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Abstract
A basic task in first language acquisition likely involves discovering the boundaries between words or morphemes in input
where these basic units are not overtly segmented. A number of unsupervised learning algorithms have been proposed in
the last 20 years for these purposes, some of which have been implemented computationally, but whose results remain
difficult to compare across papers. We created a tool that is open source, enables reproducible results, and encourages
cumulative science in this domain. WordSeg has a modular architecture: It combines a set of corpora description routines,
multiple algorithms varying in complexity and cognitive assumptions (including several that were not publicly available, or
insufficiently documented), and a rich evaluation package. In the paper, we illustrate the use of this package by analyzing
a corpus of child-directed speech in various ways, which further allows us to make recommendations for experimental
design of follow-up work. Supplementary materials allow readers to reproduce every result in this paper, and detailed online
instructions further enable them to go beyond what we have done. Moreover, the system can be installed within container
software that ensures a stable and reliable environment. Finally, by virtue of its modular architecture and transparency,
WordSeg can work as an open-source platform, to which other researchers can add their own segmentation algorithms.

Keywords Unsupervised word discovery · First language acquisition · Natural language processing · Cumulative science

Introduction

One of the key tasks facing the language learning infant
involves finding the minimal recombinable units present
in the input. Since there are no systematic silences
between words or morphemes, learners may need to carve
them out from the running speech, a process known as
segmentation. To do this, they may use a few universal
and unambiguous cues (such as lengthy pauses), as well
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as a host of probabilistic cues. The latter can be classified
into sublexical (e.g., which sound sequences tend to be
found at word edges, and seldom within words) and lexical
(e.g., certain words are more likely to follow each other
than expected by chance). A number of computational
algorithms building on subsets of such cues have been
proposed, and several have been implemented in a variety
of computer languages and applied to corpora so as to
model infants’ word form discovery processes. Typically,
these models take as input a text-based, phonological
representation of the input. To mimic the word discovery
process, known word or morpheme boundaries are removed,
and the algorithm is applied to try to make decisions on
where breaks may occur, which are then compared against
the original (gold) boundaries.

These studies are informative for a host of learnability
questions, such as to test the sheer feasibility of a proposed
word segmentation solution (Gambell & Yang, 2005), to
compare alternative algorithms (Goldwater, Griffiths, &
Johnson, 2009; Pearl, Goldwater, & Steyvers, 2010), to see
whether languages differ in their intrinsic segmentability
(Fourtassi, Börschinger, Johnson, & Dupoux, 2013), or
whether child-directed speech is intrinsically easier to
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segment than adult-directed speech (Ludusan, Mazuka,
Bernard, Cristia, & Dupoux, 2017). Additionally, there
is emergent evidence suggesting that computational word
segmentation results may also be relevant for infant
psycholinguistics, by predicting the contents of infants’
long-term vocabulary better than lexical status (Ngon et al.,
2013) or pure frequency (Larsen, Cristia, & Dupoux, 2017).
These results provide initial validation to the cognitive
modeling approaches to word segmentation that have
enjoyed a fair amount of attention for the last several
decades (e.g., Brent & Cartwright, 1996; Gambell &
Yang, 2005; Goldwater et al., 2009; Harris, 1955), as they
reveal that the latter may be close enough to infants’
segmentation to make predictions that can be validated via
direct experimental or correlational tests. In this context, it
becomes crucial for the field to standardize segmentation
methodology, so as to better explore the phenomenon of
segmentation and make empirically informed predictions
for infant experimental work.

In this paper, we present WordSeg, a software package
conceived to allow this field of research to do cumulative
science. The last few decades have seen a surge of interest
in open-science methods, where researchers’ choices are
rendered transparent, enabling others to replicate and extend
results more easily. One could imagine this is even easier
for computational modeling than, say, live experimentation,
since typically modeling involves the creation of scripts
which can be run time and again, are blind to the person
executing them, and seem more context-independent than
animals, and yet, recent articles continue to alert us on the
unavailability of key research materials (including code)
even of modeling work (Gundersen & Kjensmo, 2018). The
first step towards cumulative science is thus to favor open
source code, that is, code that is both available publicly
and tagged for public re-use. However, this is not enough.
Even if the source code is made publicly available, it is
often not set up to run in some other machine or operating
system; and it is not sufficiently documented that it can be
launched by some other user in an informed fashion so as
to reproduce the original results (Stodden, Seiler, & Ma,
2018). Thus, the second step towards cumulative science
involves providing appropriate documentation as well as
taking steps to make sure reproducibility can be achieved
outside the native context. The final ingredient is to enable
other researchers to directly build on previous work in a
cumulative fashion.

With all of these considerations in mind, we created a
tool that has a modular architecture (see Fig. 1), combining
a set of corpora description routines, several algorithms
varying in complexity and cognitive assumptions, and a
rich evaluation package, all integrated into a seamless
pipeline. We have made our package openly accessible, and
complemented it with supplementary materials allowing

readers to reproduce every result in the current paper, as
well as detailed online instructions further enabling them
to go beyond what we have done. With this, we meet
the first desideratum. Additionally, the whole system can
be installed using Docker, ensuring that the environment
will be stable across operating systems (Hung, Kristiyanto,
Lee, & Yeung, 2016)—a requirement for reproducibility.
Finally, by virtue of its modular architecture (and by
clearly restricting and documenting e.g., input and output
formats), the suite can work as an open-source platform
to which researchers can add their own segmentation
algorithms. This allows algorithm developers to benchmark
their results against previously available segmentation
algorithms, and should greatly facilitate making their
own segmentation algorithm public—thus fitting the last
desideratum, cumulativity. We believe this approach is
extremely novel in our field: We cannot name one tool in
psycholinguistics (or in another subfield of psychology) that
attempts to provide a framework for every researcher to
integrate and test their own model against others’.

We see two main use cases. The first involves fellow
modelers, who are developing alternative unsupervised
word segmentation algorithms. As just mentioned, our
package can serve as a common platform that standardizes
input and evaluation, and provides a set of alternative
algorithms against which developers can benchmark their
own tool. Moreover, they can then profit from the effort
that has gone into making this package widely deployable
by simply adapting their tool to the WordSeg architecture
and adding it as a new WordSeg module. The second set
of users is linguists and other cognitive scientists interested
in early language acquisition. This second group would
not develop additional code, but rather make use of the
standardized user interface to describe and analyze their
child language corpora, or respond to specific scientific
questions. For instance, a user may be curious about the ease
of segmentation of social words (such as “mommy” and the
baby’s name) in different languages. This user could apply
all segmentation algorithms, and then estimate with what
frequency these words appear as such (i.e., are not obscured
by under- or over-segmentation) in the segmented output.
Such WordSeg uses are extremely straightforward for
anyone who knows how to interact with a terminal (and for
readers who do not, we recommend Software Carpentry’s
introduction http://swcarpentry.github.io/shell-novice/).

