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framework, and gives a simple protocol to extract the optimal amount of work from the
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is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be
used to construct a quantum Carnot engine.
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hermodynamics forms part of the bedrock of our current

understanding of the physical world. It has remained

unchanged despite huge revolutions in physics, such as
relativity and quantum theory, and few believe it will ever fail.
Over time, it has been applied to situations well outside its
original domain; from black holes!? to quantum engines
comprised of only a few qubits®”. Drawing inspiration, in part,
from the resource theory paradigm in quantum information®~13,
recently, there has been much renewed interest in the foundations
of thermodynamics, with a number of very interesting results
already obtained!#®. One of the overarching fundamental
questions that these works are concerned with is of the
applicability of thermodynamics to quantum systems; it is this
question that we wish to address in this paper.

Thermodynamics was originally invented to deal with
macroscopic thermal machines such as steam engines, long
before microscopic particles, let alone the theory of quantum
mechanics, were discovered. It is therefore plausible that
significant differences exist in the quantum regime. Indeed,
recent results call into question the role of free energy for
individual quantum systems!“. Classical thermodynamics tells
us that the total amount of work we are able to extract from a
system is given by its change in free energy, which was
also supported by previous quantum results'®1>22-30, yet in
ref. 14, an alternative paradigm was presented in which it was
shown that work equal to free energy can be extracted only if we
collectively process many copies of the same system. When acting
on each copy individually, the amount of work that can be
extracted is generally significantly less than the free energy.
Moreover, even more recent results show that considering
catalysts'® further change the story. These results therefore
suggest that the free energy is not the relevant quantity for
individual systems.

Here we revisit the issue of work extraction and show that
free energy is a significant quantity for individual systems. To do
so, we present a paradigm for dealing with thermodynamic
processes within quantum theory. Our paradigm is similar to that
of ref. 14 but differs in two essential aspects. In ref. 14,
they considered almost deterministic work extraction, from the
‘single-shot’ viewpoint that has received much attention
lately'®2>31-34 Here, in contrast, we will consider average work
extraction, and only require average energy conservation. In this
context, we first prove the second law of thermodynamics holds,
and second give a simple protocol that extracts work equal to the
free energy change of an individual quantum system and show
that this is optimal. We furthermore show that this protocol
can be used to construct a quantum Carnot engine similar to
the one in ref. 35, from which our optimality results imply the
Carnot limit, an alternative formulation of the second law of
thermodynamics. An alternative approach that also allows
one to extract average work equal to the free energy change of
a system was very recently proposed in ref. 36, where a key
difference is that a reusable source of coherence is included
in the framework.

Results
The paradigm. In this section, we more precisely describe our
framework for quantum thermodynamics. In particular, we
define the system, thermal bath and work-storage device, and give
explicit definitions for thermodynamic quantities such as heat,
work, free energy and entropy within our framework. In light of
this, we consider the allowed transformations, and impose the
first law of thermodynamics.

We consider any quantum system (of finite dimension) in an
arbitrary initial state ps and with arbitrary Hamiltonian Hj.
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In accordance with statistical mechanics, we define the system’s
internal energy as U=tr(psHs) (that is, its average energy), and
its entropy as the von Neumann entropy S= —tr(ps log ps).
Note that the system itself need not have a well-defined
temperature, however, its free energy relative to a thermal bath
at temperature T is given by F=U—TS.

To represent a thermal bath at temperature T, we assume that
we have an unlimited supply of finite dimensional systems,
each with any desired Hamiltonian Hp, in the corresponding
thermal state 7p :%exp( — ETE), where Z = tr(exp(— ﬁrﬁ)) is
the partition function, and we set kg=1 throughout for
convenience. When one has access to a thermal bath, any system
in a thermal state is essentially a ‘free resource’’”. Note that any
physical protocol must involve a finite number of systems from
the bath, which can be thought of as a single large thermal system.
We define the heat flow Q out of the bath as the decrease in its
average energy, that is, if the bath system is transformed into state
op, then Q =tr(Hgy(tg — 0p)).

In this work, we wish to explicitly include the physical device
that stores the work we extract. The work-storage device we
consider here is a suspended weight, which is raised or lowered
when work is done on or by it. In particular, we consider a
quantum system whose height is given by the position operator X,
with Hamiltonian Hw = mgXx representing its gravitational
potential energy. For simplicity, we choose mg=1Jm ~!, such
that the value of x directly denotes the work stored by the mass.
Such a system has a long history of being used as a work-storage
system in classical thermodynamics®”. We define the work W
extracted as the change in the average energy of the weight.
Hence, if the weight is initially in the state py and is left in the
state ow, then W=tr(Hw(ow — pw)). We do not place any
constraints on the initial state of the weight, unlike in ref. 36. In
fact, as we will see below, by construction, the explicit choice of
initial state will play no role in this work.

