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A long-standing question in economics is how important unobserved differences across workers are for

explaining unemployment. I revisit this topic using variation in lifetime unemployment across workers in U.S.

data. A comparison of workers often unemployed with the rest shows that although differences in job-finding

rates increase over the course of a career, differences in job-separation rates are large right from the start. I

develop a directed search model with symmetric unobserved heterogeneity, in which agents learn workers’ types

from their labor market histories, to rationalize these findings. The model cannot match the data if unobserved

heterogeneity is neglected.

1. INTRODUCTION

Economists have long sought to understand the determinants of unemployment. In particular,
the degree to which unemployment is due more to adverse shocks or to unobserved differences
in individual characteristics is crucial in the design of optimal labor market policy. For instance,
if some group of individuals is always more prone to be unemployed than others, then changes
in unemployment insurance policy will primarily affect that group. One way to understand
the importance of unobserved heterogeneity and shocks is to study who the most frequently
unemployed workers are over a long time span, which naturally maps into the study of lifetime
unemployment. However, heterogeneity in lifetime unemployment has received little attention
in the literature. In contrast, the study of lifetime income has shed considerable light on similar
questions.2

The contribution of this article is to examine variation in lifetime unemployment and to
provide a model to explain such variation. Using data from the 1979 National Longitudinal
Survey of Youth (hereafter NLSY/79), I first extend standard measures of income dispersion to
the study of lifetime unemployment. I then describe the concentration of lifetime unemployment
in certain groups, and how these groups differ in the probabilities of finding and losing a job
over the life cycle. Finally, I develop a directed search model that rationalizes these patterns.

I document three novel facts on lifetime unemployment. First, the experience of unem-
ployment is concentrated in a relatively small group of workers. Two-thirds of prime-age
unemployment in the NLSY/79 cohort are accounted for by 10% of workers. This also

∗Manuscript received October 2018; revised February 2019.

This article previously circulated as “Information Frictions, Match Quality and Lifetime Unemployment.”
1 I am very grateful to Andrés Erosa and Javier Fernández-Blanco for their support and comments. Special thanks

to my friend and colleague Salvatore Lo Bello for the many discussions on the topic. I thank to Arpad Abraham,

Manolis Galenianos, Daniel Garcı́a, Maia Guell, Timothy Kehoe, Matthias Kredler, Moritz Kuhn, Marcus Hagedorn,

Igor Livshits, Matilde Machado, Ellen McGrattan, Espen Moen, Sevi Rodrı́guez Mora, Fabrizio Perri, Fabien Postel-
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holds within education/gender subgroups. Such concentration is mainly due to the higher job-
separation rate of the most unemployed workers. Second, I find that time spent in unemployment
when a worker is young is a powerful predictor of time spent in unemployment during prime
age. Moreover, it has more predictive power than education, occupation, or health. Third, I
uncover specific patterns in the probability of finding and losing a job over the life cycle across
prime-age unemployment groups. With respect to job-finding rates, differences appear only in
the long run. In other words, workers in different prime-age unemployment groups start their
careers with similar job-finding rates. Subsequently, the job-finding rate of those who will be
the most unemployed in prime-age declines, whereas that of other workers remains relatively
constant. With respect to job-separation rates, differences are large right from the start. Those
who will belong to the 10% most unemployed workers in prime age have more than twice
the likelihood of separating from a job to unemployment at age 20 relative to other workers.
Finally, differences in job-separation rates remain high over time.

Why are separation rates so heterogeneous and persistent over the life cycle? Why do differ-
ences in the job-finding rate start small and increase over time? And why do the same workers
experience both low finding rates and higher separation rates? As I will discuss later, explana-
tions based on standard human capital models (such as Ljungqvist and Sargent, 1998) are at
odds with these facts.

I propose a directed search model of learning that is consistent with all the above-mentioned
microobservations. In the model, workers can be of two types: high or low. A worker’s type is
initially unobserved by all agents in the market, who are allowed to learn workers’ types from
his labor market history. This feature makes the model consistent with the observation that,
although differences in separation rates are large from the start, differences in job-finding rates
are small at first and then increase over the span of a career. This is because workers in the
model who experience frequent separations when young progressively find fewer jobs, because
their prospective employers observe a poor labor market history. Thus, the model is able to
answer the questions posed above.

Information in the model is symmetric. Thus, at the start of a worker’s career, no agent in
the market (including the worker himself) knows his type. Search is competitive in the sense
that workers decide to search for a job that delivers a certain lifetime value. Upon matching
with a firm, workers draw match quality from a type-specific distribution, which is constant for
the duration of the match. Firms write complete contracts and matches are destroyed whenever
their surplus is negative. Match quality is an experience good, as in Jovanovic (1979). The
output of a match is unobserved until a shock is realized, at which point it becomes known to
the firm–worker match. The match is then either continued or destroyed, leaving the worker
unemployed in the latter case. Past realizations of match quality for each worker are observed
by the market, and are used to update the probability that the worker is of high type accordingly.
The probability of being high type formalizes the notion of a “résumé” based on the worker’s
labor market history. Low values for match quality will lead the market to believe that the
worker is more likely to be of low type, and vice versa. Thus, a worker’s type is gradually
learned from his labor market history and workers with different résumés apply for jobs in
different submarkets.

To the best of my knowledge, this is the first competitive search model in which job-finding
rates, job-separation rates, and the speed of learning are all endogenously and simultaneously
determined.3 This is accomplished by allowing workers to choose the submarket in which they
search, understanding that each lifetime value entails a different job-finding rate, and by having
the worker’s outside option evolve dynamically with his history, thus determining both his
future desired lifetime value and his probability of separating from a job.

3 The model in Doppelt (2016) is the closest to the one studied here, but the two papers differ along several

dimensions. Doppelt uses a directed search model in which wages are set through bargaining to examine the job-finding

rate/unemployment duration relationship. I develop a competitive search framework to investigate heterogeneity in

lifetime unemployment instead.
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Heterogeneity in lifetime unemployment originates from three sources in the model. The first
is heterogeneity across workers, since one type of workers is always more likely to draw low
match quality values, which will ultimately lead to separations. The second is bad luck, since
any given type can draw low match qualities and thus separate to unemployment. The third
is information frictions, where low-type workers wrongly infer from lucky draws that they are
likely to be high types. As a result, they might leave their current jobs to sample a better one,
only to experience a bad draw later on and become unemployed again. Conversely, high-type
workers might experience unlucky draws, so that their résumé will look worse the next time
they look for a job, and thus, they will experience longer unemployment duration.

The model is estimated using data from the NLSY/79. The model is successful in reproducing
the observed concentration and persistence of unemployment, as well as the patterns of job-
finding rates and job-separation rates over the life cycle. The model delivers concentration of
unemployment since low-type workers have a higher probability of drawing low-quality matches
than high-type workers and they have lower expected productivity. Thus, such workers face a
higher separation rate and a lower job-finding rate at every age. The model delivers persistence
because low-type workers tend to experience frequent separations both when young and when
of prime age, and job-finding rates that decline with age as the market recognizes them as low-
type workers. Information frictions are crucial to match the life cycle patterns of job-finding and
job-separation rates by unemployment group. I argue that a model based on human capital, or
on other forms of bad luck that accumulate over the lifetime, instead of information frictions,
would be inconsistent with these patterns since it would have the counterfactual implication
that differences in separation rates start small and increase over the life cycle.

By progressively shutting down features of the baseline model, I find that neglecting hetero-
geneity across workers makes it impossible to match the concentration and persistence of unem-
ployment observed in the data. Although uncertainty in match quality draws helps in matching
the life cycle profile of job-separation rates and the concentration of prime-age unemployment,
heterogeneity across workers is crucial in matching the documented persistent differences in
job-finding and job-separation rates across workers. Furthermore, uncertainty in match quality
draws is important because it slows down learning: If there is no uncertainty and workers only
differ in mean match quality, learning is too fast and it is impossible to match the progressive
decrease in job-finding and job-separation rates by prime-age unemployment groups.

Are information frictions important in determining labor market outcomes? In a quantitative
exercise, I shut down information frictions and show that they are responsible for the entire
decline in monthly job-finding rates among the top 10% of prime-age unemployed (from 21%
at age 20 to 10% at age 35). This is because 89% of the top 10% unemployed are low types and,
although their type is initially unknown, it is slowly revealed by their labor market histories. This
translates into progressively lower job-finding rates for these workers. Information frictions also
explain part of the decline in the separation rates of the most unemployed workers. In short, such
frictions are important for explaining the labor market outcomes of young workers. However,
the role of information frictions later in life is negligible. By age 30, types have effectively
been learned for most of the population, so that most of the concentration and persistence of
unemployment after this age is due to heterogeneity across workers.

This article mainly contributes to two strands of the literature. First, it relates to the large
empirical literature that investigates the composition of the unemployment pool and hetero-
geneity in job-finding rates (Clark et al., 1979; Addison and Portugal, 1989; Lockwood, 1991). I
add to this literature by showing that most of the prime-age unemployment pool is composed
of a relatively small group of workers, who exit employment at a higher rate and stay unem-
ployed for lengthier periods. Other papers have found that lifetime unemployment is relatively
concentrated (Michelacci et al., 2012, for the United States; Schmillen and Moller, 2012, for
Germany; and Brooks, 2005, for Canada), but have not focused on prime-age unemployment. I
further add to this literature by decomposing concentration into job-finding and job-separation
rates, documenting young to prime-age persistence and showing the life cycle patterns of job-
finding and job-separation rates by prime-age unemployment groups. My results for the speed of
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employer learning are similar to those of Lange (2007), who finds that employers learn relatively
quickly and expectation errors on productivity decline by 50% during the first three years of
employment.4

Second, I contribute to the theoretical literature on job search and learning by developing a
competitive search model of unemployment and learning from labor market histories, in which
job-finding rates, job-separation rates, and the speed of learning are all jointly determined in
equilibrium. This is also the first model to study lifetime unemployment data and use it in
estimation. Other models of job search have proposed the combination of unobserved hetero-
geneity and learning as a candidate explanation for the scars of unemployment (Michaud, 2018)
or heterogeneity in job-finding rates (Shimer, 2008; Gonzalez and Shi, 2010; Fernández-Blanco
and Preugschat, 2018). This article combines a directed-search environment with a mechanism
similar to Michaud (2018) regarding separations, but also adds résumés, learning from labor
market histories and heterogeneity in the shape of match quality distributions across types.
Doppelt (2016) contemporaneously developed a model similar to the one in this article, to
investigate the negative relationship between job-finding rates and unemployment duration
found in the data. I share with Hagedorn and Manovskii (2013), Mustre-del-Rı́o (2012), and
Jung and Kuhn (2019) the idea that longer employment duration signals higher match quality.
Finally, my model is, in spirit, a life cycle model of search and matching which environment
is similar to that of Menzio et al. (2016). I build on their model of homogeneous workers and
allow for unobserved heterogeneity and learning.

