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An important result in classical stochastic thermodynamics is the work fluctuation–dissipation relation (FDR),
which states that the dissipated work done along a slow process is proportional to the resulting work fluctuations.
Here we show that slowly driven quantum systems violate this FDR whenever quantum coherence is generated
along the protocol, and derive a quantum generalisation of the work FDR. The additional quantum terms in
the FDR are found to lead to a non-Gaussian work distribution. Fundamentally, our result shows that quantum
fluctuations prohibit finding slow protocols that minimise both dissipation and fluctuations simultaneously, in
contrast to classical slow processes. Instead, we develop a quantum geometric framework to find processes with
an optimal trade-off between the two quantities.

Thermodynamics traditionally deals with macroscopic sys-
tems at thermal equilibrium, and its laws relate averages of
quantities such as work and heat. When bringing the theory
to the microscale, fluctuations become significant and can no
longer be neglected with respect to average quantities. As a
consequence, a stochastic description of thermodynamic pro-
cesses is needed, which has triggered enormous attention to
the understanding of work (and heat) fluctuations [1–4]. In
the regime of slow but finite-time classical processes, work
fluctuations are governed by a single relation, known as the
work fluctuation-dissipation-relation (FDR) [5–8]:

Wdiss =
1
2

βσ
2
w. (1)

Here, σ2
w≡〈w2〉−〈w〉2 is the variance of the work distribution

P(w) and Wdiss ≡ 〈w〉−∆F ≥ 0 the average dissipated work
along the protocol, i.e. the difference between average work
done and the change of equilibrium free energy ∆F , which is
always non-negative due to the second law, and β = 1/kBT
with T the inverse temperature of the environment. The work
FDR (1) is one of the pillars of classical stochastic thermo-
dynamics; it shows that near equilibrium work fluctuations
are responsible for dissipation, and conversely that any opti-
mal slow process that minimises dissipation will subsequently
minimise the fluctuations [9, 10]. For many slow classical pro-
cesses the work distribution P(w) is Gaussian [11–15], and if
the process also fulfils Jarzynski’s equality then this immedi-
ately implies Eq. (1) [8].

For quantum systems, developing a definition of work and
understanding how quantum effects influence its statistics has
raised much attention recently [16–26]. Previous studies on
the non-classicality of work distributions have considered
the emergence of quasiprobabilities due to weak measure-
ment [27–29], contextuality [30], and violations of macrore-
alism [31, 32]. Despite the wealth of research on this topic, a
quantum generalisation of (1) has not been addressed.

∗ These authors contributed equally to this work.

Based initially on the Two-Projective-Measurement (TPM)
distribution P(w) [1, 16, 17], in this article we derive a quan-
tum work FDR and find that it differs from (1) through an ad-
ditional contribution arising due to quantum fluctuations gen-
erated along the protocol. This extra term is positive-definite
implying that slow quantum processes are governed by the
inequality Wdiss ≤ βσ2

w/2, with equality obtained when no
coherences in energy are created during the dynamics. We
further demonstrate that the extra quantum term in the FDR
leads to a non-Gaussian P(w), and show that the same quan-
tum FDR is also valid for work distributions accessed from
weak measurements of the system.

While quantum work fluctuations are of fundamental inter-
est, understanding their behaviour also provides a method for
minimising them in practical implementations. Indeed, the
design of reliable and minimally-dissipative thermodynamic
engines is of utmost importance in quantum thermodynamics.
In the regime of slow processes, the minimisation of dissi-
pation can be obtained using techniques from differential ge-
ometry: one can equip the thermodynamic state space with
a Riemannian metric [33, 34], and optimal protocols can be
found by calculating the associated geodesics [9, 10, 35–40].
Here, we show that the quantum work fluctuations can also
be related to a Riemannian metric. However, due to quantum
modifications this new metric only coincides with the metric
responsible for minimising dissipation in the classical com-
mutative regime. While this result rules out protocols that
simultaneously minimise both Wdiss and σw for quantum co-
herent processes, our framework can be used to find optimal
trade-offs between dissipation and fluctuations.

These results are derived under three main assumptions:
(i) the coupling between system and bath is weak, (ii) the
system reaches thermal equilibrium when interacting with the
bath, (iii) the driving is slow, so that we can expand the magni-
tudes of interest in the driving velocity and keep only leading
terms. Under these assumptions, we now derive a quantum
version of the FDR in Eq. (1).

The quantum work FDR. We study the thermodynamics
of an open quantum system S coupled to a thermal bath
B with total Hamiltonian HSB(t) = HS(t) + HB +VSB, where
HS(t) = HS(t)⊗ IB is the driven system Hamiltonian and VSB
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a small but finite coupling Hamiltonian. We take a finite-
time interval t ∈ [0,τ] and consider processes where the
two system Hamiltonian endpoints are fixed, HS(0) = H0
and HS(τ) = Hτ . We assume that the initial density ma-
trix of S and B is a product ρSB(0) = πS(0)⊗ πB(0) where
πS(0) = e−βHS(0)/ZS(0) and πB = e−βHB/ZB are the respec-
tive Gibbs states for the bare system and bath. The compound
system evolves as ρSB(t) = U(t)ρSB(0)U†(t) with the time-
ordered exponential U(t) =

←−
T exp

(
− (i/h̄)

∫ t
0 dt ′ HSB(t ′)

)
.

Work is required to perform U(t), and because only the sys-
tem Hamiltonian changes in time while coupling is weak,
this work can be associated with work on the system alone
[17]. The work statistics can be defined via the TPM scheme,
where a projective energy measurement of the total Hamil-
tonian is performed at the beginning, HSB(0), and the end,
HSB(τ), of the process, with the energy differences mea-
sured identified as the work values w. From the statistics,
the work distribution can then be constructed and becomes
P(w) = 1

2π

∫
dλ e−iλw G(λ ) with a moment generating func-

tion G(λ ) = TrSB

(
U†(τ)eiλHSB(τ)U(τ)e−iλHSB(0)ρSB(0)

)
[1,

16, 17], which directly gives the work moments via 〈wk〉 =
(−i)k(dk/dλ k)G(λ )

∣∣
λ=0. While in the following we will use

the TPM work distribution to establish the quantum FDR, we
show in Appendix C that our results are also valid for alterna-
tive work distributions based on weak measurements [27–29].

From now on we shall use the more compact notation
Xt ≡ XS(t), with X = ρ,H,π and denote Tr(.) as the trace
over the system degrees of freedom. In general, the re-
duced dynamics of the system can be written as ρ̇t =
− i

h̄ TrB

(
[HSB(t),ρSB(t)]

)
= Lt [ρt ]. Here, we will assume that

the system follows an adiabatic Markovian master equation
with a unique instantaneous steady state given by the ther-
mal state at each t ∈ [0,τ]: Lt [πt ] = 0, with πt = e−βHt/Zt
(a precise form of Lt [ρt ] is presented in Appendix D). This
is well–justified whenever the bath dynamics are fast com-
pared to the driving rate of the system Hamiltonian [41, 42],
and the coupling between S and B is weak enough to sat-
isfy the Born-Markov approximation and the rotating wave
approximation [43]. Importantly, under these assumptions
the TPM statistics can be determined by unravelling the mas-
ter equation in terms of quantum jump trajectories [44–46].
These trajectories can then be accessed via local measure-
ments of a quantum detector [47], circumventing the need
to perform global energy measurements. Under these as-
sumptions, we show in Appendix A that the work fluctuations
σ2

w ≡ 〈w2〉−〈w〉2 are given by

σ
2
w = 2

∫
τ

0
dt1
∫ t1

0
dt2 Tr

(
Ḣt1
←−
P (t1, t2)

[
Sρt2

(Ḣt2)
])

, (2)

where
←−
P (t1, t2) =

←−
T exp

(∫ t1
t2 dν Lν

)
is the propagator for

the Lindbladian, and we have introduced the linear mapping

Sρ(A) :=
1
2
{ρ,∆ρ A}, (3)

with ∆ρ A = A−Tr(Aρ) and {,} denoting the anticommuta-
tor. We now assume that the total time τ of the process is large

with respect to the time scale(s) of thermalisation, which are
encoded in Lt . Since the two endpoints of the trajectory are
fixed at H0 and Hτ , one has Ḣt ∝ τ−1. In this case, we can
expand the relevant expressions in terms of τ−1 and keep the
leading orders, which we refer to as the slow driving regime.
This assumption allows us to further simplify Eq. (2) in Ap-
pendix B, using techniques similar to the ones developed in
[48] for classical systems. To first order in τ−1 the work fluc-
tuations are

σ
2
w '−2

∫
τ

0
dt Tr

(
Ḣt L

+
t
[
Sπt (Ḣt)

])
. (4)

Note that the integrand is proportional to τ−2, and so for the
whole integral σ2

w ∝ τ−1 as desired. In Eq. (4), we have intro-
duced the so-called Drazin inverse L +

t of the Lindblad oper-
ator Lt [40, 49]. This inverse is defined as

L +
t [A] :=

∫
∞

0
dν eνLt

[
πt Tr(A)−A

]
, (5)

and satisfies three conditions [40]: (i) commutation with
the Lindbladian, i.e. LtL

+
t [A] = L +

t Lt [A] = A− πtTr(A),
(ii) invariance of the thermal state, i.e. L +

t [πt ] = 0, and
(iii) tracelessness, i.e. Tr

(
L +

t [A]
)
= 0.

