
Work Stealing Based Volunteer Computing Coordination in

P2P Environments

Wei Li and William W. Guo
School of Engineering & Technology, Central Queensland University, Australia

Email: w.li@cqu.edu.au; w.guo@cqu.edu.au

Abstract—This paper aims at the evaluation of work stealing

based Volunteer Computing (VC) coordination with the goal of

confirming the scalability of VC for Peer-to-Peer (P2P)

environments. Our previous work has successfully modelled

work stealing for VC coordination and been evaluated by a few

applications and a small number of machines. However, this

paper argues that the evaluation of scalability of VC by the

statistical data of real world applications or through

mathematical modelling is either limited by the number of

volunteer machines or difficult to achieve because of the peer

churn in P2P opportunistic environments. This paper proposes a

simulation model for the same VC functions but performing the

virtual work so that the statistical data can be quickly obtained

for the dynamic behaviors of a large number of volunteers. The

initial evaluation results have demonstrated that the work

stealing based VC coordination scales up to 10K volunteers

against varying churn rate, communication cost and stealing

granularity. The confirmation of scalability ensures that VC can

be effectively applied to P2P opportunistic environments.

Index Terms—Work stealing, simulation, volunteer computing,

peer-to-peer

I. INTRODUCTION

In parallel computing, work stealing was originally

proposed by Blumofe & Leiserson [1] as a scheduling

strategy of multithreading, where the underutilized

processors steal threads from overloaded processors.

Work stealing was demonstrated effective for dynamic

work load balancing in multicore and shared or

distributed memory systems [2]-[4], where parallel

computations use processors in a time-varying manner.

Work stealing makes every processor busy in such a

dynamic environment to maximize the overall speedup.

Volunteer Computing (VC) [5] is to gain the potential

computing capacity from millions of volunteer computers

from the Internet for large-scale scientific computations.

VC releases the reliance on expensive super-computers

and therefore has attracted a large amount of research

effort and has been applied to a large number of scientific

projects [6] such as SETI@home [7]. VC is generally

implemented through a centralized master/worker

structure [8], which is criticized for poor scalability or

reliability, susceptibility to churn (join, leave and crash of

Manuscript received July 26, 2017; revised October 12, 2017.

Corresponding author email: w.li@cqu.edu.au.

doi:10.12720/jcm.12.10.557-564

volunteers) and inefficient load balancing mechanisms

[9]-[11].

Peer-to-Peer (P2P) is a distributed architecture in

which all computers act as peers to connect over the

Internet and share distributed resources with no

distinction between the role of client and server. There is

no centralized or hierarchical control in a P2P overlay,

and each peer has identical functionality. When P2P

environments are heterogeneous in computing power,

storage and network bandwidth, and dynamics (peer

churn), their merits such as no single point of failure,

decentralization and self-organization, are the significant

benefits for many distributed applications in terms of

scalability and adaptability [12]-[14].

To our best knowledge, P2P based VC has not been

well modelled to adapt to churn of peers or to ensure the

scalability with the increase of peer numbers. For

example, Dou et al. [13] attempted a P2P approach by

forming volunteers into an unstructured cluster, but their

model did not cope with work and data lost or the

maintenance of an effective neighborhood when peers left

or crashed. Ni & Harwood [15] used peers to form a tuple

space as the work and result storage, where a peer was

able to contribute to storage space, CPU cycles or both.

However, peer communication in such an unstructured

P2P overlay had to be message flooding, which incurred

significant bandwidth usage. Zhao et al. [16] built VC

coordination as a decentralized P2P system. Their

unstructured P2P overlay was not one of the currently

stability-or scalability-proved P2P overlays. If some peers

crashed, the overlay would break into multiple parts and

could not be reunited.

