
PROCEEDINGS Open Access

WordSeeker: concurrent bioinformatics software
for discovering genome-wide patterns and
word-based genomic signatures
Jens Lichtenberg1*, Kyle Kurz1, Xiaoyu Liang1, Rami Al-ouran1, Lev Neiman1, Lee J Nau1, Joshua D Welch1,

Edwin Jacox2, Thomas Bitterman3, Klaus Ecker1, Laura Elnitski4, Frank Drews1, Stephen Sauchi Lee5,

Lonnie R Welch1,6,7

From The 11th Annual Bioinformatics Open Source Conference (BOSC) 2010

Boston, MA, USA. 9-10 July 2010

Abstract

Background: An important focus of genomic science is the discovery and characterization of all functional

elements within genomes. In silico methods are used in genome studies to discover putative regulatory genomic

elements (called words or motifs). Although a number of methods have been developed for motif discovery, most

of them lack the scalability needed to analyze large genomic data sets.

Methods: This manuscript presents WordSeeker, an enumerative motif discovery toolkit that utilizes multi-core and

distributed computational platforms to enable scalable analysis of genomic data. A controller task coordinates

activities of worker nodes, each of which (1) enumerates a subset of the DNA word space and (2) scores words

with a distributed Markov chain model.

Results: A comprehensive suite of performance tests was conducted to demonstrate the performance, speedup

and efficiency of WordSeeker. The scalability of the toolkit enabled the analysis of the entire genome of Arabidopsis

thaliana; the results of the analysis were integrated into The Arabidopsis Gene Regulatory Information Server

(AGRIS). A public version of WordSeeker was deployed on the Glenn cluster at the Ohio Supercomputer Center.

Conclusion: WordSeeker effectively utilizes concurrent computing platforms to enable the identification of putative

functional elements in genomic data sets. This capability facilitates the analysis of the large quantity of sequenced

genomic data.

Background
The importance of discovering the patterns and features

in genomic sequences is motivated by a number of

scientific contexts. The Encyclopedia of DNA Elements

project (ENCODE) seeks ‘to identify all functional ele-

ments in the human genome sequence’ [1]. Another

context, the study of co-regulated genes, involves the

analysis of the promoter sequences, introns, and

untranslated regions (UTRs) of genes that were

determined by microarray experiments to be co-regu-

lated. Similarly, transcription factor binding regions

identified by ChIP-chip and ChIP-Seq experiments are

examined to identify genomic patterns [2]. Genome-

wide pattern discovery studies, which seek to identify

vocabularies of genomes [3,4], provide yet another per-

spective on genomic data. Large scale analysis of geno-

mic data is also performed in the search for genomic

signatures (unique elements that characterize specific

organisms, tissues, pathways, and functions) [5]. All of

these problems require the discovery of patterns in

genomic sequences.* Correspondence: lichtenj@ohio.edu
1Bioinformatics Laboratory, School of EECS, Ohio University, Athens, Ohio

45701, USA

Full list of author information is available at the end of the article

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6

http://www.biomedcentral.com/1471-2105/11/S12/S6

© 2010 Lichtenberg et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:lichtenj@ohio.edu
http://creativecommons.org/licenses/by/2.0

Several approaches have been developed for genomic

pattern discovery. Word enumeration methods are algo-

rithmic techniques that systematically discover either

substrings (i.e., words) or sets of related substrings (i.e.,

motifs) in DNA sequences. Most enumeration methods

create a data representation of the input sequence(s)

that provides fast retrieval of elementary word statistics.

The representation serves as a central data structure for

a number of other analyses, including statistical word

scoring, word-clustering, and motif discovery. A number

of algorithmic techniques for word space enumeration

have been proposed. Each of the enumeration algo-

rithms can be classified as either index-based [6-19],

graph-based [20], or iterative [21,22].