An expression similar to Eq. (4) describes the dissipated
work, Wdiss, in slow quantum processes [40, 50]

Wdiss =−β

∫
τ

0
dt Tr

(
Ḣt L

+
t
[
Jπt (Ḣt)

])
. (6)

Note, that in place of Sπt in Eq. (4) the map Jπt appears, with

Jρ(A) :=
∫ 1

0
da ρ

a
∆ρ A ρ

1−a. (7)

In the special case that A commutes with ρ the maps Sρ(A)
and Jρ(A) both reduce to Sρ(A) = ρ ∆ρ A = Jρ(A).

Taking the expressions for work fluctuations, σ2
w, and the

dissipated work, Wdiss, together, we obtain the quantum work
FDR:

1
2

βσ
2
w =Wdiss +Qw, (8)

where Qw = β
∫

τ

0 dt Tr
(
Ḣt L +

t
[
(Jπt −Sπt )(Ḣt)

])
is a quan-

tum correction coming from the difference between the maps
Sρ(A) and Jρ(A).

In Appendix D we show that Qw ≥ 0, with equality if and
only if [Ḣt ,Ht ] = 0 for β > 0 and ∀t ∈ [0,τ]. This implies
that for slow quantum processes with [Ht , Ḣt ] 6= 0 the classical
FDR in Eq. (1) breaks down and the work fluctuations are in
fact greater than dissipation. In general, one has an inequality:

Wdiss ≤
1
2

β σ
2
w. (9)

We can then interpret the quantum work FDR (8) as follows:
during a slow process where the state remains close to a ther-
mal state πt , the work fluctuations βσ2

w/2 can be divided into
two positive contributions: a thermal contribution Wdiss, which
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arises from the thermal fluctuations in πt , and a purely quan-
tum contribution Qw, which appears whenever quantum fluc-
tuations are created in the dynamics as [πt , Ḣt ] 6= 0.

Let us rewrite Qw = β
∫

τ

0 dtIt(πt , Ḣt) where we have intro-
duced the dynamical skew information
It(πt ,A) := Tr

(
A L +

t [(Jπt −Sπt )(A)]
)

for an arbitrary ob-
servable A. To further elaborate the idea that Qw measures the
quantum work fluctuations, for now suppose S evolves under
a perfectly thermalising map with a single time-scale 1/Γ, i.e.
the Lindbladian satisfies

Lt [ρt ] = (πt −ρt)Γ, (10)

which has the Drazin inverse L +
t (.) = (Tr(.)πt − I(.))/Γ.

In this case, It(πt ,A) becomes proportional to the av-
erage Wigner-Yanase-Dyson skew information [51–53]:
It(πt ,A) =− 1

2Γ

∫ 1
0 da Tr

(
[A,πa] [A,π1−a]

)
which can be un-

derstood as a measure of quantum uncertainty in the observ-
able A [54]: it is positive and vanishes iff [A,πt ] = 0, re-
duces to the usual variance for pure πt = |ψ〉〈ψ|, and de-
creases under classical mixing. For more general Lindbladi-
ans, It(πt ,A) also takes into account the presence of differ-
ent timescales of thermalisation through the additional depen-
dence on L +

t . Summarising, in Eq. (8) we can interpret Qw as
a measure of the time-integrated quantum fluctuations in the
power Ḣt .

Non-Gaussianity of the work distribution. Here we show
that these quantum coherences necessarily lead to a non-
Gaussian shape of the TPM work distribution P(w). For
this P(w) the Jarzynski equality holds [17], which relates the
change in equilibrium free energy to the cumulants of work
done on the system that are computed from P(w):

∆F =−β
−1 ln〈e−βw〉=

∞

∑
k=1

(−β )k−1

k!
κ
(k)
w . (11)

Here κ
(k)
w are the cumulants of work, with κ

(1)
w = 〈w〉 and

κ
(2)
w = σ2

w. After rearranging terms in (11) and combining
this with the quantum FDR (8), we find

∞

∑
k=3

(−β )k−1

k!
κ
(k)
w = Qw ≥ 0. (12)

In fact, as we have seen, Qw vanishes iff [Ḣt ,Ht ] = 0 for
∀t ∈ [0,τ]. Since a Gaussian work distribution has zero cumu-
lants for k ≥ 3, we conclude that P(w) necessarily becomes
non-Gaussian whenever the process generates coherences of
the power operator with respect to the instantaneous Hamil-
tonian. This contrasts with the classical expectation that slow
processes lead to Gaussian work distributions [7, 11]. The
equality (12) further demonstrates that measuring the work
cumulants can provide a direct witness of quantum fluctua-
tions in power.

Thermodynamic geometry and optimal paths. Now that we
have established a relationship between work dissipation and
fluctuations, we are in a position to determine optimal proto-
cols. In order to find protocols with minimal fluctuations, one
can take a geometric approach similar to [9, 10, 40].

Considering a decomposition of the system Hamiltonian of
the form Ht = X0 +~λt ·~X , where~λt = (λ1(t),λ2(t), ...) is the
vector of scalar controllable parameters and
~X = ∂Ht/∂~λt = (X1,X2, ...) are the corresponding generalised
conjugate forces. Then, Eq. (4) can be recast in the form

σ2
w = 2

β

∫
τ

0 dt
[

d~λt
dt

]T
Λ(~λt)

[
d~λt
dt

]
, where Λ(~λt) has elements

Λi j(~λt) :=−β

2
Tr
(
Xi L +

t [Sπt (X j)]+X j L +
t [Sπt (Xi)]

)
. (13)

It follows that since the rate of dissipated work and dynam-
ical skew information are both positive, Λ(~λt) is a positive-
definite matrix. Since Λ(~λt) is also symmetric and depends
smoothly on πt , it induces a Riemannian metric on the space
of quantum thermal states [55]. Differential geometry then
provides an efficient and systematic approach to find optimal
protocols by solving Euler-Lagrange equations for the func-
tional σ2

w of the curve~λt . Curves of minimal fluctuations are
identified as geodesics of constant velocity.

The work–fluctuation metric Λ(~λt) given in Eq. (13) should
be compared to the work–dissipation metric ξ(~λt), for which

Wdiss =
∫

τ

0 dt
[ d~λt

dt

]T
ξ(~λt)

[ d~λt
dt

]
, with elements [40]

ξi j(~λt) :=−β

2
Tr
(
Xi L +

t [Jπt (X j)]+X j L +
t [Jπt (Xi)]

)
. (14)

The two metrics Λ(~λt) and ξ(~λt) coincide whenever the con-
jugate forces commute ie. [Xi,X0] = [Xi,X j] = 0 ∀i, j. In this
special case both metrics reduce to the classical Fisher-Rao
metric over the space of thermal states, multiplied with kBT
and an integral relaxation time related to the open system dy-
namics [10].

In general, the fluctuation and dissipation metrics differ and
hence their corresponding geodesics will no longer coincide,
in contrast to slow processes in classical thermodynamics. In
other words, for quantum processes, any slow protocol ~λ opt

t
that minimises dissipation will have non-minimal fluctuations,
and vice versa. To interpolate between these two extremes,
one can resort to minimising the objective function

Cα := α σ̃
2
w +(1−α)Wdiss for α ∈ [0,1], (15)

where α weights the relative importance of the fluctuations
versus dissipation and σ̃2

w = 1
2 βσ2

w. The family of met-
rics minimising Cα for weights α is just the convex sum
gα(~λt) = α Λ(~λt) + (1− α)ξ(~λt). In Appendix E we use
Euler-Lagrange methods to find the optimal protocol λ

opt
t (α)

that minimises Cα when λt is a one-dimensional control pa-
rameter with Ht = X0 + λtX . The optimal velocity takes
the form λ̇

opt
t (α)∝

√
ξ (λt)+α βIt(πt ,X) which clearly de-

pends on α due to the presence of quantum coherence. This
contrasts with the classical case [X0,X ] = 0 where the optimal
protocol can be obtained for any α by driving the system at a
constant dissipation rate [10].