It will be helpful to define the translation operator I',, which
acts on (un-normalized) position states of the weight as
L x> =|x+a).

In previous work!4, an alternative work-storage system was
suggested—raising a qubit deterministically from its ground state
to its excited state. This qubit was termed a wit, short for work bit.
However, choosing the energy gap of the work bit requires
advance knowledge of the work to be extracted, and so this model
does not translate well to non-deterministic work extraction,
which we will be interested in here. Furthermore, we would prefer
to use a single work-storage system as a ‘battery’ capable of
gaining and expending work in multiple thermodynamic
processes.

We assume that the initial state is a product state of the system,
bath and weight. We now consider the allowed transformations in
our framework. The intention here is to remain as general as
possible, while eliminating the possibility of ‘cheating’ by bringing
in resources from outside the framework (such as external sources
of work or free energy), or making use of objects within the
framework for a purpose other than intended (for example, by
using the work-storage device as a cold reservoir in a heat
engine). Our first two assumptions are very general: the first is
unitarity. The most general quantum transformation is a
completely positive trace-preserving map. However, here we
consider only unitary transformations of the system, bath and
weight. This prevents us from using external ancillas in non-
thermal states as a source of free energy. The second assumption
is average energy conservation (the first law). We require that any
particular protocol conserves the total average energy (for the
particular initial state of the system and bath on which it is
designed to operate, and on any initial state of the weight). In
terms of the quantities defined earlier, this corresponds to the first
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law of thermodynamics, which with our chosen sign convention
can be expressed as

AU=Q-W. (1)

This prevents us from using the transformation itself as a
source of work (for example, by simply raising the weight). Note
that this assumption differs from that made in previous works®!3
that the unitary evolution commutes with the total energy
operator. We will comment more on this in the Discussion.

We also place two additional constraints on the allowed
dynamics governing interactions with the weight: the first is
weight-state independence, that the work extracted in an allowed
protocol must be independent of the initial state of the weight.
Intuitively, this is because we want the weight to play a ‘passive’
role, such that its sole purpose is to keep account of the extracted
work. More importantly, this prevents us from ‘cheating’ by using
the weight for purposes other than as a work-storage system (for
example, as a cold reservoir or a source of coherence).
Furthermore, this ensures that we can use the same work-storage
system for multiple thermodynamics protocols (or on several
copies of the same state) without having to worry how its initial
state has been modified by earlier procedures. We prove that our
protocol obeys this assumption in the Methods. The second
constraint is weight-translation invariance. We require the
allowed unitaries to commute with all translation operators on
the weight. This reflects the translational symmetry of the weight
system, and the fact that only displacements in its height are
important.

The second law. We now show that the second law of thermo-
dynamics holds in our framework, by proving that there is no
protocol that extracts a positive quantity of work from a thermal
bath while leaving the system unchanged (that is, that there is no
way of turning heat into work)>®. To show this, we will use proof
by contradiction.

Consider a thermal bath at temperature T, an arbitrary
quantum system (acting as a working system for the protocol)
and a weight.

Let us first consider the energy changes during the protocol. As
the final state of the system is the same as its initial state, its
average energy cannot change. Suppose that we are able to extract
average energy from the bath and store it in the weight, AE\y>0.
The average energy of the thermal bath must change by AEz =
— AEyy due to average energy conservation.

Now consider the entropy changes during the same protocol
(in particular, the changes in von Neumann entropy S(p)=
—tr(p log p)). As the system, bath and weight are initially
uncorrelated, their initial entropy is simply the sum of their
individual entropies. Unitary transformations conserve the total
entropy, AS.a = 0. However, as correlations can form during the
protocol, the sum of the final entropies can be greater than the
sum of their initial entropies (as the entropy is subadditive). This
means that

ASB + ASW + ASS 2 Astotal =0 (2)

As the final state of the system must be the same as its initial
state ASg=0. Furthermore, given an initial thermal state for the
bath (with positive temperature), any change of the state that
reduces its average energy must also reduce its entropy (since
the thermal state is the maximal entropy state with given average
energy), ASp<0. However, within our framework, all allowed
protocols are such that the work extracted is independent of the
initial state of the weight; we are therefore free to choose
any initial state of the weight we like. We show in Methods
that the entropy change of the weight can be made as small as
desired by taking its initial state to be a very broad wavepacket

(with well-defined momentum). In particular, we can make
ASyy <|ASg|. This would result in violating equation (2). Hence,
there is a contradiction, and thus there is no way to extract work
from the bath.

The second law places an upper bound on the amount of work
that can be extracted from a system. In the following section, we
will show that we can come as close as desired for extracting this
maximum amount of work, by presenting an explicit protocol.

