

Venkataraman 

(2001) 

Y N Y ? 

PUDDLE 

model 

Y Y Y Y 



Segmenting puddles 

 32 

Figure 1.  The PUDDLE model operating on the first few utterances of a corpus. 
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Figure 2. (A) Precision and (B) recall for the PUDDLE model of speech segmentation. 
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