Previous computational modeling work

It is beyond the scope of the present article to provide a
comprehensive review on computational models of infant
word segmentation, and thus we refer interested readers to
Daland (2009) for a fuller introduction to the basic issues
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Fig. 1 Overview of the WordSeg suite. Black boxes represent input from the user; other boxes represent the output of a given stage; arrows
represent the general description of procedures, most of which are implemented with a single command. The exception is the segmentation, where
multiple segmentation processes are possible (parametric variation not shown)

surrounding computational models of infant word form
segmentation, Brent (1999) for a historical classification of
models, and Phillips (2015) for a recent literature review
on the topic. It suffices here to state that this phenomenon
has garnered considerable attention, but researchers have
used varying methodologies in a way that compromises
comparability. “Classes of algorithms currently represented
in the package” lays out the main approaches that are
currently represented in the package. Our package sought
to also systematize “irrelevant” variation, as explained in
“Keeping other aspects constant”.

Classes of algorithms currently represented in the
package

A systematic literature review1 of 46 journal articles or
theses that contained modeling results on word form
segmentation published between 1993 and 2015 revealed
that there are more postulated algorithms than papers,
particularly when free parameters are taken into account.
Thus, it was simply impossible to attempt to incorporate
all previous algorithms. Our selection aimed at representing
a few key dimensions of variation across open-source
algorithms, and it was constrained by the availability of code
and quality of the documentation.

One key distinction among included models pertains
to whether they rely purely on local cues for word
segmentation such as transitional probabilities between
sounds or syllables. We will call this class sublexical.
The lexical alternative involves aiming to reparse the input
stream in terms of minimal recombinable units, or, put

1The last author performed a search with the terms infant “word
segmentation” “computational model” in scholar.google.com on
August 10, 2015. The top 220 items were extracted automatically
using Zotero. They were thereafter inspected manually, excluding as
off-topic 174 on the basis of title, abstract, or full-text.

otherwise, building the lexicon that would be ideal to
generate the corpus. This conceptual distinction does not
prevent the existence of models that are hybrid. For instance,
one of the models included in the suite is PUDDLE
(Monaghan & Christiansen, 2010), which uses both lexical
and phonotactic cues (see PUDDLE).

Additionally, some previous work has argued strongly
for algorithms that process information incrementally,
compared to others that do so in a batch mode (e.g.,
Monaghan & Christiansen, 2010). Although we believe that,
to a certain extent, the dichotomy can be ill-posed, our
sampling reflects both batch and incremental learners. We
return to this topic in the discussion.

Two additional classes of models are not represented
in the WordSeg suite. Unsupervised segmentation models
that use raw speech as input and can fully parse a corpus
are uncommon ithe speech technology literature (Versteegh
et al., 2015), and not at all represented in work modeling
infant word segmentation. The only exceptions we know of
are closer to keyword discovery than full segmentation (e.g.,
Ludusan et al., 2014). Additionally, neural network type
models are not represented either, mainly because this is an
area of rapid technological development as neural networks
are increasingly used for natural language processing in
a wide range of applications including word segmentation
(e.g., Cai et al., 2017).

Keeping other aspects constant

Most previous work uses only one or a very limited
set of models, so that to decide which model performs
better one often needs to compare performance across
papers. However, our systematic review revealed a host of
dimensions that varied across papers, and which prevent
direct comparison across published work. Most saliently,
it is not uncommon to observe extremely large variations
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in the size of the corpus used as input (e.g., Saksida,
Langus, & Nespor, 2017 based on around 10,000 words
versus Daland & Pierrehumbert, 2011 drawing on 750,000
words). Moreover, previous work investigating the effect
of input quantity among Adaptor Grammars found effects
that were non-linear and dependent on the grammar itself
(Börschinger, Demuth, & Johnson, 2012), making it all
the more difficult to compare model performance across
studies (see also Daland & Pierrehumbert, 2011; Johnson,
Christophe, Dupoux, & Demuth, 2014; Monaghan &
Christiansen, 2010, for further discussions of corpus size
effects).

In early modeling work, it was not uncommon to use
artificial corpora, and even in some current work the input
consists of transcripts from broadcast speech or adult-
directed speech (such as the Buckeye corpus, Pitt, Johnson,
Hume, Kiesling, & Raymond, 2005). Using such input
is no longer warranted, since corpora on the CHILDES
(MacWhinney, 2009b) repository contains hundreds of
transcriptions that are child-centered. These are likely to
be ecologically valid, because recordings were gathered in
children’s natural environments, and often with a recording
device worn by the child, thus capturing both child-directed
and child-overheard speech available to the child.

For studies using CHILDES corpora, there are some
sources of variation whose impact has not been sufficiently
considered. Although it would seem that corpora are sure
to be homogeneous if drawn from the CHILDES repository,
different contributors actually use different criteria to define
sentences. We have noticed that some corpus contributors
are probably using a “breath group” or even “conversational
turn” definition, since there may be 10–20 words in a
given sentence. In contrast, others are probably using
a syntactically or prosodically defined sentence, with
overall shorter utterances, averaging three words in length.
Additionally, researchers studying word segmentation often
mix together various corpora from children of diverse
ages without controlling for the possibility that the length
and complexity of sentences and the lexical diversity in
them varies as a function of the child’s age. Despite the
fact that they probably explain variation in segmentation
performance, such characteristics are seldom thoroughly
reported.

An additional source of variation relates to whether
phones or syllables are the basic units at the phonological
level. For example, Phillips and Pearl (2015) report
better performance when the basic units were syllables,
rather than phones, and argued in favor of syllables on
plausibility grounds. Evaluating plausibility is not within
the scope of the present paper. As for performance, Larsen
and colleagues fully crossed basic unit against algorithm
drawing from the sublexical, lexical, and hybrid types, and
although in general F-scores were higher for syllables than

phones, some exceptions remained (Larsen et al., 2017).
Moreover, ranking across algorithms also depended on
representational unit.

Finally, nearly every research paper on computational
models of infant word segmentation contains arguments for
and against the range of evaluation metrics that are typically
used, prioritizing precision over recall, arguing that type
statistics are more interesting than token statistics, or vice
versa.