The article is organized as follows: Section 2 describes the data on lifetime unemployment and
the patterns of job-finding and job-separation rates over the life cycle I uncover. Section 3 sets
up the model and Section 4 discusses its identification. Section 5 outlines the results of model
simulations and quantitative exercises. Section 6 discusses possible competing mechanisms for
explaining the data and the role of some model assumptions. Section 7 discusses the model’s
policy implications and concludes. All online appendixes contain details on data construction
and robustness checks for the main data results, except for online Appendix A.4 that contains
four graphs of the model-simulated data and online Appendix A.5 that contains all proofs not
included in the article.

2. THE DATA

I use weekly job histories taken from NLSY/79 data to compute lifetime unemployment
statistics. The NLSY is one of the best-known panel data sets available for the United States.
It follows a cohort of more than 10,000 individuals starting from 1979, when they were aged
14–22. The data were gathered annually until 1994, and biannually since then.

I use only the cross-sectional representative sample of the NLSY and restrict my attention to
males who have completed only a high school education by age 30.5 Furthermore, I exclude any
worker who has less than 100 weeks of reported employment/unemployment from age 20–30,
or less than 100 weeks from age 35–50.6 This provides a final sample of 1,083 workers, who
are observed for about 1,300 weeks on average. Nonetheless, the results are robust to more
inclusive definitions of the sample.7 Finally, following Chetty (2008), I consider an individual

4 Other empirical work focuses on employer learning as a source of increase in wage heterogeneity over the career

(see, e.g., Kahn and Lange, 2014).
5 This means that I include in the sample only individuals who have completed no more and no less than high

school at age 30. I do this to attain as homogeneous a sample as possible. High school graduate males are the largest

education/gender subgroup in the NLSY/79. Moreover, Menzio et al. (2016) show that, in terms of labor market

outcomes, this subgroup is a good representation of the behavior of U.S. labor market aggregates over the life cycle. In

online Appendix A.2.2, I show that the findings are robust for other education/gender subgroups.
6 This is to address measurement error issues when computing lifetime unemployment statistics. I examine the extent

of measurement error in online Appendix A.2.3.
7 For results using the entire sample, see online Appendix A.2.2.
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TABLE 1
LIFETIME UNEMPLOYMENT: DATA VS UNIFORM MATCHING MODEL

(1) (2)

NLSY/79 Unif. Match

Avg. % time in unemployment 4.7 4.9

Avg. % time in U, excluding top 10% 2.0 3.1

Avg. % time in U, excluding top 20% 0.8 2.0

% never unemployed: 58 40

NOTES: Column (1): Lifetime unemployment statistics computed on NLSY/79, individuals aged 35-55. Sample includes
only high school educated, male individuals with more than 100 observations of weekly job histories in their prime age,
ending 2010. Column (2): averages computed by simulating sequences of 500 job-finding–job-separation events using
flow equations of Mortensen-Pissarides model, calibrated to the average job-finding and job-separation probabilities
in NLSY/79 sample.

unemployed in a given week if that week is part of a nonemployment spell during which the
individual reports being unemployed and searching for a job for at least one week.8

2.1. Prime-Age Unemployment Is Concentrated. I first document that prime-age unemploy-
ment is concentrated among relatively few individuals. I start by defining young-age unem-
ployment as the proportion of an individual’s work history spent in unemployment out of total
weeks employed or unemployed9 from age 20 to 30:
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and 0 for weeks in which he was employed, and T
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was either employed or unemployed between the ages of 20 and 30. Similarly, I define prime-
age unemployment as the proportion of a work history spent in unemployment from age 35
to 50. Since I will show that there are important connections between young and prime-age
unemployment, the five-year gap is necessary to ensure that the correlations are not in part
due to the aftermath of a recession, or to long unemployment spells that span between the
two periods.

As shown in Table 1, there are large differences in unemployment outcomes across workers.
The first finding is that prime-age unemployment is concentrated among relatively few workers.
After ranking individuals by the fraction of time spent in unemployment, I compute the fraction
of weeks spent in unemployment by the bottom 90% of the sample:10
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where 1(u
p
i < q90(up )) is an indicator function that takes value 1 if the prime-age unemployment

of individual i is below the 90th percentile of the prime-age unemployment distribution, and

8 This is also to address a specificity in the design of unemployment and nonemployment spells in the NSLY/79.

I provide more details in online Appendix A.1. Results are robust to alternative definitions of unemployment, as

described in online Appendix A.3.
9 My definitions are similar to those used by Schmillen and Möller (2012).
10 These measures are commonly used in the literature on income inequality (see, e.g., Atkinson, 1970). Their

application to lifetime unemployment is relatively uncommon, with the exception of Schmillen and Möller (2012) and

Brooks (2005).
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0 otherwise, whereas T
p
i is the number of weeks in which individual i was either employed or

unemployed while of prime age.11

The 10% most unemployed individuals account for about 2/3 of the prime-age unemployment
observed in the data. Moreover, about half of the sample has never been unemployed in the
reference period. Notice that the fact that prime-age unemployment is concentrated among
relatively few workers is very different from the phenomenon noted (among others) by Clark
et al. (1979), who show that most of the unemployment pool is accounted for by workers
staying unemployed, instead of workers entering and exiting unemployment. The phenomenon
documented by Clark et al. is mainly driven by heterogeneity in unemployment duration,
whereas I will show below that the frequency of unemployment spells is even more important
in explaining the concentration of prime-age unemployment.

As in the discussion of income inequality, measures of concentration may not be meaningful
unless they are compared to what a standard framework would imply for the distribution of
unemployment. If only one person out of 10,000 were unemployed, the fact that unemployment
is concentrated would not be very interesting. Moreover, it is important to stress that these num-
bers do not accurately represent differences in the “underlying” job-finding and job-separation
rates for groups of workers. My estimates of job-finding and job-separation probabilities are
likely to be biased estimates of the underlying probabilities faced by different groups of workers,
because by creating groups based on the amount of unemployment experienced in prime age, I
am selecting those individuals who experienced exceptionally high amounts of unemployment,
who might be the most “unlucky” among a specific group. To understand the magnitude of
these results, I compare the concentration of unemployment observed in the data to what a
standard search and matching framework à-la Mortensen and Pissarides (1994) would imply.12

The simulations show that the standard model, when estimated to reproduce the average
job-finding and job-separation rates in the sample, has trouble replicating the observed con-
centration in prime-age unemployment, since it predicts too many transitions in and out of
unemployment for the majority of workers. This fact is important, because it suggests that
heterogeneity across workers is likely to be crucial in making sense of labor market outcomes,
and of the ins and outs of unemployment during prime age.

I now proceed to compute weekly average job-finding/job-separation rates for workers in their
prime. Job-separations always refer to separations to unemployment throughout the article. As
can be seen from Table 2, the concentration of unemployment is due both to a lower job-finding
rate13 (by about four times) and a higher separation rate (by about eight times) for the top
10% (see Table 2). This group of workers therefore appears to have both longer unemployment
duration and shorter employment duration. Since unemployment is a nonlinear function of
both finding and separation rates, failure to account for both simultaneously means not getting
the distribution of lifetime unemployment right. Interestingly, the difference in separation rates
accounts for a larger proportion of the heterogeneity in unemployment outcomes than the
difference in finding rates.

11 Clearly, this is not the only way to compute this average. Another possibility is to compute:

ũ
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which is the average of each individual’s prime-age unemployment. The two averages differ since T
p
i varies across indi-

viduals (because some individuals are observed for more weeks than others). In particular, they can differ significantly if

COV(T p , up ) �= 0, for instance, if those often unemployed also tend to be more often out of the labor force. In fact, this

is indeed the case (see online Appendix A.2.1). I find that there is relatively little difference between the two methods

of computing the average, and that they deliver very similar results. Indeed, the concentration of unemployment is even

larger (about 70% accounted for by the top 10%) according to the second methodology (see online Appendix A.2.1).
12 Simulations of 500 weeks of transitions are used because in my NLSY/79 sample, prime-age workers are observed

for about 600 weeks on average. Increasing the number of simulated weeks worsens the performance of the standard

model further.
13 Online Appendix A.1.1 describes the calculation of job-finding and job-separation rates.
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TABLE 2
SUMMARY STATISTICS BY PARTS OF THE PRIME-AGE UNEMPLOYMENT DISTRIBUTION

Top 10% Rest of Sample Ratio Top 10/Rest

Avg. % time in unemployment 35.5 2.0 18.1

f : Prob. of U → E (weekly%) 1.61 6.15 0.26

δ: Prob. of E → U (weekly%) 0.96 0.13 7.6

Predicted % time in U of top 10%, 9.7

f alone (δ/(δ + f top10)):

Predicted % time in U of top 10%, 22.3

δ alone (δtop10/(δtop10 + f )):

Avg. Log Wage (2000) ≃ −41%

SOURCE: Author’s calculations on NLSY/79. Male, high-school educated individuals aged 35–55. Predicted % time in
U calculated using the formula u = δ/(δ + f ).

TABLE 3
MARKOV TRANSITION MATRIX, FROM DISTRIBUTION OF YOUNG (AGES 20–30) UNEMPLOYMENT TO PRIME-AGE (35–55)

UNEMPLOYMENT. OVERALL SAMPLE (TOP PANEL) AND ONLY HIGH SCHOOL MALES (BOTTOM PANEL)

Rest Top 10% When (35–55)

All Sample

Rest 92.89 7.11

Top 10% when (20–30) 64.26 35.74

High School Workers

Rest 93.23 6.77

Top 10% when (20–30) 61.11 38.89

SOURCE: Author’s calculations on NLSY/79.

To summarize, I find that prime-age unemployment is concentrated in relatively few workers,
that the standard search-and-matching framework cannot replicate this finding, and that most
of the concentration of unemployment in prime age is accounted for by heterogeneity in job-
separation rates, instead of job-finding rates.

2.2. Unemployment Is Persistent over the Life Cycle. I now document that young and prime-
age unemployment are strongly correlated. Table 3 shows that workers who were in the top
10% of the young-age unemployment distribution are five times more likely to be in that same
part of the distribution when of prime age. In short, young and prime-age unemployment are
connected and, for a wide range of observables in the NLSY/79, young unemployment is the
best predictor of prime-age unemployment. Accordingly, regression analysis (see Table 9 in
the online Appendix) confirms that young unemployment is a strong predictor of prime-age
unemployment, and that this is not due to observables such as education, marital status, and IQ
(IQ as measured by the Army Force Qualification Test score).