Example. Let us illustrate our results with a slowly driven
harmonic oscillator, Ht = h̄ωt

(
a†

ωt aωt +1/2
)

, connected to a
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FIG. 1. (a) Dissipated work, Wdiss, and work fluctuations, 1
2 β σ2

w,
as a function of initial state inverse temperature β for the harmonic
oscillator example. The plots are for a protocol in which the oscil-
lator frequency ωt is increased linearly in time from ω0 = 0.1ω̃ to
ω1 = 10ω̃ for a fixed reference frequency ω̃ . (b) Plot of the met-
ric tensors of fluctuations (Λ), dissipation (ξ ) and of their difference
(Λ−ξ ), for the harmonic oscillator example as a function of inverse
temperature β at a given energy gap h̄ω (see Appendix F).

perfectly-thermalising bath described by the master equation
Eq. (10). Here ωt is the time-dependent frequency of the os-
cillator, and aωt and a†

ωt are the frequency-dependent creation
and annihilation operators. Taking the time-derivative yields
the power operator Ḣt = h̄ω̇t(Ht/h̄ωt + ((a†

ωt )
2 + a2

ωt )/2),
which does not commute with the instantaneous Hamiltonian
Ht , i.e. [Ht , Ḣt ] 6= 0. In Fig. 1(a), we compare the expres-
sions for Wdiss and βσ2

w/2 for a slow linear ramp of ωt , and
it can be seen that the curves differ substantially at low tem-
peratures (i.e. high β ), where quantum fluctuations become
dominant, and become closer for higher temperatures, where
thermal fluctuations dominate and classical behaviour is re-
covered. The corresponding metrics Λ(ωt) and ξ (ωt) along
with their difference, Λ(ωt)−ξ (ωt) = βIt(πt ,X), are shown
in Fig. 1(b) as a function of inverse temperature. As expected,
this difference vanishes in the high temperature limit (β → 0).
In the low temperature regime thermal fluctuations given by
the dissipation metric ξ (ωt) decay, while quantum coherences
contribute more significantly to the total fluctuations in power
that are given by Λ(ωt). The details of all these calculations
are provided in Appendix F.

Turning to optimisation, we now use the metric gα(ωt) =
αΛ(ωt)+(1−α)ξ (ωt) associated with Eq. (15) to construct
geodesics that interpolate between minimally dissipating and
minimally fluctuating protocols (see Appendix F). So-called
Pareto fronts can be used to bound the region of allowed
protocols [56]. This is illustrated in Fig. 2, where Pareto
front curves indicate the trade-off between minimal fluctua-
tion

(
βσ2

w/2
)

and minimal dissipation (Wdiss) for various val-
ues of β . Each curve is obtained by evaluating βσ2

w/2 and
Wdiss for the geodesics minimising Cα for all values α ∈ [0,1].
If the classical FDR would hold, each curve would collapse
into a single point along the diagonal line βσ2

w/2 =Wdiss. The
quantum correction moves each Pareto front above this line
and expands it from a single point to a curve, parametrised by
α . As expected, this effect is most significant at low tempera-
tures where quantum fluctuations dominate.

Conclusions: In this article, we have studied the statistics of
work in slowly driven open quantum systems interacting with
a thermal environment. We have derived a quantum FDR for

FIG. 2. Pareto fronts limiting the accessible region of fluctuations
1
2 βσ2

w and dissipation Wdiss for the harmonic oscillator example over
all possible protocols {ωt} between the end points ω0 = 0.1ω̃ to
ω1 = 10ω̃ for a fixed reference frequency ω̃ . Curves are obtained by
varying the weight α ∈ [0,1], and for each α choosing the protocol to
follow the geodesic that minimises Cα . Each curve is for a specific
inverse temperature β = 2h̄ω̃ (blue), β = 1h̄ω̃ (yellow), β = 0.7h̄ω̃

(green), β = 0.6h̄ω̃ (red), β = 0.5h̄ω̃ (purple), β = 0.4h̄ω̃ (brown),
and β = 0.3h̄ω̃ (light blue). The blue shaded region denotes the sepa-
ration between the quantum optimal protocols (Pareto fronts) and the
classical optimal protocols (diagonal) for varying β . Inset: Magni-
fied Pareto front for β = h̄ω̃ and including points for suboptimal pro-
tocols, illustrating the accessible part of the fluctuation-dissipation
plane.

work as shown in Eq. (8), which generalises the well-known
classical FDR given by Eq. (1). This result implies that when-
ever quantum coherence is generated during the dynamics of
a slow protocol, then Wdiss <

1
2 β σ2

w, which is a genuinely
quantum effect. Let us briefly comment on the generality of
our results. While (8) has been derived using the TPM ap-
proach with thermal initial conditions, we prove in Appendix
C that (8) holds more generally for arbitrary initial states us-
ing alternative definitions of work based on weak measure-
ments [22, 57–62]. This follows directly because these mea-
surement schemes give rise to the same work average and vari-
ance. The validity of the quantum FDR for various work def-
initions highlights that the quantum effects captured by Qw
stem from the coherent dynamics of the protocol, rather than
arise as a result of measurement disturbance or a particular
choice of work definition (see discussion in Appendix C).

It is also interesting to discuss how breaking any of the three
main assumptions used to derive the quantum FDR –namely
(i) slow driving, (ii) thermalisation, and (iii) weak coupling–
can affect it. Both (i) and (ii) appear crucial: in Appendix H
we compare Wdiss and σ2

w for a spin in contact with a bosonic
bath and, while we verify the validity of Eq. (8) for sufficiently
slow driving, we do find violations of the FDR for faster driv-
ing. Regarding assumption (ii), one can demonstrate that the
quantum FDR can break down if the system is not close to
thermal equilibrium even if the dynamics are slow, as shown
in [63] for closed unitary evolutions. On the other hand, we
believe that the quantum FDR can remain valid away from the
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weak coupling regime (i.e. if (iii) is broken): a step towards
proving this hypothesis is done in Appendix G. By using a a
discrete model of quasi-isothermal processes [64, 65], we de-
rive an analogous quantum FDR for a system strongly coupled
to a thermal bath.

The quantum FDR also implies that it is fundamentally
impossible to simultaneously minimise dissipation and fluc-
tuations in slow coherent quantum processes. In the sec-
ond part of the paper we have derived a family of metrics
whose geodesics interpolate between minimally-dissipative
and minimally-fluctuating thermodynamic protocols, and our
results unveil a new geometric structure within quantum ther-
modynamics. A promising platform to observe these effects
experimentally are quantum dots [66–68] and superconduct-
ing qubits [69, 70], where slowly driven non-commuting pro-
tocols appear as a realistic possibility [71] and proposals for

observing TPM work statistics using a calorimeter have been
made [47]. An interesting future direction is to extend the
FDR to many-body closed systems [63, 72, 73], and to in-
vestigate how these genuinely quantum effects can modify
the thermodynamic uncertainty relations in non-equilibrium
steady states [74–77] and FDR’s in other contexts such as
quantum transport [78].
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Appendix A: Work moments for open system dynamics

In the main text we define the fluctuating work done on the system using the Two-Projective-Measurement (TPM) scheme.
Let us denote the spectral decomposition of the total system-bath Hamiltonian HSB(t) = ∑n εn(t) |εn(t)〉〈εn(t)| and define the
time-ordered unitary U(t f , ti) =

←−
T exp

(
− (i/h̄)

∫ t f
ti dt ′ HSB(t ′)

)
generated by variations in the global Hamiltonian. The TPM

work distribution P(w) is constructed in terms of observed transitions between energy states [16], resulting in

P(w) = ∑
n,m

δ [w− εm(τ)+ εn(0)]pm|n pn, (A1)

where pn = 〈εn(0)|πSB(0) |εn(0)〉 is the initial energy occupation probability while pm|n =
∣∣〈εm(τ)|U(τ,0) |εn(0)〉

∣∣2 denotes
the conditional energy transition probability. After taking a Fourier transform, the expression for the corresponding moment
generating function of the work is given by:

G(λ ) =
〈

eiλw
〉
= TrSB

(
U†(τ,0)eiλHSB(τ)U(τ,0)e−iλHSB(0)πSB(0)

)
. (A2)

Note that this function implicitly assumes that πSB(0) commutes with the initial Hamiltonian, which is guaranteed since πSB(0) =
e−βHSB(0)/TrSB

(
e−βHSB(0)

)
is a global thermal state with negligible coupling between system and bath. From (A2) one can

compute the first two work moments using 〈wk〉= (−i)k(dk/dλ k)G(λ )
∣∣
λ=0, and a lengthy but straightforward calculation yields

the following [79]:

〈w〉=
∫

τ

0
dt TrS

(
ḢS(t)ρS(t)

)
, (A3)

〈w2〉= 2Re
∫

τ

0
dt1
∫ t1

0
dt2 TrSB

(
ḢH

S (t1)ḢH
S (t2)πSB(0)

)
. (A4)

where we denote XH
S (t) =U†(t,0)XS(t)U(t,0) as operator XS(t) in the Heisenberg picture. The expressions (A3) and (A4) are

valid for any global unitary evolution driven by a total Hamiltonian HSB(t) = HS(t)+HB +VSB with time-dependence only on the
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system Hamiltonian, and thus ḢSB(t) = ḢS(t). Note that for 〈w2〉 in (A4) the Heisenberg picture ḢH
S (t) is used instead of ḢS(t),

and thus the trace is taken over the whole Hilbert space due to the bath-dependence of the unitary U(t,0).
Our goal will be to express the second moment in terms of the reduced density operator ρS(t) = TrB

(
ρSB(t)

)
, where we define

the evolved density operator for the composite state by ρSB(t) = U(t,0)πSB(0)U†(t,0). To do this we now assume that the
evolution of the system is of Lindblad form as defined in the main text:

