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Abstract

Background: An important focus of genomic science is the discovery and characterization of all functional

elements within genomes. In silico methods are used in genome studies to discover putative regulatory genomic

elements (called words or motifs). Although a number of methods have been developed for motif discovery, most

of them lack the scalability needed to analyze large genomic data sets.

Methods: This manuscript presents WordSeeker, an enumerative motif discovery toolkit that utilizes multi-core and

distributed computational platforms to enable scalable analysis of genomic data. A controller task coordinates

activities of worker nodes, each of which (1) enumerates a subset of the DNA word space and (2) scores words

with a distributed Markov chain model.

Results: A comprehensive suite of performance tests was conducted to demonstrate the performance, speedup

and efficiency of WordSeeker. The scalability of the toolkit enabled the analysis of the entire genome of Arabidopsis

thaliana; the results of the analysis were integrated into The Arabidopsis Gene Regulatory Information Server

(AGRIS). A public version of WordSeeker was deployed on the Glenn cluster at the Ohio Supercomputer Center.

Conclusion: WordSeeker effectively utilizes concurrent computing platforms to enable the identification of putative

functional elements in genomic data sets. This capability facilitates the analysis of the large quantity of sequenced

genomic data.

Background
The importance of discovering the patterns and features

in genomic sequences is motivated by a number of

scientific contexts. The Encyclopedia of DNA Elements

project (ENCODE) seeks ‘to identify all functional ele-

ments in the human genome sequence’ [1]. Another

context, the study of co-regulated genes, involves the

analysis of the promoter sequences, introns, and

untranslated regions (UTRs) of genes that were

determined by microarray experiments to be co-regu-

lated. Similarly, transcription factor binding regions

identified by ChIP-chip and ChIP-Seq experiments are

examined to identify genomic patterns [2]. Genome-

wide pattern discovery studies, which seek to identify

vocabularies of genomes [3,4], provide yet another per-

spective on genomic data. Large scale analysis of geno-

mic data is also performed in the search for genomic

signatures (unique elements that characterize specific

organisms, tissues, pathways, and functions) [5]. All of

these problems require the discovery of patterns in
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Several approaches have been developed for genomic

pattern discovery. Word enumeration methods are algo-

rithmic techniques that systematically discover either

substrings (i.e., words) or sets of related substrings (i.e.,

motifs) in DNA sequences. Most enumeration methods

create a data representation of the input sequence(s)

that provides fast retrieval of elementary word statistics.

The representation serves as a central data structure for

a number of other analyses, including statistical word

scoring, word-clustering, and motif discovery. A number

of algorithmic techniques for word space enumeration

have been proposed. Each of the enumeration algo-

rithms can be classified as either index-based [6-19],

graph-based [20], or iterative [21,22].

Index-based enumeration strategies create a data struc-

ture, called the index, and provide a mapping function,

which maps the character composition of a word to a spe-

cific entry in the index data structure. Index-based strate-

gies differ in (1) the data structure used for the index and

(2) the type of mapping function employed. Popular

index-based strategies employ hash functions, radix trees,

and suffix trees. YMF[6,13,14], Wordspy[15,16], and RMES

[8,9,11] employ hash functions for enumerating the word

space. An alternative to hash functions, radix trees require

O(n2) space (where n is the total number of characters in

the input sequences), and are among the fastest represen-

tations for the retrieval of words. Seeder[7] and SMS[12]

are examples of approaches that utilize a radix tree for

storing words. A third alternative for index data structure,

suffix trees provide a semantically rich representation of a

set of input sequences. They require O(n) time and space,

and enable a number of efficient and elegant string proces-

sing algorithms. Many tools and algorithms based employ

suffix trees, including Speller[10], Weeder[17], REPuter

[18], and Verbumculus[19].