Extracting work from an individual quantum system. Our
protocol for extracting work from a quantum system proceeds in
two stages. In the first stage, we transform the state of the system
into a mixture of energy eigenstates, without using the thermal
bath. In the second stage, we gradually transform the system into
a thermal state in a sequence of steps, each of which involves a
new qubit from the bath. Each step is essentially an infinitesimal
Carnot cycle, similar to the one discussed in ref. 35. In both
stages, we extract an amount of work arbitrarily close to the free
energy change of the system. It follows from our proof of the
second law that this protocol is optimal.

Stage 1 is to transform the system into a mixture of energy
eigenstates. In this stage, we transform the system into a mixture
of energy eigenstates without using the thermal bath, and extract
work equal to its change in free energy. Consider a system and
weight, initially in an arbitrary uncorrelated state, represented by
the density operator ps® pw-

We can always expand ps in terms of its eigenvalues p,, and
eigenvectors |W,,> as pg =Y pn |¥,)(¥,|, where we have
ordered the eigenvalues such that p,, . ; <p,.. Denoting the energy
eigenstates of the system by |E, ) (with corresponding eigenva-
lues E,;), we implement the unitary transformation

V=Y [E)W, o, (3)

where ¢,= (Y, |Hs|,) —E,, such that V always conserves
average energy. After the transformation, the final state is

Osw =Y pul Ea) (Ba| @ Te,pyg T (4)

with the reduced states og=trw(osw) and ow =trs(osw).
The work extracted is given by W =tr(owHw)—
trw (pwHw) = Y, Pnu€n. The change in average energy of the
system is AU = tr(osHs) — trs(psHs) = — >, Pu€s» hence this
protocol is in accordance with the first law of thermodynamics
(that is, AU= — W). Futhermore, the entropy of the system
remains unchanged, so the work extracted is precisely equal to the
free energy lost by the system

AF = F(pg) — F(o5) =AU = — W. (5)

Stage 2 of the protocol consists in extracting work from a
mixture of energy eigenstates. In this stage, we show that it is
possible to extract work equal to the free energy change when
transforming a system between two states that are diagonal in the
energy eigenbasis. By transforming the state og obtained in the
first stage into a thermal state, we extract the maximum amount
of work from the system.

We begin by considering a small change in the occupation
probabilities of two energy levels. In particular, suppose that we
wish to transform the state s = >, p, | Es)(E, | into a new state
0= ,4qn|Es)(Es|, in which g,=p;+p, go=po—p and
qx = px in all other cases (that is, for all k>1). We consider the
situation in which |9p| << p; < po. Note that this excludes the case
in which p; =0, which introduces some additional subtleties that
are detailed in Methods. Nevertheless, the protocol and conclu-
sions presented below are unchanged.
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To achieve the above transformation, we take a qubit from the
thermal bath with energy eigenstates |0 and |1 ) such that its
state has the form

q0 0
0)(0| + 1)(1 6
S0+ T (6)

that is, such that the ratio of ground and excited state populations
matches that of the correspondlng states in ¢§. Note that thls
fixes the energy spacing Ep of the qubit, as q; = o exp( — ),
hence Eg = Tlog(qO) We then apply the unitary transformat10n
that swaps the bath qublt with the state of the system if the system
is in the two-dimensional subspace spanned by |Ep) and |E;),
and translates the weight to conserve the total energy. This
transformation maps

| Eo) [ 1), [%),, = [E0) [0), [x+6), (7)

for all x, where e = Eg — (E; — E,), while leaving all other states
invariant. This leaves the system in the state o¢ (for more details
see Methods). Note that this unitary commutes with the
Hamiltonian H = Hg+ Hp + Hy, so it will obey the first law of
thermodynamics.

As the weight is only shifted up or down by e when the
system and bath are in |E) [1), or |E;), |0),, respectively,
the work extracted is given by W = edp. The change in the free
energy of the system is given by 6F=0U — TdS. As we show in
Methods, it is straightforward to see that dU=Jp(E, — Ey),
and that the change in the entropy of the system is
given by 58 =0p% + O(0p?). Hence to first order in Jp,
OF= op(E; — EB) —0pe= —W. This shows that we
extract work equal to the reduction in free energy of the system,
up to a deficit of (’)(5p ).

To extract the maximal amount of work from a quantum state,
we perform a sequence of N steps like the one above, interacting
the system with a new thermal qubit in each step, until the system
has been transformed into a thermal state at temperature T.
In particular, for sufficiently large N, we can choose a sequence of
N+ 1 states for the system in which subsequent states only differ
by a transfer of probability 6p = O(4) between a pair of energy
levels, with the first and last states equal to the initial state of the
system and its thermal state, respectively (for example, starting at
the highest energy level, we could first shift probability from all
energy levels with higher probability in ¢ than in s to the | Ep)_
state, then move probability from |Ep) to the remaining levels,
using N/(d — 1) steps for each pair of levels) Applying a unitary
of the form (7) in each step, the work extracted from this stage of
the protocol will be

W = Flos) - F) - O (®)

P =

In the limit N— oo, the work extracted will equal the free energy
change of the system, regardless of the precise choice of path.
Note that in the limit of large N, the state of each thermal qubit is
only changed slightly by the protocol.