Finally, notice that such persistence is not explained by other kinds of observable heterogene-
ity, such as differences across occupations (i.e., the choice of an “unlucky occupation” when
young, as in Schmillen and Möller, 2012) or in health status (poor health that adversely affects
labor market outcomes). I perform a battery of regressions (see Table 4) that shows that ethnic
origin, education, prior and current occupation, ex post health, and IQ do not substantially
explain the amount of persistence in unemployment. This result is particularly strong because
current occupations and ex post health are endogenous to prior labor market experience, and
as such should capture part of the persistence in unemployment. For instance, a worker who has
frequently been unemployed when young will typically work in less stable occupations in prime
age, which should capture some of the young-prime-age correlation. Similar considerations can
be made for ex post health.
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TABLE 4
REGRESSION OF % OF UNEMPLOYMENT IN PRIME AGE (35–50) ON % OF YOUNG UNEMPLOYMENT (20–30)

(1) (2) (3) (4) (5)

No Young U Base Occ Occ 2 Occ 2 + Hlt

% Time U. when 20–30 0.288*** 0.285*** 0.283*** 0.277***

(0.018) (0.018) (0.018) (0.018)

Demographics

Married −0.0428*** −0.0251*** −0.0244*** −0.0251*** −0.0242***

Education and AFQT

Some college 0.0102 0.00950 0.00463 0.00425 0.00210

High school 0.0254*** 0.0226** 0.0175* 0.0156 0.0102

<High school 0.0746*** 0.0584*** 0.0544*** 0.0514*** 0.0429***

AFQT Quartile = 2 −0.0138 −0.00165 −0.00201 −0.00221 0.000873

AFQT Quartile = 3 −0.0247** −0.00662 −0.00607 −0.00657 −0.00172

AFQT Quartile = 4 −0.0259** −0.00707 −0.00549 −0.00528 −0.000916

Standard controls X X X X X

Prevalent occupation (one digit) X X X

Occupation in 1990 (1d) X X

Health status (2000) X

R2 0.119 0.212 0.217 0.220 0.244

Observations 2,188 2,188 2,188 2,188 2188

NOTES: Column (1) reports results from a regression on all workers, including only controls and no young unemployment;
column (2) includes young unemployment; column (3) adds dummies for the occupation in which the individual spent
most time; column (4) adds dummies for occupation in 1990; and column (5) adds self-reported health at age 40. All
regressions include controls for education at age 30, ethnic group, age in 1979, marital status at age 30, AFQT test
score quartile.
SOURCE: Author’s calculations on males from NLSY/79. Other controls’ coefficients are not reported for reading
convenience. More complete results can be found in Table 14 in the online Appendix. Standard errors in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001.

Moreover, comparing the first two columns of Table 4 shows that several observables, par-
ticularly IQ measures and marital status, lose importance when young unemployment is taken
into account. This suggests that a same fixed characteristic might be correlated with all three
measures, but that young unemployment may be measuring it more precisely.14

2.3. Job-Finding and Job-Separation over the Life Cycle. As a final piece of evidence, I com-
pute job-finding and job-separation probabilities depending on age, for ages 20–35, by groups of
prime-age unemployment (Figure 1). My intention is to show that those who have experienced
more prime-age unemployment had different labor market outcomes during their early careers
as well. I compute average rates from probit regressions of job-finding rates and job-separation
rates on a third-degree polynomial in age by prime-age unemployment groups, controlling for
observables and year-specific fixed effects to clean the effect of recessions.15 Between the ages
of 20 and 30, the job-separation rate of the top 10% of prime-age unemployed is more than
twice that of the rest of the sample, and this gap increases over the years, both in absolute
and relative terms. On the other hand, the two groups experience virtually identical job-finding

14 Including noncognitive skills information from the NLSY/79 in the regressions does not have any impact on the

estimates, possibly because of measurement error. The fact that a better observable is hard to find in the NLSY/79

does not mean that one does not exist in general. For instance, Lindqvist and Vestman (2011) find that, in Sweden,

high-quality measures of noncognitive ability based on personal interviews conducted by psychologists are strongly

associated with the risk of unemployment.
15 The results are essentially identical, though more noisy, if the averages are computed with one-year age intervals

instead of restricting to a functional form. I chose the polynomial shape for presentation purposes. Results under the

age-group specification appear in Figure 10 of Supporting Information and are used as an alternative identification

scheme for the model in a robustness check (available upon request).
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FIGURE 1

MONTHLY JOB-FINDING (LEFT PANEL) AND JOB-SEPARATION (RIGHT PANEL) PROBABILITIES, BY GROUP OF PRIME-AGE

UNEMPLOYED [COLOR FIGURE CAN BE VIEWED AT WILEYONLINELIBRARY.COM]

rates at age 20, but a gap appears and widens over time as workers age, particularly due to the
decline in the job-finding rate of the top 10% of prime-age unemployed.

This suggests that, in the eyes of potential employers, the two groups of workers did not
look substantially different at the beginning of their working careers, since they were hired
with similar probabilities, but became increasingly distinct over time. Nonetheless, the high
separation rates experienced by the top 10% of prime-age unemployed during their 20s suggest
that such workers were recognized to be different during an employment relationship.16 In other
words, at the start of their career, young workers who later experienced substantially different
labor market outcomes appeared similar; however, as they accumulated jobs and separations,
job-finding rates diverged, suggesting that information on them had gradually become available.

I further decompose the separation rate using the beta-matched employer–employee vari-
ables available in the NLSY/79 (see Table 15 in the online Appendix), which provides some
evidence supporting this interpretation. Workers in the top 10% of prime-age unemployment
are fired three times more often than other workers when young, although they are also substan-
tially more likely to experience an involuntary separation (due to a layoff or an establishment
closure) and to quit to look for another job.17 In prime age, the various reasons for losing a job
seem to be of equal importance. Involuntary separation and quitting account for most of job
separations observed in the data at all stages of the life cycle.

The wages of the top 10% group progressively decline over the life cycle relative to the rest of
the workers (see Figure 8 in the online Appendix), confirming that differences across workers
become more pronounced over the course of their careers. This suggests that, after sampling a
number of jobs, they are recognized as less productive, or they sort into different jobs to avoid
frequent separations in the future, or they fail to accumulate skills that lead to higher wages.

These facts motivate the need for a theory of unemployment that is capable of replicating
the concentration of unemployment among relatively few workers and the persistence of un-
employment over the life cycle, phenomena that have important implications for the design of
labor market policy. For instance, the concentration of unemployment suggests that a relatively

16 Section 6 discusses why explanations based on human capital are insufficient to explain such patterns.
17 In the model section, I choose not to take a stand on the interpretation of different labelings of job separations.

My modeling strategy is based on the surplus of a firm–worker match and is thus silent on the interpretation of specific

job separations.
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small group will receive the bulk of unemployment insurance benefits, and will be the most
affected by changes in the level of such benefits. However, I argue that the relatively low ex
ante difference in job-finding rates and the large ex post differences in both job-finding rates and
wages suggest that important information frictions are at work in the first years of a worker’s
career, and that information on workers slowly accumulates over their careers. The model pre-
sented here will feature this mechanism, which has important implications for understanding the
concentration of unemployment, the connection between young and prime-age unemployment,
and the effects of labor market policies.

3. MODEL

In this section, I set up a directed search model of heterogeneity in labor market outcomes,
roughly based on Moen (1997), Menzio and Shi (2011), and Gonzalez and Shi (2010). The
ingredients of the model are motivated by the evidence presented in the previous section.

To obtain believable life cycle profiles of separation rates, I add heterogeneity in match quality
draws, as in Menzio et al. (2016), which also embeds—in a reduced-form manner—the idea of
“sorting into the right job” as a determinant of heterogeneity in career paths. Heterogeneity
across workers, information frictions, and the notion of a worker’s “résumé” is added to capture
the fact that the group of most unemployed workers experiences higher separation rates at the
start of their career, and that such separation rate diminishes later. This is because such workers
are being separated often (as in Gibbons and Katz, 1991) and are learning that they have low
productivity. Thus, their outside option declines, which reduces their probability of separating
from a job. Moreover, such workers progressively find fewer jobs and earn lower wages, since
their résumés worsens over time, thus reducing their expected productivity in the eyes of
potential employers. Finally, heterogeneity across workers can explain the relatively high levels
of persistence in unemployment found in the data.

3.1. Environment. The economy is populated by a measure of firms M > 1 and a measure
one of workers, who are either employed or unemployed. In every period, a fraction λ of
workers die, and are replaced by newly born, unemployed workers. Each worker is born either
as type H or type L, High and Low, respectively, with type being unknown both to firms and
workers. Low types occur with probability l and high types with probability 1 − l. All agents are
risk-neutral and discount the future at the factor 1/(1 + r).

Let p be the probability of a worker being high-type. There exists a continuum of submarkets
indexed by {v, p}, the expected lifetime value v offered by firms to workers in that submarket
and the prior p of workers applying to that submarket.18 Matches are endogenously destroyed
when their surplus is negative. Some matches end randomly with probability δ.

3.2. Search and Matching. Firms can post vacancies in any submarket at cost κ. Search is
directed, in the sense that workers with prior p̄ have to choose the submarket {v, p̄} in which to
search. Thus, the ratio of vacancies to searching workers in each submarket is denoted by θ(v, p),
the tightness in that submarket. The number of matches in each submarket is determined by the
matching function m = g(θ), such that the job-finding probability is f (θ) = m/u, which satisfies
f ′ > 0, f ′′ < 0, f (0) = 0, and limθ→∞ f (θ) = 1, and the job-filling probability is q(θ) = m/v =

f (θ)/θ. Unemployed workers can search for a job, whereas employed workers cannot.19 When
unemployed, workers get flow utility b.

18 This is to make fewer assumptions on the distributions of match quality that follow. In principle, the model can

be rewritten to feature submarkets indexed only by {v}, provided that further assumptions are made on the match

quality distributions so that workers with different p will apply to different submarkets. In the current version, I allow

workers with different p to apply to contracts delivering the same lifetime value, although in equilibrium, for every

value p ∈ [0, 1], only one submarket {v(p), p} will be active.
19 Adding on-the-job-search might alter the quantitative predictions of the model, but its main mechanism would

remain intact.
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3.3. Information and Learning. High- and low-type workers each draw the productivity of a
job from different distributions. Denote by H(x) and L(x) the cumulative distribution functions
of match quality for high and low types, respectively, with support X ⊆ [0, x̄], such that H(x)
strictly first-order stochastically dominates L(x), that is, H(x) < L(x) ∀ x < x̄. Once a worker is
matched, a match-specific quality shock is drawn from the worker’s type distribution. Match
quality is constant over the entire duration of the match.20

At the beginning of a firm-worker match, its output is unobserved. Match quality is an
experience good, as in Jovanovic (1979). Thus, once a worker with prior p has been matched,
the match produces the expected payoff E(x | p) in each period, until the worker/firm pair
has observed the match’s output or a random separation occurs.21 The output of the match is
observed with probability π in each period.