All of this variation seriously impedes direct comparison
across published studies, and makes it difficult for
researchers to decide how to set up their preprocessing and
analysis pipelines to optimize comparability with previous
work.

TheWordSeg suite

The WordSeg suite allows the use of several algorithms
drawn from previous literature in a controlled environment
that standardizes input and allows users to easily report
the full range of input and output statistics allowing
cross-paper comparison. The overall process is represented
in Fig. 1. Detailed instructions for use are available as
online materials, which are updated as issues arise (https://
wordseg.readthedocs.io). The version used for the current
work is 0.7.1.2

Technical characteristics

The package is distributed from https://github.com/
bootphon/wordseg, with a GPL-3.0 re-use license, from
where it can be cloned or downloaded as a zip. In all cases,
WordSeg requires several additional pieces of software
(e.g., Python 3) to function. Installation instructions are
provided covering how to download and install this ancil-
lary software, as well as how to install WordSeg itself. The
user can install WordSeg such that it will be available any-
where within the system, or only in a virtual environment
via the use of DockerTM (Hung et al., 2016). WordSeg has
native support for Linux and has been thoroughly tested
on MacOS and Windows. Once the system is installed,
users can use WordSeg as a command line interface from
a Bash terminal or as a library from Python, with both
series of commands described and exemplified in the online
documentation https://wordseg.readthedocs.io. The code
contained in WordSeg is mostly Python and C++, with
variability being mainly due to the included segmentation
algorithms.

2https://zenodo.org/record/1471532, https://github.com/bootphon/wor
dseg/releases/tag/v0.7.1

Behav Res (2020) 52:264–278 267

https://wordseg.readthedocs.io
https://wordseg.readthedocs.io
https://github.com/bootphon/wordseg
https://github.com/bootphon/wordseg
https://wordseg.readthedocs.io
https://zenodo.org/record/1471532
https://github.com/bootphon/wordseg/releases/tag/v0.7.1
https://github.com/bootphon/wordseg/releases/tag/v0.7.1


Input selection, cleaning, and phonologization

The suite does not directly support full pre-processing and
phonologization of corpora, but we provide some pointers
for users. For most researchers, the starting stage will be
a CHILDES style .cha file, which contains comments as
well as transcribed content. These first stages of cleaning
will be dependent on the particular corpus because they vary
somewhat across CHILDES corpora, and on the research
question, since researchers may want to include or exclude
specific speakers or utterances. Sample scripts we have used
in the past can serve as inspiration (see the /data/cha/
section of the package). Additionally, the WordSeg suite
assumes that the input has already been phonemized and
syllabified. For corpora in which this has not been done,
we recommend readers look into the Phonemizer package
(https://github.com/bootphon/phonemizer), which provides
tools to convert text to phonemes. Another option is
the WebMaus automatic segmentation tool (https://www.
clarin-d.net/en/webmaus-basic-), which converts text files
to phonemic transcriptions based on trained statistical
models. For languages with a transparent orthography,
hand-crafted rules can be used to derive the phonemic
representation of words. Examples are provided in the
/data/phonorules/ section. Finally, users may want
to employ a syllabification routine using the Maximize
Onset Principle, a rule of thumb whereby a sequence of
phones will be parsed such that the onset cluster will
be as heavy as the language allows. For instance, the
sequence /estra/ will be broken up into /es.tra/ in Spanish
and /e.stra/ in English. We have adapted Perl code that does
so from Phillips and Pearl (2015) and provide examples
in the /data/syllabification/ section and the
wordseg-syll tool.

Preparing the input

For the rest of the processes, the package assumes
that the input file contains only the transcribed utter-
ances in phonological form, one utterance per line. Addi-
tionally, it is assumed that word boundaries and basic
units are coded in the input text. The input text can
have one or both of the following basic units: phones,
syllables.

The wordseg-prep tool in the package allows users
to convert the input text from the input form where syllable
and word boundaries are tagged to the input to be provided
to the models. This tool outputs a unitized version and
a gold version of the text. A unitized version contains
spaces between phones or syllables (as chosen by the
user). The gold version only has spaces between words.
The gold text will be used later to evaluate the output of
segmentation.

Describing the corpus

The package also contains wordseg-stats, a tool to
describe the input corpora. This description tool prints out
the number of all of the following units: sentences or lines,
single-word utterances, and number of tokens, types, and
hapaxes (i.e., types with token frequency of exactly one)
for words, syllables, and phones. Additionally, a measure of
lexical diversity that controls for corpus length is extracted,
namely a moving average type to token ratio similar to
that available in the CHILDES tools (MacWhinney, 2009a),
where a window of 10 word tokens are considered at a time,
moved one token at a time. Finally, wordseg-stats
returns a measure of entropy, i.e., the intrinsic ambiguity
found in a text (see Fourtassi et al. 2013 for details). In a
nutshell, given a set of utterances and the lexicon found in
the gold segmentation, this measure of entropy assesses to
what extent there are many versus few possible parses of the
utterances (i.e., in a corpus with two sentences, “ice cream”
and “icecream”, both utterances are ambiguous between
“ice cream” and “icecream” segmentations).

Segmenting

All of the algorithms are called with variants of
wordseg-X, where X is the short name for the algorithm
(as shown on Table 1), together with the necessary parame-
ters and ancillary files, both of which depend on the specific
algorithm. The input for all algorithms is plain text as
built by wordseg-prep, where only unit tokens (syllables
or phonemes) are available and separated by single spaces
(that is, the word boundaries have been removed), but some
of them additionally require a training set or a configura-
tion file. In the rest of this section, we provide a general
description of each algorithm, parametrization and required
files. We have not incorporated standardized measurements
of memory requirements or length of processing, because
these, we believe, could largely relate to details of imple-
mentation, which may not affect fundamentally the results
found.

Baseline

Researchers might be interested in comparing baseline
results to those of the word segmentation algorithms. The
WordSeg package provides tools for word segmentation
baselines based on the insertion of word boundaries in
random positions in the text, explained for instance by
Lignos (2012).