Index-based enumeration strategies create a data struc-

ture, called the index, and provide a mapping function,

which maps the character composition of a word to a spe-

cific entry in the index data structure. Index-based strate-

gies differ in (1) the data structure used for the index and

(2) the type of mapping function employed. Popular

index-based strategies employ hash functions, radix trees,

and suffix trees. YMF[6,13,14], Wordspy[15,16], and RMES

[8,9,11] employ hash functions for enumerating the word

space. An alternative to hash functions, radix trees require

O(n2) space (where n is the total number of characters in

the input sequences), and are among the fastest represen-

tations for the retrieval of words. Seeder[7] and SMS[12]

are examples of approaches that utilize a radix tree for

storing words. A third alternative for index data structure,

suffix trees provide a semantically rich representation of a

set of input sequences. They require O(n) time and space,

and enable a number of efficient and elegant string proces-

sing algorithms. Many tools and algorithms based employ

suffix trees, including Speller[10], Weeder[17], REPuter

[18], and Verbumculus[19].

Winnower[20], a graph-based approach, has been used

for solving the Planted (l,d) Motif problem [20] (the pro-

blem of finding a motif of length l occurring among all

sequences in a set, allowing for at most d mismatches

between the instances of the motif). The Winnower

algorithm reduces the problem of finding (l, d) motifs to

the problem of finding large cliques in multi-partite

graphs. The undirected Winnower graph G contains

nodes representing words, and edges representing a

similarity relationship (e.g., hamming distance) between

words. Instead of finding maximal cliques, which is an

NP-complete problem [23], Pevzner and Sze iteratively

remove edges from G that are guaranteed not to be con-

tained in a clique of size k, resulting in an algorithm of

O(Nk+1), where N is the total number of nucleotides.

Iterative approaches, such as Teiresias[22] and

Mitra[21], incrementally concatenate short motifs

from the input sequences to discover maximal motifs.

These methods generate the set of maximal patterns

without having to enumerate the entire word-space

of an input sequence set. The Teiresias algorithm

divides the motif discovery process into two phases:

scanning and convolution. During the scanning

phase, a set of elementary patterns of length W, satis-

fying a user-defined quorum q, is enumerated for a

specific length with a required number of non-mis-

matches L. During the convolution phase, the ele-

mentary patterns are combined pair-wise and the

resulting patterns are added to the set of elementary

patterns if they satisfy the quorum. During convolu-

tion it is necessary to consistently detect and remove

patterns that are no longer maximal, but are instead

part of larger patterns with the same quorum satis-

faction. The complexity of the scanning phase is O

(NWL), with N being the total number of nucleotides,

and the complexity of the convolution phase is

O WN rc T

T

((’))
’max
∑ , (where rc(T ’) represents the

matches in a pattern T’, which is a maximization of a

pattern T[24]). Taking into consideration all calls to

a maximization function, the worst-case time com-

plexity of the Teiresias algorithm is

O NW N W N t rc P
L

H

P

(log () ())
max

+ + ∑ , where tH is

the time needed for locating hash entries, and P is a

pattern to be inserted into the set of maximal pat-

terns [24].

While a number of algorithms and software tools have

been developed to solve the word discovery problem,

most do not provide the scalability needed to process

large (genome-scale) data sets. For example, our single-

processor enumeration methods, based on either a radix

tree or a suffix tree, are unable to perform word enu-

meration for the ~27,000 core promoters of the Arabi-

dopsis thaliana genome for word lengths greater than

19bp (see Figure 1).

The WordSeeker software suite addresses this pro-

blem by providing scalable word discovery algorithms.

The software described herein builds upon earlier work

of the authors (reported in [32]), which developed cache

aware data layout and access strategies for a shared

memory implementation of the radix tree data structure.

WordSeeker has been used to analyze the promoter

regions of genes in the DNA repair pathways of Homo

sapiens[25], the entire genome of Arabidopsis thaliana

[26], and regulatory regions involved in gravity response

in Arabidopsis thaliana[27]. As reported in [28], results

of the WordSeeker analysis of the Arabidopsis thaliana

genome have been incorporated into AGRIS - the Ara-

bidopsis Gene Regulatory Information Server [29].

The remainder of the manuscript presents a descrip-

tion of the methods employed by WordSeeker, an

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6

http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 2 of 8

experimental assessment of their effectiveness, and a

discussion of results.

Methods
This section presents the software design, the concur-

rent architecture, the open source repository and the

deployment guidelines for the WordSeeker software.