The history of a worker’s observed match quality draws is observable by all agents in the
market.22 Thus, upon observing output, agents gain information on a worker’s type.23

3.4. Contracts. I assume that employment contracts are complete, in the sense that they
specify a wage w paid by the firm to the worker and a probability of separation d at every point
in time, as a function of the promised expected lifetime utility, the history of the worker, and
the history of the firm–worker match.24 As shown by Menzio and Shi (2011), since contracts are
complete and utility is transferable, it is optimal for firms to offer contracts that are bilaterally
efficient, so that they maximize the sum of the firm’s lifetime profits and the worker’s lifetime
utility. Thus, the firm finds it optimal to offer a probability of separation d delivering bilateral
efficiency (i.e., matches are kept as long as their lifetime value is higher than the outside option
of the worker25) and a wage w such that the lifetime utility v is delivered in expectation to
a worker in a {v, p} match.26 However, there are many different sequences of w that deliver

20 Menzio et al. (2016) find that, in a similar model, the probability that a match changes quality during an employment

relation is around 1%, thus making the constant match assumption a reasonable simplifying approximation.
21 From the perspective of writing the surplus of a match, this is equivalent to assuming that both parties obtain zero

value until productivity is observed and then obtain the sum of flow utilities for all previous periods.
22 Although this seems like a strong assumption, it is possible to show that a model in which match quality is constant

over the duration of a match and observed only by the firm produces similar dynamics if wage renegotiation is allowed

every period. The intuition is that, over the duration of a match, the worker and the rest of the market learn that the

worker is more likely to be a high-type, since a separation did not occur. Thus, the worker’s outside option increases and

he negotiates a higher wage. Such a model would be much harder to solve and its mechanism would be less transparent,

since it would need to introduce another state variable (the duration of a match) and solve a dynamic asymmetric

information problem over a match’s duration. I adopt this simplifying assumption to focus on the discussion of lifetime

unemployment inequality.
23 Although unobserved heterogeneity is often studied as an adverse-selection problem, since it is assumed that

workers know more about their type than prospective employers, information in the model diffuses symmetrically on

both sides of the market. The results of Guerrieri et al. (2010) motivate this assumption by showing that, in a directed

search environment with adverse selection, it is always possible to write separating contracts. This makes the symmetric

information assumption somewhat less important in directed search models, although the quantitative implications of

a model featuring adverse selection might change.
24 This assumption reflects the idea that matches can be kept as long as they are profitable to both parties, so that the

relation between labor market histories and learning is not strongly dependent on the contract environment, but rather

on the features of match quality distributions and on the evolution of the outside option of workers. The idea that types

are being learned over workers’ careers does not hinge necessarily on the particular contract space assumed here, but

its quantitative implications might be affected. For instance, one could think of an environment in which match quality

is the firm’s private information and workers learn from whether they are kept on or fired by the firm.
25 This mechanism is similar to that of Gibbons and Katz (1991): When agents find out that a worker–firm match has

low productivity, it is interrupted. Although they model firing, I do not take a stand on whether a separation should be

labeled a firing, a layoff, or a quit.
26 This does not mean that wages will only depend on p : Wages can depend on match quality x too, and in general

will be state-contingent. For instance, when match quality is close to the value of unemployment, maintaining the match

is bilaterally efficient, but only a low enough wage will sustain the match (if a wage is to be paid every period). The full

state-contingent contract specifies wages for any combination of x and p such that, ex ante, lifetime utility v is delivered

to the worker in expectation.
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the same lifetime utility to the worker. In the present model, it is not necessary to resolve this
indeterminacy since the focus is on the patterns of job-finding and job-separation rates.27

The intuition is that jobs will be endogenously destroyed whenever the value of the match
is lower than the outside opportunity of the worker. Thus, low-type workers will face more
frequent separations if they typically draw match qualities that are below the value of unem-
ployment. Thus, π and the properties of the match quality distributions H(x) and L(x) measure
the informational content of job duration. If π = 0, match quality is never observed and job
duration is not informative of the worker’s type.

Since the history of past match qualities drawn by a worker is observable by potential em-
ployers, it follows that p is a sufficient statistic for the entire history of a worker’s match quality,
and can be considered as the worker’s “résumé.”

Timing is as follows:

1. Workers die w.p. λ and are replaced by unemployed workers with belief 1 − l.
2. Firms and workers observe the output of a match with probability π.
3. Workers revise their beliefs: p ′ = p if match quality is still unobserved and no shocks

occur; p ′ = P(x, p) if match quality has just been observed.
4. Production occurs and wages are paid.
5. Unemployed workers with belief p choose the submarket {v′, p} in which to search.
6. Unemployed workers match w.p. f (θ(v′, p)). Separations (both exogenous and endoge-

nous) occur.
7. Newly matched workers draw match quality from H(x) or L(x) depending on their type.

Bayes’ rule implies that the beliefs of employed workers who observe the realization of match
quality evolve according to

p ′ = P(x, p) =
p h(x)

p h(x) + (1 − p) l(x)
,(4)

where h(x) and l(x) are the density functions of match quality draws for high and low types, re-
spectively.

Heterogeneity in job duration across workers and the updating of p are closely related: When
a worker’s productivity is observed and the match is maintained, it must mean that match quality
was high enough to support the match, an event that is more likely for high types because H(x)
first-order stochastically dominates L(x). Conversely, when a worker’s productivity is observed
and the match is destroyed, it must mean that match quality was too low, an event that is more
likely for low types. Clearly, this depends on how high the flow utility of unemployment is
relative to the typical match quality draws of low types. However, depending on the features
of the match quality distributions, matches might also be destroyed because workers prefer to
have the opportunity to sample a new job with higher productivity.

3.5. Bellman Equations. The value function of an unemployed worker with prior p can be
written as

U(p) = b + β

[

max
v

[

f (v, p)(v − U(p))
]

+ U(p)
]

,(5)

where β = 1−λ
1+r

.
The joint firm–worker value of a match for which output is known can be written as

S(x, p) = x + β

{

max
d∈[δ,1]

[(1 − d) S(x, p) + d U(p)]

}

.(6)

27 When discussing wages in the model and in the data, I will often resort to the specific case of Nash bargaining.
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Thus, the joint value of a match for which output is unknown and the worker has prior p can
be written as

Su(p) = (1 − π)[E(x | p) + β((1 − δ) Su(p) + δ U(p))] +(7)

π

(

p

∫

S(x, p ′) dH(x) + (1 − p)

∫

S(x, p ′) dL(x)

)

,

where p ′ = P(x, p) denotes the next period’s prior depending on the realization of match
quality (while suppressing the dependence on p and x for readability).

The value of a firm posting a vacancy in submarket {v, p} is

V (v, p) = −κ + q(θ(v, p))β(Su(p) − v),(8)

and the tightness function must satisfy

κ ≥ q(θ(v, p))β(Su(v, p) − v) ∀ v, p,(9)

which makes θ consistent with the firm’s optimal vacancy creation. Equation (9) holds with
equality if θ > 0. Essentially, condition (9) implies that if θ = 0, such tightness is consistent with
the firm’s optimal choice only if the benefit from creating a vacancy is smaller than the cost.

3.6. Equilibrium. DEFINITION 1. A Bayesian Markov perfect Block Recursive Equilibrium
(BRE) for this economy consists of a value function for the unemployed worker U(p), a policy
function for the unemployed worker v∗(p), value functions for the joint value of a match Su(p)
and S(x, p), a separation policy d(x, p), a tightness function θ(v, p), and a law of motion for
beliefs p ′(x, p) such that:

1. U(p), v∗(p), S(x, p), Su(p), d(x, p), and θ(v, p) are independent of the aggregate state
ψ .

2. θ(v, p) satisfies (9) ∀ v, p and θ(v, p) ≥ 0 with complementary slackness.
3. U(p) and v∗(p) satisfy (5) ∀ p .
4. S(x, p) and d(x, p) satisfy (6) ∀ w, x.
5. Su(x, p) satisfies (7) ∀ w, x.
6. p ′(x, p) satisfies (4).

The BRE is much easier to solve than a recursive equilibrium because, as shown in Menzio
and Shi (2011), the value functions and policy functions of agents depend only on the individual
states {p, x} and not on aggregate states. Aggregate statistics can be computed, after solving the
individual problem, from the aggregation of individual choices. Moreover, computing transitions
out of the steady state is straightforward since all policy functions and laws of motion are
independent of the aggregate state.

3.6.1. Characterization of Equilibrium. LEMMA 1. Given p ∈ [0, 1], S(x, p) is increasing in
x ∈ [0, x̄]. Also, d(x, p) is a step function that takes value 1 if x < U(p)(1 − β) and δ otherwise.

PROOF. See online Appendix A.5. The intuition is straightforward: Matches are maintained
as long as the discounted value of the stream of match quality is higher than the value of
unemployment. Clearly, distributions of match quality that have more probability mass on
values that are lower than b will lead to more frequent separations.
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COROLLARY 1. The ex ante probability of drawing match quality lower than b, and as a con-

sequence experiencing a separation to unemployment, is greater or equal for low types than for

high types.

The intuition is that the lower bound of U(p) is equal to b/(1 − β); therefore, any match
quality draw below b will certainly lead to a separation. Because of first order stochastic domi-
nance (FOSD), L(b) > H(b): low types are always more at risk of drawing lower values of match
quality because they draw from a worse distribution.

REMARK. In the BRE of the economy, the unique solution to equilibrium condition (9) is

θ(v, p) =

{

q−1(k/(β (Su(p) − v) if β (Su(p) − v) ≥ k

0 otherwise.
(10)

�

Since the function Su(p) is continuous in p for p ∈ [0, 1], the market tightness function θ is
continuous in p . Furthermore, since V (v, p) is a decreasing function of v, θ(v, p) is a decreasing
function of v. Intuitively, since firms have to pay higher wages to deliver the promised level
of lifetime utility, their expected profits decline as v increases, so that a higher job-filling
probability is required to pay for the cost of creating a vacancy, thus implying lower tightness
in that submarket.

REMARK. P(x, p) is continuous in x and p , ∀ x < x̄. Moreover, ∂P/∂p > 0.

Continuity of the posterior belief P and the fact that it is increasing in p stems trivially
from the functional form. However, first-order stochastic dominance is not sufficient to ensure
that beliefs are monotone in x, which would require further restrictions on the shape of the
distributions.

PROPOSITION 1. The optimal choice of a worker can be written as the choice of a tightness level

θ∗(p), ∀ p ∈ [0, 1], and is unique given p .