The Random Baseline assigns word boundaries with
a probability parameter p specified by the researcher.
By default, a random segmentation consists in adding
word boundaries with p = 0.5 to each unit token. The
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Table 1 Segmentation algorithm families currently included in
WordSeg

Acronym Class Processing Key units

baseline sublexical batch units

dibs sublexical batch unit bigrams

tp sublexical batch unit bigrams

puddle hybrid incremental unit n-grams, words

ag lexical batch words

We say “families” because each has a set of parameters that allows
further variation. Class indicates the main class the algorithm belongs
to; Processing whether the input is processed in batch or incrementally;
and Key units the crucial representations that the algorithm uses for
segmentation

user can specify a random seed, to ensure reproducibility.
Alternatively, the researcher can choose p = 0 to generate
an “Utterance Baseline”, considering each utterance as a
single word; and p = 1, to insert all possible boundaries
and treat each unit token (phones or syllables) as a word.
The researcher can also inspect the statistics mentioned in
“Describing the corpus” to calculate the true p of word
boundaries given the basic unit (e.g., for a corpus unitized
into syllables, p = nw

ns
, where nw is number of words and ns

is number of syllables). This number can then be provided
by the user as the p parameter, in which case, this would
be an Oracle Random Baseline (Lignos, 2012, “oracle”
because it is given the true p by the researcher; random
because it will insert the correct number of boundaries to
match p, without knowing where they should occur).

Diphone-based segmenter (DiBS)

Daland’s DiBS (short for Diphone-based segmentation,
Daland and Pierrehumbert, 2011) uses phone bigram
probabilities to decide whether a specific sequence is likely
to span a word boundary (typically because the phone
bigram is rare) or not. A DiBS model is any model which
assigns, for each phrase-medial phone bigram, a value
between 0 and 1 inclusive, representing the probability the
model assigns that there is a word boundary between the two
phones. In practice, these probabilities are mapped to hard
decisions (break or no break).

Making these decisions requires knowing the chunk-
initial and chunk-final probability of each phone, as well
as all phone bigram probabilities; and additionally the
probability of a sentence-medial word boundary. In our
package, these four sets of probabilities are estimated from
a training corpus also provided by the user, where word
boundaries are marked. Please note we say chunk-initial and

chunk-final because the precise chunk depends on the type
of DiBS used, as explained in the next paragraph.

Three versions of DiBS are available. DiBS-gold is
supervised in that “chunks” are the gold words. It is thus
supposed to represent the optimal performance possible.
DIBS-phrasal uses phrases (sentences) as chunks. Finally,
DIBS-lexical uses as chunks the components of a seed
lexicon provided by the user (who may want to input e.g.
high frequency words, or words often said in isolation, or
words known by young infants).

By default, the sentence-medial probability of word
boundary is calculated in the same way for all three DiBS,
and it is the actual gold probability (i.e., the number of
words minus number of sentences, divided by the number of
phones minus number of sentences). Via a parameter, users
can also provide the algorithm with a probability of word
boundary calculated in some other way they feel is more
intuitive.

DiBS was initially designed with phones as basic units.
However, for increased flexibility we have rendered it
possible to use syllables as input.

Transitional probabilities (TP)

Like DiBS, the next family of algorithms attempts to
distinguish between more or less internally cohesive
phone/syllable sequences. In the implementation we have
adopted (Saksida et al., 2017), transitional probabilities
(TPs) are calculated in one of three ways:

– Forward TPs for XY are defined as the frequency of the
sequence XY divided by the frequency of X;

– Backward TPs for XY are defined as the frequency of
the sequence XY divided by the frequency of Y;

– Mutual information for XY is the log (base 2) of the
frequency of the sequence XY divided by the product
of frequency of X and that of Y

This direction parameter is crossed with another, defining
a cut-off for how low TPs must be to signal a boundary,
and which also has two settings. In the first, a boundary is
posited when a relative dip in TP is found. That is, given the
syllable or phone sequenceWXYZ, there will be a boundary
posited between X and Y if the TP for XY is lower than both
that for WX and that for YZ. The second setting uses the
average of the TP over the whole corpus as the threshold.
Notice that both of these are unsupervised: Knowledge of
word boundaries is not necessary to compute any of the
parameters.

TP was initially designed with syllables as basic units,
but has been adapted to accept either phones or syllables as
input in this package.
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PUDDLE

PUDDLE stands for Phonotactics from Utterance Deter-
mines Distributional Lexical Elements. This algorithm was
proposed by Monaghan and Christiansen (2010); the orig-
inal awk rendering (shared with us by Monaghan) was
reimplemented in Python for this package. PUDDLE takes
the opposite strategy of algorithms such as DiBS and TPs
that focus on local events to posit breaks. In contrast, PUD-
DLE takes in whole utterances and tries to break them apart
into relatively large chunks. The system has three long-term
storage units: a “lexicon”, a set of onset bigrams, and a
set offset bigrams. At the beginning, all three are empty.
The lexicon will be fed as a function of input utterances,
and the bigrams will be fed by extracting onset and offset
bigrams from the lexicon. The algorithm is incremental, as
follows.

The model scans each utterance, one at a time and in the
order of presentation, looking for a match between every
possible sequence of units in the utterance and items in the
lexicon. We can view this step as a search made by the
learner as he tries to retrieve from memory a word to match
it against the input. If, for a considered sequence of phones,
a match is found, then the model checks whether the two
units preceding and following the candidate match belong
to the list of ending and beginning bigrams, respectively.
Imagine a target utterance like “thisisacutebaby”, unitized
at the phone level; a lexicon containing the item “this”;
possible bigrams thus being “th” for onsets and “is” for
offsets. Although “this” is found in the target utterance,
the utterance will not be split because the remainder,
“isacutebaby”, does not begin with a permissible onset. It
should be born in mind that this constraint is crucial for
the model to avoid over-segmentation: If not applied, the
model will ultimately segment the corpus to the basic unit
level (e.g., phones). If a substring match is not found, then
the utterance is stored in the long-term lexicon as it is, and
its onset and offset bigrams will be added to the relevant
buffers. Thus, in the running example, the lexicon will end
up containing two items, “this” and “thisisacutebaby”; the
onset buffer will have the item “th” with a frequency of 2;
and the offset buffer will have “is” and “by”, each with a
frequency of 1.

In our implementation of PUDDLE, we have rendered
it more flexible by assuming that users may want to use
syllables, rather than phones, as basic units. Additionally,
users may want to set the length of the onset and offset n-
grams. Somemay prefer to use trigrams rather than bigrams;
conversely, when syllables are the basic unit, it may be
more sensible to use unigrams for permissible onsets and
offsets.

