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Abstract. Adopting a resource theory framework of thermodynamics for quantum and nano systems pio-
neered by Janzing et al. (Int. J. Th. Phys. 39, 2717 (2000)), we formulate the cost in the useful work of
transforming one resource state into another as a linear program of convex optimization. This approach
is based on the characterization of thermal quasiorder given by Janzing et al. and later by Horodecki and
Oppenheim (Nat. Comm. 4, 2059 (2013)). Both characterizations are related to an extended version of
majorization studied by Ruch, Schranner and Seligman under the name mixing distance (J. Chem. Phys.
69, 386 (1978)).

1 Introduction

The recent advances in control of quantum and nano systems raise the question of the applicability of conventional
thermodynamics in these new regimes. One promising approach to tackling this question is to regard thermodynamics
as a resource theory and then study this resource theory at the quantum level in order to determine which aspects of
conventional thermodynamics persist in the new setting. From this point of view, the essence of thermodynamics is
that not all transformations of physical systems are practically possible, and that this limitation gives rise to the notion
of some physical systems being more useful than others, in that they can be used to create the other states by the
allowed operations. This is roughly the approach taken by Lieb and Yngvason to better understand the foundations
of classical thermodynamics [1].

In this paper we follow the related approach to thermodynamics as a resource theory in the quantum setting
described by Janzing et al. [2] and used by Brandão et al. [3] and Horodecki and Oppenheim [4]. Here, the systems
under consideration are explicitly treated in the framework of quantum mechanics, and transformations take the form
of unitary operators. The resource theory specifies that only those transformations are allowed which commute with
the Hamiltonians of the systems involved, and the only states which can be created at will are equilibrium Gibbs states
at a fixed background inverse temperature β. The ultimate resource of the resource theory turns out to be useful work,
free energy [3,4]. Note that the resource theory generally applies to arbitrary systems, and is not restricted to, for
instance, resources which are n-fold copies of a single-system state.

Our contributions to the resource theory of thermodynamics are twofold. We first point out that conditions on the
quasiorder of quasiclassical resources (resources in stationary states) described by Janzing et al. is in fact equivalent
to the conditions found by Horodecki and Oppenheim, which they called thermomajorization, and that both are
manifestations of the mixing distance of Ruch et al. [5]. We then consider the question of the cost, in useful work, of
transforming one quasiclassical resource state into another, and show that the quasiorder formulation of Janzing et
al. provides a simple means to determine the work cost as a problem of convex optimization, a linear program. This
problem was studied in a different setting by Egloff et al. [6]; an advantage of the present treatment is a significantly
simpler proof. As a special case, our formulation recovers both the work value (or work cost) of a given resource state
found by Horodecki and Oppenheim [4] as well as the work cost of erasure, Landauer’s principle [7].

2 Thermal quasiorder

Any resource theory is defined by the allowed transformations and state preparations. In the thermodynamic setting,
the allowed thermal operations are any energy-preserving, unitary actions on systems, plus the creation of Gibbs
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states at a fixed (inverse) temperature β, for any desired Hamiltonian [2,3]. Resources in this theory will be denoted
R = (ρ, γ), where ρ is the state of the resource system, while γ is the Gibbs state at temperature β of the resource
system. The unitary action is meant to describe any procedure that could in principle be performed, including those
which call for manipulating the energy levels of the system by external fields or the use of interaction Hamiltonians
forth; ref. [3] describes more explicitly how these can be incorporated into the unitary model.

Thermal operations generate a quasiorder of resource states: If a resource R can be transformed into some other
state R̃ by means of thermal operations, then we write R � R̃. The Gibbs state itself is the “lowest” state in the
quasiorder. In particular, the thermal operations defined above are those given in Definition 7 of Janzing et al. [2],
which envisions energy preserving transformations on three systems, the first in the state ρ of the input resource, the
second a heat bath, and the third the target system in its Gibbs state. Then, R � R̃ if there exists a UABC such that

TrAB

[
UABC(ρA ⊗ γ̂B ⊗ γ̃C)U†ABC

]
= ρ̃. (1)

Observe that we do not attempt to transform ρ “directly” into ρ̃, i.e. in the same state space. Instead, we use
the heat bath to effect the transformation ρ ⊗ γ̃ → η ⊗ ρ̃, where the exhaust state η is arbitrary. This accounts for
differences in the overall zero of energy between two Hamiltonians: Given resource R with Hamiltonian H, we can
create R′ with Hamiltonian H ′ = H + c by the thermal operation which simply swaps A and C.