Software architecture

The Open Word Enumeration Framework (OWEF)

[30,31] provides the ability to employ different motif dis-

covery algorithms without changing the overall execution

logic of the software system. For example, WordSeeker

can utilize a radix tree or a suffix tree for word space

enumeration. This enables the selection of the “best”

algorithm for a specific dataset at run-time, as necessi-

tated by input parameters and dataset characteristics. For

example, it is recommended that the suffix tree be used

when enumerating long words (>24bp) and that the radix

tree be used when enumerating short words.

The OWEF controls a set of classes responsible for

specific functions. A set of input sequences is processed

by a word enumeration algorithm, which store the

words in a data structure. The stored information struc-

ture is processed by the WordScoring function to form a

statistical model. The model, and more importantly

operations on the model, are provided to other classes

via OWEFArgs. Other classes, such as SequenceCluster-

ing, WordDistribution, Cluster, ModuleDiscovery and

WordFamily, use the information to identify statistically

significant words, which are used to discover motifs,

modules, and sequence clusters.

Distributed architecture

WordSeeker uses a two-level parallelization strategy to

achieve scalability with respect to input parameters, and

with respect to the numbers of cluster nodes and pro-

cessor cores. Node-level parallelization (Figure 2) uses

the message passing interface (MPI) for coordination

and communication between nodes. A controller task

coordinates the activities of worker nodes. During the

word enumeration phase, the data structure representing

the word space (e.g., the radix tree or the suffix tree) is

distributed to worker nodes. Data partitioning is accom-

plished by creating a list of prefixes for each worker

node (as described in [32] and [33]). Thus, each node

builds a portion of the overall data structure.

During the word scoring phase, loop-level parallelism is

exploited by partitioning statistical analysis among the

cores of the worker nodes, each of which utilizes a distrib-

uted Markov chain model for the computation of scores

for a subset of the enumerated words. During word scor-

ing, nodes share word occurrence information as needed.

OpenMP compiler directives are used to define parallel

sections and to add parallel loop constructs. This allows

automatic generation of multi-threaded code, if the target

compiler supports OpenMP extensions. (If OpenMP sup-

port is not available, the directives are simply ignored.)

Figure 1 Complete run-times for the core promoters of Arabidopsis thaliana.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6

http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 3 of 8

Open Source implementation

WordSeeker was developed in the Ohio University

Bioinformatics Laboratory on a 5-node cluster compu-

ter. Each node contains 32GB RAM, 8 cores, 2TB hard

disk space (a RAID5 array) and a dual-channel, gigabit

ethernet.

The public version of WordSeeker, which can be

accessed at http://word-seeker.org, is deployed on the

Ohio Supercomputer Center’s Glenn cluster, an IBM

e1350 system with more than 4200 Opteron processor

cores that are connected by 10 Gbps or 20 Gbps Infi-

niband. WordSeeker ‘jobs’ are started and controlled

through the Ohio Supercomputer Center’s job manage-

ment system. The porting of the WordSeeker software

from the Ohio University cluster computer to the

Glenn cluster was easily accomplished, by observing

the open source policies that are highlighted in this

section (and detailed in the WordSeeker open source

repository).

The WordSeeker source code, released under GNU

General Public License v3, is available at http://code.

google.com/p/word-seeker/. Access to the source code

can be achieved through svn at http://word-seeker.

googlecode.com/svn/trunk. The source code is docu-

mented using the doxygen code generator.

To build an executable version of WordSeeker, the C++

compiler version, 4.1* or higher is required, as well as

OpenMP headers. The distributed version of WordSeeker

requires a working MPI environment with MPICH2,

MPIEXEC and MPICXX installed. The visualization cap-

abilities require Perl 5.8.8, the Perl TFBS module (http://

tfbs.genereg.net/) and gnuplot, version 4.2 or higher.

WordSeeker has been tested under Ubuntu 9.04 and the

linux operating system provided in the Ohio Supercompu-

ter Center environment.