Adaptor grammars (AG)

In the adaptor grammar framework (Goldwater et al., 2009;
Johnson & Goldwater, 2009), parsing a corpus involves
inferring the probabilities with which a set of rewrite rules
(a “grammar”) may have been used in the generation of that
corpus. The WordSeg suite natively contains the capacity
to generate one grammar, the most basic and universal one.
Users can also create their own and/or change extant ones
to fit the characteristics of the language they are studying
(see the /data/ag/ section of the package for more
examples).

The simplest grammar, automatically generated with the
call wordseg-ag, can be conceived as having one rewrite
rule to the effect that “sentences are one or more words”,
one rewrite rule to the effect that “words are one or more
basic units”, and a set of rewrite rules that spell out basic
units into all of the possible terminals. Imagine a simple
language with only the sounds a and b, the abstract rules
would then be:

– Sentence → Word (Word)+
– Word → Sound (Sound)+
– Sound → a
– Sound → b

A key aspect of adaptor grammar is that it can also
generate subrules that are stocked and re-used. For instance,
imagine “ba ba abab”, a corpus in the above-mentioned
simple language. As usual, we remove word boundaries,
resulting in “babaabab” as the input to the system. A
parse of that input using the rules above might create
a stored subrule “Word → ba”; or even two of them,
as the system allows homophones. The balance between
creating such subrules and reusing them is governed by
a Pitman-Yor process, which can be controlled by the
user by setting additional parameters. For instance, one of
these parameters, often called “concentration,” determines
whether subrules are inexpensive and thus many of them are
created, or whether they are costly and therefore the system
will prefer reusing rules and subrules rather than creating
new ones.

The process of segmenting a corpus with this algorithm
will in fact contain three distinct subprocesses. The first, as
described above, is to parse a corpus given a set of rules
and a set of generated subrules. This will be repeated a
number of times (“sweeps”), as sometimes the parse will be
uneconomical or plain wrong, and therefore the first and last
sweeps in a given run will be pruned, and among the rest
one in a few will be stored and the rest discarded.

The second subprocess involves applying the parses that
were obtained in the first subprocess onto the corpus again,

Behav Res (2020) 52:264–278270



which can be thought of as an actual segmentation process.
Remember that in some parses of the “ba ba abab” corpus
(inputted as “babaabab”), the subrule “Word → ba” might
have been created 0, 1, or 2 times. Moreover, even if we
ignore this source of variation, the subrules may be re-used
or not, thus yielding multiple possible segmentations (“baba
abab” with no subrule, “ba ba a ba b” with one “Word →
ba” subrule or the same with 3 “Word → ba” subrules, etc.)

The third and final subprocess involves choosing among
these alternative solutions. To this end, minimum Bayes risk
is used to find the most common sample segmentations.

As this description shows, there are many potential free
parameters, some that are conceptually crucial (concentra-
tion) and others that are closer to implementation (number
of sweeps). By default, all of these parameters are set to
values that were considered as reasonable for experiments
(on English, Japanese, and French adult and child corpora
Fourtassi et al., 2013; Johnson et al., 2014) running at the
time the package started emerging, and that we thus thought
would be a fair basis for other general users. The full list
can be accessed by typing wordseg-ag --help. The
following is a selection based on what is often reported in
adaptor grammar papers:

– number of runs: 8
– number of sweeps per run: 2000
– number of sweeps that are pruned: 100 at the beginning

and end, 9 in every 10 in between
– Pitman-Yor a parameter: 0.0001
– Pitman-Yor b parameter: 10000
– Rule probability (theta) is estimated using Dirichlet

prior

Evaluation

An objective way to measure the performance of word
segmentation algorithms is to compare the segmented
corpus with the gold one, which corresponds to a perfect
segmentation as would be done by a literate adult. This
comparison can be done at different levels: word token,
word type, and boundary. We provide two boundary scores,
one counting utterance edges and the other not counting
edges (since these will always be correct, by definition).

At a particular level, the evaluation looks at two different
criteria: precision, the probability that a segmented bound-
ary/token/type is correct; and recall, the probability a correct
boundary/token/type has been segmented. Concretely, the
precision P and recall R are calculated as follows:

P = True positives

True positives + False positives
(1)

R = True positives

True positives + False negatives
(2)

The harmonic mean between precision and recall is
computed to give the F1, which we will call F-score.

To take an example, imagine a corpus ‘the dog bites the
dog’; the segmented output is ‘the dog bites thedog’. This
will yield the following performance:

– token precision: 0.75, recall: 0.6, F-score: 0.67
– type precision: 0.75, recall: 1, F-score: 0.86
– boundary precision: 1, recall: 0.83, F-score: 0.91
– boundary no edge precision: 1, recall: 0.75, F-score:

0.86

Two additional evaluation outputs are provided at the
user’s request. First, users can obtain the Rand Index RI ,
which captures both true positives and negatives. It is
calculated as follows:

RI = True positives + True negatives

True positives + True negatives + False positives + False negatives
(3)

Our evaluation actually provides the Adjusted Rand Index,
where both numerator and denominator have been adjusted
for chance agreement via resampling.

Second, some readers may be specifically interested
in finding out which lexical items come to be correctly
segmented, or else segmented incorrectly in one of these
three ways: undersegmented (i.e., joined with a neighboring
word); oversegmented (i.e., broken down into subparts);
or plain mis-segmented. An optional parameter yields an
evaluation summary file being returned, which contains all
words in the gold corpus and the number of times with
which they were found in each of those four groups.

One important consideration pertains to incremental
algorithms, in which performance is changing throughout
the corpus. To make their evaluation comparable to that of
the others, we implemented a system of corpus folding, with
a default of five folds (which can be parametrized by the
user). For the first fold, a given algorithm is run in the whole
corpus. Next, the final 20% of the corpus is moved to the
onset of the corpus, and the algorithm is run again, such that
this time the final 20%will in fact be the utterances that start
at the 60% point in the corpus and end at the 80% point.
This process repeats for the remaining three folds (40–60%,
20–40%, 0–20%). At this point, the final 20% of the corpora
outputted in each of the five runs is concatenated in the right
order, and the whole is evaluated. Please note that this is
not an instance of cross-validation, since the models may
continue learning over the last 20%.

Examples of use

This section has three goals. First and foremost, we aim to
illustrate the package and show its flexibility. This example
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allows users to have a benchmark when they themselves
use the package. Since we expect that we and others will
continue improving it, however, we recommend users check
https://github.com/alecristia/wordseg-brm-analyses for an
up-to-date version of these results as well as reproducible
code. Second, we would like to inform researchers working
on this domain on the impact of key methodological and
conceptual decisions, such as what input and evaluation
units are used. Finally, we try to assess the conditions in
which performance is stable and replicable.