Winnower[20], a graph-based approach, has been used

for solving the Planted (l,d) Motif problem [20] (the pro-

blem of finding a motif of length l occurring among all

sequences in a set, allowing for at most d mismatches

between the instances of the motif). The Winnower

algorithm reduces the problem of finding (l, d) motifs to

the problem of finding large cliques in multi-partite

graphs. The undirected Winnower graph G contains

nodes representing words, and edges representing a

similarity relationship (e.g., hamming distance) between

words. Instead of finding maximal cliques, which is an

NP-complete problem [23], Pevzner and Sze iteratively

remove edges from G that are guaranteed not to be con-

tained in a clique of size k, resulting in an algorithm of

O(Nk+1), where N is the total number of nucleotides.

Iterative approaches, such as Teiresias[22] and

Mitra[21], incrementally concatenate short motifs

from the input sequences to discover maximal motifs.

These methods generate the set of maximal patterns

without having to enumerate the entire word-space

of an input sequence set. The Teiresias algorithm

divides the motif discovery process into two phases:

scanning and convolution. During the scanning

phase, a set of elementary patterns of length W, satis-

fying a user-defined quorum q, is enumerated for a

specific length with a required number of non-mis-

matches L. During the convolution phase, the ele-

mentary patterns are combined pair-wise and the

resulting patterns are added to the set of elementary

patterns if they satisfy the quorum. During convolu-

tion it is necessary to consistently detect and remove

patterns that are no longer maximal, but are instead

part of larger patterns with the same quorum satis-

faction. The complexity of the scanning phase is O

(NWL), with N being the total number of nucleotides,

and the complexity of the convolution phase is

O WN rc T

T

( ( ’))
’max
∑ , (where rc(T ’) represents the

matches in a pattern T’, which is a maximization of a

pattern T[24]). Taking into consideration all calls to

a maximization function, the worst-case time com-

plexity of the Teiresias algorithm is

O NW N W N t rc P
L

H

P

( log ( ) ( ))
max

+ + ∑ , where tH is

the time needed for locating hash entries, and P is a

pattern to be inserted into the set of maximal pat-

terns [24].

While a number of algorithms and software tools have

been developed to solve the word discovery problem,

most do not provide the scalability needed to process

large (genome-scale) data sets. For example, our single-

processor enumeration methods, based on either a radix

tree or a suffix tree, are unable to perform word enu-

meration for the ~27,000 core promoters of the Arabi-

dopsis thaliana genome for word lengths greater than

19bp (see Figure 1).

The WordSeeker software suite addresses this pro-

blem by providing scalable word discovery algorithms.

The software described herein builds upon earlier work

of the authors (reported in [32]), which developed cache

aware data layout and access strategies for a shared

memory implementation of the radix tree data structure.

WordSeeker has been used to analyze the promoter

regions of genes in the DNA repair pathways of Homo

sapiens[25], the entire genome of Arabidopsis thaliana

[26], and regulatory regions involved in gravity response

in Arabidopsis thaliana[27]. As reported in [28], results

of the WordSeeker analysis of the Arabidopsis thaliana

genome have been incorporated into AGRIS - the Ara-

bidopsis Gene Regulatory Information Server [29].

The remainder of the manuscript presents a descrip-

tion of the methods employed by WordSeeker, an
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experimental assessment of their effectiveness, and a

discussion of results.

Methods
This section presents the software design, the concur-

rent architecture, the open source repository and the

deployment guidelines for the WordSeeker software.

Software architecture

The Open Word Enumeration Framework (OWEF)

[30,31] provides the ability to employ different motif dis-

covery algorithms without changing the overall execution

logic of the software system. For example, WordSeeker

can utilize a radix tree or a suffix tree for word space

enumeration. This enables the selection of the “best”

algorithm for a specific dataset at run-time, as necessi-

tated by input parameters and dataset characteristics. For

example, it is recommended that the suffix tree be used

when enumerating long words (>24bp) and that the radix

tree be used when enumerating short words.

The OWEF controls a set of classes responsible for

specific functions. A set of input sequences is processed

by a word enumeration algorithm, which store the

words in a data structure. The stored information struc-

ture is processed by the WordScoring function to form a

statistical model. The model, and more importantly

operations on the model, are provided to other classes

via OWEFArgs. Other classes, such as SequenceCluster-

ing, WordDistribution, Cluster, ModuleDiscovery and

WordFamily, use the information to identify statistically

significant words, which are used to discover motifs,

modules, and sequence clusters.