Results and discussion
This section presents results of a comprehensive suite of

tests performed to evaluate the performance and scal-

ability of the different parallel and distributed modes of

WordSeeker. Specifically, the evaluations considered the

single-node version, the OpenMP-based shared-memory

multiprocessors / multicore version, the MPI-based dis-

tributed (multiple node cluster) version, and a mixed

shared-memory/distributed memory version. Shared

memory tests were performed on a 64-bit Linux

Figure 2 Distributed architecture of WordSeeker.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6

http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 4 of 8

http://word-seeker.org
http://code.google.com/p/word-seeker/
http://code.google.com/p/word-seeker/
http://word-seeker.googlecode.com/svn/trunk
http://word-seeker.googlecode.com/svn/trunk
http://tfbs.genereg.net/
http://tfbs.genereg.net/

machine with 4 Dual-Core 2.6 gigahertz AMD Opteron

processors and 32 GB of RAM. Distributed memory

tests were performed on a 64-bit Linux machine with 4

Quad-Core 2.5 gigahertz AMD Opteron processors and

24 GB of RAM.

WordSeeker was evaluated under diverse circum-

stances by varying (1) the size of the input DNA

sequence, (2) the length of DNA words to be analyzed,

and (3) the enumeration algorithm (a radix tree and a

suffix tree were used). The evaluation involved the mea-

surement of (1) computational performance - the overall

execution time of the software, and the execution times

for specific functions; (2) speed-up - the sequential

execution time divided by the parallel execution time;

and (3) efficiency - speed-up divided by the total number

of nodes (or cores) used.

Performance
A set of experiments analyzes the overall performance of

the WordSeeker pipeline for the core promoters of the

Arabidopsis thaliana genome (for a detailed characteriza-

tion of the Arabidopsis thaliana genome using WordSee-

ker see [26]). The tests compare the single core version

and the distributed version. The core promoters include

100 nucleotides directly upstream of 27,167 transcription

start sites. To determine the relationship between word

length and performance, the complete run-times, as well

as the run-times for the enumeration and the scoring

stages, were computed for word lengths in the range

[2bp, 30bp]. The rationale for choosing this range of

word lengths is as follows. While eukaryotic transcription

factors usually recognize 6-8bp long binding sites [34,35],

much longer functional binding sites have been discov-

ered (e.g., AGRIS [29] describes a 29bp binding site).

Figure 1 presents the total run-time, while Figures 3

and 4 present, respectively, the run-times for the enu-

meration stage and the scoring stage. While the sequen-

tial version and the distributed version exhibit similar

run-times for word lengths less than 7bp, the run-time

performance of the sequential version decreases signifi-

cantly for larger word lengths. Due to the exhaustion of

available memory in the single-node version, the

sequential analysis cannot run for word lengths greater

than 19bp. The concurrent versions were able to run for

the entire [2bp, 30bp] range.

Figures 5a and 5b compare the performance results

for a multi-threaded version of WordSeeker, which used

(1) a single computing node and (2) five computing

nodes. The single node version utilizes 1, 2, 4, and 8

cores, and the five node version uses 2 cores/node, for a

total of 10 cores. The plots of the overall execution

times for the various word lengths demonstrate that the

concurrent algorithms provide scalability by effectively

utilizing the distributed hardware.

Figure 3 Enumeration run-times for the core promoters of Arabidopsis thaliana.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6

http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 5 of 8

Speedup and efficiency
Speedup and efficiency experiments were performed to

assess in detail the scalability and the performance

boundaries of the WordSeeker implementation. Figures

6a and 6b show the speedup, and Figures 6c and 6d

show the efficiency, of shared memory implementations

of the radix tree and the suffix tree on 2, 4, and 6 pro-

cessor cores.

The speedup and efficiency results show a drop in per-

formance for very short words (5bp) and for very long

words, (50bp and 75bp), but yield good results for word

lengths of 10bp and 20bp. The performance drop for short

word lengths occurs because the parallelization overhead

outweighs the computational benefit; for longer word

lengths, cache inefficiency and front-side bus contention

cause performance to decrease (see [33] for a detailed

Figure 4 Scoring run-times for the core promoters of Arabidopsis thaliana.

Figure 5 Mixed distributed/shared memory results for the core promoters of Arabidopsis thaliana using the Radix Tree (a) and Suffix Tree (b)

data structures.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6

http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 6 of 8

analysis of caching effects in this context). The suffix tree

performed similarly to the radix tree in terms of speedup

and efficiency. The difference between Figures 6c and 6d

can be attributed to the cost of suffix tree construction.

Conclusions
WordSeeker is a general purpose, scalable, open source

approach to word enumeration. It supports an important

set of use cases, has been applied to interesting case stu-

dies, and effectively exploits parallel and distributed com-

puting hardware to provide scalable performance.