Crucially, we would like to make it clear from
the start that the goal is not to compare performance
across algorithms to find the best-performing one. Best
performance against orthographic standards does not mean
that the algorithm represents human performance, let alone
infant performance. For instance, Larsen et al. (2017) found
essentially a zero correlation between algorithms’ F-scores
against adult segmentation and the proportion of variance
explained in infant word knowledge in an English sample.
Thus, we consider that, at present, there is insufficient
evidence to determine which algorithm best captures human
(infant and adult) performance, and that they may all be
valuable and informative to the computational modeler
interested in the psychological phenomena surrounding
word form segmentation. We want to provide the research
community with an array of algorithms which, given the
uncertainty regarding the information that infants and other
learners incorporate, has a high likelihood of capturing
at least some behaviors, or at the very least allows the
researcher to focus on findings that are true regardless of
which algorithm is used as a proxy.

Methods

Corpus

We used the Providence corpus (Börschinger et al.,
2012; Demuth, Culbertson, & Alter, 2006), available from
CHILDES (MacWhinney, 2009b) because it is commonly
used and large enough to allow us to break it down into
several subparts, and apply inferential statistics to assess
whether certain factors truly explain significant proportions
of variance. It contains transcriptions of recordings gathered
from six American English-speaking children. Recordings
started when children spoke at least four words according to
parental report, which happened when they were around one
year of age. About one hour of child-context interactions
were recorded every 1–2 weeks until they were around
3 years of age. For the present study, we focus on the
74 transcripts (from five children) meeting the following
desiderata:

– children were two years of age or younger

– there was only one adult present (which lowers the
likelihood of including adult-directed speech)

– there were at least 300 utterances spoken by the adult

These transcripts were cleaned using custom bash scripts,
which removed all comment lines and all sentences uttered
by children. The resulting orthographic representations
were phonologized using FESTIVAL (Taylor, Black, &
Caley, 1998), which yields a representation including syl-
lable boundaries. FESTIVAL uses a dictionary look-up
system, complemented with grapheme-to-phoneme conver-
sion rules for words not in the dictionary. The following is
an example of the resulting “Tags” representation, which
contains spaces to mark phone boundaries, ;s for syllable
boundaries, and ;w for word boundaries.

1. Orthographic: you wanna sit with mommy
2. Tags: y uw ;s ;w w aa ;s n ax ;s ;w s ih t ;s ;w w ih dh ;s

;w m aa ;s m iy ;s ;w
3. Gold: yuw waanax siht wihdh maamiy

Processing with WordSeg

We generated the results for all the experiments below with
a single Bash script (although we could have used Python

Table 2 Corpus characteristics of individual transcripts

Characteristics Mean SD

N phone tokens 11,463.22 3,414.43

N phone types 39.62 0.51

N syllable tokens 4,581.11 1,350.05

N syllable types 688.54 163.65

N words tokens 3,720.28 1,075.26

N words types 670.99 178.71

N word hapax 293.15 93.43

MATTR 0.89 0.04

Entropy 0.018 0.002

N SWU 102.81 55.33

N utts 700.27 200.38

Derived metrics

Prop. SWU 0.14 0.04

Prop. hapax 0.43 0.04

Avg. phones/word 3.08 0.08

Avg. syllables/word 1.23 0.03

Avg. words/utt 5.38 0.93

Tokens refers to unique instances, types to abstract units.Hapax stands
for types that occur exactly once. MATTR stands for moving average
type to token ratio, a TTR calculated over ten consecutive words so as
to control for overall corpus size. Entropy is a measure of ambiguity in
segmentability; a higher number means more ambiguity. Utt(s) stands
for utterances; SWU for Single Word Utterance
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instead). The following is a version of that Bash script,
simplified for ease of inspection:

#!/bin/bash

# segment independent transcripts

FOLDER="/Providence/"

for tag in $FOLDER/*tags.txt; do

# compute statistics on the unitized input text

cat $tag | wordseg-stats --json > ${tag}_stats.json

# prepare the input for segmentation and generate the gold text

cat $tag | wordseg-prep --unit $unit --gold gold.txt > prep.txt

# segment the prepared text with different algorithms

# sublexical

cat prep.txt | wordseg-baseline --probability 0.0 > ${tag}_seg.base00.txt

cat prep.txt | wordseg-tp --threshold relative > ${tag}_seg.tprel.txt

cat prep.txt | wordseg-dibs --type phrasal --unit $unit $tags > ${tag}_seg.dibs.txt

# lexical

cat prep.txt | wordseg-ag > ${tag}_seg.AGu.txt

# hybrid

cat prep.txt | wordseg-puddle --window 2 > ${tag}_seg.puddle.txt

# evaluate against the gold file

for segmented in ${tag}_seg.*.txt; do

algo=$(echo $segmented | sed ’s/.*seg.//’ | sed ’s/.txt//’)

cat $segmented | wordseg-eval gold.txt > ${tag}_out.${algo}.txt

done

done

The sample script above represents the following conceptual
decisions:

– All algorithms are fed with a phone-unitized version of
the corpus,

– The baseline is that which segments at utterance level
only,

– The TP version uses the forward TP (default), with a
relative threshold,

– The version of DiBS chosen in this example is the
phrasal type, using the full corpus to extract phone
bigram statistics,

– For AG, since no grammar was provided, the simple one
mentioned above is automatically generated,

– For PUDDLE, we used bigrams (window of 2)

The full script can be retrieved from https://github.com/
alecristia/wordseg-brm-analyses/blob/master/do prov.sh. It
actually feeds all algorithms with both phone- and syllable-
unitized input, contains three baselines (cut at utterance
boundary, at every unit boundary, and at half of them); and
TP is run with both an absolute and a relative threshold.

Corpus statistics

Our call to wordseg-stats allowed us to describe the ana-
lyzed transcripts. Table 2 shows means and SDs of various

corpus characteristics that are calculated by the statistics
package, as well as some that can be derived from the out-
put. The most important message we would like to convey
here is that the standard deviations are quite high, partic-
ularly for sentence length. This is despite the fact that we
focused on a single corpus, and further restricted inclusion
to transcripts collected when children were younger than
2 years of age. Nonetheless, there are sizable changes in
average sentence length, which may impact segmentation
performance.