PROOF. Notice that, since f (θ)/q(θ) = θ, Equation (5) can be rewritten as:

U(p) = b + max
θ

{f (θ)β(Su(p) − U(p)) − κθ} + βU(p),(11)

by using Equation (9) for submarkets with positive tightness.
Given p , this is a well-defined concave problem in θ because, by the assumptions on the

matching function, f (θ) is an increasing, concave, and twice-differentiable function. Thus, the
derivative of the value function with respect to θ is

∂U

∂θ
= f ′(θ)β(Su(p) − U(p)) − κ,

which admits a zero for θ > 0 if β(Su(p) − U(p)) > 0. �

LEMMA 2. Let TU(p) denote the right-hand side of Equation (11). T satisfies Blackwell’s suf-

ficient conditions, and thus, it is a contraction admitting a unique fixed point.

PROOF. See online Appendix A.5. �

PROPOSITION 2. Under the assumption that H(x) < L(x) ∀ x ∈ [0, x̄),U is strictly increasing.
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PROOF. See online Appendix A.5. The intuition is that a higher résumé p translates into
higher expected productivity, which, in turn, leads to a higher expected job-finding rate for
every promised lifetime utility, thus to a higher value of unemployment U. It also means that
workers will trade off higher job-finding rates for lower promised lifetime utility when choosing
the submarket in which to search. �

PROPOSITION 3. θ∗(p) is strictly increasing in p , and therefore, job-finding rates f (θ∗(p)) are
increasing in p .

PROOF. See online Appendix A.5. The intuition is that, as unemployment entails the risk
of not finding a job, the difference between the values of employment and unemployment is
increasing in the résumé of the worker, and therefore workers with better résumés can find jobs
faster. �

COROLLARY 2. The ex ante probability of separation to unemployment after discovering match

quality E(d | p, type) is increasing in p for every type.

This result follows from the fact that U is increasing in p . Using Lemma 1, the ex ante
separation probability (without considering exogenous separations) can be written as

E(d|p, type) =

⎧

⎪

⎨

⎪

⎩

∫

I[x < (1 − β)U(p ′(p, x))]dL(x) if type = L
∫

I[x < (1 − β)U(p ′(p, x))]dH(x) if type = H
,

where I[x < (1 − β)U(p ′(p, x))] is an indicator function taking value 1 if x is lower than (1 −

β)U(p ′(p, x)) and 0 otherwise. Because posterior beliefs p ′(p, x) are an increasing function of
p and U(p) is an increasing function of p , it follows that, for every type, a better résumé will
translate to a higher probability of separation, ceteris paribus. This is because, with a higher
résumé, the outside option will be higher or equal for any draw of x, leading to a separation with
a higher probability. Thus, workers with a better résumé anticipate that they can find better
jobs on average, so they will separate more often when they make a bad draw. This seems to
suggest, counterintuitively, that high-type workers might separate more often from their jobs.
However, whether low types have higher job-separation rates than high types also depends on
how dispersed the distributions of match quality are for each type, and on how often each type
makes draws that are below the value of unemployment, as discussed in Corollary 1.

It is not possible to sign separation rates depending on worker types unequivocally, because
separation rates are determined by two opposing forces: the probability of drawing low values
of match quality, and the option value of making new, better draws in future jobs. Nonetheless,
since job-finding rates are unequivocally increasing in résumés instead, I argue that these two
separate channels driving heterogeneity in separation rates give more flexibility to the model,
allowing types to experience separation rates that depend both on their match quality draws
and on their labor market histories.

4. QUANTITATIVE MODEL AND IDENTIFICATION

The model is identified by estimating parameters to replicate features of the job-finding
rates and job-separation rates observed in the NLSY/79. The idea behind identification is that
the concentration and persistence of unemployment, and the differences in job-separation and
job-finding rates between the different parts of the prime-age unemployment distribution, are
informative of the quantity of low-type workers present in the economy and the differences
between the match quality distributions of each type. This strategy is partly inspired by Menzio
and Shi (2011) and Menzio et al. (2016), who use the life cycle patterns of job-finding rates,
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NOTE: The figure illustrates that all rates by prime-age unemployment groups exhibit discontinuities, despite average
rates being continuous in age.

FIGURE 2

JOB-FINDING RATES (LEFT PANEL) AND JOB-SEPARATION RATES (RIGHT PANEL), OF THE TOP 10% PRIME-AGE UNEMPLOYED

(RED, CONTINUOUS) VERSUS THE REST (BLUE, DOTTED) IN A HOMOGENEOUS WORKER MODEL WITHOUT MATCH QUALITY RISK

[COLOR FIGURE CAN BE VIEWED AT WILEYONLINELIBRARY.COM]

job-separation rates, and employment-to-employment transitions to identify the parameters of
the match quality distribution and the probability of observing productivity during a match. My
model works similarly to the aforementioned models during a match’s duration; therefore, I ap-
ply the same strategy but I distinguish between the job-finding/job-separation rates experienced
by the top 10% of the prime-age unemployed and the rest of the population.

It is important to notice the job-finding and job-separation rates of the top 10% prime-age
unemployed and the rest exhibit sharp discontinuities around age 35. This is a mechanical
consequence of looking at the outcomes of the top 10% after age 35 versus the rest of the
population: Since the top 10% are exactly those who experienced more unemployment, they
have higher separation rates and/or lower job-finding rates by construction starting at age 35.
Intuitively, the most unemployed workers must, by definition, experience either a lower job-
finding rate or a higher job-separation rate on average. In practice, they will experience a mixture
of both. Similarly, due to selecting away the top 10% unemployed, the other workers will either
have higher job-finding rates or lower job-separation rates on average. Thus, a mechanical
divergence in at least one rate emerges between the two groups around age 35. This does not
occur before to the same extent because, although the top 10% unemployed in prime age are
exactly the most “unlucky” of workers after that age, that is not necessarily true before, as long
as prime-age unemployment is not perfectly predictive of worker heterogeneity.

Figure 2 shows that, even in a standard random search model with no heterogeneity and
no uncertainty about match quality, job-finding and job-separation rates by prime-age unem-
ployment groups exhibit a discontinuity around age 35.28 It is easy to see that, in a model
with homogeneous workers, differences by prime-age unemployment groups do not imply any
difference in young age, because they are not symptomatic of anything other than “having
been unlucky after age 35.” All rates by prime-age unemployment groups after age 35 are
clearly biased estimates of the true, underlying job-finding and job-separation probability of
workers. Comparing the model-generated statistics with the data allows to correct for this bias
during estimation.

28 Results are robust to changes in average rates. Differences across prime-age unemployment groups naturally

become smaller, but are always present, as the probability of finding or losing a job increases, because this reduces

inequality in the risk of unemployment.
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To see how the match quality distribution affects job-separation rates, consider Corollary 1.
Given a résumé p , the probability that a match is destroyed is at least H(b) for high types and
L(b) for low types. Therefore, the way in which the probability mass is distributed over match
qualities determines separation rates for the different types, which are also heterogeneous in
their labor market histories because of the effect of the outside option (see Corollary 2). In
general, all types will experience job-separation rates that decline with age because of a luck
effect; the more jobs they draw, the higher the likelihood that workers find a job where they
are productive.

Turning to job-finding rates, Proposition 3 establishes that job-finding rates are increasing in
p . Since Proposition 3 also establishes that U(p) always grows slower than Su(p), the larger
the difference in expected productivity between types, the larger the difference in job-finding
rates between types will be.

In summary, the features of match quality distributions will determine jointly job-finding
rates and job-separation rates of types. Distributions that feature a high mass on low values of
match quality, but a long right tail, can deliver high separation rates and high job-finding rates.
On the other hand, distributions featuring a high mass on low values of match quality and a
short right tail will deliver high separation rates and low job-finding rates. Finally, concentrated
distributions, such that uncertainty about match quality is low, will deliver low separation rates.

The concentration and persistence of unemployment is informative of the quantity of low-type
workers and the match quality distributions. Consider a case in which workers have the same
starting résumé p (the population prior), and the match quality distribution of low types has
more probability mass on realizations below b than the match quality distribution of high types.
In other words, young low-type workers at the start of their career may experience a higher-
than-average number of separations during their youth, depending on how their match quality
distribution compares to the flow value of unemployment and how likely they are to draw a good
match. As information on their type accumulates, their outside option declines, thus reducing
their probability of separation, ceteris paribus. However, they may still experience higher
separation rates due to their poor match quality distribution. Moreover, they will experience
lower job-finding rates because their expected productivity is lower.

The model also features a role for luck in determining labor market histories. If the distri-
bution of high types has enough common support with low types, high types who are unlucky
enough to draw several low-quality matches will experience frequent separations as a conse-
quence of their bad draws, and will be considered “low type” with a high probability. As a
result, they will experience lower job-finding rates later on.

Young-age separation rates depend on how fast output is observed (as captured by the pa-
rameter π), whereas the speed of learning also depends on how far apart the two match quality
distributions are. Thus, if types draw match qualities from very similar distributions, learning
will be slow, job-finding rates will be similar across types, and there will be less concentration of
unemployment. If the two types draw from very different distributions, learning will be fast and
unemployment will be concentrated among a small number of workers. The scale and shape
of the match quality distributions thus influence the life cycle profile of job-finding rates and
job-separation rates. Notice that it is possible to obtain concentration of unemployment even
with only one type of worker, simply by altering the features of the match quality distribu-
tion. However, this would be inconsistent with the fact that unemployment is persistent over
the life cycle and with the life cycle patterns of job-finding rates and job-separation rates by
unemployment group.

Persistence of unemployment depends on how far apart the two match quality distributions
are, how risky they are, and how large the measure of low-types is. If low types always have a
high risk of being unemployed (i.e., of drawing low match quality values) while high types are
almost never unemployed, persistence will be high and will be determined almost uniquely by
the measure of low types. To see this, suppose that low types constitute 10% of workers and
high types are very seldom unemployed. In that case, persistence as measured by the probability
of ending up in the top 10% of prime-age unemployment, given that the worker was in the top
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10% of young unemployment, will be close to 100%. This is because the unemployment pool
comprises mostly low types, both at young and old ages. However, looking at persistence among
the top 20% would yield only about 50%, since the rest of the population is seldom unemployed
and is unlikely to be among the most unemployed both when young and in prime age.

Conversely, if the two distributions of match quality are similar, persistence of unemployment
will also depend on the speed of learning and on the role of luck in determining unemployment
for both types. In all cases, however, the persistence of unemployment over the life cycle can
be used to pin down the measure of low-type workers in the economy.

4.1. Estimation. In this section, I simulate the lives of a large sample of workers to compute
lifetime statistics and estimate the model to replicate as closely as possible the observed patterns
of transition rates in the NLSY/79. Estimation is performed by applying the simulated method
of moments. I minimize the loss function

L(ω) = m(ω)′ W m(ω),(12)

where ω is the vector of parameters, m(ω) is a column vector of the differences between the
model-generated moments and the data moments, and W is a weighting matrix.29

I set the model period to be one month. I assume that workers are born at age 20 (the starting
age of the data) and I choose the death probability λ so as to match an average working life of
40 years. I choose the interest rate r as to give a compounded annual interest rate of 4%.