ρ̇S(t) :=− i
h̄

TrB

(
[HSB(t),ρSB(t)]

)
= Lt [ρS(t)], (A5)

with Lt [(.)] a time-dependent Lindbladian. Implicit within our assumption for (A5) is the Born-Markov approximation, which
assumes that the global state remains factorised at all times during the evolution [43]:

ρSB(t)' ρS(t)⊗πB, (A6)

This assumption is justified only in the weak-coupling regime.
Our goal will now be to use (A5) to rewrite (A4) in terms of the system degrees of freedom. Let us now consider two hermitian

time-dependent operators AS(t),BS(t) acting on the system Hilbert space alone. We are concerned with evaluating the two-time
correlation function 〈AH

S (t
′)BH

S (t)〉 in Heisenberg picture for t ′ ≥ t, which can be expressed as follows:

〈AH
S (t
′)BH

S (t)〉= TrSB

(
AH

S (t
′)BH

S (t)πSB(0)
)
,

= TrSB

(
U†(t ′,0)AS(t ′)U(t ′,0)U†(t,0)BS(t)U(t,0)πSB(0)

)
,

= TrSB

(
AS(t ′)U(t ′, t)BS(t)ρSB(t)U†(t ′, t)

)
,

= TrS

(
AS(t ′)TrB

(
U(t ′, t)BS(t)ρSB(t)U†(t ′, t)

))
, (A7)

where in the third line we used πSB(0) = U†(t,0)ρSB(t)U(t,0) and the cyclicity of the trace, while in the final line we used the
fact that BS(t) = BS(t)⊗ IB. Setting t̃ = t ′− t ≥ 0, a simple change in variables gives

〈AH
S (t + t̃)BH

S (t)〉= TrS

(
AS(t + t̃) χS(t̃)

)
(A8)

where {
χSB(t̃) =U(t + t̃, t)BS(t)ρSB(t)U†(t + t̃, t),
χS(t̃) = TrB

(
χSB(t̃)

)
.

(A9)

Now observe that χSB(t̃) is the solution to the following equation of motion:

d
dt̃

χSB(t̃) :=− i
h̄
[HSB(t̃),χSB(t̃)], (A10)

with initial condition χSB(0) = BS(t)ρSB(t). We now use the Born-Markov approximation (A6), which implies that initial con-
dition to (A10) factorises according to χSB(0) = BS(t)ρS(t)⊗πB. Given that the initial operator χSB(0) here factorises and obeys
the same global equation of motion given by (A10) with respect to t̃ as the state ρSB(t), we obtain the following solution after
tracing out the bath degrees of freedom:

χS(t̃) =
←−
P (t + t̃, t)[BS(t)ρS(t)], (A11)

where

←−
P (t1, t2) =

←−
T exp

(∫ t1

t2
dν Lν

)
, (A12)

is the propagator for the Lindbladian in (A5). Combining this with (A8) we have

〈AH
S (t + t̃)BH

S (t)〉= TrS

(
AS
←−
P (t + t̃, t)[BS(t)ρS(t)]

)
. (A13)

Setting AS(t1) = ḢS(t1) and BS(t2) = ḢS(t2), and combining this all together gives us an expression for 〈w2〉 from (A4) in terms
of the system degrees of freedom:

〈w2〉= 2Re
∫

τ

0
dt1
∫ t1

0
dt2 TrS

(
ḢS(t1)

←−
P (t1, t2)[ḢS(t2)ρS(t2)]

)
. (A14)
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Furthermore, the squared average work (A3) can be written as follows:

〈w〉2 = 2Re
∫

τ

0
dt1
∫ t1

0
dt2 TrS

(
ḢS(t1)ρS(t1)

)
TrS

(
ḢS(t2)ρS(t2)

)
,

= 2Re
∫

τ

0
dt1
∫ t1

0
dt2 TrS

(
ḢS(t1)

←−
P (t1, t2)[TrS

(
ḢS(t2)ρS(t2)

)
ρS(t2)]

)
. (A15)

We now define ∆ρ A = A−Tr(Aρ) and combine (A14) and (A15) to get

σ
2
w = 〈w2〉−〈w〉2

= 2Re
∫

τ

0
dt1
∫ t1

0
dt2 TrS

(
ḢS(t1)

←−
P (t1, t2)[∆ρS(t2)ḢS(t2)ρS(t2)]

)
,

=
∫

τ

0
dt1
∫ t1

0
dt2 TrS

(
ḢS(t1)

←−
P (t1, t2)[

{
∆ρS(t2)ḢS(t2),ρS(t2)

})
,

= 2
∫

τ

0
dt1
∫ t1

0
dt2 TrS

(
ḢS(t1)

←−
P (t1, t2)[SρS(t2)(ḢS(t2))

)
, (A16)

where in the third line we used the fact that Re Tr
(

A
←−
P (t1, t2)[B]

)
= (1/2)Tr

(
A
←−
P (t1, t2)[B+B†]

)
for A = A†, and in the fourth

we introduced the definition for Sρ from Eq. (3). This concludes the derivation of Eq. (2) in the main text.

Appendix B: Derivation of Eq. (4)

We want to take the slow driving limit of the expression:

σ
2
w = 2

∫
τ

0
dt1
∫ t1

0
dt2 Tr

(
Ḣt1
←−
P (t1, t2)

(
Sρt2

(Ḣt2)
))

. (B1)

Recalling the definition of
←−
P (t1, t2) =

←−
T exp

(∫ t1
t2 dνLν

)
, we notice that the trace will decay to zero exponentially fast in

|t1− t2| ∼ τ , since Sρt2
(Ḣt2) is traceless. For this reason, we can substitute at first order in 1/τ the varying Liouvillian with the

initial one:

σ
2
w ' 2

∫
τ

0
dt1
∫ t1

0
dt2 Tr

(
Ḣt1 e(t1−t2)Lt2

[
Sρt2

(Ḣt2)
])

, (B2)

= 2
∫

τ

0
dt1
∫ t1

0
dsTr

(
Ḣt1 esLt1−s

[
Sρt1−s(Ḣt1−s)

])
,

where in the second line we made the substitution s = t1−t2. Again, since s will be typically much bigger than the thermalisation
timescales, not only we can approximate t1− s with t1 in all the expression (since the correction for finite s will be exponentially
suppressed), but also we can send the limit of the integration to infinity. Then, equation (B2) becomes:

σ
2
w ' 2

∫
τ

0
dt1
∫ t1

0
dsTr

(
Ḣt1 esLt1

[
Sρt1

(Ḣt1)
])

,

' 2
∫

τ

0
dt1
∫

∞

0
dsTr

(
Ḣt1 esLt1

[
Sρt1

(Ḣt1)
])

,

=−2
∫

τ

0
dt Tr

(
ḢtL

+
t
[
Sρt (Ḣt)

])
, (B3)

where in the last step we used the integral expression of the Drazin inverse L +
t in Eq. (5) and the fact that Sρt1

(Ḣt1) is traceless.
Finally, at first order in 1/τ , we can substitute ρt ' πt . This concludes the derivation of Eq. (4) in the main text.

Appendix C: Weak measurements of fluctuating work

Our analysis throughout the paper defines work via the standard two-projective measurement (TPM) scheme. This definition
of work is typically adopted for states that are initially thermal, as one recovers the usual Jarzynski equality and laws of thermo-
dynamics at the ensemble level [17] while remaining consistent with the usual definition of work in the classical regime [18].
Furthermore, since the initial state is diagonal in the energy basis one can neglect the effect of measurement backaction caused
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by the initial projective energy measurement. However, for states that are non-diagonal the TPM scheme can remove initial
coherences due to disturbances caused by the first projective measurement. As a result, one can no longer associate the average
TPM work to the change in total energy of the system and bath [24].

In order to characterise work when initial coherences are present, alternative definitions of work based around weak mea-
surement have been proposed that preserve the coherent evolution of the system and bath [22, 61, 62]. In these measurement
schemes one may obtain negative quasi-probabilities in the work distribution, signifying uniquely quantum behaviour such as
contextuality [30]. In this Appendix we will demonstrate that definitions of work based on weak measurement gives rise to
the same fluctuation-dissipation relation Eq. (8), but are now applicable to arbitrary initial states of the system that may be
non-diagonal in the energy basis. While different choices of measurement scheme typically lead to different work statistics, any
discrepancies between different definitions of quantum work only apply to the moments of third order and higher, which are not
relevant to the quantum work FDR Eq. (8). We will therefore demonstrate that our results hold more generally beyond the TPM
definition of work.

We first describe a continuous weak measurement scheme that can be implemented by coupling only to the system de-
grees of freedom. Recall that in the absence of any measurement, the system and bath evolve according to state ρSB(t) =
U(t,0)ρSB(0)U†(t,0), with unitary U(t f , ti) =

←−
T exp

(
− i
∫ t f

ti dt ′ HSB(t ′)
)

and setting h̄ = 1. In contrast to the main text, we now
assume arbitrary initial conditions for the system state, such that ρSB(0) = ρS(0)⊗πB. Here ρS(0) may not be thermal or even
commute with its Hamiltonian, ie. [ρS(0),HS(0)] 6= 0.

