
Work-First and Help-First Scheduling Policies for Async-Finish Task Parallelism

Yi Guo Rajkishore Barik Raghavan Raman Vivek Sarkar

Department of Computer Science

Rice University

{yguo, rajbarik, raghav, vsarkar}@cs.rice.edu

Abstract

Multiple programming models are emerging to address

an increased need for dynamic task parallelism in appli-

cations for multicore processors and shared-address-space

parallel computing. Examples include OpenMP 3.0, Java

Concurrency Utilities, Microsoft Task Parallel Library,

Intel Thread Building Blocks, Cilk, X10, Chapel, and

Fortress. Scheduling algorithms based on work stealing,

as embodied in Cilk’s implementation of dynamic spawn-

sync parallelism, are gaining in popularity but also have

inherent limitations. In this paper, we address the problem

of efficient and scalable implementation of X10’s async-

finish task parallelism, which is more general than Cilk’s

spawn-sync parallelism. We introduce a new work-stealing

scheduler with compiler support for async-finish task paral-

lelism that can accommodate both work-first and help-first

scheduling policies. Performance results on two different

multicore SMP platforms show significant improvements

due to our new work-stealing algorithm compared to the

existing work-sharing scheduler for X10, and also provide

insights on scenarios in which the help-first policy yields

better results than the work-first policy and vice versa.

1 Introduction

The computer industry is entering a new era of main-

stream parallel processing due to current hardware trends

and power efficiency limits. Now that all computers —

embedded, mainstream, and high-end — are being built

using multicore chips, the need for improved productivity

in parallel programming has taken on a new urgency. The

three programming languages developed as part of the

DARPA HPCS program (Chapel [5], Fortress [2], X10 [6])

all identified dynamic lightweight task parallelism as one

of the prerequisites for success. Dynamic task parallelism

is also being included for mainstream use in many new

programming models for multicore processors and shared-

memory parallelism, such as Cilk, OpenMP 3.0, Java

Concurrency Utilities, Intel Thread Building Blocks, and

Microsoft Task Parallel Library. In addition, dynamic data

driven execution has been identified as an important trend

for future multicore software, in contrast to past program-

ming models based on the Bulk Synchronous Parallel (BSP)

and Single Program Multiple Data (SPMD) paradigms.

Scheduling algorithms based on Cilk’s work-stealing sched-

uler are gaining in popularity for dynamic lightweight task

parallelism but also have inherent limitations.

In this paper, we focus on a core subset of X10’s concur-

rency constructs, consisting of the async, atomic and

finish statements. We address the problem of efficient

and scalable implementation of X10’s dynamic async-finish

task parallelism, which is more general than Cilk’s spawn-

sync parallelism and can easily be integrated into any of

the programming models listed above. Our contributions

include:

• A new work-stealing scheduling framework with com-

piler support for async-finish task parallelism that can

accommodate both work-first and help-first scheduling

policies.

• A non-blocking implementation of the help-first work-

stealing scheduling policy. This is important for

scalability in situations when the steal operations can

become a serial bottleneck with the work-first policy.

• A study of the performance differences between work-

first and help-first scheduling policies, and insights on

scenarios in which the help-first policy yields better

results than work-first policy and vice versa.

• Performance results that show significant improve-

ments (up to 4.7× on a 16-way Power5+SMP and

22.8× on a 64-thread UltraSPARC II) for our work-

stealing scheduler compared to the existing work-

sharing scheduler for X10 [3].

The rest of the paper is organized as follows. Section 2

summarizes the similarities and differences between Cilk’s

spawn-sync parallelism and X10’s async-finish parallelism,

as well as past work on the Cilk work-stealing scheduler.

Section 3 summarizes two key limitations of Cilk-style

work-stealing schedulers in handling async-finish task par-

allelism, namely escaping async’s and sequential calls to

parallel functions, and our approach to addressing these

limitations in a work-stealing framework. Section 4 in-

troduces the help-first scheduling policy and describes our

non-blocking implementation. Section 5 presents perfor-

mance results on two different multicore SMP platforms.

Section 6 discusses related work, and Section 7 contains

our conclusions.

2 Background

In this section, we first compare the computations in

Cilk spawn-sync task parallelism and the X10 finish-async

task parallelism and then briefly summarize the Cilk work-

stealing scheduler [10].

2.1 Cilk computation vs X10 computation

Blumofe et al. [4] defined the notion of fully-strict

computation as follows. Each multithreaded computation

can be viewed as a dag of dynamic instruction instances

connected by dependency edges. The instructions in a task

are connected by continue edges, and tasks form a spawn

tree with spawn edges. Join edges are introduced to model

the dependencies enforced by sync operations. A strict

computation is one in which all join edges from a task

go to one of its ancestor tasks in the spawn tree. A fully-

strict computation is one in which all join edges from a task

go to its parent task in the spawn tree. All computations

generated by Cilk programs are fully-strict. A terminally-

strict computation is one in which each join edge goes from

the last (terminal) instruction of a task to an instruction in

one of its ancestor tasks in the spawn tree [1].

As in the case of Cilk, an X10 computation can

also be represented as a dag in which each node corre-

sponds to a dynamic execution instance of an X10 in-

struction/statement, and each edge defines a precedence

constraint between two nodes. Figure 1 shows an example

X10 code fragment and its computation dag [1]. The first

instruction of the main activity1 serves as the root node

of the dag (with no predecessors). Any instruction which

spawns a new activity will create a child node in the dag

with a spawn edge connecting the async instruction to

the first instruction of that child activity. X10 activities

may wait on descendant activities by executing a finish

statement. We model these dependencies by introducing

startFinish (l2 in Figure 1) and stopFinish (l8 in

Figure 1) nodes in the dag for each instance of a finish

1The terms “activity” and “task” are used interchangeably in this paper.

l1 S0;

l2 finish { //startFinish

l3 async {

l4 S1;

l5 async {

l6 S2;}

l7 S3;}

l8 } //stopFinish

l9 S4;

l1 l3

l4 l5

l6

l7

l8l2 l9

!
0

!
1

!
2

Figure 1. X10 computation dag

construct and then create join edges from the last instruction

of each spawned activity within the scope of finish to the

corresponding stopFinish instruction.