Effects of processing unit and algorithm

As mentioned above, we have analyzed each transcript
within a subset of the Providence corpus separately,
encoded in terms of phones and syllables, with a set
of algorithms. In this section, we report on analyses
aimed at assessing to what extent performance is affected
by these two factors and their interaction. As shown
in Supplementary Materials (https://github.com/alecristia/
wordseg-brm-analyses/blob/master/supmat.pdf), all perfor-
mance metrics are highly correlated with each other.
Therefore, we focus here exclusively on token F-scores.
Figure 2 shows that performance varies enormously as
a function of algorithm and basic unit, with impor-
tant interactions between the two. Next, we highlight
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Fig. 2 Token F-scores as a function of unit and algorithm. Each point
is the performance of a segmentation experiment on one of the 74 tran-
scripts, using either phones (circles, left) or syllables (crosses, right) in

combination with one of the eight algorithms (distinguished by posi-
tion on the x-axis as well as color). In baselines, b-00 stands for p = 0;
b-05 for p = 0.5; b-10 for p = 1

aspects of these results relevant to our three goals for
“Examples of use”.

The first result that may attract readers’ attention is
that performance varies greatly across algorithms. For
instance, as has been discussed elsewhere (Gambell & Yang,
2005; Swingley, 2005), excellent scores can be achieved
in English infant-directed speech samples like this one by
simply segmenting every syllable, our baseline with p = 1
algorithm. Above and beyond the specific explanation, this
observation highlights the usefulness ofWordSeg’s included
baseline algorithms.

A second conclusion is that algorithm and unit interact.
The reason is obvious for two cases: TP (absolute versus
relative), and PUDDLE. For TP, performance is higher for
syllable-as-unit than phone-as-unit when using an absolute
threshold, but the opposite for a relative threshold. The
reason is probably that the relative threshold algorithm
requires at least 4 units in a row to be able to find
a local dip (Gambell & Yang, 2005). Therefore, no
boundary can be postulated in short sentences, with
fewer than four syllables. In contrast, a boundary can be
postulated in short sentences when these are represented
in phones, because a local dip can be established when
there are few syllables (provided these contain at least four
phones).

A similar conclusion can be drawn from the PUDDLE
performance, which was higher for phones than syllables.
By setting the window for onset and offset buffers uniformly
at 2, we effectively prevented the algorithm from breaking
up more utterances when unitizing with syllables than with
phones.

A third conclusion is that performance is enormously
affected by unit and algorithm. To investigate this more
precisely, we fit a regression with token F-scores as
dependent measure, unit and algorithm as well as their
interaction as fixed effects, and transcript identity as
blocking factor.3 This model explained 98% of the variance
in performance, with both main effects and their interaction
being highly significant.

Effects of corpus length

Although the analysis in the previous section showed that
nearly all the variance in performance across transcripts
was explained by algorithm, unit, and their interaction,
it remains possible that transcript characteristics do
affect word segmentation performance. As discussed in
“Keeping other aspects constant”, a good candidate for
a factor that would affect performance is corpus length.
Preliminary analyses revealed that PUDDLE’s performance
was changing as a function of corpus length within the
sample studied in the previous subsection. Therefore,
we carried out an additional experiment to extend the
length coverage. We followed previous work (Börschinger
et al., 2012; Daland & Pierrehumbert, 2011; Monaghan &
Christiansen, 2010) by submitting concatenated versions of
the transcripts to our segmentation procedure. That is, we
first analyzed the first transcript; then, we concatenated

3This regression was preferred over a mixed model because there is
disagreement as to how to estimate proportion of variance explained in
the latter.
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the first two by pasting the second transcript after the
first and analyzed the resulting combined corpus; and
proceeded in this manner until all included transcripts had
been concatenated. Children vary in the number of included
transcripts both because some were visited more regularly
and from an earlier age (e.g., Naima), and because a
different proportion of transcripts were excluded (due to
being too short or containing more than one adult, see
“Corpus”; e.g., only four out of 40 transcripts for William
are included here).

Figure 3 portrays performance on Naima’s transcripts.
Since variation across children’s data was very low, we
have only included there results from one child to facilitate
readers’ visual inspection of results (see full figure in
the online supplementary materials). All algorithms exhibit
strong changes (upwards or downwards) in the 0–3k region,
which may be associated to peculiarities of some of these
transcripts, since they are visible even in the baselines.
Afterwards, most algorithms remain fairly stable with very
slight linear changes (if any), with one exception: PUDDLE.
Indeed, we notice that PUDDLE-phones exhibits a non-
linear pattern, with performance increasing rapidly between
1k and 4k sentences; peaking at 5–7k sentences; and
slowly dropping (by little) thereafter. PUDDLE-syllables
increases slowly and linearly throughout the range. In

general terms, then, performance is stable for all algorithm-
unit combinations (except for PUDDLE-syllables) in the
5–15k region.

We investigated the effects of corpus size more precisely
by fitting a linear regression taking the last data point for
each child (i.e., the concatenation of all the transcripts
associated with that child). As before, the dependent
measure was token F-score and the predictors were the
algorithm in interaction with the unit (blocked within child).
This regression explained 99.2% of the variance; addition of
number of words in interaction with algorithm increased this
to 99.3% (which was not significant in a Chi-square test).

In short, we have found that for most algorithm-
unit combinations, performance is stable across a wide
range of corpora sizes (roughly between 5,000 and 15,000
word tokens), and furthermore that corpora size affected
performance very minimally once algorithm-unit effects
were taken into account.

Discussion

This paper presents a package that allows the systematiza-
tion of several key steps in the computational study of word
form segmentation by infants and other agents. One of the
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strengths of our package is that it contains a tool to describe
the input. Our analyses of a CHILDES corpus demonstrates
that there is wide variability in the input to children even
within 1–2 years of age in terms of sentence length and
lexical properties which may impact segmentation perfor-
mance. The package also provides all basic performance
measures. Our analyses suggest that these are by and large
correlated.

Another key strength of the package is the presence of
a tool to unitize this input into phones or syllables as basic
phonological units, and a third is that the package contains
a range of conceptually diverse algorithms. Our analyses
demonstrate that the crossing of these two factors (basic
representational unit, and algorithm) has enormous effects
on segmentation performance. In contrast, segmentation
performance was rather stable across a wide range of corpus
sizes, particularly for batch algorithms.