In this weak measurement approach, the fluctuations in work can be characterised as the time-integrated fluctuations in the
power observable ḢS(t) [60]. To determine these fluctuations we couple the system and bath to a detector modelled as a two-level
system, initially uncorrelated such that ρSBD(t) = ρSB(0)⊗ρD(0). The modified Hamiltonian including the interaction with the
detector is now given by

HSBD(t) = HSB(t)+
λ

2
ḢS(t)⊗σz, (C1)

where λ is a coupling constant and σz is the Pauli spin-z operator. This generates a new evolution
Ũ(t,0) =

←−
T exp

(
− i
∫ t

0 dt ′ HSBD(t)
)
, and we denote the reduced state of the detector as a function of λ by ρD(t;λ ). By measuring

the relative change in phase of the detector one gets the so-called Keldysh-ordered full-counting statistics [57–60]:

G̃(λ ) :=
〈↑|ρD(τ;λ ) |↓〉
〈↑|ρD(0;λ ) |↓〉

= TrSB

(
Vλ/2(τ)ρSB(0)V

†
−λ/2(τ)

)
, (C2)

where

Vλ (t) =
←−
T exp

(
iλ
∫ t

0
dt ′ ḢH

S (t ′)
)
. (C3)

where ḢH
S (t ′) is in the Heisenberg picture with respect to the isolated system and bath unitary dynamics. In this approach one

interprets (C2) as a moment generating function for the fluctuating work, with moments

〈wk〉= (−i)k(dk/dλ
k)G̃(λ )

∣∣
λ=0. (C4)

One can see that these statistics generally differ from those obtained via the TPM scheme via (A2), as highlighted in [60].
However, we will now prove that the first two moments of (C2) are in fact equivalent to those obtained from (A2) used in the
main text, but valid for any initial system state.

We first use the Magnus expansion for Vλ (t) = exp(Ωλ (t)), where

Ωλ (t) = iλ
∫ t

0
dt1 ḢH

S (t1)+
λ 2

2

∫ t

0
dt1
∫ t1

0
dt2 [ḢH

S (t1), ḢH
S (t2)]+O(λ 3), (C5)

The generating function (C2) can then be expressed in powers of λ :

G̃(λ ) = 1+ iλ
∫

τ

0
dt TrS

(
ḢS(t)ρS(t)

)
+λ

2Re
∫

τ

0
dt1
∫ t1

0
dt2 TrSB

(
ḢH

S (t1)ḢH
S (t2)ρSB(0)

)
+O(λ 3), (C6)

It should be noted here that the second order term in (C5) is skew hermitian and hence does not contribute to the second order
term in (C6). Finally using the definition of the work moments, we get

〈w〉=
∫

τ

0
dt TrS

(
ḢS(t)ρS(t)

)
, (C7)

〈w2〉= 2Re
∫

τ

0
dt1
∫ t1

0
dt2 TrSB

(
ḢH

S (t1)ḢH
S (t2)ρSB(0)

)
. (C8)
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Comparison with (A3) and (A4) confirms that these first two moments of work (C7) and (C8) take the same form as the TPM
definition used in the main text, but now hold for any initial conditions chosen for the system. With these expressions the proof
of the quantum work FDR follows exactly as before for any initial state.

As an alternative to continuous weak measurement, full-counting statistics for work can be obtained through discrete coupling
to the Hamiltonian. This gives rise to a different moment generating function [62]:

G̃(λ ) = TrSB

(
U†(τ,0)eiλHSB(τ)U(τ,0)e−iλHSB(0)ρSB(0)

)
. (C9)

It is straightforward to show that the first and second moments here become

〈w〉= TrSB

((
U†(τ,0)HSB(τ)U(τ,0)−HSB(0)

)
ρSB(0)

)
, (C10)

〈w2〉= TrSB

((
U†(τ,0)HSB(τ)U(τ,0)−HSB(0)

)2
ρSB(0)

)
. (C11)

As shown in [79], these expressions are exactly equivalent to the time-integrated expressions (C7) and (C8) since we assume
only the system Hamiltonian to be time-dependent. We remark that another definition of work based on the Margenau-Hill quasi-
probability distribution has been proposed by Allahverdyan in [61], which is obtained from an alternative two-point measurement
scheme combining both strong and weak energy measurements. Finally, a quasi-probability for work constructed within the
quantum histories approach is proposed in [20]. Again, in these cases one finds the same first two moments of work (C10),
which equate to (C7) and (C8). We reiterate that all of these quasi-probabilistic generalisations of the TPM work distribution for
arbitrary initial states differ only for third moments and higher, and therefore the particular choice is not relevant for deriving the
quantum work FDR, which is a statement only about the first and second work moments.

In conclusion, we have shown that the quantum work FDR Eq. (8) continues to hold for arbitrary initial states using alternative
definitions of quantum work based on weak measurement. Therefore Eq. (8) is not only restricted to the TPM definition of work,
or a particular choice of initial conditions. This implies that the quantum modifications to the work FDR are a manifestation
of the coherent dynamics generated during the slow driving protocol, and are not a signature of quantum measurement effects
stemming from a particular choice of measurement scheme. Furthermore, we have presented a continuous weak measurement
scheme that can verify Eq. (8) using only local interactions with the system degrees of freedom, as opposed to measurements of
the full system-bath Hilbert space.

Appendix D: Proof of Eq. (9)

In this Appendix we prove the positivity of the dynamical skew information It(πt , Ḣt), which under time integration gives the
quantum correction Qw = β

∫
τ

0 dt It(πt , Ḣt) appearing in Eq. (8). Consider the Hilbert space Md of d×d complex matrices with
Hilbert-Schmidt inner product 〈A,B〉= Tr

(
B†A

)
. Then any superoperator M (.) acting on the elements of this Hilbert space can

be expressed as a d2× d2 matrix. The matrix describing M (.) is positive if Tr
(
A†M (A)

)
≥ 0 for any A ∈Md , and we define

the adjoint M †(.) as the superoperator satisfying Tr
(
M †(B†)A

)
= Tr

(
B†M (A)

)
. We begin by assuming a generic interaction

between system and bath formed by a sum of hermitian operators

VSB = ∑
α

Aα ⊗Bα . (D1)

As stated in the main text, we will work in the slow driving regime and assume that the bath dynamics are much faster than the
driving rate of the system Hamiltonian. This means that one can neglect any non-adiabatic contributions to the reduced system
dynamics [42, 80]. In addition the system dynamics are assumed to satisfy detailed balance along with the Born-Markov and
rotating-wave approximations [43, 81]. When taken together these assumptions result in a time-dependent Markovian master
equation describing the system dynamics that can be expressed in a Lindblad form Lt(.) = −i[Ht ,(.)] +Dt(.), and a precise
derivation of its structure and regime of validity can be found in [41]. Throughout this derivation we will only be concerned with
the structure of the Lindbladian at some fixed point in time. At any time t the time-dependent Lindbladian takes the following
form [41, 42, 80]:

Ut(.) =−i[Ht ,(.)],

Dt(.) = ∑
ωt

∑
α,β

γαβ (ωt)

(
Aβ (ωt)(.)A†

α(ωt)−
1
2
{A†

α(ωt)Aβ (ωt),(.)}
)
, (D2)

where γαβ (ωt) is a hermitian matrix representing the Fourier transform of the bath correlation function, and we have defined the
eigenoperators

Aα(ωt) = ∑
ωt=ε j(t)−εi(t)

|εi(t)〉〈εi(t)|Aα |ε j(t)〉〈ε j(t)| , (D3)
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with Ht = ∑ j ε j(t) |ε j(t)〉〈ε j(t)| the spectral decomposition of the system Hamiltonian at some fixed point in time. The eigen-
operators satisfy

A†
α(ωt) = Aα(−ωt). (D4)

It then follows that such a Lindbladian has a unique zero eigenvalue corresponding to a thermal fixed point Lt(πt) = 0, while
all other eigenvalues have a strictly negative real part [82]. This ensures that at each fixed configuration Lt , any initial state ρ

will converge to the instantaneous fixed point:

lim
ν→∞

eνLt (ρ) = πt . (D5)

We now observe some important properties of Lt(.) [43]. Firstly, due to the rotating-wave approximation the unitary and
dissipative parts commute:

[Ut(.),Dt(.)] = [Ut(.),D
†
t (.)] = 0. (D6)

Secondly, Lt(.) satisfies the condition of detailed balance, which implies

πt Aα(ωt) = eβωt Aα(ωt)πt ,

πt A†
α(ωt) = e−βωt A†

α(ωt)πt . (D7)

Finally, the bath correlation function satisfies the KMS condition and hence

γαβ (−ωt) = e−βωt γβα(ωt). (D8)

Now note that the dynamical skew information is a real-valued trace functional, thus it is sufficient to prove positivity of the
quantity

I (πt ,A) :=−Re Tr
(
AL +

t Mt(A)
)
, (D9)

where A = A† is an arbitrary hermitian operator, L +
t the Drazin inverse of the Lindbladian defined in Eq. (5) and