Distributed architecture

WordSeeker uses a two-level parallelization strategy to

achieve scalability with respect to input parameters, and

with respect to the numbers of cluster nodes and pro-

cessor cores. Node-level parallelization (Figure 2) uses

the message passing interface (MPI) for coordination

and communication between nodes. A controller task

coordinates the activities of worker nodes. During the

word enumeration phase, the data structure representing

the word space (e.g., the radix tree or the suffix tree) is

distributed to worker nodes. Data partitioning is accom-

plished by creating a list of prefixes for each worker

node (as described in [32] and [33]). Thus, each node

builds a portion of the overall data structure.

During the word scoring phase, loop-level parallelism is

exploited by partitioning statistical analysis among the

cores of the worker nodes, each of which utilizes a distrib-

uted Markov chain model for the computation of scores

for a subset of the enumerated words. During word scor-

ing, nodes share word occurrence information as needed.

OpenMP compiler directives are used to define parallel

sections and to add parallel loop constructs. This allows

automatic generation of multi-threaded code, if the target

compiler supports OpenMP extensions. (If OpenMP sup-

port is not available, the directives are simply ignored.)

Figure 1 Complete run-times for the core promoters of Arabidopsis thaliana.
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Open Source implementation

WordSeeker was developed in the Ohio University

Bioinformatics Laboratory on a 5-node cluster compu-

ter. Each node contains 32GB RAM, 8 cores, 2TB hard

disk space (a RAID5 array) and a dual-channel, gigabit

ethernet.

The public version of WordSeeker, which can be

accessed at http://word-seeker.org, is deployed on the

Ohio Supercomputer Center’s Glenn cluster, an IBM

e1350 system with more than 4200 Opteron processor

cores that are connected by 10 Gbps or 20 Gbps Infi-

niband. WordSeeker ‘jobs’ are started and controlled

through the Ohio Supercomputer Center’s job manage-

ment system. The porting of the WordSeeker software

from the Ohio University cluster computer to the

Glenn cluster was easily accomplished, by observing

the open source policies that are highlighted in this

section (and detailed in the WordSeeker open source

repository).

The WordSeeker source code, released under GNU

General Public License v3, is available at http://code.

google.com/p/word-seeker/. Access to the source code

can be achieved through svn at http://word-seeker.

googlecode.com/svn/trunk. The source code is docu-

mented using the doxygen code generator.

To build an executable version of WordSeeker, the C++

compiler version, 4.1* or higher is required, as well as

OpenMP headers. The distributed version of WordSeeker

requires a working MPI environment with MPICH2,

MPIEXEC and MPICXX installed. The visualization cap-

abilities require Perl 5.8.8, the Perl TFBS module (http://

tfbs.genereg.net/) and gnuplot, version 4.2 or higher.

WordSeeker has been tested under Ubuntu 9.04 and the

linux operating system provided in the Ohio Supercompu-

ter Center environment.

Results and discussion
This section presents results of a comprehensive suite of

tests performed to evaluate the performance and scal-

ability of the different parallel and distributed modes of

WordSeeker. Specifically, the evaluations considered the

single-node version, the OpenMP-based shared-memory

multiprocessors / multicore version, the MPI-based dis-

tributed (multiple node cluster) version, and a mixed

shared-memory/distributed memory version. Shared

memory tests were performed on a 64-bit Linux

Figure 2 Distributed architecture of WordSeeker.
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machine with 4 Dual-Core 2.6 gigahertz AMD Opteron

processors and 32 GB of RAM. Distributed memory

tests were performed on a 64-bit Linux machine with 4

Quad-Core 2.5 gigahertz AMD Opteron processors and

24 GB of RAM.

WordSeeker was evaluated under diverse circum-

stances by varying (1) the size of the input DNA

sequence, (2) the length of DNA words to be analyzed,

and (3) the enumeration algorithm (a radix tree and a

suffix tree were used). The evaluation involved the mea-

surement of (1) computational performance - the overall

execution time of the software, and the execution times

for specific functions; (2) speed-up - the sequential

execution time divided by the parallel execution time;

and (3) efficiency - speed-up divided by the total number

of nodes (or cores) used.