In the case of quasiclassical resources, those which commute with the Hamiltonian and are therefore stationary
states, Janzing et al. give the following complete characterization of the quasiorder. Only the eigenvalues of stationary
states are relevant, so in this context we write R = (p, g), with p the eigenvalues and g the Gibbs state probabilities,
both interpreted as column vectors. With en the length-n column vector of 1s, they show the following:

Theorem 1 ([2], Theorem 5).
Consider two quasiclassical resource states R = (p, g) and R′ = (p′, g′), with dimensions n and n′, respectively.

Then R � R′ if and only if there exists an n′ × n matrix G such that

1) Gp = p′;
2) Gg = g′;
3) eT

n′G = eT
n .

The third condition fixes G to be a stochastic matrix, i.e. one whose column sums are all unity. We shall call such
stochastic matrices which preserve the Gibbs state Gibbs-stochastic.

Horodecki and Oppenheim [4] formulate a similar, and as we shall see, equivalent result, which they term ther-
momajorization due to its close connection with usual majorization. Indeed, the formulation of Janzing et al. is a
generalization of the notion of d-majorization by Veinott [8] and is an instance of the mixing distance of Ruch et al. [9,
5]. Marshall et al. [10] provide a nice overview of known results involving d-majorization.

An important question regarding the thermal quasiorder is to find functions which preserve the order, called thermal
monotones. One class is given by the f -divergences [11–13]:

Proposition 1. All functions φ of the following form, with convex f , preserve the thermal quasiorder:

φ(R) =
∑

i

gi f

(
pi

gi

)
. (2)

Proof. The proof is a simple variation of an argument employed by Ruch and Mead ([9] Theorem 1), which we omit
here.

Well-known examples of such thermal monotone functions are the relative entropies D(p||g) =
∑

i pi log pi

gi
and

D(g||p), which stem from f(x) = x log x and f(x) = − log x, respectively, as well as the Renyi divergences Dα(p||g) =
1

1−α log
∑

i pα
i g1−α

i with α ≥ 0, which follow from f(x) = (xα − 1)/(α− 1). Gour et al. provide a much more complete
discussion of monotone functions and their relation to d-majorization in [14].

Importantly, suitable subclasses of convex functions completely characterize the thermal quasiorder, as formalized
in the following theorem by Ruch, Schranner, and Seligman,

Theorem 2 ([5]).
For resources R and R′ let ri = pi/gi and r′i = p′i/g′i. Then the following are equivalent:

a) There exists a Gibbs-stochastic G such that Gp = p′.
b) φ(R′) ≤ φ(R) for all functions of the form (2), with f a continuous, convex function.
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Fig. 1. Lorenz curves of three resources R1, R2, R3, and the Gibbs state g. A resource R can be transformed into eR if and only
if the Lorenz curve of the former lies above that of the latter; the Gibbs state has a flat Lorenz curve running from the origin
to (1, 1). Here R1 � R3 and R2 � R3, but R1 and R2 are incomparable.

c)
∫ t

0
du r′∗g (u) ≤

∫ t

0
du r∗g(u), for all 0 ≤ t ≤ 1.

d)
∑

i g′i(r
′
i − t)+ ≤

∑
i gi(ri − t)+ for all t ∈ R.

e)
∑

i g′i|r′i − t| ≤
∑

i gi|ri − t| for all t ∈ R.

Here (a)+ = max{a, 0} and r∗g(u) denotes the decreasing rearrangement of r by g: r∗g(u) = sup{s : mr(s) > u} for
0 ≤ u ≤ 1, with mr(s) =

∑
i:ri>s gi, s ≥ 0.

Ruch, Schranner, and Seligman have established this statement in the more general setting of probability densities
on the interval [0, 1]. Condition a) corresponds to definition (3f) in [5], b) to (2a), c) to (2e), d) to (3c), and e) to (3b).
For the statement of c), in the present discrete setting, we have however borrowed the more compact formulation due
to Joe [15]. The integral in c) defines the Lorenz curve LR(t) for relative majorization [10]. As with usual majorization,
the Lorenz curve characterizes the conversion order in a simple geometric way, as shown in fig. 1.