The above situation has motivated us to transform

work stealing into P2P environments to model VC

coordination. The work stealing based VC coordination

model in our previous work [17] was based on Chord [18]

P2P protocol and therefore has naturally inherited the

proved performance, reliability and scalability of Chord;

the model was evaluated as effective in a distributed

environment. However, our previous evaluation with the

limit number of peer machines could not give us enough

confidence to answer whether work stealing scales for

VC vs. a large number of peers. We argue that the

evaluation of scalability through real world applications

is difficult to achieve in two ways. P2P has no central

server to perform data statistics or putting a peer as such a

server is impractical in terms of peer churn or computing

557

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications

power or storage capacity. In addition, evaluation by

mathematical modelling is impractical because of the

uncertainty that is brought by peer churn. Those issues

have motivated us to propose a simulation model in this

paper to be fully compatible with the real work stealing

based VC coordination model of our previous work. On

this basis, this paper evaluates the scalability of work

stealing for VC coordination in a virtual P2P environment

for up to 10K peers against different churn rate,

communication cost and stealing granularity of the entire

work.

The rest of this paper has been structured as follows:

related work is reviewed in Section 2. The work stealing

based P2P VC coordination is briefly reviewed in Section

3. Section 4 describes the necessity of a simulation model

for the evaluation of the scalability of work stealing in

P2P environments. Section 5 details the simulation model

for virtual work and virtual P2P environments. The initial

evaluation of scalability of the work stealing VC

coordination is detailed with results and analysis in

Section 6. Section 7 concludes the initial evaluation that

the work stealing based VC coordination scales for 10K

peers in P2P opportunistic environments.

II. RELATED WORK

The performance of work stealing has been studied in

general or on particular concerns by the current literature.

Tallent & Mellor-Crummey [19] proposed a profiling

strategy to identify performance bottlenecks in work

stealing based computations. They also implemented an

HPCToolkit to quantify parallel idleness (waiting for

work) and overhead (working on non-user code). They

aimed to find the regions of a given computation that

needed concurrency but failed with parallelization

because of idleness and overhead. Their studies of the

computations in Cilk language demonstrated that a

decrease in stealing granularity could enhance parallel

efficiency for the computation with high idleness and low

overhead. On the contrary, an increase in stealing

granularity could reduce overhead for the computation

with high overhead and low idleness. However

adjustment of stealing granularity would not help for high

overhead and inefficient parallelism situations.

Perarnau & Sato [4] evaluated the different victim

selection strategies for work stealing performance on K

Computer, which is a supercomputer consisting of 80K

nodes (each with 8 cores) and distributed memories.

Among Deterministic Selection and Random Selection

with Skewed Distribution and with or without Half-

Stealing, Random Selection with Skewed Distribution

and Half-Stealing behaved the best performance to scale

up to 8,192 nodes.

Dinan et al. [2] designed and implemented a runtime

system to support work stealing on distributed memory

systems. Different work stealing strategies named

ARMCI (Aggregate Remote Memory Copy Interface)

Locks, Spin Locks and Spin Locks with Aborting Steals

were evaluated by the Bouncing Producer-Consumer

(BPC) benchmark, Unbalanced Tree Search (UTS)

benchmark and Madness 3d Tree Creation Kernel

(Madness) benchmark on a HP cluster with 2,310 nodes.

When the other 2 strategies scaled up to 8,192 processors

on UTS benchmark but only scaled to 6,144 processors

on BPC and Madness benchmarks, the Spin Locks with

Aborting Steals scaled up to 8,192 processors on all 3

benchmarks.

Kumar et al. [20] identified the key sources of

overhead in work stealing, i.e. sequential overhead (from

the special support from the runtime system for the

initiation, state management and termination) and steal

ratio (the fraction of tasks actually stolen). They

optimized X10WS runtime system into X10WS

(OffStack) by avoiding to maintain an explicit deque but

allowing the runtime to extract the information from the

worker’s call stack; they also modified X10WS compiler
to compile computations to X10WS (Try-Catch) to

reduce the overhead of exception handling for the work

stealing related operations. The evaluation results showed

that those optimized runtime systems had better

performance (about 15% overhead on an Intel Xeon

E7530 machine with 12 cores for a number of

embarrassingly parallel computations) than the traditional

Fork-Join and original X10WS runtime systems.