In line with numerous other models of directed search (such as Shimer, 2005; Mortensen and
Nagypal, 2007; Menzio and Shi, 2011; Menzio et al., 2016), I restrict the matching probability to
be of the form f (θ) = min{θ0.5, 1}.

The flow value of unemployment b is considered to include both the value of leisure and
of unemployment benefits, and is chosen so as to match a ratio of 0.7 between b and average
wages,30 which is in line with the estimates of Hall and Milgrom (2008).

The two match quality distributions H and L are assumed to be Weibull distributions31

with scale parameters σH, σL and shape parameters φH, φL. The shape and scale of match
quality distributions, the probability π of observing a worker’s output, the random separation
probability δ, and the measure of low-type workers l are identified by the observed patterns
of job-finding rates, job-separation rates over the life cycle for the top 10% unemployed and
the rest of workers, and the observed concentration and persistence between young and prime-
age unemployment for the top 10% and top 20%, as presented in the tables in Section 2. The
estimation algorithm targets piecewise polynomially smoothed32 patterns of job-finding and job-
separation rates over the life cycle, but results are essentially identical using raw age averages
instead. Since the model is unit-free, one of the scales has to be set exogenously. Therefore, I
normalize σH = 1.

29 Computation of the variance–covariance matrix of moments and standard errors is not trivial, since one of the

moment restrictions is based on the estimates of Hall and Milgrom (2008) and its covariance with the remaining

moments cannot be computed. Currently, W is set in such a way that all moments are scaled to their data average. In

other words, I minimize the sum of the square differences
m(ω)

m̂
, where m̂ are the data moments. In this way, I minimize

the sum of relative distances from data averages. Also, singleton moments that are not part of life cycle patterns are

weighted 10 times more to partly compensate for the fact that they are singleton moments instead of yearly patterns.

Results do not vary significantly when this relative weight is altered.
30 Computing the ratio between b and wages requires the computation of wages implied by the choices of workers in

terms of lifetime utility v. For estimation purposes, I assume that wages are determined by Nash bargaining under the

assumption that the Hosios condition holds. Although this might be an important assumption, the model is identified

even without any restriction on b because the algorithm fits job-finding and job-separation rates over the life cycle for

two different groups of workers. This restriction is meant to provide more discipline for the value of unemployment:

The results are substantially identical if it is removed.
31 The Weibull distribution is a common choice in this regard (see, e.g., Menzio et al., 2016).
32 The polynomials are allowed to have different parameterizations before and after age 35 to account for the post-35

selection bias induced by dividing groups based on prime-age unemployment.
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TABLE 5
BASELINE CALIBRATION RESULTS: TARGETS CALCULATED ON NLSY/79

Parameter Symbol Value Target Data Model

Scale param. high type σH 1.0000 Normalization

Scale param. low type σL 0.6271 JS rate profiles,

Shape param. high type φH 3.4261 JF rate profiles,

Shape param. low type φL 2.2427 % prime-age U acc. by top 10 0.59 0.53

Prob. of obs. output π 0.0395 % prime-age U acc. by top 20 0.83 0.75

Flow value of Unemp. b 0.7225 Ratio b/avg. wage 0.71 0.70

Vacancy cost κ 3.2004 JF rate, bottom 90, age 20–25 0.25 0.28

Random sep. rate δ 0.0022 JS rate, bottom 90, age 40–50 0.006 0.006

Measure of low types l 0.2593 Persistence of U, top 10 0.39 0.32

Persistence of U, top 20 0.43 0.38

The vacancy creation cost κ is chosen to match the job-finding rate of bottom 90% of the
prime-age unemployment distribution at ages 20–25.

The estimation table reports only singleton targets. The patterns of job-finding and job-
separation rates, which are vectors, are shown later in graph form for readability. Overall, the
estimation algorithm fits eight parameters with 125 restrictions, of which 120 are the job-finding
and job-separation rate patterns over the life cycle and the remaining restrictions are shown in
Table 5.

5. RESULTS

5.1. Estimation Results. Despite being estimated with overidentifying restrictions, the model
does a very good job in replicating the main features of the data. As can be seen in Table 5, the
model is capable of delivering realistic amounts of concentration and persistence of unemploy-
ment. The model falls only slightly short in delivering concentration of unemployment: the top
10% account for 53% of prime-age unemployment in the model as compared to 59% in the
data, whereas the top 20% account for 75% of prime-age unemployment in the model and more
than 80% in the data. This is a drastic improvement over the standard Mortensen–Pissarides
model, which only predicts half of observed concentration for the top 10%. I discuss why the
model cannot get closer to the concentration observed in the data in a later paragraph.

The model gets also close to the levels of persistence of unemployment observed in the
data as measured by the Markov transition matrix between young unemployment and prime-
age unemployment. The probability of being in the top 10% of the prime-age unemployment
distribution, after having been in the top 10% of the young unemployment distribution, is 0.32
in the model and 0.39 in the data. For the top 20%, the model yields 0.38 against 0.43 in the
data. As I will show in a later paragraph, models without unobserved heterogeneity can only
deliver a little above 10% and 25%, respectively.

The match quality distributions of high- and low-type workers are substantially different: that
of low types has more mass close to zero and a lower mean than that of high types (Figure 3).

The estimated value of the probability of a firm observing the worker’s output (π = 0.0395)
implies that the average duration of a “bad match” is about 25 months. Quantitatively, this is
a lower probability of separation than what is observed in other data sets such as the Current
Population Survey,33 although this is partly because gross flows observed in the NLSY/79
are smaller.

The estimated measure of low-type workers in the economy is around 25%. The model
retains a role for luck as a determinant of labor market outcomes; indeed, the job-finding and
job-separation rates among the top 10% are essentially those of the most unlucky among low
types, as I will show below.

33 See, for instance, Shimer (2012).
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FIGURE 3

MATCH QUALITY DISTRIBUTION OF HIGH TYPES (BLUE, CONTINUOUS) AND LOW TYPES (RED, BROKEN), UNDER BASELINE

ESTIMATION [COLOR FIGURE CAN BE VIEWED AT WILEYONLINELIBRARY.COM]
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FIGURE 4

MODEL VERSUS DATA: JOB-FINDING RATES (LEFT) AND JOB-SEPARATION RATES (RIGHT) OF THE TOP 10% PRIME-AGE

UNEMPLOYED (RED) VERSUS THE REST (BLUE) [COLOR FIGURE CAN BE VIEWED AT WILEYONLINELIBRARY.COM]

Figure 4 shows that the job-finding rate among the top 10% of prime-age unemployed declines
over the life cycle as in the data, whereas the job-finding rate of other workers rises during prime
age. As anticipated in the identification section, focusing on the labor market outcomes of the
top 10% unemployed workers after age 35 generates a sharp discontinuity at that age in job-
finding and job-separation rates by prime-age unemployment groups, both in the model and
in the data. This is due to selection bias: mechanically, the top 10% are those who have either
found fewer jobs or lost more jobs after age 35, but this is not necessarily the case before age
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FIGURE 5

PROBABILITY OF BEING HIGH-TYPE: BY HIGH/LOW TYPE (LEFT) AND BY TOP 10% OF PRIME-AGE UNEMPLOYMENT (RIGHT)
[COLOR FIGURE CAN BE VIEWED AT WILEYONLINELIBRARY.COM]
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FIGURE 6

JOB-FINDING RATES (LEFT) AND JOB-SEPARATION RATES (RIGHT) OF HIGH TYPES (BLUE, CONTINUOUS) VERSUS LOW TYPES (RED,
BROKEN) [COLOR FIGURE CAN BE VIEWED AT WILEYONLINELIBRARY.COM]

35, prior to the selection criterion. As I will show later, the model generates smooth job-finding
and job-separation rates for every worker type.

The model is particularly successful at fitting the patterns of job-finding rates by prime-age
unemployment groups, both for the most unemployed and the rest, and performs well in fitting
job-separation rates, although it undershoots the job-separation rate of the most unemployed
workers in prime age. It may be that the model cannot replicate the full amount of concentration
observed in the data because it lacks on-the-job search. Thus, since workers are allowed to quit
in the model, a higher probability π of observing match quality would imply a counterfactual
pattern of job-separation rates for workers not in the top 10% unemployed. This is because
high-type workers often quit, especially at the beginning of their career, to sample a better job
(see also Figure 6).
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The estimated match quality distributions also have implications for wages, although this is
not part of the estimation strategy. In the model’s environment, it is not possible to uniquely pin
down wages without first specifying a contract space. Here, I analyze how the model performs
under Nash bargaining (see Figure 15 in the online Appendix), which I show to be compatible
with the choices of workers in terms of lifetime utility in online Appendix A.6.

Under Nash bargaining, the model gets remarkably close to the wage differentials between
the top 10% of prime-age unemployed and other workers observed in the data. Differences in
wages between the top 10% unemployed and other workers increase over the life cycle because
the résumés of the former are worsening, whereas those of the latter are improving. Therefore,
the gap in expected productivity widens. Moreover, when match quality is observed, low types
typically draw lower values than high types, even conditional on remaining employed.

Figure 5 plots the average probability that a worker is of high type (the résumé) depending
on her age, for low and high types and whether or not they are in the top 10% of the prime-
age unemployment distribution. The graphs depict what I call “learning over the life cycle”:
As workers draw new values of productivity, the market gradually learns which workers are
high-type and which are low-type. The patterns of job-finding and job-separation rates are
a consequence of this mechanism. Notice that although average résumés converge relatively
quickly over the life cycle, there is substantial variation in résumés across individuals even
within types, as shown in Figure 14 in the online Appendix.

Consider first the job-finding rate: the gap between the 10% most unemployed workers and
the rest widens over the life cycle because of two forces: First, as the market learns who are low-
and who are high-type workers, the gap in job-finding rates between workers of different types
widens. This can be seen by comparing job-finding rates and job-separation rates between high-
and low-type workers in the model (Figure 6). Second, the low types’ share in the unemployment
pool increases with the age of workers (Figure 12 in the online Appendix). Thus, the job-finding
rate of the top 10% unemployed is essentially the job-finding rate of the unluckiest of the
low types: Indeed, the model predicts that 89% of the top 10% unemployed in prime age are
low-type workers. Again, notice that the model does not feature any inherent discontinuity at
age 35: All workers’ labor market outcomes are continuous in age.