Next, we move onto the question of reversibility and optimality
of the protocol. By combining both stages of the protocol, and
using a sufficiently large number of thermal qubits, it is clear that
we can transform an arbitrary state pg into a thermal state 75 and
extract an amount of work as close as we like to the free energy
change of the system. The limiting amount of work we can
achieve is therefore W, = F(ps) — F(ts).

Interestingly, if ps is full rank (that is, it has no zero
eigenvalues), we can also implement the reverse process to create
ps from an initially thermal system taken from the bath. We can
use the stage 2 protocol to move from 7g to g, and then apply the
inverse of the stage 1 transformation. The work cost for this will
be W =F(ts) — F(ps). Note that it is not possible to use our

4

protocol to create a state that is not full rank, as the final step
would require the use of a thermal qubit with Eg = co. However,
as there are always full-rank states arbitrarily close to every state,
this is not a physically significant restriction. In this sense, all
transitions between states can be implemented in a thermo-
dynamically reversible way (we note, however, that if a state is
thermalised and then recreated using our protocol, the fluctua-
tions in the position of the weight will increase). This differs from
the results of refs 14,25, who show that such transitions are
irreversible when considering (almost) deterministic work
extraction, rather than average work. Similarly, an arbitrary
transformation of the system from a state pg to pg can be achieved
(when py is full rank) for a work cost as close as desired to the free
energy change of the system; one way this could be achieved is to
transform the system into a thermal state, and then transform the
thermal state into the final state. We now show that our protocol
is optimal, using our proof of the second law (see Methods).
Suppose that there exists a different protocol that extracts work
F(ps) — Fg(ts) + 6 (where 0 >0) when the system is transformed
from ps to 75, we can then use the above protocol to return the
state from g to ps, extracting work F(ts) — Fy(ps) — €, where we
choose the number of thermal qubits such that € is in the range
0< €< /2. The net effect is that a positive amount of work >6/2
is extracted, and the system begins and ends the combined
procedure in the same state ps, in violation of the second law.

A quantum Carnot engine. In previous work®>, a quantum
Carnot engine was described, and an argument was made that
essentially all Carnot engines are the same. Indeed, each
infinitesimal step of stage 2 of our protocol is essentially the
action of such a Carnot engine (although the situation is more
complicated here, as the engine has to adapt between steps).
Moreover, the frameworks are very different—Hamiltonian
versus unitary, master equations versus extracting qubits from
the bath and so on. It is therefore essential to verify that in our
present framework we can implement a full Carnot engine. In this
section, we show that this is indeed the case.

We must now consider two thermal baths, a hot bath with
temperature Ty and a cold bath with temperature Tc<Ty.
As before, we also have a quantum system (used as a working
system that links the two baths) and a weight. Imagine that the
system is initially in the thermal state relative to the cold bath
(with internal energy Uc and entropy Sc). Our Carnot cycle is as
follows: first bring the system in contact with the hot bath and use
the protocol given in the previous subsection to transform it into
the thermal state at temperature Ty (with internal energy Uy and
entropy Sy). In the asymptotic limit, this allows us to extract
work equal to the free energy change of the system with respect to
the hot bath. Second, move the system back in contact with the
cold bath and use the same protocol to transform it back into the
thermal state at temperature T, extracting work now equal to the
free energy change with respect to the cold bath. In Methods, we
show that the total work extracted in both steps is W= (Ty —
Tc)(Sy — Sc). Furthermore, by applying the first law of thermo-
dynamics to the first step, it follows that Q= Tu(Sy— Sc)-
Therefore, combining these two results yields

Wy I 9)
Qu Tu
which is precisely the Carnot efficiency. By running this process
backwards, we can also construct the corresponding heat pump.

As in standard thermodynamics, the second law prevents us
from constructing any heat engine more efficient than the one
above. If such an engine was possible, we could subsequently run
our Carnot engine as a heat pump such that the net heat flow into
the cold bath was zero. In this case, work would be extracted and
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the hot bath would decrease in energy by a finite amount. The
entropy of the hot bath must have decreased as a result, and the
entropy of the cold bath can also only have decreased (as its
average energy is unchanged and it was originally in a thermal
state). As before, the entropy increase in the weight can be made
as small as you like by choosing an appropriate initial state. This
creates a contradiction with the total entropy conservation
expressed in equation (2).

Discussion

In summary, in this paper, we presented a framework for
extending thermodynamics to individual quantum systems.
Within this framework, we proved that the second law of
thermodynamics holds and gave an explicit protocol to extract
the maximum amount of work from an arbitrary individual
quantum system in conjunction with a thermal bath. This work is
equal to the change in free energy of the system. Our results apply
to any quantum system in an arbitrary initial state, in particular
including non-equilibrium situations. The optimal protocol is
essentially reversible, similar to classical Carnot cycles, and
indeed, we can use it to construct a quantum Carnot engine.