In fact, this is the same as the curve defined by Horodecki and Oppenheim [4], which is particular to the discrete
setting and uses a different normalization. Their version has a much simpler definition, however, which is as follows
(here we change the normalization). First, let π be the permutation of indices of probabilities so that the sequence
(pπ(i)/gπ(i))i is strictly non-increasing. Then the Lorenz curve is the piecewise linear function which joins the points
given by the partial sums of pπ(i) and gπ(i) [10], i.e. the points

(tk, LR(tk)) =

(
k∑

i=1

gπ(i),
k∑

i=1

pπ(i)

)
. (3)

For a two-level system with energy gap E, we can easily work out the Lorenz curve explicitly. This is illustrative
in its own right and will be useful later. The Gibbs state is described by g = (1/1+e−βE, 1/1+eβE), or equivalently
(ZE(β)−1, ZE(−β)−1), where ZE(β) = 1 + e−βE . As there are just two levels, any quasiclassical state can be thought
of as a Gibbs state at some temperature β′, so p has the same form: p = (1/1+e−β′E, 1/1+eβ′E) = (ZE(β′)−1, ZE(−β′)−1).

Using (3), we need only give the single point at which the curve changes slope. To deal with the permutation π, we
distinguish the two cases β′ > β and β′ < β. In the former case, the resource state is colder than the background Gibbs
state; in the latter the resource is warmer, including situations in which β′ < 0 and there is a population inversion. When
the resource is colder, no permutation in (3) is needed, while the other case requires interchanging the two levels. One
immediately finds that, for β′ > β, the kink in the Lorenz curve occurs at the point (t, LR(t)) = (ZE(β)−1, ZE(β′)−1).
For β′ < β, the effect of interchanging the levels is just to take β → −β and β′ → −β′ in the previous analysis. The
kink in the Lorenz curve is then at the point (t, LR(t)) = (ZE(−β)−1, ZE(−β′)−1). Figure 2 shows curves for resources
in the various regions.
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Fig. 2. Lorenz curves of quasiclassical two-level resource states, whose Hamiltonian has an energy gap E, at background
temperature β > 0. Since there are just two states, any such resource state can be thought of as a Gibbs state at some
temperature β′. R1 denotes a state with β′

1 > β, i.e. a colder system; the kink in the Lorenz curve of all resources of this form
lies in the blue region for arbitrary E > 0. R2 has β′

2 < β, which is hotter than the reference temperature; kink points of such
resources fall in the red region. R3 has the same inverse temperature as R1, but negative, i.e. a state with population inversion;
all resources with this property land in the green region. A resource in the excited state has β′ = −∞, while the state of an
erased bit can be understood as the case β′ = ±∞ and β = 0.

3 Work cost of transformations

Given two resources R and R′, suppose that it is not possible to transform R into R′ using allowed thermal operations.
Nonetheless, we expect that providing a sufficient amount of additional resources can make this transformation possible.
Conversely, the transformation R → R′ may be possible even if we additionally extract additional resources during
the process. Traditionally, work is standard resource in thermodynamics, often modelled as the change in the height
of a weight.

Here, we model the weight by an additional two-level system with energy gap E in its excited state, and we denote
this resource AE . Then the work gain W β

gain(R → R′) of the transformation can be defined as the largest W such that

AE + R � AE+W + R′, (4)

for some choice of E > 0. That is, the transformation should produce the desired output R′ while increasing the gap
of the additional system by W and not producing any correlations between the two systems. If W < 0, this represents
the work cost required to drive the transformation.

It turns out that we may formulate a bound on the work cost or gain of implementing a the desired transformation
in terms of a simple convex optimization, a linear program [16,17]. This approach is related to the results of Faist et
al. [18], who studied the work cost of transformations between resources with completely degenerate Hamiltonians, but
where preserving correlations with the environment are important. Closer to the present setting, Egloff et al. [6] give
an expression for the work cost which is related to the mixing distance of Ruch et al., but formulated in a somewhat
different model of allowed operations than the set of thermal operations used here and which has a significantly more
complicated proof.

Before stating the result, let us first point out that while the question of whether the transformation R → R′ is
possible with thermal operations can be immediately formulated as a linear program, it is not so apparent that this
holds for the work gain itself. To decide the former question, note that the three constraints of Theorem 1 are linear
in the entries of G, which must be themselves positive. Then the linear program which seeks to maximize f(G) = 0
will find a feasible G or certify that one does not exist. Specifically, if the optimal value of the dual problem turns out
be unbounded, then there is no feasible G (see, for instance, [16], Theorem 8.2).