Mt(.) :=
1
2
{πt ,(.)}−

∫ 1

0
ds π

s
t (.)π

1−s
t . (D10)

Here M (.) represents the difference between the arithmetic and logarithmic matrix means, and is hence a positive superoperator
due to the Kubo-Ando inequality [83]. Alternatively, we can see this by looking at the spectrum of Mt(.). The eigenvectors are
given by the energy state elements |εi(t)〉〈ε j(t)|, and one finds

Mt(|εi(t)〉〈ε j(t)|) = λi j(t) |εi(t)〉〈ε j(t)| , (D11)

where

λi j(t) =

{
pi(t)+p j(t)

2 − pi(t)−p j(t)
ln pi(t)−ln p j(t)

> 0; εi(t) 6= ε j(t),

0; εi(t) = ε j(t).
(D12)

and pi(t) represent the eigenvalues of πt . In addition, since πt commutes with Hamiltonian Ht one can verify the commutation
relation

[Mt(.),Ut(.)] = 0. (D13)

Let us now consider the relation between Mt(.) and the dissipator Dt(.). It is first useful to introduce the following integral
representation for the matrix power πs for positive π [84]:

π
s =

∫
∞

0
dµs(x)

(
e−xπ − I

)
; s ∈ (0,1). (D14)

with µs(x) a positive measure on (0,∞) that we leave unspecified for convenience. Using detailed balance (D7) we get the
following:

π
s
t Aα(ωt) =

∫
∞

0
dµs(x)

(
e−xπt − I

)
Aα(ωt),

=
∫

∞

0
dµs(x)

(
∞

∑
n=0

(−x)n πn
t

n!
− I
)

Aα(ωt),

= Aα(ωt)
∫

∞

0
dµs(x)

(
∞

∑
n=0

(−x)n (eβωt πt)
n

n!
− I
)
,

= esβωt Aα(ωt)π
s
t . (D15)
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Similarly one finds

π
s
t A†

α(ωt) = e−sβωt A†
α(ωt)π

s
t . (D16)

This then implies

Aβ (ωt)Mt(.)A†
α(ωt) = e−βωt Mt

[
Aβ (ωt)(.)A†

α(ωt)
]

(D17)

Using this one obtains the following:

Dt [Mt(.)] = ∑
ωt

∑
α,β

γαβ (ωt)

(
Aβ (ωt)Mt(.)A†

α(ωt)−
1
2
{A†

α(ωt)Aβ (ωt),Mt(.)}
)
,

= Mt

[
∑
ωt

∑
α,β

γαβ (ωt)e−βωt Aβ (ωt)(.)A†
α(ωt)

]
− 1

2
Mt

[
∑
ωt

∑
α,β

γαβ (ωt){A†
α(ωt)Aβ (ωt),(.)}

]
,

= Mt

[
∑
ωt

∑
α,β

γβα(−ωt)A
†
β
(−ωt)(.)Aα(−ωt)

]
− 1

2
Mt

[
∑
ωt

∑
α,β

γαβ (ωt){A†
α(ωt)Aβ (ωt),(.)}

]
,

= Mt

[
∑
ωt

∑
α,β

γαβ (ωt)A†
α(ωt)(.)Aβ (ωt)

]
− 1

2
Mt

[
∑
ωt

∑
α,β

γαβ (ωt){A†
α(ωt)Aβ (ωt),(.)}

]
,

= Mt

[
D†

t (.)
]
, (D18)

where in the second line we used (D17), in the third line we used (D4) and (D8), in the fourth line swapped indices −ωt → ωt

and α→ β , and in the final line used the definition of the adjoint superoperator Tr
(
D†

t (B†)A
)
= Tr

(
B†Dt(A)

)
and the fact that

the second term is self-adjoint. We next introduce a complementary Lindbladian of form

L̃t(.) = Ut(.)+D†
t (.). (D19)

Notably the real part of the spectrum of L̃t(.) coincides with that of the original Lindbladian Lt(.) due to the fact that Ut(.) is
skew hermitian. Recalling that by assumption πt is a unique fixed point of Lt(.), this implies that L̃t(.) also has a unique fixed
point π̃t . We can thus define a pair of Drazin inverses given by

L +
t (A) =−

∫
∞

0
dν eνLt (A−Tr(A)πt), (D20)

L̃ +
t (A) =−

∫
∞

0
dν eνL̃t (A−Tr(A) π̃t). (D21)

for any A ∈Md . These inverses act according to

LtL
+

t (A) = L +
t Lt(A) = A−πtTr(A) ,

L̃tL̃
+

t (A) = L̃ +
t L̃t(A) = A− π̃tTr(A) . (D22)

By using (D13) and (D18) we have

LtMt(A) = MtL̃t(A). (D23)

For any traceless matrix {B | B ∈Md , Tr(B) = 0}, we can combine (D22) and (D23) to get

L +
t Mt(B) = MtL̃

+
t (B), (D24)

We also define the following superoperator:

Vt(.) :=−L +
t +[L̃ +

t ]†

2
(.). (D25)

Using (D24) one can also see that

VtMt(B) = MtV
†

t (B). (D26)
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Furthermore, since by assumption the real part of the eigenvalues of the Lindbladian Lt are negative, the same holds true
for both Drazin inverses L +

t and L̃ +
t . To see this, let us consider any non-zero eigenvalue of Lt such as z = x+ iy, with

x,y ∈ ℜe. For the Drazin inverse L +
t , which shares the same eigenvectors as Lt , the corresponding eigenvalue is given by

z−1 = (x+ iy)−1 = (x− iy)/(x2 + y2) [49]. By assumption x < 0, and thus all eigenvalues of L +
t must also have a negative real

part ℜe(z−1) = x/(x2 + y2)< 0. We also note that the non-zero eigenvalues of L̃t must also have a negative real part since the
real part of the spectrum coincides with that of Lt . By the same argument as above, this means that the non-zero eigenvalues of
L̃ +

t have a negative real part.
As a result, the eigenvalues of Vt(.) must have a positive real part. By Corollary 4.2 of [85], a matrix product XY with Y ≥ 0

is positive if the eigenvalues of X have no negative real part and XY = Y X†. Since Mt(.) is positive, (D26) implies that

VtMt ≥ 0. (D27)

Finally, we return to the trace functional (D9). Let us introduce the projection onto the traceless subspace PT (A) = A−
Tr(A)I/d. Taking all results together one gets

I (πt ,A) =−Re Tr
(
AL +

t Mt(A)
)
,

=−Re Tr
(
PT (A)L +

t MtPT (A)
)
,

=−1
2

Tr
(
B[L +

t Mt +Mt [L
+

t ]†](B)
)
,

=−1
2

Tr
(
B[L +

t +[L̃ +
t ]†]Mt(B)

)
,

= Tr(BVtMt(B)) ,
≥ 0, (D28)

where in the second line we used the fact that only traceless elements contribute to the functional due to (D12), in the third line
we set PT (A) = B and M †

t (.) =Mt(.), in the fourth line we used (D24) and in the final line we used the matrix positivity (D27).
Since the above holds for any hermitian matrix A, we conclude that the dynamical skew information is positive. Under time
integration we therefore have Qw ≥ 0 and inequality Eq. (9) To conclude, we now prove I (πt ,A) = 0 if and only if [A,πt ] = 0.
Without loss of generality we may assume Tr(A) = 0. If [A,πt ] = 0 then Mt(A) = 0 and thus I (πt ,A) = 0. On the other hand,
let us instead suppose [A,πt ] 6= 0, in which case one necessarily has Mt(A) 6= 0 which follows from (D12). Now note that the
unique fixed point of Vt is πt . Clearly Mt(A) 6∝ πt if [A,πt ] 6= 0, and hence VtMt(A) 6= 0. Using the positivity of VtMt we then
rewrite (D28) as I (πt ,A) = 〈

√
VtMt(A),

√
VtMt(A)〉> 0. Therefore I (πt ,A) = 0⇔ [A,πt ] = 0. This further implies that the

total quantum correction Qw vanishes if and only if [πt , Ḣt ] = [Ht , Ḣt ] = 0 at all times.

Appendix E: Finding geodesics for a single parameter

Consider a single parameter change λ0 → λτ with Hamiltonian Ht = X0 +λtX , where in general [X0,X ] 6= 0. Furthermore,
denote the rescaled work fluctuations by σ̃2

w = 1
2 βσ2

w. The aim is to minimise the linear objective function

Cα := ασ̃
2
w +(1−α)Wdiss; α ∈ [0,1], (E1)

with respect to protocol λt . Using the metrics Λ(λt) and ξ (λt) from the main text in Eq. (13) and Eq. (14), we have

Cα =
∫

τ

0
dt
(

αλ̇t Λ(λt) λ̇t +(1−α) λ̇t ξ (λt) λ̇t

)
,=
∫

τ

0
dt λ̇

2
t
(
ξ (λt)+αβIt(πt ,X)

)
, (E2)

where βIt(πt ,X) = Λ(λt)− ξ (λt) is the dynamical skew information for a single parameter change (which depends on λt
through πt ), following from the general definition of It(πt ,A) in the main text before Eq. (10). The functional (E2) is minimised
by the solution to the Euler-Lagrange equation for the cost function Cα(λt , λ̇t) := λ̇ 2

t
(
ξ (λt)+αβIt(πt ,X)

)
, i.e.