Vu & Derbel [21] focused on designing an effective

work stealing algorithm to deal with the heterogeneity of

linked parallel computing resources, which were assumed

to have heterogeneous computing and communication

capacities. Their studies were closer to distributed

environments such as computing grids but still away from

P2P environments because they did not consider churn.

Their proposed algorithms were the fine tune of the

existing Probabilistic Work Stealing (PWS) and Adaptive

Cluster-aware Random Stealing (ACRS) by introducing

new adaptive control operations to increase work locality

and decrease stealing cost. The evaluation results showed

that the proposed algorithms could save about 30%

computing time on the experimental environment of 16

clusters with 128 nodes.

Although the above studies have provided both a broad

and a deep view of the performance of work stealing and

there are more studies [3], [22], [23] in this domain, they

are based on parallel or distributed environments with a

certain number of stable computing nodes (most of the

cases are homogeneous and in some cases are

heterogeneous). The issue, whether work stealing is

effective and scalable for VC in P2P opportunistic

environments, remains open. This paper aims at filling up

the gap by confirming the scalability to clarify the issue.

III. THE WORK STEALING BASED P2P VC

COORDINATION

Our previous work [17], [24] has modelled the VC

coordination framework as a Chord [18] ring formed by

available volunteers to take the advantages of

558

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications

theoretically proved performance, scalability and

reliability of Chord protocol in P2P environments.

Volunteers use the standard Chord operations to join and

leave the P2P community or crash at any time. When a

volunteer joins, it will collect and then compute a piece of

unfinished work that is left by a peer who has already left

or crashed. If there is no such a left-over work piece, a

peer will steal a piece of work from another working peer,

which splits its current work and yields half of the

unfinished portion of the work to the thief peer. By the

time a peer leaves or crashes, the finished portion of a left

peer’s work piece is effective and counted for the overall
progress of the entire work. However, the whole work

piece of a crashed peer needs to be recomputed. A peer

returns the computing results back to the Chord ring and

the termination condition is that the overall progress of

the entire work is 100%. The work stealing model adapts

to the heterogeneity of volunteers in terms of computing

power, storage capacity and network bandwidth. No

matter what the original distribution of work pieces is, a

faster peer can dynamically obtain more work pieces to

keep busy all the time. In addition, the model adapts to

the churn of peers. When a new peer joins or an existing

peer leaves or crashes, the existing work distribution is no

longer valid. Work stealing is able to reflect churn and

therefore re-balance workload among the dynamic peers.

As a consequence, the overall speedup is maximized. The

formal description of the model is as follows for a general

VC scenario with peer churn considered.

 There are n number of peers P = {p1, p2,…, pn},

where p1 is the work owner and the others are pure

volunteers.

 The compute-capacity (in terms of computing time)

for a peer pP to independently solve the whole

given VC problem (e.g. the N-Queen problem) is Cp.

 The work owner p1 starts the work from time point 0.

When another peer joins the community, it will get a

piece of work to compute at time point jtp. The join

time points of all peers comprise the set JT = {jtp},

where pP.

 Some peers, which comprise the set L and where LP,

will leave the community before the completion of the

entire work. Leave means that the partial result is

valid. That is, for pLp p1, when p leaves, the

result of finished portion of the current piece of work

of p is valid and the unfinished portion will be picked

up by another peer.

 Some peers, which comprise the set CR and where

CRP(CRL =), will crash. Crash means that the

partial result is invalid. That is, for pCRp p1, it

just crashes but is not able to upload any partial

results. That is, if the last piece of work was accepted

by p at time point atlast-p and the time point when the

peer p crashes is ctp, the computing between atlast-p

and ctp is totally wasted. The whole piece of work will

be picked up by another peer to recompute.