As in the case of job-finding rates, the job-separation rate of low-type workers is affected
by learning over the life cycle. At ages 20–30, the job-separation rate of low-type workers is
substantially higher than that of high types, since the former typically draw low values of match
quality and face frequent separations.34 However, both workers and the market learn during
this stage, so that the low-type workers’ outside option declines and they become progressively
less likely to separate from a job. Moreover, a luck effect exists: sooner or later, every worker
can find a job in which he is productive and remains there. The subsequent rise in separation
rates observed for the top 10% of prime-age unemployed is due to selection bias: This empirical
strategy is selecting the most unemployed individuals, who tend to be the unluckiest of the
low-type workers.

The model is also capable of reproducing a duration-dependence relation in job-finding rates
(see Figure 13 in the online Appendix), similar to that documented by Hornstein (2012) and
Wiczer (2015). This relation arises due to a composition mechanism akin to Gonzalez and
Shi (2010): Workers with higher market priors find jobs first, followed by workers with lower
market priors.

5.2. Counterfactual Simulations. In this section, I simulate alternative scenarios, by removing
model features one by one to study their relative importance in fitting the data. Results are
summarized in Table 6. All models have been reestimated on the same loss function as the
baseline model.

34 Carrillo-Tudela and Kaas (2015) show that similar dynamics occur in a model with adverse selection and on-the-

job search.
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TABLE 6
BASELINE CALIBRATION RESULTS VERSUS COUNTERFACTUALS

(1) (2) (3)

One Type Two Types Three Types

VAR(x) > 0 VARl = 0 E(x|l) =

HC VARh = 0 E(x|h) Baseline Data

Separation rates, top 10

age 20–25 2.83 0.90 3.16 3.60 4.04

age 25–30 2.80 0.71 2.86 3.23 3.62

age 40–45 3.91 1.57 3.40 3.66 5.50

Separation rates, rest

age 20–25 2.38 0.74 2.48 2.41 1.70

age 25–30 1.67 0.68 1.64 1.46 1.37

age 40–45 0.49 0.59 0.61 0.62 0.70

Finding rates, top 10

age 20–25 15.61 22.00 21.28 21.21 19.62

age 25–30 15.45 13.13 15.31 14.74 16.27

age 40–45 12.25 9.47 9.15 9.39 10.14

Finding rates, rest

age 20–25 16.08 34.20 24.90 25.22 24.30

age 25–30 16.07 28.21 22.28 21.76 21.77

age 40–45 20.45 46.13 30.36 29.44 27.15

Concentration—Prime age

U acc. by top 10 43.74 51.06 52.10 52.55 58.56

U acc. by top 20 72.83 70.37 76.43 74.52 82.66

Persistence

Top 10 young—Top 10 primes 16.34 23.70 26.32 31.90 38.89

Top 20 young—Top 20 primes 29.61 41.54 34.93 37.81 42.59

NOTES: Column (1) is a model with no unobserved heterogeneity, and no uncertainty in match quality and fixed
observable skills. Column (2) adds uncertainty in match quality and accumulation/depreciation of skills. Column (3) is
a model with heterogeneity in average productivities, but no match quality uncertainty. Column (4) has heterogeneity
in match quality uncertainty, but not in average productivities. All numbers are percentage points. All models have
been recalibrated on the same loss function.

First, I estimate a version of the model featuring heterogeneity in match quality, on-the-job
human capital accumulation, and stochastic human capital depreciation when unemployed, but
no unobserved heterogeneity across workers in terms of a fixed type (column (1)). I find that such
a model cannot deliver realistic amounts of concentration and persistence of unemployment.
In particular, the predicted persistence of unemployment in the top 10% is little above 15%
as opposed to 39% in the data. This is because human capital accumulation and depreciation
introduce “reshuffling” in the skill level of workers, acting as mean-reverting forces. Thus,
instead of having fixed differences in productivity, every worker can now become unskilled if he
stays unemployed long enough or skilled if he manages to obtain a sufficiently high level of match
quality. This negative impact of “reshuffling” of skills on persistence mirrors similar economic
intuitions for the earnings losses from displacement in Michaud (2018) and Jung and Kuhn
(2019). Furthermore, model 1 cannot replicate the pattern of differences in separation rates at
young ages between unemployment groups, because it does not feature enough heterogeneity
in match quality draws: The bottom 90% of workers have about the same separation rate as the
10% most unemployed at ages 20–30, as opposed to the 2.3% difference in the data. Finally,
such a model cannot replicate the fact that the job-finding rate of the most unemployed falls in
the early part of their career.

I now estimate a model without human capital nor uncertainty about match quality, but
with heterogeneity in mean productivity across types (column (2)). In other words, I force
the distribution of match quality to be degenerate. Such a model cannot predict the higher
separation rate at ages 25–30 for one group of workers, because as soon as workers draw their
first job, they immediately learn their type and give up looking for a better job forever. This
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occurs because, without uncertainty about match quality, a worker will learn his type with
certainty at the first observation of output. In short, learning is too fast and bad luck plays
almost no role. Moreover, since the distribution of match quality is degenerate, there is no
other mechanism that can deliver heterogeneity in separation rates. Such a model also predicts
a decrease in job-finding rates that is too sudden and too large. This is another consequence of
excessively fast learning: Job-finding rates immediately respond to the sharp change in the prior
of workers. Moreover, this model can predict the amounts of concentration of unemployment
observed in the data at the cost of producing counterfactual job-finding rates for most workers.
This is due to the struggle of the model in delivering concentration by means of heterogeneity in
job-finding rates only. Finally, this model falls short in delivering persistence of unemployment
among the top 10% (23% as opposed to 39% in the data).

In the final experiment, I estimate a model with heterogeneity in the variance of the match
quality distribution, but no differences in mean productivity (column (3)).35 Such a model comes
closer to the results of the baseline model, suggesting that variance in match quality draws is
even more important than differences in the mean of draws. Nonetheless, it still predicts less
persistence of unemployment and less heterogeneity in job-separation rates among the young
than the baseline model.

These quantitative exercises confirm that all the ingredients are important for explaining the
patterns observed in the data. Heterogeneity in the mean of match quality draws is important
for explaining differences in job-finding rates. Heterogeneity in the variance of match quality
is important for explaining heterogeneity in job-separation rates, for obtaining concentration
of unemployment, and for slowing down learning at the start of the career. Slower learning is
important since it translates into a more realistic decline in job-finding rates and job-separation
rates among the most unemployed workers.

5.3. Decomposing Learning over the Life Cycle. In this section, I maintain the baseline es-
timation but shut down information frictions by making types known right from the start. This
exercise answers two questions. First, how important are information frictions in explaining the
data? Second, how much would workers, and the economy in general, benefit from knowing
their types early on? Results are presented in Table 7.

When types are known from the start, the separation rate of the most unemployed at ages
20–30 is reduced by about half a percentage point (one-fifth). This occurs because these workers
are already aware that they are low-type. Therefore, their outside option is already low and,
as a result, they do not separate from jobs after lucky draws. The concentration of prime-age
unemployment is hardly affected, since it is mainly due to heterogeneity across workers and
bad luck in drawing match quality values.

Information frictions account for the entire decline in job-finding rates from age 20 to 40 for
the most unemployed workers: If types were already known, firms would anticipate their low
average productivity and these workers would find jobs with lower probability right from the
start. Finally, the persistence of unemployment increases if types are known from the start. This
result is because the most unemployed workers in prime-age experience only slightly lower
separation rates, but substantially lower (−56%) job-finding rates when young, making them
more likely to be unemployed during the initial years of their career.

Overall, the economy benefits from information frictions being removed: welfare, as measured
by total output produced from the entry of workers in the labor market until age 50, minus
vacancy-posting costs, increases by 1.22%. Most of this change is accounted for by the fact that
high-type workers are now offered more jobs, so that they match faster and therefore increase

35 In practice, this is done by letting the shape parameters φi of the Weibull distributions be estimated freely by the

algorithm, whereas σl solves the nonlinear equation

µh = µl,

where µi = σiŴ(1 + 1
φi

) is the mean of the Weibull distribution and Ŵ(x) is the Gamma function.
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TABLE 7
BASELINE RESULTS VERSUS COUNTERFACTUALS

Types Known Baseline Difference

Separation rates, top 10

age 20–25 2.90 3.60 −19.49

age 25–30 2.40 3.23 −25.70

age 30–35 2.47 3.17 −21.97

age 40–45 3.34 3.66 −8.78

Separation rates, rest

age 20–25 2.39 2.41 −0.96

age 25–30 1.45 1.46 −0.38

age 30–35 0.99 0.99 0.14

age 40–45 0.61 0.62 −2.28

Finding rates, top 10

age 20–25 9.19 21.21 −56.68

age 25–30 8.94 14.74 −39.40

age 30–35 8.84 11.77 −24.86

age 40–45 8.85 9.39 −5.69

Finding rates, rest

age 20–25 21.57 25.22 −14.48

age 25–30 21.33 21.76 −1.96

age 30–35 22.54 21.17 6.43

age 40–45 31.48 29.44 6.95

Concentration—Prime age

U acc. by top 10 54.38 52.55 3.48

U acc. by top 20 75.54 74.52 1.36

Persistence

Top 10 young—Top 10 primes 39.76 31.90 24.65

Top 20 young—Top 20 primes 44.00 37.81 16.38

Welfare

Value at t = 0, low types 76.68 100.00 −23.32

Value at t = 0, high types 109.90 100.00 9.90

Welfare 101.22 100.00 1.22

NOTE: Column (1): Types are known from the beginning. Column (2): Baseline model. Column (3): Percentage difference
between columns (1) and (2). All numbers are percentage points.

employment and output. Although the majority of workers benefit from types being known,
a fraction suffers. High-type workers increase their ex ante lifetime utility by around 10%,
although low-type workers see a decline of about 23%. This is because, while high-type workers
benefit from types being known by finding jobs faster, exactly the opposite happens to low-type
workers, who forgo the initial part of their lives in which the fact that their type is not known
plays in their favor, both in terms of higher job-finding rates and in terms of better expectations
about their future productivity.