∂Cα

∂λt
=

d
dt

[
∂Cα

∂ λ̇t

]
, (E3)
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which gives

λ̇
2
t

d
dλt

(
ξ (λt)+αβIt(πt ,X)

)
=

d
dt

[
2λ̇t
(
ξ (λt)+αβIt(πt ,X)

)]
,

= 2λ̈t
(
ξ (λt)+αβIt(πt ,X)

)
+2λ̇

2
t

d
dλt

[(
ξ (λt)+αβIt(πt ,X)

)]
.

=⇒ 0 = 2λ̈t
(
ξ (λt)+αβIt(πt ,X)

)
+ λ̇

2
t

d
dλt

[(
ξ (λt)+αβIt(πt ,X)

)]
,

=⇒ λ̈t =−
∂Cα(λt , λ̇t)

∂λt

1
Cα(λt , λ̇t)

λ̇ 2
t

2
. (E4)

Solving (E3) yields an equation for the optimal velocity of the control parameter for a given α:

λ̇
opt
t (α) =

(λτ −λ0)
(
ξ (λt)+αβIt(πt ,X)

)−1/2∫
τ

0 dt
(
ξ (λt)+αβIt(πt ,X)

)−1/2 , (E5)

One concludes that the optimal velocity is proportional to the following:

λ̇
opt
t (α) ∝

(
ξ (λt)+αβIt(πt ,X)

)−1/2
. (E6)

Appendix F: Thermodynamic metrics for the harmonic oscillator

We wish to evaluate the following metrics for the single parameter ωt :

ω̇
2
t Λ(ωt) :=

β

Γ
Tr
(
Ḣ Sπt (Ḣ)

)
, (F1)

ω̇
2
t ξ (ωt) :=

β

Γ
Tr
(
Ḣ Jπt (Ḣ)

)
. (F2)

For the harmonic oscillator the Hamiltonian and power operator are given by

Ht = h̄ωt(nt +
1
2
),

Ḣt =

(
ω̇t

ωt

)(
Ht + h̄ωt

(a†
ωt )

2 +a2
ωt

2

)
, (F3)

where nt = a†
ωt aωt with aωt =

√
mωt
2h̄ (x+ i p

mωt
). The metrics (F1) can then be simplified as

Λ(ωt) =
β

Γ

(
1
ωt

)2 (
Tr
(
H2

t πt
)
+Tr

(
(δHt)

2
πt
)
− (Tr(Htπt))

2
)
, (F4)

ξ (ωt) =
β

Γ

(
1
ωt

)2(∫ 1

0
daTr

(
δHt π

a
t δHt π

1−a
t
)
+Tr

(
H2

t πt
)
− (Tr(Ht πt))

2
)
. (F5)

where we introduce δHt = h̄ωt((a
†
ωt )

2+a2
ωt )/2 for shorthand. By working in the number basis Ht = h̄ωt ∑

∞
n=0(nt +

1
2 ) |n〉〈n| and

using the standard relations a†
ωt |nt〉 =

√
nt +1 |nt +1〉 and aωt |nt〉 =

√
nt |nt −1〉, a textbook calculation reveals the following

expressions:

(Tr(Ht πt))
2 = (h̄ωt)

2 1+2ex + e2x

4(ex−1)2 , (F6)

Tr
(
H2

t πt
)
= (h̄ωt)

2 1+6ex + e2x

4(ex−1)2 , (F7)

Tr
(
(δHt)

2
πt
)
= (h̄ωt)

2 2e2x +2
4(ex−1)2 , (F8)

Tr
(
δHt π

a
t δHt π

1−a
t
)
=

(h̄ωt)
2

4
2e2x

(ex−1)2

(
e−2x(1−a)+ e−2xa

)
, (F9)
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where x = β h̄ωt . After plugging these expressions into (F4) we get

Λ(ωt) =
β h̄2

4Γsinh2 (β h̄ωt/2)
(1+ coshβ h̄ωt) , (F10)

ξ (ωt) =
β h̄2

4Γsinh2 (β h̄ωt/2)

(
1+

sinhβ h̄ωt

β h̄ωt

)
. (F11)

These quantities are used to plot Fig. 1(a)-(b) in the main text.
From this we can analyse the limiting behaviour of the metrics in different temperature regimes. In the limit β → 0 these

metrics reduce to

Λ(ωt)≈
1

Γω2
t

(
2
β
+

β

2
(h̄ωt)

2
)

and ξ (ωt)≈
1

Γω2
t

(
2
β
+

β

3
(h̄ωt)

2
)
, (F12)

so that

lim
β→0

(Λ(ωt)−ξ (ωt)) =
h̄2

Γ
lim
β→0

(
β

2
− β

3

)
= 0. (F13)

In the limit β → ∞ the above metrics reduce to

Λ(ωt)≈ β
h̄2

2Γ
and ξ (ωt)≈

h̄
2Γωt

. (F14)

Therefore in the high temperature limit (β → 0), the metrics ξ (ωt) and Λ(ωt) become equal, indicating vanishing of the quantum
fluctuations Qw. On the other hand, when the temperature is low (β → ∞), the dissipation metric ξ (ωt) converges to a constant
in β , limβ→∞ ξ (ωt) = h̄/2Γωt , while the fluctuation metric Λ(ωt) grows linearly Λ(ωt)≈ β h̄2/2Γ for β → ∞, see Fig. 1(b) in
the main text.

Given a fixed initial and final frequency (ω0,ωτ), we can now use (F10) and (F11) to minimise the objective function

Cα = α σ̃
2
w +(1−α)Wdiss,

=
∫

τ

0
dt ω̇

2
t
(
αΛ(ωt)+(1−α)ξ (ωt)

)
, (F15)

for any α ∈ [0,1]. Let ω
opt
t = ω

opt
t (α) denote the optimal solution minimising (F15) for a given α . Using the solution (E5), we

find an implicit equation for ω
opt
t (α):

ω̇t

ωτ −ω0
=

|sinh x
2 |√

1+α coshx+(1−α) sinhx
x∫

τ

0
dt |sinh x

2 |√
1+α coshx+(1−α) sinhx

x

. (F16)

The numerical solutions for (F16) at each value of α are finally used to compute the points on the Pareto front presented in
Fig. 2 from the main text.

Appendix G: Work fluctuation-dissipation relation for discrete processes beyond weak-coupling

Our analysis in the main text assumes that at all times the system undergoes dissipative Markovian evolution, which relies on
the assumption that the coupling to the bath is sufficiently weak. In this Appendix we present an alternative picture in which the
system is subject to a series a fast changes in its Hamiltonian, with each quench proceeded by thermalisation with respect to the
bath. However, here no restriction will be placed on the strength of coupling, and we will prove a quantum work FDR analogous
to our main result Eq. (8).

Let {H(1)
S ,H(2)

S , ...H(N)
S } represent a particular sequence of N quenches in the system Hamiltonian, where at each step we take

the total Hamiltonian to be of form

H(i)
SB := H(i)

S ⊗ IB + IS⊗HB + γVSB, (G1)

with VSB a time independent interaction with arbitrary coupling strength γ . The spectral decomposition of the total Hamiltonian
is denoted by H(i)

SB = ∑n ε
(i)
n |ε(i)n 〉〈ε(i)n |. In addition to being initially thermal, at the end of the (i−1)’th quench we assume that:
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• the system and bath equilibrates to the time-averaged state, i.e., it decoheres (see the review [86] for details)

• the system relaxes to the reduced of a global thermal state, π̃
(i)
S = trB(π

(i)
SB ) = trB(e−βH(i)

SB/Z(i)
SB ). Note that π̃

(i)
S deviates

from a local Gibbs state unless the weak-coupling assumption is taken, namely if γ2� 1.

It is important to realise that we make weak assumptions on the state of B, and that we only assume that thermalisation takes
place at the level of S (i.e. one can imagine that SB evolve unitarily leading to thermalisation at the local level). Alternatively,
one may assume that SB is put in contact via weak coupling to an external super-bath at inverse temperature β , leading to
thermalisation of the full SB, but this stronger requirement is not needed for our derivation.

Crucially, each change H(i)
S → H(i+1)

S is sufficiently fast such that the system-bath state does not change, while the thermal-
isation stages occur with no work done on the system due to the fixed Hamiltonian. Since work is performed only during the
quench stages, with evolution effectively unitary, the resulting work distribution can be obtained by successive iterations of the
two-projective measurement protocol applied to system and bath at each stage. By treating w = ∑

N−1
i=1 w(i) as the total work done

along the N steps, which is composed of a sum of independent random variables, the work distribution is given by

P(w) :=
N−1

∏
i=1

P(w(i)); P(w(i)) := ∑
n,m

δ [w(i)− ε
(i+1)+ ε

(i)]
∣∣〈ε(i+1)

m |ε(i)n 〉
∣∣2 〈ε(i)n |π(i)

SB |ε
(i)
n 〉 . (G2)

The first and second cumulants of work are subsequently given by

〈w〉=
N−1

∑
i=1

TrS

(
(H(i+1)

S −H(i)
S )π̃

(i)
S

)
, (G3)

σ
2
w =

N−1

∑
i=1

TrS

(
(H(i+1)

S −H(i)
S )2

π̃
(i)
S

)
−TrS

(
(H(i+1)

S −H(i)
S )π̃

(i)
S

)2
. (G4)

Note that the above terms depend only on the system degrees of freedom since each quench applies only locally to the system
Hamiltonian.