Limitations and future directions

The first direction in which we think the WordSeg suite
should be improved is by providing users with solutions
for phonologizing their texts, and facilitating informed
choices for data selection from CHILDES. Previous
researchers have used a range of pre-processing pipelines,
making choices that could affect segmentation results.
Some researchers remove repetition or mumbling within
sentences, which obscures any dependence which may
have been present previously. For instance, “she xxx baby
girl” would become “she baby girl” (since xxx indicates
untranscribed spoken material in the CHAT format), which
misrepresents the sequence of words produced by the
speaker. Sometimes material tagged as non-lexical or
onomatopeic (with the CHAT tags &hey and choochoo@o,
respectively) are similarly deleted from the input. Some
go so far as dropping words that are not part of the finite
dictionary being used. Since child-directed speech will
often contain onomatopeia and other forms of non-standard
words, such an analytic decision unduly simplifies the task
of the word segmenter. The latter problem can be removed
by using a text-to-speech system (or grapheme to phoneme
conversion rules in languages with transparent orthography)
on all potential child input. Such systems may also help
make some strides towards making the phonologized input
more realistic via the application of phonological processes
of e.g. assimilation and reduction.

Although not illustrated in the examples above, the pack-
age is flexible enough to allow evaluation of segmentation
at linguistic levels other than the word level. For instance,
some users may desire to evaluate on morphemes rather
than words (Börschinger et al., 2012; Phillips & Pearl,
2015). It has been previously discussed (Phillips & Pearl,
2015) that error evaluation based on the gold word standard

might not be optimal when modeling infant segmentation
of useful linguistic units. Evaluation on the morpheme level
should also be considered, since segmenting out the con-
stituent morphemes of a word could actually help infants
acquire more lexical elements of their language (Kim, 2015;
Shi, Werker, & Cutler, 2006). Similarly, one can imagine
extensions assessing segmentations of yet other levels of
the prosodic hierarchy, such as syllables, or syntactic units,
such as phrases. A somewhat related issue is how to deal
with plausible segmentation errors due to undersegmenta-
tion of sequences of words that are often produced together
(collocations). To avoid penalizing for these, the user can
simply create a version of the gold where word boundaries
are removed in high frequency phrases. These extensions
are all possible and easy to implement in WordSeg, since
both the preparation and the evaluation steps allow the user
to provide the code used in their text as separators. How-
ever, they all require that the user has exhaustively tagged
morpheme boundaries (or whatever other unit they want to
evaluate). Future developments could integrate a morpho-
logical parser to help users who lack this level of annotation,
perhaps building on extant open-source, multilingual tools
(e.g., CLAN, MacWhinney, 2009b).

All this said, most readers will agree with us that per-
formance against the gold standard is not necessarily the
ultimate goal of research on infant word segmentation. We
have begun to investigate how the output of word segmenta-
tion algorithms may be related to human performance more
directly. Specifically, we have been using parental reports of
infant word comprehension as the variable to be predicted
(Larsen et al., 2017). This code, although available from
Larsen (2018) has not been prepared for public re-use as
extensively as the WordSeg code has. Additionally, there is
considerable conceptual and methodological work needed
to extrapolate the method to corpora of other languages (see
Baudet, 2018 for a first attempt). We hope others will find
ways of employing the WordSeg package output to relate
word segmentation results from computational models to
human performance, and similarly document and share their
code.

Another conceptual development we foresee involves
breaking down the currently incorporated algorithms into
recombinable modules. We have opted to reuse extant
algorithms to allow users to connect with previous literature.
Nonetheless, as word segmentation research advances, it
would be ideal to reflect on the fact that some extant
algorithms represent a set of conceptual choices, each of
which is potentially combinable with others. For example,
PUDDLE (Monaghan & Christiansen, 2010) incorporates a
strategy that profits from single-word utterances or chunks.
In that model, utterances that have not been segmented
are encoded directly into long-term memory, and later
used to break up new utterances. We could imagine a
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model that encodes phonotactics like DiBS does (i.e., not
with a list of permissible phone bigrams but rather as a
probability distribution of the transition) together with a
chunk memorization module as found in PUDDLE. It would
also be interesting to explore parameters that have similarly
been confounded with other design options, such as whether
the model should treat differently phenomena occurring
at utterance edges than utterance middles (Venkataraman,
2001), or saliently whether the processing is batch or
incremental.

Finally, the modular architecture of WordSeg as well
as the fact that it is open source should facilitate its
integration with systems focusing on unsupervised learning
of language structure at other levels. Recent research
has begun to investigate word segmentation from raw
speech (Versteegh et al., 2015), an interesting development
given infant psycholinguistic research strongly suggesting
young infants may build their earliest proto-lexicon using
acoustic representations (e.g., Houston & Jusczyk, 2000).
Although there are very few public corpora of child-directed
speech with phonological transcriptions that are aligned
well enough to be usable for this process, some recent
work has made great strides towards standardizing and
facilitating forced alignment (McAuliffe, Socolof, Mihuc,
Wagner, & Sonderegger, 2017), including on CHILDES
corpora (Elsner & Ito, 2017; Frermann & Frank, 2017).
As to the integration of systems working on other levels
of acquisition, it would be worthwhile to explore parsers
allowing the discovery of morphological structure within
words (such as the open-source Linguistica, see Lee &
Goldsmith, 2016, section 5.2) as well as others that succeed
in acquiring multi-word dependencies (and thus a form of
shallow syntax, e.g., McCauley & Christiansen, 2017).

It is not feasible for us to promise to implement all such
developments. Fortunately, having opted for a modular,
open-source structure makes it easy for others to contribute
these and other algorithms. As more and more cognitive
scientists and psychologists use computational modeling,
more and more students and researchers will have the
necessary computer skills to make contributions via the
GitHub system. These users would fork our repository
from github.com/bootphon/wordseg, add their tool in the
wordseg/algos section, and then either keep this improved
version in their own repositories, or do a pull request so
that the standard WordSeg comes to include their tool.
Notice incidentally that the use of readthedocs.com allows
us to harvest help sections from within python code, thus
inviting tool developers to include statements of use that
directly become available to WordSeg users. For readers
who find this idea appealing but do not have previous expe-
rience with git, we recommend the excellent introduction
to git offered by Software Carpentry (https://swcarpentry.
github.io/git-novice/, followed by GitHub’s tutorials for

forking (https://help.github.com/articles/fork-a-repo/) and
creating pull requests (https://help.github.com/articles/
creating-a-pull-request-from-a-fork/). We provide further
information in a dedicated section of our documentation
https://wordseg.readthedocs.io/en/latest/contributing.html#
contributing-to-the-code.

In conclusion, the present version of WordSeg greatly
facilitates research on unsupervised word form segmenta-
tion by integrating multiple previous contributions into a
modular architecture. We look forward to further improve-
ments, inviting feedback and development.
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