The async statement in X10 creates a new task in the

computation dag and a spawn edge is created from the

current task to the new task. In Cilk, the spawn statement

has the same effect. Both the finish statement in X10 and

sync statement in Cilk result in join edges being created

from descendant tasks. However, there are interesting

differences between the X10 and Cilk computations. For

example, the direct join edge from activity Γ2 to activity

Γ0 in Figure 1 is not allowed in Cilk because Γ0 is not

Γ2’s parent in the dag. The only way to establish such a

dependence in Cilk is via Γ1. In X10, it is possible for a

descendant activity (e.g., Γ2) to continue executing even if

its parent activity (e.g., Γ1) has terminated. This degree

of asynchrony can be useful in parallel divide-and-conquer

algorithms so as to permit sub-computations at different

levels of the divide-and-conquer tree to execute in parallel

without forcing synchronization at the parent-child level.

As shown in Figure 2, the class of Cilk’s spawn-sync

parallel computations is a subset of X10’s async-finish par-

allel computations. Specifically, Cilk’s spawn-sync compu-

tations must be fully-strict and terminally-strict, where as

X10’s async-finish computations must be terminally-strict

but need not be fully-strict.

Blumofe et al. [4] proved that fully-strict computations

can be scheduled with provably efficient time and space

bounds using work-stealing. The same theoretical time and

space bounds were extended to X10’s async-finish parallel

computations by Agarwal et al. [1], but no work-stealing

implementations were designed and evaluated in that paper.

Strict Computations

Fully-strict
Computations

Cilk
spawn-sync

Parallel Computation

X10
async-finish

Parallel Computation

Terminally-strict
Computations

Figure 2. Classes of multithreaded computa-

tions

2.2 Cilk Work-Stealing Scheduler

The Cilk work-stealing runtime comprises of a set of

workers, typically one per CPU or core. Each worker

maintains a local deque of frames which represents work.

The runtime starts with one worker executing the main

function and the rest being idle with empty deques. When-

ever a worker is idle, it becomes a thief and attempts to

steal work from another worker’s deque. On a spawn, the

continuation is saved in a frame which is pushed onto the

worker’s deque so that other workers can steal it. Whenever

the worker returns from a spawned task, it will first check

if the frame that it pushed before the spawn is stolen. If so,

the fully-strict model guarantees that there is no other useful

work on the deque for the worker and hence it becomes a

thief. Otherwise, it just executes the continuation of the

spawn. Every Cilk function has two clones generated by

the compiler: the fast clone and the slow clone. The fast

clone is always invoked on a spawn, and is designed to

have the smallest overhead possible. The slow clone is

invoked when the thief steals a frame from a victim and

then needs to resume the task at its apporpriate continuation.

The slow clone contains operations trestore the execution

context such as global and local variables etc.

3 Work-Stealing Extensions for X10 Compu-

tation

As discussed in Section 2, X10 computations form a non-

trivial super-set of Cilk computations. In this section, we

first identify two new features of X10 that demand compiler

and runtime support for work-stealing, but have not been

addressed by past work. Then we present our approach to

supporting the two features. The approach described in this

section represents a common framework that can be used

by both the work-first and help-first policies described in

the next section.

1 class V {

2 V [] neighbors;

3 V parent;

4 V (int i) {super(i); }

5 boolean tryLabeling(V n) {

6 atomic if (parent == null)

7 parent = n;

8 return parent == n;

9 }

10 void compute() {

11 for (int i=0; i<neighbors.length; i++) {

12 V e = neighbors[i];

13 if (e.tryLabeling(this))

14 async e.compute(); //escaping async

15 }

16 }

17 void DFS() {

18 parent = this;

19 finish compute();

20 }}

Figure 3. Code for parallel DFS spanning tree
algorithm in X10

DFS

compute

compute

compute

compute

(a) Cilk

DFS

compute

compute

compute
compute

(b) X10

Figure 4. Cilk’s and X10’s spawn trees (solid

lines) with join edges (dashed lines) for com-

putation generated by program in Figure 3

3.1 Escaping Asyncs

The first feature is escaping asyncs, which is defined to

be a task that outlives its parent and continues execution

after its parent has terminated. As an example, consider

the parallel-DFS spanning tree graph algorithm [9] shown

in Figure 3. In a terminally-strict language like X10, a

single finish scope at line 19 suffices for all descendant tasks

spawned at line 14. It is possible in this X10 version for

a call to compute() in a child task to outlive a call to

compute() in a parent task. The only constraint is that

all async calls to compute() must complete before the

root task can continue execution past line 19. In contrast,

a fully-strict computation model, like Cilk, will require the

insertion of an implicit sync operation at the end of each

task thereby ensuring that each parent task waits for all

its child tasks to complete. In X10 terms, this would be

equivalent to adding an additional finish scope that encloses

the body of the compute function.

Figures 4(a) and 4(b) show the spawn trees for Cilk’s

fully-strict computation and X10’s terminally-strict compu-

tation for the program in Figure 3. The solid and dashed

arrows represent spawn and join edges respectively. Note

that in Figure 4(b), all join edges go from a task to the root

while in Figure 4(a), each join edge goes from a task to its

parent. In terminally-strict computations, a task terminates

without waiting for its descendants. This allows the runtime

to collect the space used by those tasks earlier than in fully-

strict computations. As discussed in Section 5, this is why

it may be possible for a terminally-strict computation to

use even less space than that of an equivalent sequential

program (or of an equivalent fully-strict computation).