In a similar vein, we may formulate the task of finding W β
gain(R → R′) as follows. First define y = e−βW ; we also

drop the β dependence in the partition function ZE since now its value is fixed. Then, for G ∈ Mn′,n(R), the set of
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real-valued n′ × n matrices, W β
gain(R → R′) = − 1

β log y∗(R,R′) in the optimization

find y∗(R,R′) = min y

subject to G(0, 1) ⊗ p = (0, 1) ⊗ p′

G(1, e−βE) ⊗ g =
ZE

ZE+W
(1, ye−βE) ⊗ g′

eT
2n′G = eT

2n,

y, E,G ≥ 0,

(5)

where G ≥ 0 is understood to mean that all components of G are positive. Though the objective function is linear as
before, the constraints no longer are.

Our main result is that the above can be transformed into a linear program valid in the limit E → ∞.

Theorem 3.
Using thermal operations at inverse temperature β, a resource R can be transformed into R′ in such a way that

extracts an amount of work

W β
gain(R → R′) = − 1

β
log x∗(R,R′), (6)

for x∗(R,R′) the solution to the following linear program in the variables x ∈ R and F ∈ Mn′,n(R) :

find x∗(R,R′) = min x

subject to Fp = p′,

Fg ≤ xg′,

eT
n′F ≤ eT

n ,

x, F ≥ 0.

(7)

Proof. The proof proceeds by showing showing that the solution to (5) is both less than and greater than the solution
to (7). We begin with the case x∗(R,R′) ≤ y∗(R,R′).

Suppose we have a feasible y, E, and G in (5). Every E′ ≥ E would also lead to a feasible y and G, since the
resource AE′ can be transformed to AE by thermal operations, as can be inferred from their Lorenz curves described
in fig. 2. This will allow us to consider the limit E → ∞ in what follows.

Any feasible G can be written in block form as

G =
(

G11 G12

G21 G22

)
. (8)

Writing out the constraints in (5) in terms of the block decomposition, we obtain the following three pairs of equations.
The constraints involving the resource are

G21p = 0 (9)

and
G22p = p′. (10)

The constrains involving the Gibbs state read

G11g + e−βEG12g =
ZE

ZE+W
g′ (11)

and
G21g + e−βEG22g = xe−βEg′, (12)

where x = y ZE

ZE+W
. Finally, normalization requires

eT
n′G11 + eT

n′G21 = eT
n (13)

and
eT

n′G12 + eT
n′G22 = eT

n . (14)
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Since eT
n′G12, G21g, and e−βE are positive, the constraints that involve G22 (the latter in each pair) immediately

imply those of (7), with F = G22. Therefore, any feasible y, E, and G leads to a feasible x and F .
The remaining question is how the value of x is related to that of y, and what this implies about the relation

between x∗(R,R′) and y∗(R,R′). There are two cases to consider. If y ≥ 1, i.e. when W ≤ 0, it holds that x ≤ y. Thus
it immediately follows that x∗(R,R′) ≤ y∗(R,R′). On the other hand, for y ≤ 1 (W ≥ 0), x ≥ y. Now we consider
the large E limit. For large enough E it holds that x ≤ y(1 + e−βE(1 − 1

2y) − 1
2ye−2βE). So again we can infer that

x∗(R,R′) ≤ y∗(R,R′) in the limit E → ∞.
To show that x∗(R,R′) ≥ y∗(R,R′) we will first construct a feasible combination of y, E, and G for (5) from a

feasible choice of x and F in (7). First, set G22 = F to satisfy (10). Then define v = xg′ − Fg, for which v ≥ 0 by
design, and set G21 = e−βEveT

n for some E to be specified later. This choice satisfies (12) with x = e−βW ZE

ZE+W
, and

we have fixed the bottom row of G.
For the top row, define uT = eT

n − eT
n′F , which is also positive by construction. Since both p and p′ are normalized

and Fp = p′, uTp = 0. Therefore, by setting G12 = g′uT, both (9) and (14) are satisfied.
Two constraints remain to be satisfied, both involving G11. Setting G11 = tg′eT

n for some t to be chosen later, the
two constraints now simplify to

t + e−βEuTg =
ZE

ZE+W
(15)

and
t + e−βEeT

n′v = 1. (16)