5.4. Résumés in the Model and in the Data. If it were possible to measure résumés p in the
data, the model predicts that in period t, one would find a positive relationship between résumés
and job-finding rates, and a negative relationship between résumés and separation rates. The
model also predicts that there exist measures that are strongly correlated with the résumé p

of a worker. In this subsection, I investigate whether some particular measures have similar
predictive power both in the model and in the data.36

Two such measures inspired by the theory are the empirical average probability of separation
experienced by each individual worker up to period t − 1 and the duration of the last unemploy-
ment spell. The two measures can jointly account for 22% of the variation in résumés observed
in the model. The first measure is informative because low types are more likely to experience

36 Notice that, in the model, the résumé cannot be measured by looking only at the employment/nonemployment

history of the worker: The résumé includes information on match quality that is unobservable in the NLSY/79 data.
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TABLE 8
REGRESSIONS OF JOB FINDING (COLUMNS (1) AND (2)) AND JOB SEPARATION (COLUMNS (3) AND (4)) EVENTS ON THE

PREVIOUSLY OBSERVED PROBABILITY OF SEPARATION AND THE DURATION OF THE LAST UNEMPLOYMENT SPELL, ON NLSY/79
DATA (COLUMNS (1) AND (3)) AND MODEL-GENERATED DATA (COLUMNS (2) AND (4))

(1) (2) (3) (4)

JF (Data) JF (Model) JS (Data) JS (Model)

Empirical individual probability of separation −0.0545*** −0.117*** 0.114*** 0.148***

(0.003) (0.008) (0.002) (0.003)

Last unemployment duration −0.000738*** −0.00460*** 0.0000128* 0.000151***

(0.000) (0.000) (0.000) (0.000)

Sample average 0.161 0.206 0.012 0.012

R2 0.028 0.012 0.029 0.004

Observations 86,790 446,840 953,955 6,961,398

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

separations and thus to have poorer résumés (lower p). The second is informative because
high types are more likely to have better résumés (higher p) and thus find jobs faster. The last
unemployment duration is more informative about the current résumé than the previous ones,
because it incorporates all information up to the unemployment spell.

I test the informational content of these measures by regressing monthly job-finding and
job-separation events at period t against the ex post average separation rate at the individual
level and the duration of the last unemployment spell (Table 8), both in the model and in the
data. In these regressions, a third-degree polynomial in age and yearly dummies are added as
controls. The age polynomial is particularly important because job-separation rates are higher
for young workers both in the model and in the data, and this can create an artificial correlation
between past job-separation rates at the individual level and the probability of separation
today.

The results of this exercise confirm that measures of past job-separation events and past
unemployment duration are strongly correlated with the current probability of finding a job
and separating from one, both in the model and in the data. All coefficients have the same sign
both in the model and in the data, although their magnitudes differ. As expected, those who
experienced a higher likelihood of transitioning from employment to unemployment in the past
experience lower job-finding rates and higher job-separation rates, both in the model and in
the data.

Let me discuss past separation rates first. For every 1 percentage point (p.p. from now on)
higher past separation rate, the probability of finding a job declines by approximately 0.05 p.p.
in the data and 0.1 p.p. in the model. The difference in magnitude can be partly explained by
the fact that the model fails to deliver as high a separation rate for the top 10% prime-age
unemployed as that observed in the data, resulting in a difference in scale between the data
and the model. However, the impact of past separation events on the probability of finding a
job appears to be small, relative to the average job-finding probability of about 16 percentage
points. Even a 10 p.p. higher past job-separation rate translates into only a 1 p.p. lower job-
finding rate. However, the predictive power of past separation rates for present separation rates
is relatively stronger: a 1 p.p. higher past separation rate predicts a 0.1 p.p. higher separation
rate at time t, both in the model and in the data, as compared to an average separation rate in
the data of about 1.3 percentage points.

With regard to unemployment duration, its power to predict job-finding rates is similar: One
more week of unemployment duration predicts a 0.07 p.p. lower job-finding rate in the data and
0.4 p.p. in the model. Again, this discrepancy may be due to the fact that although unemployment
duration is strongly tied to résumés in the model, there might be other sources of variation in the
data (e.g., measurement error, human capital, or preferences) that are not accounted for in the
model. Interestingly, the relationship between past unemployment duration and job-separation
rates is extremely weak both in the model and in the data.
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The predictive power of these variables seems quantitatively small, but the purpose of the
exercise is not to strongly predict period-by-period outcomes by means of résumé measures,
but rather to show that such plausible measures have a similar correlation with labor market
outcomes both in the model and in the data. In fact, all such measures contain significant
measurement error even in the model, and as such their coefficients are downward-biased even
for predicting résumés. For instance, observing several separations might not be a signal that
a worker is low-type. In fact, he could be a high-type worker who found jobs that indeed
correctly signal his type, but which were not productive enough to be to his liking. Moreover,
résumés themselves are error-contaminated measures of a worker’s type. Thus, although the
model ties them strongly to job-finding rates, which is not the case for job-separation rates.
Finally, although the quantitative relevance of the considered variables in predicting labor
market outcomes seems small in terms of R2, it is important to consider that all period-by-
period events still retain a strong random component, and as such exhibit more variation than
what can be explained with observables, even in the model. For instance, although the type of
the worker is the main determinant of job-separation rates in the model, it can account for less
than 1% (in terms of pseudo-R2) of the variance in a probit regression of job-separation events
on worker type.

6. DISCUSSION

I have shown that a theory of information frictions and heterogeneity is capable of jointly
explaining the patterns of job-finding rates and job-separation rates by unemployment group
over the life cycle. An alternative explanation might be that workers who are often unemployed
tend to lose, or fail to accumulate, human capital because they lack on-the-job training and
experience human capital depreciation (as in Ljungqvist and Sargent, 1998). To the extent that
human capital is observable, if workers started with some level of human capital, depreciation
would lead the most unemployed workers to experience lower job-finding rates, possibly ex-
plaining one of the facts. However, even if lower human capital yielded higher separation rates,
accumulation and depreciation would imply that heterogeneity in job-separation rates rises over
the career, because the most unemployed would lose human capital (or fail to accumulate it)
and would possibly face higher separation rates, whereas the rest of the workers would experi-
ence fewer separations. In that case, we should observe similar separation rates by prime-age
unemployment group at the start of the career, and divergence subsequently, whereas in the
data, differences in separation rates are large right from the beginning.

Column (1) of Table 6 partially tests for these implications by estimating a version of the
model that features homogeneous workers, retains risk in match quality draws, and adds human
capital accumulation/depreciation as a source of persistence in unemployment. Figure 11 in the
online Appendix shows the behavior of the baseline model with heterogeneity (column (4)
of Table 6), compared to the model without heterogeneity and human capital accumulation
(column (1)). The latter delivers almost no young to prime-age persistence of unemployment,
and predicts patterns of job-finding rates and job-separation rates by prime-age unemployment
groups that are inconsistent with the data.

One way to make the human–capital model consistent with the data is to give a special
importance to the first job. A model in which a separation in the first job adversely affects the
rest of the career for some workers would produce patterns of job-finding and job-separation
rates that are very similar to those found in the data. However, it seems hard to motivate such
a role for the first job without having some difference in fundamentals to drive the results.

7. CONCLUSIONS

Using NLSY/79 data, I show that unemployment during prime age is concentrated among
relatively few workers, who experience both long spells of unemployment and frequent job
separations. Moreover, unemployment is persistent in the sense that those who were often
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unemployed when young tend to be often unemployed during their prime. I build a model
that delivers both high concentration of unemployment during prime age and persistence of
unemployment over the life cycle and is consistent with the patterns of job-finding rates and
job-separation rates by prime-age unemployment groups. This is accomplished by means of a
combination of incomplete information and heterogeneity across workers. I find that informa-
tion frictions are important for explaining workers’ labor market outcomes at the beginning
of their career. In particular, a model without information frictions cannot match the hetero-
geneity in separation rates among young workers observed in the data, nor the persistence of
unemployment over the life cycle.

The findings have a number of implications for labor market policy. First, the estimation
results suggest that a significant fraction of workers experience more job instability than the
rest over the entire life cycle, and therefore are likely to be the most affected by changes in
unemployment insurance and employment protection policies. For instance, increases in the
degree of employment protection would asymmetrically decrease the job opportunities of the
two groups. Although the most stable group might be almost unaffected by the change, job
creation for workers with poor résumés would be more strongly affected, since employers
would anticipate that a match with these workers would likely terminate. Second, changes in
labor market policies might change the speed of learning in the market in several ways, the most
direct of which being their effect on job-finding rates. For instance, increasing unemployment
insurance might increase unemployment duration, and thus, the number of jobs a worker is able
to sample and add to his résumé. However, depending on how contracts and learning work in the
market, it is also possible that matches that would otherwise have survived would be destroyed,
or vice versa, thus affecting the amount of information a résumé conveys. For instance, consider
a case in which employers infer a worker’s type from his past employment durations. If there
are large firing taxes, employers might decide to keep relatively unproductive workers, thus
conveying a different message to future prospective employers. On the other hand, in this same
environment, a separation would convey a stronger negative signal, because it would mean
that a firm preferred to pay the firing tax instead of maintain the match. Although the model
developed in this article is not suited to answering this particular question (due to the assumption
of complete contracts), an extension of the model that allows for alternative contract spaces
might be able to shed light on this and other related questions. �

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section
at the end of the article.

Table 9: Regression of % of unemployment in prime age (35–50) on % of young unemployment
(20–30): column (1) reports results from a regression on all workers, including only controls
and no young unemployment; (2) includes young unemployment; and (3) is the same as (2) but
only for high-school educated workers
Table 10: Left column: equally weighted averages
Table 11: Participation-adjusted averages computed on NLSY/79, individuals aged 35–50
Table 12: Summary statistics by parts of the prime-age (35–50) unemployment distribution and
by education subgroups
Table 13: Accounting for possible measurement error: concentration and persistence of unem-
ployment according to alternative definitions of the sample
Table 14: Regression of % of unemployment in prime age (35–50) on % of young unemployment
(20–30): column (1) reports results from a regression on all workers, including only controls
and no young unemployment; (2) includes young unemployment; and (3) adds dummies for the
occupation in which the individual spent most time
Table 15: Weekly probability of job termination, by reason and group of prime-age unemploy-
ment
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Figure 7: Labor force participation rate by prime-age unemployment groups and by five-years
age groups.
Figure 8: Log difference in hourly wage, between top 10% prime-age unemployment group
and the rest; obtained as coefficients from a regression that controls for education, region of
residence, ethnic group, year, and marital status
Figure 9: Job-finding (left panel) and job-separation (right panel) probabilities, by group of
prime-age nonemployed, using alternative definition of nonemployment
Figure 10: Job-finding (top panels) and job-separation (bottom panels) probabilities, by group
of prime-age unemployed
Figure 11: Comparison between baseline model and human capital model without heterogene-
ity; job-finding (left panels) and job-separation rates (right panels), by prime-age unemploy-
ment groups
Figure 12: Share of unemployed workers who are low types, by age, under baseline estimation
Figure 13: Model-generated data: duration-dependence relation in job-finding rates, at 1, 3, 6,
and 12 months of unemployment duration
Figure 14: Model-generated data: standard deviation of résumés, by age, under baseline esti-
mation
Figure 15: Difference in wages between top 10 % prime-age unemployed and rest; data (dashed)
versus model (continuous) under baseline estimation and Nash Bargaining wage determination
Figure 16: Model-generated data: wages by type and age, under baseline estimation
Figure 17: Model-generated data: standard deviation of wages by résumé, under baseline esti-
mation
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