A key element of our framework is to associate classical
energetic quantities (internal energy, heat and work) with average
quantum quantities. However, we want to emphasize that,
although we use average quantities, we do not require an
ensemble of multiple quantum systems to be processed
collectively; our protocols act on an individual quantum system.

A significant difference between our framework and other
approaches'~17 is that the allowed transformations need to only
satisfy average energy conservation rather than the stronger
requirement of strict energy conservation (that is, unitaries that
commute with the total Hamiltonian). The fundamental reason for
allowing such transformations is that average energy conservation
corresponds precisely to the first law of thermodynamics in our
framework (as we defined all energetic quantities in terms of
averages). Demanding strict energy conservation is more than
what the first law (in our framework) requires.

Allowing protocols that only conserve average energy has
major consequences. In particular, when the initial state of the
system contains coherences between energy levels, protocols
satisfying strict energy conservation cannot extract work equal to
the full change in free energy (see Methods). The work deficit
equals the difference in free energy between the true state and its
energy-decohered version. That is, such protocols simply cannot
make any use of the free energy associated with coherences
between energy levels. In our protocol, this free energy is
extracted in stage 1, which is the only part of the protocol that
does not satisfy strict energy conservation.

It is interesting to note a further subtle difference between average
energy-conserving unitaries and strict energy-conserving ones. To
be optimal, both must be ‘state dependent’, that is, they have to be
designed with a particular initial state of the system in mind.
However, if we use a unitary designed for a particular system state
on a different initial state, in the case of strict energy conservation,
the external machinery that implements the unitary continues to
remain ‘neutral’, that is, it doesn’t change the energy of the system-
bath-weight complex, while in the average energy-conserving case
the external machinery may exchange energy with the complex.

We also note that unlike in classical thermodynamics, there
will also be fluctuations, for example, in the final position of the
weight. Analysing these fluctuations is an interesting issue for
future study.

A subtle aspect that we want to mention is that as our protocols
involve a sequence of changing unitaries, we have implicitly
assumed the existence of an external clock by which to control the

protocol. This raises some interesting points—the first is whether
the clock is a resource that costs work to establish and maintain
(in which case we may have over estimated the amount of work
we can extract). Second is to extend the framework to explicitly
incorporate the clock, with protocols being implemented via a
global time-independent Hamiltonian. Finally, in the light of the
difference between strictly energy-conserving unitaries and
average energy-conserving unitaries, it is important to investigate
whether or not there is any essential difference in the use they
make of the energy coherence in the clocks. These are very
interesting areas for future work.

Recently, there has been considerable progress in studying and
understanding the foundations of statistical mechanics, see for
example refs 39-44. It would be extremely important to connect
the present results on quantum thermodynamics to that line of
research.

To conclude, the resource theory framework seems to be a
natural and powerful way to approach thermodynamics. It has
already delivered significant results and we believe that further
investigation along these lines will lead to a much deeper
understanding of the foundations of thermodynamics.

Methods
Independence of the work on the initial state of the weight. Each step of our
protocol can be represented by a unitary transformation of the form

V=3 Iniler,

where a; = (i| Hsp |7) — (i| Hsp | i), the states |i and |i) form different ortho-
normal bases for the system and the relevant portion of the bath, and I, is the
translation operator on the weight, given by I', = exp( — iap/h), where p is the
usual momentum operator satisfying [X, p] = ili.

It is easy to see that all such unitaries commute with translations on the weight.
‘We now show that the work extracted by a unitary of this form does not depend on
the initial state of the weight (even if it is initially correlated with the state of the
system). Let us denote the initial state of the system, bath and weight by the density
operator p. The work extracted is given by

(10)

W= tr(vapVT) ~ tr(Hwp),
- tr((VTHWV— Hw)p)

where Hy = Tsg ® Xw is the Hamiltonian of the weight (defined for convenience
as an operator on the entire system). Now note that

(1)

VIHWV = 3 [)(i[7) (| T - 4iT,
=3 [T oiT
= S li)il® G +a)
= Hy+ Yali)i|o1.
Inserting this expression in equation (111) and simplifying, we obtain

W=Z“i<i|p58‘i> (13)
i

where pgg = trw(p) is the reduced density matrix of the system and bath. Hence,

the amount of work extracted is independent of the initial state of the weight as

desired.

Proof of second law of thermodynamics. In this section, we provide further
details for our proof of the second law.