WordSeeker is being used currently to perform com-

plete word space enumerations on a genomic scale; to

construct word and motif encyclopedias for whole gen-

omes; to perform word-based characterizations of path-

ways, tissues, and co-regulated genes; and to identify

motifs in ChIP-Seq data. Ongoing work includes the

construction of OpenMotif, a project that combines a

number of motif discovery open source projects into a

cohesive framework.

List of abbreviations used

ENCODE: Encyclopedia of DNA Elements; DNA: Deoxyribonucleic acid; AGRIS:

The Arabidopsis Gene Regulatory Information Server; UTR: Untranslated

Region; ChIP-chip: Chromatin Immunoprecipitation with microarray

technology; ChIP-Seq: Chromatin Immunoprecipitation with massively

parallel DNA sequencing; OWEF: Open Word Enumeration Framework; MPI:

Message Passing Interface; A, C, G, T: Adenine, Cytosine, Guanine, Thymine;

RAID: Redundant Array of Independent Disks.

Acknowledgements

The Ohio University team acknowledges the financial support of the Ohio

University Graduate Research and Education Board (GERB), the Ohio

University Stocker Endowment, the Ohio Plant Biotechnology Consortium,

the Ohio Supercomputer Center, and the Choose Ohio First Program of the

University System of Ohio.

The Ohio University team would to thank Prof. Sarah Wyatt, who provided

the initial motivating biological problem for the WordSeeker project. The

authors would like to express appreciation to Mohit Alam, Jasmine Bascom,

Kaiyu Shen, Nathaniel George, Dazhang Gu, Chase Nelson, Chris Wagner, Eric

Stockinger, Alper Yilamz, Erich Grotewold, Susan Evans, Pooja Majmudar, Eric

Petri, Josiah Seaman, Zekai Huang, Haiquan Zhang, Terry Lewis, Ashok

Krishnamurthy, and Dave Hudak for discussions and support during the

development of the WordSeeker.

LE and EJ were supported by the Intramural Program of the National

Human Genome Research Institute.

This article has been published as part of BMC Bioinformatics Volume 11

Supplement 12, 2010: Proceedings of the 11th Annual Bioinformatics Open

Source Conference (BOSC) 2010. The full contents of the supplement are

available online at http://www.biomedcentral.com/1471-2105/11?issue=S12.

Author details
1Bioinformatics Laboratory, School of EECS, Ohio University, Athens, Ohio

45701, USA. 2Developmental Biology Institute of Marseille, Luminy F-13009,

Marseille, France. 3Cyberinfrastructure Group, Ohio Supercomputer Center,

Columbus, Ohio 43212, USA. 4Genomic Functional Analysis Section, National

Human Genome Research Institute, NIH, Rockville, Maryland 20892 USA.
5Department of Statistics, University of Idaho, Moscow, Idaho 83844, USA.

Figure 6 Shared memory speedups for Radix Tree (a) and Suffix Tree (b) implementations as well as shared memory efficiencies for Radix Tree

(c) and Suffix Tree (d) implementations.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6

http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 7 of 8

http://www.biomedcentral.com/1471-2105/11?issue=S12

6Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, USA.
7Molecular and Cellular Biology Program, Ohio University, Athens, Ohio

45701, USA.

Authors’ contributions

JL contributed to the design, implementation and validation of the

algorithms and models, the generation of the results and the writing of this

document. KK, LN, LJN contributed to the development and implementation

of the models and algorithms and the generation of the results. XL, RA

contributed to the generation of the results. JDW, EJ and TB contributed to

the development and implementation of the models and algorithms. KE and

SSL contributed to the development of the models and algorithms. LE

contributed to the development of the biological models. In addition to

conceptualizing the architecture employed in this research, FD and LRW

contributed to the design and validation of models and algorithms, and to

the writing of this manuscript.

Competing interests

The authors declare that they have no competing interests.

Published: 21 December 2010

References

1. The ENCODE Project Consortium: The ENCODE (ENCyclopedia Of DNA

Elements) Project. Science 2004, 306:636-640.