 Except for the work owner, all the leave or crash time

points of peers comprise the set LCT = {ltp}, where

pLCR and when a peer as the last peer to leave or

crash, the entire work has not been completed.

 Except for the work owner, the time point of the last

join or leave or crash of a peer is tlast, where

tlastJTLCT and t(tJTLCT t ≤ tlast) is true.

After tlast, there will be no more join or leave or crash

of peers and the entire work will be completed by the

community P-L-CR.

Our previous work has successfully modelled such a

work stealing based VC coordination for pure P2P

environments by using the standard Chord protocol [18].

The model has been successfully implemented in Java by

using the Open Chord APIs [25].

IV. THE NECESSITY OF VC SIMULATION

Our previous model has been evaluated for the

effectiveness by a small number of peer machines in a

distributed environment [17], [24]. Although the results

showed linear speedup, it could not give us enough

confidence on whether the model would scale for a large

number of peers with churn, varying communication cost

and stealing granularity. It could be argued that another

way of evaluation is mathematical modelling. However,

this section will describe why such a way is very difficult

due to the uncertainty that is brought by peers’ churn.
Based on the formal work stealing model as described

in Section 3, we assume that the computing of a peer with

compute-capacity of Cp is paused several times for

stealing or supplying a piece of work or uploading results

for ts long in the time period t1 to t2. In that situation, the

compute-capacity Cp of the peer needs to be adjusted by

formula (1).

2 11 2

2 1

s

p

t t
pC

t t t
C

t t

 (1)

That capacity is called adjusted capacity for the time

period of t1 to t2 and denoted as 1 2 .
t t
pC Under such an

adjustment, the computing time for the entire work by the

peers with churn as described in Section 3 will be

determined by formula (2), where tfinal-p is the time point

of peer p when it completes the last piece of the entire

work and WL is the computing load of the entire work in

terms of computing time.

)(
p last p p p last p

last final p

last p p p last p p

jt t jt It jt at

p P L CR p L p CR
p p p

last

t t

p P L CR
p

C C C
t

C

t jt It jt at jt
WL

WL

 (2)

For a given VC scenario, although jtp, ltp, ctp and tlast

could be predetermined or calculated for the evaluation, ts

in formula (1) and tfinal-p, atlast-p in formula (2) cannot be

predetermined/calculated. These dynamic factors, ts, tfinal-p

and atlast-p, are determined by:

559

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications

 The randomness from whom a peer steals a piece of

work.

 The stealing granularity (such as half-stealing or

someway else).

 The stealable portion of a piece of work that is based

on the computing progresses of each peer.

Consequently, the speedup of the given scenario

cannot be obtained by the calculation of using formula (1)

and (2). For example, the first peer p1 is the work owner,

when the second peer p2 joins, it is certain that p2 will

steal a piece of work from p1. However when the ith peer

pi joins, it could steal a piece of work from p1, p2,…, pi-1,

depending on whom pi is going to contact, the availability

of p1 to pi-1 for servicing a piece of work, and whether the

current piece of work of p1 to pi-1 is splittable. Therefore

VC speedup in P2P environments can only be simulated

rather than mathematically calculated.

V. THE SIMULATION MODEL

The determination of the entire work (computing) load

of a VC work is modelled relatively to peer compute-

capacity in terms of computing time. Each peer owns a

certain compute-capacity Cp. In real world applications,

this Cp can be obtained by testing the computing time of a

predefined benchmark on full concentration. If a standard

compute-capacity C is chosen, the workload WL of the

entire work will be certain. For example, the workload

WL of 800M Time Units (TUs) means that a peer with

the compute-capacity Cp that is equal to the standard

compute-capacity C needs 800M TUs to complete the

entire work on its own, where a TU could be a second, a

hour or a day etc., and M stands for a million. Thus if a

peer’s compute-capacity Cp is half or doubled of the

standard C, it can finish the same work in 1.6G or 400M

TUs respectively, where G stands for a billion.