We first argue that any reduction in the average energy of an initially thermal state
(with positive temperature) must also yield a reduction in its entropy. We only need
to use the fact that a thermal state is the maximal entropy state with a given average
energy, which is well known and can easily be proven using the method of Lagrange
multipliers to maximize the entropy subject to the constraints that the average energy
is constant and the state is normalized. If a system starts in a thermal state and is
transformed to a final state with fixed average energy, the entropy change ASg will be
maximized when the final state is also thermal. In the case where the average energy
decreases, and the initial state has positive temperature, the final state will be a
thermal state of lower temperature, and thus lower entropy.

We now show that the entropy change of the weight in any particular protocol
may be made as small as desired by choosing its initial state to be a very narrow
wavepacket in momentum space (corresponding to a very broad wavepacket
in real space).
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As any allowed unitary transformation must be invariant under translations of
the weight, it can always be written as

v-[a <ZU,,<,,) ><j|>®|p>@\

u

(14)

where the first element of the tensor product corresponds to a unitary operation on
the combined system and bath (as a function of the weight momentum) and the
second corresponds to a projector onto the un-normalized momentum eigenstate
[p) of the weight. We choose the basis states |j ) to be the eigenbasis of the initial
system and bath state, so pgg = > 4 [j) (jl.

For V to be well defined, theré must exist a momentum p, at which v(p) is a
continuous function of p for all i, j. We define new functions 1;(p)=v;;(p) — vij(po)
corresponding to the small variations in v;(p) about po.

For any €>0, we can construct an initial pure state of the weight |¢ >, which
has support on a sufficiently narrow interval in momentum space (centred on py),
such that |;(p)| <e for all i, j whenever ¢(p)=<{p|¢p ) #0.

The final state of the weight is given by

Py = trsp (V<Z;‘f\j><j\ ® |¢>(¢|> VT)
j

-3 [ [ aaneise16 @il

(15)
=19) ¢\+Za(,1(po )&
+05(p0) | ) (51 + 185) 1),
where | %,}> is the un-normalized state (with norm <¢):
&) = [ don,p)oe)1p) (16)

The distance between the initial and final states of the weight in terms of the trace
norm, defined as ||M|| = MTM, is
et = pwll < 34 (l1ED @ -+ I102E ] + 118 1).

i
< d(2e+é%),

where d is the combined dimension of the system and bath (note that this only
includes the finite number of systems from the bath used in the protocol).

As the final state of the weight lives in a finite dimensional subspace, its entropy
can be shown to be continuous due to Fannes’ inequality’.

S(ote) = St < D1og ()

where D = % ||p(,\, — Pw H is the trace distance between the initial and final states of
the weight. We can make D as small as we like by choosing sufficiently small ¢ and
therefore make the entropy change as small as we like.

(18)

Work extraction details. In this section, we provide further details regarding stage
2 of our protocol.
We begin by showing that the final state of the system is o§ after applying the

protocol, where
oy = an |En)(E
n

is such that q; = p; + 0p, qo=po — 6p and gi = py in all other cases (that is, for all
k> 1). At the beginning of stage 2 of the protocol, the combined state of the system,
bath and weight can be written as

ZmE MWEn| @ (q010)(0] + a1 [1)(1]) ® py)

(19)

p= (20)

q(ﬁ’ﬂh

where py, =1 pwl| . After a ing the unita; that is given equation (7),
here piy) =T, FIAf pplying the unitary V that is given by equation (7)

and can also be expressed in terms of the translation operator I', as

V=1®1®1 +|E;> (E|®]0) <1|@T + |Eo> (E|®[1) <0|@T _
—Eo> CEo|®[1) 1| @1 —|E1) <Ei|®]0) <0 ®1,

we find
—tre (VovT) = M) EVE
Ps rBW( 4 ) ( Qo+ | Eo)(Eo
q1po + q1p1
+ (| |E;){(E;| + | En) (Epn 21
G IS WATSICS e

= qo|Eo)(Bo| +qu|E0)(Er| + Y pu|En)(Ea| = 0%
n>2
In later steps of the protocol, the state can be written in a similar form to
equation (20) (up to re-labellings), with each state py;, being a mixture of

translated versions of py.

6

As the weight is only shifted up or down by € when the system and bath are in
|Eo), 1), or|E1) |0), respectively, the work extracted is given by

90 S
=€ —¢ = €op. 22
po(ﬂ +Q> pl(Qo+QI) P 2
It is straightforward to see that
0U =" (qk — px)Ex = 0p(Ex — Eo). (23)
3
The change in the entropy of the system is given by
S = —qologqo — q11og g, + po log po + p1 log p,
=~ potog() = putog( 1) + apog(*)

(24)

_ _o L 0P Es
- 2) (o )

= 5pE?B +0(0p%)

where in the last step we have used the fact that log(1 +x) =x — O(x?) for [« <1.
Hence, to first order in dp

OF =~ 0p(Ey —Ey—Eg) =dpe = —W. (25)

This shows that we extract work equal to the reduction in free energy of the
system, up to a deficit of O(5p?).