2. Blahnik KR, Dou L, O’Geen H, McPhillips T, Xu X, Cao AR, Iyengar S,

Nicolet CM, Ludascher B, Korf I, Farnham PJ: Sole-Search: an integrated

analysis program for peak detection and functional annotation using

ChIP-seq data. Nucl Acids Res 2010, 38(3):e13.

3. Feng J, Naiman DQ, Cooper B: Coding DNA repeated throughout

intergenic regions of the Arabidopsis thaliana genome: evolutionary

footprints of RNA silencing. Molecular BioSystems 2009, 5:1679-1687.

4. Rigoutsos I, Huynh T, Miranda K, Tsirigos A, McHardy A, Platt D: Short

blocks from the noncoding parts of the human genome have instances

within nearly all known genes and relate to biological processes. Proc

Natl Acad Sci U S A 2006, 103:6605-6610.

5. Heath L, Pati A: Genomic Signatures from DNA Word Graphs. In

Bioinformatics Research and Applications. Springer Berlin/Heidelberg;Mandoiu

I, Zelikovsky A 2007:317-328, Lecture Notes in Computer Science, vol 4463.

6. Blanchette M, Sinha S: Separating real motifs from their artifacts.

Bioinformatics 2001, 17:S30-38.

7. Fauteux F, Blanchette M, Stromvik MV: Seeder: discriminative seeding DNA

motif discovery. Bioinformatics 2008, 24:2303-2307.

8. Hoebeke M, Schbath S: R’MES: Finding Exceptional Motifs, version 3. User

Guide L’institut nationl de la recherché agronomique;; 2006.

9. Prum B, Rodolphe F, Turckheim Ed: Finding Words with Unexpected

Frequencies in Deoxyribonucleic Acid Sequences. Journal of the Royal

Statistical Society Series B (Methodological) 1995, 57:205-220.

10. Sagot M-F: Spelling Approximate Repeated or Common Motifs Using a

Suffix Tree. In LATIN’98: Theoretical Informatics. Springer: Berlin/Heidelberg;

Lucchesi C, Moura A 1998:374-390, Lecture Notes in Computer Science vol

1380.

11. Schbath S, Prum B, de Turckheim E: Exceptional motifs in different

Markov chain models for a statistical analysis of DNA sequences. J

Comput Biol 1995, 2:417-437.

12. Sharma D, Rajasekaran S: A Simple Algorithm for (l, d) Motif Search.

Proceedings of the 6th Annual IEEE conference on Computational Intelligence

in Bioinformatics and Computational Biology IEEE Press: Piscataway; 2009,

148-154, 30 March-02 April 2009; Nashville.

13. Sinha S, Tompa M: A statistical method for finding transcription factor

binding sites. In Proceedings of the Eighth International Conference on

Intelligent Systems for Molecular Biology: 19–23 August 2000; La Jolla. The

AAAI Press, Menlo Park;Russ Altman, Timothy L. Bailey, Philip Bourne,

Michael Gribskov, Thomas Lengauer, Ilya N. Shindyalov, Lynn F.Ten Eyck,

and Helge Weissig 2000:344-354.

14. Sinha S, Tompa M: YMF: a program for discovery of novel transcription

factor binding sites by statistical overrepresentation. Nucl Acids Res 2003,

31:3586-3588.

15. Wang G, Yu T, Zhang W: WordSpy: identifying transcription factor

binding motifs by building a dictionary and learning a grammar. Nucl

Acids Res 2005, 33:W412-416.

16. Wang G, Zhang W: A steganalysis-based approach to comprehensive

identification and characterization of functional regulatory elements.

Genome Biol 2006, 7:R49.

17. Pavesi G, Mereghetti P, Mauri G, Pesole G: Weeder Web: discovery of

transcription factor binding sites in a set of sequences from co-

regulated genes. Nucl Acids Res 2004, 32:W199-203.

18. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R:

REPuter: the manifold applications of repeat analysis on a genomic

scale. Nucl Acids Res 2001, 29:4633-4642.

19. Apostolico A, Bock ME, Lonardi S, Xu X: Efficient detection of unusual

words. J Comput Biol 2000, 7:71-94.