3.2 Sequential Calls to Parallel Functions

The second feature is that sequential calls to parallel

functions are permitted in X10 but not in Cilk, as a result of

which there is no need to distinguish between “parallel” and

“sequential” functions in X10. In Cilk, a parallel function

(also known known as a cilk function) is defined to be

one that may spawn tasks. Sequential calls to parallel

functions are not directly permitted in Cilk, but can be

simulated by spawning the function and then performing

a sync operation immediately thereafter. In addition to the

overhead of extra spawns, this restriction has a significant

software engineering impact because it increases the effort

involved in converting sequential code to parallel code,

and prohibits the insertion of sequential code wrappers for

parallel code. In contrast, X10 permits the same function to

be invoked sequentially or via an async at different program

points.

The program shown in Figure 5 is valid in X10 but

cannot be directly translated to Cilk. In Cilk, C() and

E() would be cilk functions because they may spawn tasks.

Thus C() and E() cannot be called sequentially in function

B() and D() respectively.

3.3 Our Approach

3.3.1 Escaping Asyncs

To support escaping asyncs in X10, a finish scope is

implemented as a bracketed pair of startFinish and

stopFinish statements. Any task spawned within a

finish scope is joined only at the stopFinish operation

for the scope. In contrast, an implicit sync is inserted at

the end of each cilk function to ensure fully-strictness.

We dynamically create a finish node data structure in the

runtime for each startFinish statement. Various finish

nodes are maintained in a tree-like structure with the parent

pointer pointing to the node of its Immediately Enclosing

Finish (IEF) scope. Apart from the parent pointer, each

finish node keeps track of the number of workers that are

working under its scope. When a worker is blocked at a

stopFinish, the continuation after the finish scope is

saved in the finish node. This continuation is subsequently

picked up for execution by the last child in the finish scope

(i.e., the child which decrements the workers-counter to

zero).

3.3.2 Sequential Call to a Parallel Function

The continuation after an async should contain enough

context for the thief to resume the execution. In Cilk, each

cilk function corresponds to a task in the computation dag.

A parallel function cannot be called sequentially and must

be spawned. For the work-stealing scheduler, this simplifies

the continuation to contain only the activation frame of

the current function because the thief that executes the

continuation will never return to its caller as its caller must

be its parent task whose continuation must have already

been stolen.

In X10, when calling a parallel function sequentially, the

activation frame of the caller still needs to be saved. This is

because if stealing occurs in the parallel function, the thief

may return from the call and execute the statements after the

call. To support this feature, every continuation is extended

to contain a stack of activation frames up to the previous

async in the call chain. This stack of activation frames is

managed at runtime at every sequential and parallel function

call, but is only pushed to the deque at points where stealing

may actually occur, i.e., the async program points. The

thief that steals the frame is then responsible for unwinding

the activation frame stack.

In Cilk, functions are distinguished as parallel or se-

quential using the cilk keyword. In our implementation,

the compiler performs static interprocedural analysis to

distinguish sequential and (potentially) parallel functions so

as not to burden the programmer.

Consider the example in Figure 5. C1 and C2 label

the points where stealing can actually occur. At C1, the

frame pushed to the deque contains the stack of activation

frames for C1, L2, L1 in order. The thief that steals

the frame is responsible for starting the continuation at C1.

Upon returning from function C, the thief will resume the

execution at L2, which will return to L1. At each return, the

thief will find the activation frame required to resume the

execution by popping the stack. The activation frame stack

for C2 contains the activation frames up to the previous

spawn i.e., C2 and L3.

As mentioned earlier, a naive way to support a sequential

call to a parallel function in a work-stealing runtime is

to enclose the sequential call in finish-async. This

approach loses parallelism by disallowing the code after the

sequential call to run in parallel with the task that escapes

the callee of the sequential call. In contrast, our approach

!"#$%$

$$&"#'$

()*$+++$

,$

&"#$%$

$$-"#'$

(.*$+++$

,$

-"#$%$

$$/0123$4"#'$

-)*$+++$

,$

4"#$%$

$$5"#'$

(6*$+++$

,$

5"#$%$

$$78$"+++#$

$$$$/0123$5"#'$

-.*$+++$

,$

+'

,'

('

("%%-./'!0"12'

3'

4'

3&56&' ().0-.6"0-).'

!0"12'

78'9','

7:'9'+'

(:'9'('

7;'9'3'

(8'9'4'

Figure 5. Support for sequential call to a

parallel function

for (i=1 to SOR_ITERATIONS) {

finish for (p = 0 to P-1) {

// parallel for.

// work partitioned into P chunks

async {...}

}

}

Figure 6. SOR code structure depicting itera-

tive loop parallelism

does not lose any parallelism.

Another approach to support sequential calls to parallel

functions is to save the whole calling context before making

an asynchronous call. This requires access to the runtime

stack by user code, which is not allowed by many high-

level programming language, such as Java, due to security

reasons. Our approach instead saves local variables in heap

frames that are manipulated with compiler and runtime

support.

4 Work-first vs. Help-First Scheduling Poli-

cies

One of the design principles of Cilk is the work-first

principle [10]. In a nutshell, the work-first policy dictates

that a worker executes a spawned task and leaves the

continuation to be stolen by another worker. In contrast,

the help-first policy dictates that a worker executes the

continuation and leaves the spawned task to be stolen. We

use the “help-first” name for this policy because it suggests

that the worker will ask for help from its peer workers

before working on the task itself. Figure 8 shows the sketch

of the code that the compiler will generate for both policies.