Next, we consider increasing the occupation probability of an energy state,
which initially has probability zero. This situation would arise if we were trying to
extract work from an initial pure state, as after stage 1 of our protocol the state
would be |Ey ) (Ey-

Let us consider the case in which we increase p, from 0 to r in N steps, while p,
is decreased from s to s —r. After k steps, the occupation probabilities for the
system will be given by

P = kip (26)

P =s—kop, (27)

where p = {. From equations (22) and (23), it follows respectively that the change
in the internal energy of the system during the kth step will be

SUM = 6p(E: — Ey), (28)
and the work extracted will be
4 = op(BW - (B1 — Bv)),
k]

where Eg’ is the energy gap of the bath qubit used in the kth step. We recall also
that since we are considering thermal states, this energy gap satisfies the relation

(29)

[k+1]
K
M= Tlog(i[H]]) (30)
It remains to calculate the entropy change of the system in the kth step,
58[1‘] p[k+1] logp[kH] Pk+1 lo p[k+1]
+py logp’ —pl’logp!”.
When k =0, this is equal to
389 = — (s — dp) log(s — p) — (3p log dp + slog s
8 (31)
= oph 2 7slog( )
gD
= 5pTB +3p+0(5p%). (32)
When k>0, it is given by equation 31
E \k+|\
H=op3 -l 10g< 3 ) -1l log< i )
Ik
=oph —pl 10g<17 ﬁﬂ) — kdplog(1+ 1) (33)
K
=0p™ +0p(1—klog(1+ 1)) + O(3p?).
By expanding the logarithm as a power series in }, we find
1 1 1 1
1—klog(1+E)fﬁfﬁ+w7... (34)

As this is an alternating sequence with terms of decreasing magnitude, it follows
that

1
<1-
0<1 klog(l + k) <%k (35)
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and hence
[6FH 4 oWl | < T% +0(3p?). (36)

To obtain the total discrepancy between the work extracted and the free energy
loss, we must sum over all steps k€{0,1,2,..,N — 1}, obtaining

N-1

[0F+ W< T&p(H% > i) +NO(5p?)
k=1
1+

<TE(+ 1+ logN)) +NO(L) 37
logN
=o(%),
where in the second line we have used the fact that
N
il</ldx71 N (38)
k= ) x0T o8-
—2 1

It follows from equation (37) that as N— co the work extracted by the protocol
approaches the free energy loss of the system, as desired.

Carnot engine details. Consider two thermal baths, a hot bath with temperature
Ty and a cold bath with temperature T < Ty. As before, we also have a quantum
system (used as a working system that links the two baths) and a weight.
Imagine that the system is initially in the thermal state relative to the cold bath
(with internal energy Uc and entropy Sc). Our Carnot cycle is as follows: first
bring the system in contact with the hot bath and use the protocol given in
Methods to transform it into the thermal state at temperature Ty (with

internal energy Uy and entropy Sy). In the asymptotic limit, this allows us to
extract work

W(,) = 7AF(,-) = (UC — THSC) — (UH — THSH) (39)
Second, move the system back in contact with the cold bath and use the same

protocol to transform it back into the thermal state at temperature Tc, extracting
work

W(,',) = — AF(,-,') = (UH - TCSH) - (UC - TCSC). (40)
The total work extracted in both steps is
W= W@—Q—W(m = (TH—TC)(SH—SC). (41)

Now, by applying the first law of thermodynamics (AU=Q — W) to the first

step above, we find
Ug —Uc =Qu— W, (42)

where Qy is the heat flow out of the hot bath. Substituting this in equation (39), we
obtain

Qu = Tu(Su — Sc)- (43)
Finally, combining this with equation (41) we find
w T
BARES Pl (44)
Qu Tu

Example of average energy-conserving unitary. Throughout the paper, we
treated the unitaries in an abstract way. It is instructive however to give a concrete
example of how an average energy-conserving unitary could be implemented. In
particular, we consider here stage 1 of our protocol, as this is the only part that
satisfies average energy conservation but not strict energy conservation.

Suppose our system is a spin 1/2 particle in a magnetic field of magnitude B
polarized along the z direction, the two energy eigenstates are |1,) and || ), that
is, spin polarized ‘up’ or ‘down’ along the z axis, corresponding to the energy
eigenvalues E; = — E, = hw with @ = 1yB where v is the gyromagnetic factor.
Hence Hs = hwo,, where o; for i€{x,y,z} denotes the usual Pauli operators.

Let the state of the system be some arbitrary given density matrix ps. On
diagonalization, pg can be written as

ps =pl TP | +(1—p) [¥2) (P2 |

with [¥;) and |¥,) being the eigenstates of ps, and p a real number satisfying
0<p<1. The states |'¥;) and |'¥;) are orthogonal to each other (being eigenstates
of ps) and will, in general, be superpositions of energy eigenstates—hence they
contain coherences between energy levels. Without any loss of generality, we can
take |¥;) to be the state of the spin polarized in an arbitrary direction in the x-z
plane, that is,

(45)

W) = cos §f..) +sin 3|L.) (46)
where 0 is the angle it forms with the z axis. The orthogonal state |¥,) is
therefore

|P2) = — sinff.) + cos3|l.). (47)

The average energy of [W;) is (W1|Hs|W1) = hw cos0 and that of |W,) is
(Y,|Hs|¥2) = —ho coso.