Performance
A set of experiments analyzes the overall performance of

the WordSeeker pipeline for the core promoters of the

Arabidopsis thaliana genome (for a detailed characteriza-

tion of the Arabidopsis thaliana genome using WordSee-

ker see [26]). The tests compare the single core version

and the distributed version. The core promoters include

100 nucleotides directly upstream of 27,167 transcription

start sites. To determine the relationship between word

length and performance, the complete run-times, as well

as the run-times for the enumeration and the scoring

stages, were computed for word lengths in the range

[2bp, 30bp]. The rationale for choosing this range of

word lengths is as follows. While eukaryotic transcription

factors usually recognize 6-8bp long binding sites [34,35],

much longer functional binding sites have been discov-

ered (e.g., AGRIS [29] describes a 29bp binding site).

Figure 1 presents the total run-time, while Figures 3

and 4 present, respectively, the run-times for the enu-

meration stage and the scoring stage. While the sequen-

tial version and the distributed version exhibit similar

run-times for word lengths less than 7bp, the run-time

performance of the sequential version decreases signifi-

cantly for larger word lengths. Due to the exhaustion of

available memory in the single-node version, the

sequential analysis cannot run for word lengths greater

than 19bp. The concurrent versions were able to run for

the entire [2bp, 30bp] range.

Figures 5a and 5b compare the performance results

for a multi-threaded version of WordSeeker, which used

(1) a single computing node and (2) five computing

nodes. The single node version utilizes 1, 2, 4, and 8

cores, and the five node version uses 2 cores/node, for a

total of 10 cores. The plots of the overall execution

times for the various word lengths demonstrate that the

concurrent algorithms provide scalability by effectively

utilizing the distributed hardware.

Figure 3 Enumeration run-times for the core promoters of Arabidopsis thaliana.
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Speedup and efficiency
Speedup and efficiency experiments were performed to

assess in detail the scalability and the performance

boundaries of the WordSeeker implementation. Figures

6a and 6b show the speedup, and Figures 6c and 6d

show the efficiency, of shared memory implementations

of the radix tree and the suffix tree on 2, 4, and 6 pro-

cessor cores.

The speedup and efficiency results show a drop in per-

formance for very short words (5bp) and for very long

words, (50bp and 75bp), but yield good results for word

lengths of 10bp and 20bp. The performance drop for short

word lengths occurs because the parallelization overhead

outweighs the computational benefit; for longer word

lengths, cache inefficiency and front-side bus contention

cause performance to decrease (see [33] for a detailed

Figure 4 Scoring run-times for the core promoters of Arabidopsis thaliana.

Figure 5 Mixed distributed/shared memory results for the core promoters of Arabidopsis thaliana using the Radix Tree (a) and Suffix Tree (b)

data structures.
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analysis of caching effects in this context). The suffix tree

performed similarly to the radix tree in terms of speedup

and efficiency. The difference between Figures 6c and 6d

can be attributed to the cost of suffix tree construction.

Conclusions
WordSeeker is a general purpose, scalable, open source

approach to word enumeration. It supports an important

set of use cases, has been applied to interesting case stu-

dies, and effectively exploits parallel and distributed com-

puting hardware to provide scalable performance.

WordSeeker is being used currently to perform com-

plete word space enumerations on a genomic scale; to

construct word and motif encyclopedias for whole gen-

omes; to perform word-based characterizations of path-

ways, tissues, and co-regulated genes; and to identify

motifs in ChIP-Seq data. Ongoing work includes the

construction of OpenMotif, a project that combines a

number of motif discovery open source projects into a

cohesive framework.
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ENCODE: Encyclopedia of DNA Elements; DNA: Deoxyribonucleic acid; AGRIS:

The Arabidopsis Gene Regulatory Information Server; UTR: Untranslated
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parallel DNA sequencing; OWEF: Open Word Enumeration Framework; MPI:
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RAID: Redundant Array of Independent Disks.
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