The work-first policy is designed for scenarios in which

stealing is a rare event. When the number of steals is low,

the worker will mostly execute the fast clone which has

much lower overhead than the slow clone.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

$" %" '" (" $)" &%")'"

!
"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
#
'/
)
(&
0)
.#
&

1&-2&,3'#)$.&

!45&."##$%"&-6&780-'#&9&78,3'#)$&:(,')!")'0&;<&

*+,-./0123"45,067" 8519./0123"45,067"

Figure 7. Speedup of SOR over its serial ver-

sion on 64-way UltraSparc T2 under help-first

and work-first policies

4.1 Limitations of Work-First Policy

In practice, we observe that the overhead of steals

becomes increasingly significant as the number of workers

increases. One example is iterative loop parallelism. Fig-

ure 6 shows the code structure of a wavefront algorithm

implemented in an X10 version of the Java Grande SOR

benchmark. It has a sequential outer loop and a parallel

inner loop. The work in the inner parallel loop is divided

evenly among P workers. Figure 7 shows the speedup

of this SOR benchmark relative to its serial version on

a 64-thread UltraSPARC T2 Niagara2 machine. If the

asyncs are executed under the work-first policy, we observe

a degradation in performance beyond 16 threads. The

following analysis explains why.

Let the total amount of work in one iteration of the

outer loop be T , the amount of time to migrate a task from

one worker to another be tsteal and the time to save the

continuation for each iteration be tcont. Under the work-

first policy, one worker will save and push the continuation

onto the local deque and another idle worker will steal it.

Therefore, distributing the P chunks among P workers will

require P−1 steals and these steals must occur sequentially.

The length of the critical path of the inner loop is bounded

below by (tsteal + tcont) ∗ (P − 1) + T/P . According

to the THE protocol [10], a push operation on the deque is

lock-free but a thief is required to acquire the lock on the

victim’s deque before it can steal, thus tcont << tsteal. As

P increases, the actual work for each worker T/P decreases

and hence, the total time will be dominated by the time to

distribute the task, which is O(tsteal ∗ P).
Another example where the work-first policy suffers

is the parallel Depth First Search (DFS) spanning tree

algorithm shown in Figure 3. If the asyncs are scheduled

using the work-first policy, the worker calls the compute

finish {

async S1;

L1: async S2;

L2: S3;

}

startFinish();

push continuation after L1;

S1; // Worker executes eagerly

return if frame stolen

push continuation after L2;

S2; // Worker executes eagerly

return if frame stolen;

S3;

stopFinish();

Work-first Policy

startFinish();

push task S1 to local deque;

push task S2 to local deque;

S3;

stopFinish();

Help-first Policy

Figure 8. Handling async using work-first and help-first policy

function recursively and (like its equivalent sequential ver-

sion) will overflow any reasonably-sized stack, for large

graphs. Hence, one cannot use a recursive DFS algorithm

if only a work-first policy is supported for asyncs. Since

the stack-overflow problem also arises for a sequential DFS

implementation, it may be natural to consider a Breadth

First Search (BFS) algorithm as an alternative. However,

Cong et al. [9] show that, for the same input problem, BFS

algorithms are usually less scalable than DFS algorithms

due to their additional synchronization requirements. As

discussed in the next section, our approach in such cases

is to instead use a help-first policy that has a lower space

requirement for stack size than the work-first policy, for the

DFS algorithm in Figure 3.

4.2 Help-First Scheduling Policy

As mentioned earlier, our work-stealing runtime also

supports the help-first scheduling policy. Under this policy,

upon executing an async, the worker will create and push

the task onto the deque and proceed to execute the async’s

continuation. Once the task is pushed to the deque, it is

available to be stolen by other workers and the stealing

can be performed in parallel. Let ttask be the time to

create and push the task to the deque. For the same reason

mentioned in the last subsection, ttask << tsteal. As the

stealing overhead is parallelized, the overhead of the steal

operation is not a bottleneck any more. When asyncs are

handled under help-first policy, the performance of the SOR

benchmark scales well as shown in the Figure 7.

4.3 Non-blocking Steal Operation

As illustrated in the SOR example, steal operations

for the same finish scope are serialized in a work-first

policy. However, under the help-first policy, the steal

operations can be performed in parallel by using a non-

blocking algorithm. To support this, we extend the lock-free

dynamic circular work-stealing deque proposed by Chase

Push task
to deque

 Stmt =
startFinish

Check
in

Execute
Stmt

 Stmt =
Async

Pop local task
of current finish?

Get ready to
run task

Check
Out

Pop local
task

VerifyCompete

Compete for
Continuation

 Stmt =
stopFinish

Save
Continuation

Check
in

Steal a
task

Initial Worker
of main scope

Other workers

Yes

Yes

Yes

Yes

Succ

Yes

Yes

No

No

No

No

No

Fail

No

Task
Complete?

Stmt=get
next stmt

No

Yes

On Task
Terminating

Continuation
== null?

END

Yes

No

Figure 9. Flow chart for help-first work-

stealing runtime

and Lev [7] and designed a non-blocking implementation

for steal operations in help-first policy.

Figure 9 shows the main flow of the runtime and Fig-

ure 10 lists the pseudo-code of the related functions. Each

finish scope has a global worker count (gc) and one local

task counter (lc) for each worker. All counters are atomic

and volatile. The global worker counter has a version num-

ber associated with it. The version number will increment

every time the global worker counter is incremented from 0

to 1 (line 15).

After initialization, one worker will start executing the

main function, which begins with the startFinish.

Other workers will start stealing. The runtime terminates

when the continuation after the main finish scope is exe-

cuted.

We define the term check in and check out for a worker

and a finish scope. A worker checks into a finish scope

F if it enters F by calling startFinish or it begins to

execute a task of F after stealing it from the other worker.