In this particular case, the unitary for stage 1 of our protocol is given by
V=)W @lc+ [l )(Y2] o

where ¢ = (¥, |Hs|¥1) —how = hw(cos 0 —1).

One straightforward way to implement this unitary would be to first apply a
field that performs the rotation on the spin, and then to perform a conditional shift
on the weight given the state of the spin. More concretely, we could first apply
Uy = |1,)(¥1]+ |1,) (¥, followed by U, = exp( —ico, ® p/mgh). Here,
however, although the product V= U,U, is an interaction that preserves average
energy, neither U nor U, does individually. Although all we need is for the overall
unitary V to conserve the average energy, one may like a more refined protocol that
conserves average energy at all times.

One can do so by moving to a continuous time picture, thus specifying an
interaction Hamiltonian H;,(f) that implements V after time 7, such that if the
interaction were switched off at an intermediate time ¢, the unitary implemented
would still be average energy conserving. Note that this requires us to preserve the
expected value of the free Hamiltonian Hg+ Hyy at all times, rather than the full
Hamiltonian Hg+ Hw + Hin(t). The latter could also be conserved if desired by
adding a time-dependent constant to the Hamiltonian. We will take 7 to be
sufficiently short that we can neglect the free evolution of the weight during the
interaction—for larger 7 the weight will also pick up some additional phases due to
its free evolution, but we will nevertheless extract the same amount of work and
perform the same transformation on psg.

Such an Hj,(t) can be constructed by considering the simple example given
above, by continuously rotating the spin and conditionally shifting the weight.
More precisely, consider the interaction Hamiltonian

(48)

Hin(t) = — hoo, — %ay - Msin(@(l —Heo(t) ® p (49)
where
o(t) = cos(Y(1 - 1))o, + sin(§(1 — 1)) os. (50)

Note that this interaction Hamiltonian is translationally invariant on the
weight, as we would desire in our formalism. If the last term of equation (50) were
excluded, it is straightforward to see that the effect of Hg + Hjn(t) would be to
rotate the system spin into the energy eigenbasis of Hg in time 7, with the initial
eigenstates of pg tranforming at time ¢ into

[y (1)) = cos(3(1 =) 1.) + sin(§(1 =) [ .) (51)

['¥2(1)) = — sin(§(1=9) 1) + cos(§(1 =) | L.).

These states are instantaneous eigenstates of ¢(t), hence the last term in the
interaction Hamiltonian does not affect the evolution of ps.

However, on the weight, this additional term now produces the desired
conditional shift, conditioned on the instantaneous eigenstates of (t). The rate at
which we need to move the weight is given by the rate of change in the average
energy of the system,

d hwl .

a (Wi(t) | Hs | Wi(t)) = = Tsm((ﬂ(l -4). (52)
This thus constitutes a model that will implement the desired evolution

while conserving the average energy throughout the interaction time 7. Note

that the same evolution would work for any state with the same eigenbasis

as ps.

Limitations of protocols satisfying strict energy conservation. Here we
consider protocols satisfying strict energy conservation (that is, unitaries that
commute with the total Hamiltonian). We show that such protocols cannot
extract work equal to the full change in free energy for systems in initial states
having coherences between energy levels, following a similar approach

to ref. 14.

First, note that as we require the average work extracted by a protocol to be
independent of the initial state of the weight, we are free to choose that state
however we like—here we choose it to be a very narrow wavepacket centred on
zero. Now consider a decomposition of the total state space into subspaces,
each of which has total energy (of the system, bath and weight) close to one of the
energy eigenvalues of the system and bath, in particular the ith subspace
corresponds to the total energy E lying in the range £=£=2 < E < B =B wwhere E;
is the ith energy eigenvalue of the system and bath. Furthermore, we choose the
width of the weight’s initial wavepacket to be narrower than the smallest subspace.
Note that any work-extraction protocol can be followed by a transformation that
decoheres the state with respect to these total energy subspaces, without affecting
the average work extracted. However, this decohering operation commutes with
the unitaries used in the protocol, so we can move it to the beginning of the
protocol without changing the work extracted. At the beginning of the protocol,
this operation has the sole effect of decohering the system in its energy
eigenbasis (changing p to w = Y, II;pIl;, where II; is the projector onto the ith
energy subspace). Hence, the protocol extracts the same amount of work as it
would have if it had operated on ®, and therefore there is a work deficit
equal to F(p) — F(w).
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