Our focus will be on slow processes, which in this context implies that the number of steps N is sufficiently large. By re-
expressing 〈w〉 in terms of SB as: 〈w〉 = ∑

N−1
i=1 Tr

(
(H(i+1)

SB −H(i)
SB )π

(i)
SB

)
, it is straightforward to show that the dissipated work

Wdiss = 〈w〉−∆F can be rewritten as [64, 65]

Wdiss =
1
β

N−1

∑
i=1

S(π(i)
SB ||π

(i+1)
SB ), (G5)

where S(ρ||σ) = Tr(ρ(lnρ− lnσ)) is the quantum relative entropy. Note that for a density operator ρ(t) that depends smoothly
on some parameter t, the relative entropy between close states ρ(t + δ t) and ρ(t) is approximated up to second order in δ t as
follows [87]:

S
(
ρ(t)||ρ(t +δ t)

)
=

1
2

δ t2 Tr
(

∂ lnρ(t)
∂t

Jρ(t)

(
∂ lnρ(t)

∂t

))
+O(δ t3), (G6)

where Jρ(A) is defined in Eq. (9). By defining ∆H(i)
S /N = (H(i+1)

S −H(i)
S ) and identifying 1/N as a small parameter, the

expansion (G6) yields the following approximation for S(π(i)
SB ||π

(i+1)
SB ) after taking the partial trace over the bath degrees of

freedom:

S(π(i)
SB ||π

(i+1)
SB ) =

β 2

2N2 TrS

(
∆H(i)

S J
π̃
(i)
S
(∆H(i)

S )
)
+O(1/N3). (G7)

At this stage we introduce a one-parameter family of Hamiltonians {HS(t) | t ∈ [0,1], HS(t = i/N) = H(i)
S } and denote the

corresponding system state by

π̃S(t) =
TrB

(
e−β (HS(t)+HB+γVSB)

)
TrSB

(
e−β (HS(t)+HB+γVSB)

) , (G8)

Then one has ∆H(i)
S = ḢS(i/N) +O(1/N) where ḢS(t) = ∂

∂ t HS(t) represents the system’s power operator. Combining (G5)
and (G7) and taking the continuum limit gives

Wdiss =
β

2N

∫ 1

0
dt TrS

(
ḢS(t) Jπ̃S(t)(ḢS(t))

)
+O(1/N2). (G9)
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This gives the dissipated work in the limit of many discrete steps up to first order.
We now turn to evaluating the work fluctuations σ2

w = 〈w2〉−〈w〉2 in this limit. From (G4) we find in the continuum limit

σ
2
w =

1
N2

N−1

∑
i=1

TrS

(
(∆H(i)

S )2
π̃
(i)
S

)
− 1

N2

N−1

∑
i=1

TrS

(
∆H(i)

S π̃
(i)
S

)2
,

=
1
N

∫ 1

0
dt
(

Tr
(
Ḣ2

S (t) π̃S(t)
)
−TrS

(
ḢS(t) π̃S(t)

)2
)
+O(1/N2), (G10)

We are now ready to obtain the work fluctuation-dissipation relation for discrete processes. For a large number of steps N2� 1,
subtracting (G9) from (G10) gives

Wdiss =
1
2

βσ
2
w−Qw, (G11)

where

Qw =
β

2N

∫ 1

0
dt I

(
π̃S(t), ḢS(t)

)
, (G12)

is the time-integrated average Wigner-Yanase-Dyson skew information, defined as in the main text by

I (ρ,A) :=−1
2

∫ 1

0
da Tr

(
[A,ρa][A,ρ1−a]

)
. (G13)

It follows from the positivity of the skew information that

Wdiss ≤
1
2

βσ
2
w, (G14)

with equality iff [ḢS(t), π̃S(t)] = 0 ∀t ∈ [0,1].
Comparing (G11) with Eq. (8) obtained in the Lindblad approach, we see structural similarities. Here one finds a quantum

correction term stemming from the fact that the reduced state of the system does not necessarily commute with the power
operator ḢS(t). In the weak coupling limit where π̃S ' πS we recover the same quantum correction term for Lindblad equation
Eq. (10), with N = τΓ/2 playing the role of the ratio between the evolution and equilibration timescales. Clearly we see that
the resulting work distribution has an increased spread due to additional quantum fluctuations in power, quantified by the skew
information. This suggests that the assumption of weak coupling used to obtain Eq. (8) in the main text is not crucial, and that
the result is more fundamentally linked to the linear expansion of the system state close to the quasi-static limit.

Appendix H: Numerical verification of Eq. (8)

In order to show how the slow driving approximation affects the FDR we numerically simulate here the exact dynamics of a
two level system in contact with a bosonic thermal bath with flat spectrum. The Lindblad equation we use in the eigenbasis of
the system Hamiltonian is given by [43]:

ρ̇t = Lr [ρ] = γ(Pr +1)
(

σ̂−ρt σ̂+−
1
2
{σ̂+σ̂−,ρt}

)
+ γPr

(
σ̂+ρt σ̂−−

1
2
{σ̂−σ̂+,ρt}

)
, (H1)

where r is the time dependent energy spacing and Pr is simply the Planck distribution Pr := 1
e2β r−1

. For simplicity, we assume
the proper equilibration timescale γ to be one. Since we have to account for the explicit change of Hamiltonian we define the
unitary transformation on SU(2):

Ut := {Ut ∈ SU(2)|U†
t HtUt is diagonal}. (H2)

Notice that SU(2) can be parametrised by spherical angles; for this reason we write the qubit Hamiltonian in spherical coordi-
nates as:

Ht = rt cosϕt sinθt σ̂x + rt sinϕt sinθt σ̂y + rt cosθt σ̂z =U(θt ,φt) Hrt U(θt ,φt)
†. (H3)

Then in this diagonal representation the Lindbladian equation is given as:

ρ̇t =U(θt ,φt)L
[
U(θt ,φt)

†
ρtU(θt ,φt)

]
U(θt ,φt)

†. (H4)
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FIG. 3. The behaviour of average dissipation and work fluctuations for the two protocols: (Left) a classical protocol where only the energy
spacing is changed according to (H8), and (Right) a quantum protocol that generates coherences via (H9). In both plots the solid lines represent
numerical computations of the exact quantities (H6) and (H7), while the dashed lines are the theoretical results Eq. (4) and Eq. (6), computed
using the slow driving approximation.

The formal solution is given by

ρt =
←−
T e

∫
τ
0 dt Lt (ρ0); ρ0 =

e−βH0

Z0
. (H5)

After determining the solution (H5) numerically, we can compute the first two moments of work using the following exact
expressions from Appendix A:

Wdiss = β
−1 ln

(
Zτ

Z0

)
+
∫

τ

0
dt Tr

(
Ḣtρt

)
, (H6)

σ
2
w = 2

∫
τ

0
dt1
∫ t1

0
dt2 Tr

(
Ḣt1
←−
P (t1, t2)

[
Sρt2

(Ḣt2)
])

. (H7)

These quantities are shown in Figure 3 for two different protocols as a function of the total duration τ . We clearly see that our
slow driving approximations (ie. 1/τ2� 1) becomes valid at large values of τ , thereby verifying our work FDR Eq. (8). In the
first case we consider a commuting protocol where only the energy levels are changed in time, which in spherical coordinates is
simply given by

{r,φ ,θ ,φ}(t) = {t,0,0}. (H8)

The Hamiltonian stays in the same energy basis throughout the protocol, and thus the quantum correction Qw = 0. In the large
τ limit we see that work dissipation and fluctuations converge to the classical FDR Wdiss =

1
2 βσ2

w as expected.
For the second case we rotate the Hamiltonian energy basis using the following protocol:

{r,φ ,θ}(t) =
{√

t2−2t +2, 0, arctan(1/(1− t))
}
. (H9)

As a result we generate coherence during the process and hence obtain a non-zero quantum correction Qw. In Figure 3 one
sees that again the slow driving approximations for Wdiss and 1

2 βσ2
w are valid in the large τ limit. In contrast to the commuting

protocol, at large τ the work fluctuations exceed the dissipation, confirming the inequality Eq. (9) in the main text. The
difference between the curves for 1

2 βσ2
w and Wdiss represents the time-integrated skew information Qw. Interestingly, we see that

Wdiss ≤ 1
2 βσ2

w remains valid at all times. It is not clear whether or not this is a general feature of the Lindblad master equation,
or if this is simply a property of this particular spin-boson model.
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