A worker checks out of the finish scope F if it completes a

task under F , or it cannot complete the current task because

it is not safe to continue execution at the stopFinish of

F while there is no local task under F on the deque. If

there is still a local task under F , the worker will defer the

check out until all local tasks under F are completed. Note

that when a worker checks into a new finish scope F by

calling startFinish of F , it will not check out of F ’s

parent, but instead, will choose the worker that executes the

continuation after F as its delegate to check out F ’s parent.

Now we argue that the runtime guarantees that for any

finish scope F , the continuation after F is safely executed

by exactly one worker:

• First, we argue that when verifyComplete(F)

returns true at line 48, it is safe to execute the

continuation after F , i.e., all tasks spawned within

the finish scope F have been completed. When

verifyComplete returns true, it verifies that all

workers checked into the finish scope have been

checked out and there is no worker that has stolen a

task but not checked in yet. The former case is detected

by verifying that the global worker counter is 0. The

latter is detected by comparing the version number of

the global worker counter before and after verifying

all local task counters are 0. Note that in the steal

function, the thief checks in (line 4) before the local

task counter of the victim is decremented (line 5). If

there is a worker that steals a task but has not yet

checked in, the local task counter of the worker must

be greater than 0. Observe that when a worker checks

out of F , there is no task under the F on its local deque.

So when the global counter of F is 0 and no stealing is

happening, it is safe to execute the continuation after

F .

• Second, we observe that verifyComplete will

return true after the last worker decrements the global

worker counter to 0. The CAS operation ensures that

at most one worker will execute the continuation in

case there are multiple workers competing for the

continuation.

4.4 Discussion

An important theoretical advantage of the work-first

policy is that it guarantees that the space used to run the

parallel program is bounded by a constant factor of the

space used in its sequential version. In the help-first policy,

since we are creating tasks eagerly, the space bound is not

guaranteed. As part of our future work, we plan to explore

a hybrid approach that adaptively switches from a help-first

policy to a work-first policy depending on the size of the

local deques so as to establish a guaranteed space bound.

Another approach to creating a task eagerly is work-

sharing, as in the current X10 runtime [3] which is

1 function Object help_first_steal () {

2 task = steal task from victim’s deque;

3 finish = task’s finish scope;

4 current worker checks in under finish;

5 finish.lc[victim]--;

6 return task;

7 }

8 function push_task_to_deque(task) {

9 finish = current finish scope;

10 finish.lc[this_worker]++;

11 this.deque.pushBottom(task);

12 }

13 function check_in(finish) {

14 if (finish.gc.getAndIncrement() == 0);

15 finish.gc.version++;

16 }

17 function check_out(finish) {

18 decrement finish.gc;

19 }

20 function startFinish() {

21 checks in new finish scope;

22 }

23 function stopFinish() {

24 finish = current finish scope;

25 save continuation after finish;

26 return to runtime;

27 }

28 function task OnTaskComplete() {

29 finish = current finish scope;

30 task = pop local deque;

31 if (task.finish == finish)

32 return task;

33 else

34 push task back to deque;

35 check_out finish;

36 if (verifyComplete(finish)) {

37 if (CAS(finish.gc, 0, -1)) {

38 return finish.continuation;

39 }

40 return null;

41 }

42 function boolean verifyComplete(finish) {

43 versionOld = finish.gc.version();

44 if (finish.gc != 0) return false;

45 if (not all lc of finish 0)

46 return false;

47 versionNew = finish.gc.version();

48 return versionOld == versionNew;

49 }

Figure 10. Pseudo code of help-first non-

blocking steal protocols. Global counters

(gc) and local counters (lc) are atomic and

volatile.

based on the ThreadPoolExecutor class in the

java.util.concurrent package. Unlike work-

stealing, work-sharing uses a single task queue. Whenever

an async is encountered, the task is created and inserted

in the queue. All workers get their tasks from this global

queue. The disadvantage of the work-sharing approach

is that the global queue is likely to become a scalability

bottleneck as the number of workers grows. In contrast, our

work-stealing scheduler with the help-first policy maintains

local deques for workers and adds newly created tasks onto

these deques locally.

5 Experimental Results

In this section, we present experimental results to com-

pare the performance of our portable implementation of

work-stealing schedulers based on work-first and help-

first policies. We also compare the work-stealing im-

plementation with the existing work-sharing X10 runtime

system. Section 5.1 summarizes our experimental setup.

Section 5.2 compares the performance of the schedulers

on a set of benchmarks that includes eight Java Grande

Forum (JGF) benchmarks, two NAS Parallel Benchmark

(NPB) benchmarks, and the Fibonacci, and Spanning Tree

micro-benchmarks. The Java Grande Forum and NAS

Parallel benchmarks are more representative of iterative

parallel algorithms rather than recursive divide-and-conquer

algorithms that have been used in past work to evaluate

work-stealing schedulers. We use Fibonacci and Spanning

Tree as microbenchmarks to compare the performance of

the work-first and help-first policies described in Section 4.

There are several advantages in using a new language

like X10 to evaluate new runtime techniques, but a major

challenge is the lack of a large set of benchmarks available

for evaluation. To that end, we focused on X10 benchmarks

that have been used in past evaluations [6, 3, 16, 18, 9].

5.1 Experimental Setup

The compiler and runtime infrastructure used to obtain

the performance results in this paper is summarized in

Figure 11. A Polyglot-based front-end is used to parse

the input X10 program and produce Java class files in

which parallel constructs are transformed to X10 runtime

calls. To support our work-stealing based runtime, the front-

end generated code needs to be modified to produce fast

and slow clones for every method [10]. We achieve this

in the Code Gen components in Figure 11 by using the

Soot infrastructure [19] to transform the class files. The

work-sharing runtime in the current X10 system does not

need any special code generation for fast and slow clones.