The computing progresses in different speeds at each

peer in accordance to the peer’s compute-capacity. When

a peer is assigned a piece of work, its computing will

progress step by step. A certain number of steps will

complete a TU. For example, depending on the

simulation requirement, a step or 10 steps could progress

a TU. To describe in another way, if a peer with capacity

Cp can progress a TU by a single step, another peer with

compute-capacity of Cp/10 will progress a TU by 10 steps.

Peers commit churn in terms of join, leave or crash. A

peer can join at any time. Once it joins, it starts to pick up

a left piece of work or steal a piece of work from another

peer to compute. A peer can leave at any time, e.g. in

computing, uploading results or searching for another

piece of work. If it leaves whilst computing, its current

progress is treated as valid. The progress is check-pointed

and the left work will be picked up by other peers in the

future. If it leaves when uploading results, the model

allows it to finish the uploading. A peer can crash at any

time. Whilst a peer crashes, its current progress is treated

as invalid. The whole piece of work of the peer will be re-

computed by another peer who picks it up in the future.

In simulation, a peer is assigned a join time, which is the

time point in terms of TU since the start of the entire

work from time point 0, or a leave or crash time if it

leaves or crashes in the future. The churn of the peer will

occur when the current simulation time matches those

leave or crash time points.

The communication cost is counted for stealing a piece

of work or uploading the result of a completed piece of

work. When stealing a piece of work from another

working peer or picking up a piece work from a left or

crashed peer, a peer will pause for a certain time in terms

of TU. When supplying a piece of work to another peer, a

peer will pause for a certain time as well. The pause

reflects the communication cost. During the paused time,

a peer will not be able to do anything else except for the

current demanding or supplying.

The stealing granularity of a piece of work is

controllable. When the current piece of work is bigger

than a predefined granularity in terms of TUs, the piece

of work is splittable. Otherwise it is not splittable and the

requesting peer must search another peer for available

pieces of work. When a piece of work is split, the

unfinished portion is divided into 2 halves in terms of TU

and one half is sent to the requesting peer.

Every peer is modelled by a finite state machine; a

peer exhibits 3 states: servicing, computing and

terminating during its life cycle. A computing peer (i.e. a

peer in computing state) is computing a piece of work to

progress according to its compute-capacity. A computing

peer can change to the servicing state if it completes

current work to upload results or to steal a piece of work

from another peer, or its work is being stolen and it is

supplying a portion of it. A servicing peer will return to

the computing state if it completes supplying work or

receives a new piece of work. A computing or servicing

peer will change to the terminating state if it is to leave or

crash or there is no available work. If a terminating peer

is to leave, it will upload the partial results; if a

terminating peer is to crash, it will not do anything. A

terminating peer will never go back to any other states.

Such state changes of a peer are showed in Fig. 1.

Fig. 1. The state change of a peer

The simulation procedure is to manage the set of all

state machines for thousands of peers. The simulation

560

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications

monitor needs to initialize (according to the join time)

every peer to the servicing state to get a piece of work,

change the states between servicing and computing for

many times, and change the computing or servicing peers

to the terminating state (according to the leave or crash

time). The termination condition of the entire work for all

peers is the overall progress of 100%. The overall

speedup is the division of WL by the termination time of

the simulation. The simulation monitor is showed in

pseudo code in Fig. 2.
/* Set simulation scenario such as the overallProgress=0,
 the currentTime=0 and the computing load of the entire work WL

 and peer profiles such as compute capacity etc.
*/
setScenario();
initialise(); //Initialise the work owner into computing state
while (overalProgress!=100) {

 /* Leave or crash a peer if its leave or crash time is due,
 i.e. change the peer’s state into terminating
 */
 leavePeers();
 crashPeers();

 /* Join a peer if its join time is due, i.e.
 initialise the peer into servicing state.
 A newly joining peer can make another computing peer into
 the servicing state if the latter is stolen for a piece
 of work.