Let us first confirm that the two are consistent and so our choice of G is valid. Subtracting the expressions on the
left-hand side yields

e−βE(uTg − eT
n′v) = e−βE(1 − x) (17)

= e−βE

(
1 − y

ZE

ZE+W

)
(18)

= e−βE ZE+W − e−βW ZE

ZE+W
(19)

= e−βE 1 − e−βW

ZE+W
(20)

=
ZE − ZE+W

ZE+W
, (21)

which is indeed the right-hand side. Finally, we must choose a value of E such that both constraints are satisfied for
positive t; this is always possible since both uTg and eT

n′v are bounded. Note that if some value E ensures t ≥ 0, then
any E′ ≥ E does as well.

We have shown that a feasible x, F implies the existence of a feasible y, E, and G. As before, we must now
investigate the implications for the value of the objective function. Writing y in terms of x and E we have

y =
x

1 + e−βE(1 − x)
. (22)

If x ≤ 1, then y ≤ x and we can immediately infer y∗(R,R′) ≤ x∗(R,R′). If x > 1, we again consider large enough E,
for which y ≤ x(1 − 1

2e−βE(1 − x)). In the limit E → ∞, we then recover y ≤ x and therefore y∗(R,R′) ≤ x∗(R,R′).

4 Work value of resources and Landauer’s principle

Using the above linear program we can recover the work value or work cost of a given resource R found in [4], the
amount of useful work that can be obtained from R or the amount required to create R. They additionally study
the approximate work cost and gain, but here we deal only with the exact case. In the case of the work value, we
are interested in W β

gain(R,R′) with R′ trivial. Thus, p′ = g′ = e1, so the first condition is Fp = 1. The third and
fourth constraints fix 0 ≤ Fi ≤ 1. Since p is a probability distribution, Fi = 1 for all i where pi 	= 0. Now we must
satisfy Fg ≤ x. The smallest feasible x can be obtained by setting Fi = 0 for all i where pi = 0. The optimum is
x∗(R,R′) =

∑
i:pi �=0 gi, giving

W β
gain(R) = − 1

β
log

∑
i:pi �=0

gi. (23)
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This is eq. (4) of [4], for the case ε = 0 (the exact work value).
The work cost of preparing R, meanwhile, is simply −W β

gain(R′, R) with R′ trivial. Now the first condition is simply
F = p, while the third is automatically satisfied. The second condition becomes p ≤ xg, so x ≥ pi/gi for all i. Therefore
x∗(R′, R) = maxi pi/gi, giving

W β
cost(R) =

1
β

log max
i

pi

gi
. (24)

This is eq. (8) of [4], again in the ε = 0 case.
We also immediately recover Landauer’s principle [7,2]. Here the goal is to transform an arbitrary two-level resource

R having a trivial Hamiltonian to the state (1, 0); one can easily extend the approach to an arbitrary number of levels.
The linear program in (7) has constraints Fp = (1, 0) for all p, as well as Fe2 ≤ xe2 and eT

2 F ≤ eT
2 . As the first has

to hold for any p, it follows that

F =
(

1 1
0 0

)
, (25)

and therefore x ≤ 2. This gives a work cost of the transformation of W β
erase(R) = 1

β log 2, as expected.

5 Conclusions

We have shown that the thermal quasiorder of resources in the resource theory of thermodynamics is closely related to
the notion of d-majorization, and we have given a characterization of the work cost or gain of operations on resource
states in the resource theory of thermodynamics. Here we have adopted a definition of work in which an amount of
work W is gained when the energy gap of a two-level system in its excited state is increased by an amount W . This is
not the only reasonable choice; Horodecki and Oppenheim consider transforming a two-level system with gap W from
its ground to its excited state [4], while Faist et al. measure work in terms of erased bits [18]. Nonetheless, following
the proof of Theorem 3 with these different definitions of work gain leads back to the same result.

The analysis of the work gain presented here proceeds under the assumption that the transformation is perfect,
and determines the guaranteed amount of work available. It would be useful to try to formulate a simple convex
optimization for the amount of work which can be gained by implementing the desired transformation, but which is
guaranteed only with a probability greater than 1−ε for some given ε. Faist et al. have found such a convex optimization
for trivial Hamiltonians [18]. While the result of Egloff et al. includes an ε dependence [6], they do not formulate it as
a convex optimization, and the complexity of computing their expression in any given instance is unclear.
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