In an effort to achieve as close to an “apples-to-apples”

comparison as possible, all paths use the same X10 source

!"#$%&'$()

*#"+&,%'-./$0)

1#(')2'$)3#")

*#"+&!/"4%)5#./67)

*#"+&,%'-./$0)

1#(')2'$)3#")

8'.5&!/"4%)5#./67)

9'":/$-..7),%"/6%)

;-"-..'.);"#0"-:)

*#"+&,%'-./$0)

<=$%/:')>/%?)

*#"+&!/"4%)5#./67)

*#"+&,%'-./$0)

<=$%/:')>/%?)

8'.5&!/"4%)5#./67)

*#"+&,?-"/$0)

<=$%/:')>/%?)

,/$0.')@='=')

9"-$43#":'()

;"#0"-:)>/%?)

<=$%/:')6-..4)3#")

A47$6B!/$/4?)

Figure 11. Compiler and runtime infras-

tructure for work-sharing and work-stealing
schedulers.

program at the top of the figure and the same JVM at the

bottom.

The work-sharing scheduler shown in the left hand side

of Figure 11 represents the current scheduler in the open

source X10 implementation. The work-sharing scheduler

makes extensive use of the standard java.util.concurrent

(JUC) library [15]. Details of the current X10 runtime can

be found in [3].

The performance results were obtained on two multi-

core SMP machines. The first is a 16-way 1.9 GHz

Power5+ SMP2 with 64 GB main memory; the runs on

this machine were performed using IBM’s J9 virtual

machine for Java version 1.6.0. The second machine is

a 64-thread 1.2 GHz UltraSPARC T2 (Niagara 2) with

32 GB main memory; the runs on this machine were

performed using Sun’s Hotspot VM for Java version

1.6. All results were obtained using the -Xmx2000M

-Xms2000M JVM options to limit the heap size to 2GB,

thereby ensuring that the memory requirement for our

experiments was well below the available memory on

all the machines. The main program of the benchmarks

were extended with multiple-iterations within the same

Java process for all JVM runs to reduce the impact of JIT

compilation time in the performance comparisons. We

also used the -Xjit:count=0, optLevel=veryHot,

ignoreIEEE, -PRELOAD CLASSES=true and

-BIND THREADS=true options for the Power5+

SMP runs. The count=0 option ensures that each

method is JIT-compiled on its first invocation. The

-PRELOAD CLASSES=true option causes all X10

classes referenced by the application to be loaded before

2Though the Power5+ SMP hardware has support for 2 hardware

threads per core, we explicitly turned off SMT for all Power5+ runs.

!"!#$%

!"#&%

"#'% (#$%

(!#$%

!#)% (#&% (#$%

#%

'*#*%

(**#*%

('*#*%

!**#*%

!'*#*%

+,-./,012%'% +,-./,012%(*% +,-./,012%('% +,-./,012%!*%

!
"
#
$%
&
'
(
)&
*
#
)+
(
),
#
$)

-+./012)'()34$'5#)")34675#89:;658<=85$)>?)

345678%)9% 345378%)9%

Figure 12. Execution times of Fib(45) using

64 workers for HFP (Help-First Policy) and

WFP (Work-First Policy) with thresholds 5,

10, 15, and 20 on an UltraSparc T2 system.

the main program is executed. This approach is permitted

for X10 (but not for Java in general), and allows for better

code to be generated when each method is compiled on

its first invocation. The -BIND THREADS=true option

prevents runtime migration of worker threads.

All JGF experiments were run with the largest data

size provided for each benchmark except for the Series

benchmark for which Size B was used instead of Size C.

There are five available sizes for the NPB benchmarks (S,

W, A, B, C), and we used the intermediate Size A for all runs

in this paper. Since the focus of this paper is on task-level

parallelism in an SMP, the NUMBER OF LOCAL PLACES

runtime option was set to 1 for all runs.

All performance measurements on the UltraSparc T2

machine followed the “Best of 30 runs” methodology pro-

posed in [11], whereas a “Best of 5 runs” approach was used

for the Power5+ SMP machine due to limited availability of

the machine for our experiments.

5.2 Results

Fib is a classic example of recursive parallel divide

and conquer algorithm, and is a useful micro-benchmark

for work-stealing schedulers. Figure 12 compares the

execution time of the work-first and help-first policies for

Fib(45) using 64 workers and varying the threshold

from 5 to 20. A threshold of T implies that all calls

to Fib() with parameters ≤ T are implemented as se-

quential calls. Similar threshold based Fib performance

measurements have been reported by D. Lea [13]. As

predicted by past work (e.g., [10]), the work-first policy

(WS-WFP) significantly outperforms the help-first policy

(WS-HFP) for smaller threshold values. This result re-

!"

#"

$"

%"

&"

'!"

'#"

'$"

'" #" $" &" '%" (#" %$"

!
"
#$
%
&
"
'
%
()
*+
),

-
&
.
/
0
&
-
12
1-
3)

4)$5)("#-.01)

6'.++*+&7(#--)("#$%&"'%()$+)873$#-)9)87("#-.0):;(#.1'.#3)!<)

)*+,-."/0"12345")*+)-."%#678"12345")*+,-."%#678"12345"

Figure 13. Spanning Tree throughput in terms

of MegaEdges/sec for HFP (Help-First Policy)

and WFP (Work-First Policy) on an UltraSparc

T2 system. The maximum stack size we

could use for WFP is 16MB.

establishes the fact that the work-first policy is well-suited

for recursive parallel algorithms with abundant parallelism

and small numbers of steals. However, if we increase the

threshold to 20 (a value considered to be reasonable for Fib

in [13]), the performance gap between WS-HFP and WS-

WFP disappears.