20. Pevzner PA, Sze SH: Combinatorial approaches to finding subtle signals

in DNA sequences. In Proceedings of the Eighth International Conference on

Intelligent Systems for Molecular Biology: 19–23 August 2000; La Jolla. The

AAAI Press, Menlo Park;Russ Altman, Timothy L. Bailey, Philip Bourne,

Michael Gribskov, Thomas Lengauer, Ilya N.Shindyalov, Lynn F.TenEyck, and

Helge Weissig 2000:269-278.

21. Eskin E, Pevzner PA: Finding composite regulatory patterns in DNA

sequences. Bioinformatics 2002, 18:S354-363.

22. Rigoutsos I, Floratos A: Combinatorial pattern discovery in biological

sequences: The TEIRESIAS algorithm. Bioinformatics 1998, 14:55-67.

23. Karp RM: Reducibility Among Combinatorial Problems. In Complexity of

Computer Computations. New York: Plenum;Miller RE, Thatcher JW

1972:85-103.

24. Floratos A, Rigoutsos I: On the Time Complexity of the TEIRESIAS

Algorithm. Research Report IBM T.J. Watson Research Center; 1998.

25. Lichtenberg J, Jacox E, Welch J, Kurz K, Liang X, Yang M, Drews F, Ecker K,

Lee S, Elnitski L, Welch L: Word-based characterization of promoters

involved in human DNA repair pathways. BMC Genomics 2009, 10(Suppl

1):S18.

26. Lichtenberg J, Yilmaz A, Welch J, Kurz K, Liang X, Drews F, Ecker K, Lee S,

Geisler M, Grotewold E, Welch L: The word landscape of the non-coding

segments of the Arabidopsis thaliana genome. BMC Genomics 2009,

10:463.

27. Liang X, Shen K, Lichtenberg J, Wyatt SE, Welch LR: An integrated

bioinformatics approach to the discovery of cis-regulatory elements

involved in plant gravitropic signal transduction. International Journal of

Computational Bioscience 2010, 1(1):33-54.

28. Lichtenberg J, Yilmaz A, Kurz K, Liang X, Nelson C, Bitterman T,

Stockinger E, Grotewold E, Welch LR: Encyclopedias of DNA elements for

Plant Genomes. In Advances in Genomic Sequence Analysis and Pattern

Discovery. Hackensack: World Scientific Publishing Company; (in press);

Elnitski L, Piontkivska H, Welch L 2011:.

29. Davaluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M,

Grotewold E: AGRIS Arabidopsis Gene Regulatory Information Server, an

information resource of Arabidopsis cis-regulatory elements and

transcription factors. BMC Bioinformatics 2003, 4(1):25.

30. Kurz K, Lichtenberg J, Nau L, Drews F, Welch LR: An Open Source

Framework for Bioinformatics Word Enumeration and Scoring. 10th

Annual Bioinformatics Open Source Conference BOSC: 27-28 June 2009;

Stockholm 2009, 37.

31. Kurz K: A Parallel, High-Throughput Framework for Discovery of DNA

Motifs. Ohio University Electrical Engineering and Computer Science; 2010.

32. Tian Y, Tata S, Hankins RA, Patel JM: Practical methods for constructing

suffix trees. The VLDB Journal 2005, 14(3):281-299.

33. Drews F, Lichtenberg J, Welch L: Scalable parallel word search in

multicore/multiprocessor systems. J Supercomput 2010, 51:58-75.

34. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV,

Frith MC, Fu Y, Kent WJ, et al: Assessing computational tools for the

discovery of transcription factor binding sites. Nature Biotechnology 2005,

23:137-144.

35. Grotewold E, Springer N: The Plant Genome: Decoding the

Transcriptional Hardwiring. Annual Plant Reviews 2009, 35:196-227.

doi:10.1186/1471-2105-11-S12-S6
Cite this article as: Lichtenberg et al.: WordSeeker: concurrent
bioinformatics software for discovering genome-wide patterns and
word-based genomic signatures. BMC Bioinformatics 2010 11(Suppl 12):S6.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6

http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/15499007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15499007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19452047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19452047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19452047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11472990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18718942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18718942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8521272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8521272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11713313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11713313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9520502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9520502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19594877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19594877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19814816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19814816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12820902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12820902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12820902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637633?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Software architecture
	Distributed architecture
	Open Source implementation

	Results and discussion
	Performance
	Speedup and efficiency
	Conclusions
	List of abbreviations used
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