In Figure 13, we compare the throughput of the work-

first and help-first policies on the spanning tree microbench-

mark for irregular large graphs. Throughput is shown in

terms of million edges processed per second. Spanning

tree is an important kernel computation in many graph

algorithms. In general, large-scale graph algorithms are

challenging to solve in parallel due to their irregular and

combinatorial nature. There are three observations that can

be drawn from Figure 13. First, WS-HFP outperforms WS-

WFP for a given input graph (62.5K nodes). Second, as also

observed in [9], WS-WFP is unable to run on large graphs

due to stack size limitations. In our experiments, we were

unable to get WS-WFP results for a graph larger than 62.5K

nodes. Third, not only can WS-HFP process larger graphs

(with 9M nodes in Figure 13), but it also achieves better

scalability when doing so.

The Fib and Spanning-Tree microbenchmarks illustrated

cases in which WS-WFP performs better than WS-HFP

and vice versa, though the gap can be narrowed for Fib

by increasing the threshold value for parallelism. We now

turn our attention to the JGF and NPB benchmarks, with

results presented for two SMP machines in Figures 14 and

15. For convenience, the speedup measurements in both

figures are normalized with respect to a single-processor ex-

ecution of the X10 work-sharing scheduler [3]. In previous

work [16], we showed that the work-sharing scheduler can

!"!#

$"!#

%!"!#

%$"!#

&!"!#
!
"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
/,
0
'#
)
$
&1

-
'2
/3
0
)
'4
5
6
&

!"##$%"&-5&)&.7/8)9&:-8#';<&!=:&

'()*+,-).# '+/'01# '+/,01#

Figure 14. Comparison of work-sharing, HFP (Help-First Policy) and WFP (Work-First Policy) on a

16-way Power5+ SMP. The execution times were obtained using “Best of 5 runs” approach.

!"!#

$"!#

%!"!#

%$"!#

&!"!#

&$"!#

'!"!#

'$"!#

(!"!#

($"!#

$!"!#

!
"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
/,
0
'#
)
$
&&
1
-
'2
/3
0
)
'4
5
6
&

!"##$%"&-5&7/8-'#&9&7/,0'#)$&&:(,')!")'8&;<&

)*+,-./+0#)-1)23#)-1.23#

Figure 15. Comparison of work-sharing, HFP (Help-First Policy) and WFP (Work-First Policy) on a

64-thread UltraSparc T2 SMP. The execution times were obtained using “Best of 30 runs” approach.

deliver equal or better performance than the multithreaded

Java version for these benchmarks. We observe that on

average, work-stealing schedulers outperform the work-

sharing scheduler and the help-first policy performs better

than work-first policy for work-stealing. This is because

the JGF and NPB benchmarks contain large amounts of

loop-based parallelism. For the SOR, CG, and LUFact

benchmarks, the help-first policy outperforms the work-first

policy by a large margin. In summary, the performance

results show significant improvements (up to 4.7× on a 16-

way Power5+SMP and 22.8× on a 64-thread UltraSPARC

II) for our work-stealing scheduler compared to the existing

work-sharing scheduler for X10.

6 Related Work

The three programming languages developed as part of

the DARPA HPCS program (Chapel, Fortress, X10) all

identified dynamic lightweight task parallelism as one of

the prerequisites for success. Dynamic task parallelism

is also being included for mainstream use in many new

programming models for multicore processors and shared-

memory parallelism, such as Cilk, OpenMP 3.0, Java

Concurrency Utilities, Intel Thread Building Blocks, and

Microsoft Task Parallel Library. Our results on efficient and

scalable implementation of terminally-strict async-finish

task parallelism can easily be integrated into any of the

programming models listed above.

Work-stealing schedulers have a long history that in-

cludes lazy task creation [14] and the theoretical and imple-

mentation results from the MIT Cilk project. Blumofe et al.

defined the fully-strict computation model and proposed a

randomized work stealing scheduler with provable time and

space bounds [4]. An implementation of this algorithm with

compiler support for Cilk was presented in [10]. In earlier

work [1], we proved that terminally-strict parallel programs

can be scheduled with a work-first policy so as to achieve

the same time and space bounds as fully-strict programs.

To the best of our knowledge, the work presented in this

paper is the first work stealing implementation including

compiler and runtime support for an async-finish parallel

language which allows escaping asyncs and sequential calls

to a parallel function3.

The open source X10 v1.5 implementation [3] includes

a work-sharing runtime scheduler based on the Java 5

Concurrency Utilities. This approach implements X10

activities as runnable tasks that are executed by a fixed

number of Java threads in a ThreadPoolExecutor,

compared to creating a separate Java thread for each X10

activity. As shown in our experimental results, the work-

stealing based scheduler (for both work-first and help-first

3The recent Cilk++ release from Cilk Arts [8] allows the same function

to be spawned and called sequentially from different contexts.

policies) presented in this paper performs better than this

work-sharing implementation.

The X10 Work Stealing framework (XWS) is a recently

released library [9] that supports help-first scheduling for

a subset of X10 programs in which sequential and async

calls to the same function and nesting of finish constructs

are not permitted. The single-level-finish restriction leads to

a control flow structure of alternating sequential and parallel

regions as in OpenMP parallel regions, and enables the use

of a simple and efficient global termination detection algo-

rithm to implement each finish construct in the sequence.

The library interface requires the user to provide code

for saving and restoring local variables in the absence of

compiler support. With these restrictions and an additional

optimization for adaptive batching of tasks, the results in [9]

show impressive speedups for solving large irregular graph

problems. In contrast, our approach provides a language

interface with compiler support for general nested finish-

async parallelism, and our runtime system supports both

work-first and help-first policies. In addition, we have

implemented non-blocking steal operations for help-first

scheduling that differs from the algorithm in [9]. An

interesting direction for future research is to extend our

compiler support to generate calls to the XWS library so

as to enable performance comparisons for the same source

code, and explore integration of the scheduling algorithms

presented in this paper with the adaptive batching optimiza-

tion from [9].

The Fork/Join framework [12] is a library-based ap-

proach for programmers to write divide-and-conquer pro-

grams. It uses a work-stealing scheduler that supports a

help-first policy implemented using a variant of Cilk’s THE

protocol. Unlike the non-blocking steal operations in our

approach, the thief needs to acquire a lock on the victim’s

deque when performing a steal in the Fork/Join framework.

7 Conclusions and Future Work

In this paper, we addressed the problem of efficient

and scalable implementation of X10’s async-finish task

parallelism, which is more general than Cilk’s spawn-sync

parallelism. We introduced work-stealing schedulers with

work-first and help-first policies for the async-finish task

parallelism, and compared it with the work-sharing sched-

uler that was previously implemented for X10. Performance

results on two different multicore SMP platforms show

that the work-stealing scheduler with either policy performs

better than the work-sharing scheduler. They also shed

insight on scenarios in which work-stealing scheduler with

work-first policy outperforms the one with help-first policy

and vice-versa.

There are many interesting directions for future research.

We see opportunities for optimizing the book-keeping code

necessary for maintaining continuation frames. It is also

important to extend the work stealing algorithm presented

in this paper to be locality-conscious so that it can support

the affinity directives embodied in X10 places [6], and also

support broader classes of parallel programs with coordina-

tion and synchronization mechanisms that go beyond async-

finish, such as phasers [18, 17].

Acknowledgments

This work was supported in part by the National Science

Foundation under the HECURA program, award number

CCF-0833166. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect those of the National

Science Foundation.

We would like to thank all X10 team members for their

contributions to the X10 software used in this paper, and

we gratefully acknowledge support from an IBM Open

Collaborative Faculty Award. We would like to especially

thank Vijay Saraswat and Igor Peshansky for discussions

on the X10 Work Stealing framework (XWS), Bill Scherer

and Rui Zhang for discussions on non-blocking algorithms.

Finally, we would like to thank Doug Lea for access to the

UltraSPARC T2 SMP system and the IBM Poughkeepsie

Benchmark Center for access to the PowerPC SMP system,

both of which were used to obtain the experimental results

reported in this paper.

References

[1] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K.

Shyamasundar, and K. Yelick. Deadlock-free scheduling of

X10 computations with bounded resources. In SPAA ’07:

Proceedings of the nineteenth annual ACM symposium on

Parallel algorithms and architectures, pages 229–240, New

York, NY, USA, 2007. ACM.

[2] E. Allan, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen,

S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress

language specification version 1.0. Technical report, Sun

Microsystems, Apr. 2005.

[3] R. Barik, V. Cave, C. Donawa, A. Kielstra, I. Peshansky,

and V. Sarkar. Experiences with an smp implementation for

X10 based on the java concurrency utilities. In Workshop on

Programming Models for Ubiquitous Parallelism (PMUP),

held in conjunction with PACT 2006, Sep 2006.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling mul-

tithreaded computations by work stealing. J. ACM,

46(5):720–748, 1999.

[5] B. Chamberlain, D. Callahan, and H. Zima. Parallel pro-

grammability and the chapel language. Int. J. High Perform.

Comput. Appl., 21(3):291–312, 2007.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-

stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an

object-oriented approach to non-uniform cluster computing.

In OOPSLA ’05: Proceedings of the 20th annual ACM SIG-

PLAN conference on Object oriented programming, systems,

languages, and applications, pages 519–538, New York,

NY, USA, 2005. ACM.

[7] D. Chase and Y. Lev. Dynamic circular work-stealing deque.

In SPAA ’05: Proceedings of the seventeenth annual ACM

symposium on Parallelism in algorithms and architectures,

pages 21–28, New York, NY, USA, 2005. ACM.

[8] Cilk Arts. Cilk++ Programmer’s Guide Version 1.0.2.

[9] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat,

and T. Wen. Solving large, irregular graph problems using

adaptive work-stealing. In Proceedings of the International

Conference on Parallel Processing (ICPP’08), Sept. 2008.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-

mentation of the Cilk-5 multithreaded language. In PLDI

’98: Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation, pages

212–223, New York, NY, USA, 1998. ACM.

[11] A. Georges, D. Buytaert, and L. Eeckhout. Statistically

rigorous java performance evaluation. SIGPLAN Not.,

42(10):57–76, 2007.

[12] D. Lea. A Java fork/join framework. In JAVA ’00:

Proceedings of the ACM 2000 conference on Java Grande,

pages 36–43, New York, NY, USA, 2000. ACM.

[13] D. Lea. Engineering Fine-Grained Parallelism in Java,

November 2008. Presentation.

[14] E. Mohr, D. A. Kranz, and J. Robert H. Halstead. Lazy

task creation: A technique for increasing the granularity

of parallel programs. IEEE Transactions on Parallel and

Distributed Systems, 2(3):264280, 1991.

[15] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and

D. Holmes. Java Concurrency in Practice. Addison-Wesley

Professional, 2005.

[16] J. Shirako, H. Kasahara, and V. Sarkar. Language extensions

in support of compiler parallelization. In The 20th Interna-

tional Workshop on Languages and Compilers for Parallel

Computing (LCPC’07), 2007.

[17] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. S. III.

Phaser accumulators: a new reduction construct for dynamic

parallelism. In The 23rd IEEE International Parallel and

Distributed Processing Symposium IPDPS’09 (to appear),

May 2009.

[18] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer.

Phasers: a unified deadlock-free construct for collective and

point-to-point sync hronization. In ICS ’08: Proceedings

of the 22nd annual international conference on Supercomp

uting, pages 277–288, New York, NY, USA, 2008. ACM.

[19] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,

and V. Sundaresan. Soot - a Java bytecode optimization

framework. In CASCON ’99: Proceedings of the 1999 con-

ference of the Centre for Advanced Studies on Collaborative

research, page 13. IBM Press, 1999.