 */
 joinPeers();
 /* Make progress for every peer for 1 step. A progress may
 result in a servicing peer into the computing state
 (if it gets a piece of work or if it finishes supplying

 a piece of work) or a computing peer into the servicing state
 (if it finishes its current work to upload the result or

 is stolen for supplying a piece of work).
 */
 setCurrentTime(getCurrentTime()+1);

 makeProgress();
 /* Collect the current available results and
 count for the overallProgress.
 */
 collectResult();

}

Fig. 2. The simulation monitor

VI. EVALUATION OF SCALABILITY

The evaluation has been performed by three particular

settings to assess the influence of churn, communication

cost and stealing granularity on the scalability of the

model with increasing number of volunteers. The three

particular settings are based on our investigations into a

real world application SETI@home [26]. Everyday SETI

collects 35GB data to process. A work unit is 0.25MB, so

the number of units is 35GB/0.25GB=140K. A work unit

needs some additional information. Consequently, a SETI

work unit is 0.34MB (340KB). The return result of a

work unit is 64KB. Based on the available statistical data

from SETI, each work unit takes about 18 to 25 hours to

process. Thus each day needs 140Kx18 or

140Kx25=2,520,000 to 3,500,000 (on average 3M) hours

of computing time with a 233MHz or 300MHz computer.

A test of the speed of internet connection by ADSL2+

(a very common internet plan for home use) was 438KB/s

for downloading and 81KB/s for uploading. We can

assume that downloading a work unit or uploading the

result of a work unit is less than 1 second. Based on the

above data, downloading a work unit or uploading the

result of a work unit is on average 1/10G of the total

computing load, where G stands for billion. Similarly,

downloading 10K work units or uploading the results of

10K work units is on average 1/1M of the total

computing load.

A. The Scalability against Churn

The setting of the overall workload WL is 800M TUs

that are big enough to simulate a common VC work. The

download of a piece of work is 80 TUs, which are 1/10M

of WL. The upload of a result is 40TUs, which are 1/20M

of WL. The setting of download and upload time is big

enough to simulate the task exchange of an

embarrassingly parallel computing. The stealing

granularity of the entire work is 80 TUs, which are 1/10M

of WL and small enough for a common VC work. The

numbers of peer of this evaluation are set to 2K, 4K, 6K,

8K and 10K and peers join the community sequentially in

every 20 TUs (randomly chosen). The standard compute-

capacity of peer is 800M TUs and half peers have the

standard capacity and the other half peers have the

capacity of 400M TUs (half of the standard capacity).

The numbers of churn peers are set to 10%, 30%, 50%,

70% and 90% of the total peers, of which half leave and

the other half crash. The leave or crash peers are

distributed from the middle backward and forward. For

example, if the number of peers is 8K and the churn rate

is 50%, there will be 4K peers to leave or crash. The

middle position is P4000 and then the first leave or crash

peer will be P2000 and the last leave or crash peer will be

P5999. Peers start to leave or crash when half (randomly

chosen) of the total peers have joined. A peer will leave

or crash in 20 TUs (randomly chosen), which is the same

as the peer join interval.

Fig. 3. The speedup vs. different churn rates.

Fig. 4. The speedup differences between neighbor churn rates

The speedup evaluation is reported in Fig. 3. It shows

that the speedup scales with the increase of peer numbers

vs. different churn rates. The speedup differences

561

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications

between neighbor churn rates are reported in Fig. 4. What

can be concluded from the speedup difference vs. churn

difference diagram (Fig. 4) is that the speedup is affected

much more significantly by a higher churn rate than a

lower churn rate for a given number of peers. That is

confirmed by the observation that for a given number of

peers, the speedup difference always decreases with the

same churn difference (20% or 10%), starting from the

highest churn difference of [90% -70%] to the lowest

churn difference [10% -0%].

Another observation from Fig. 4 is that 10,000 peers

show mostly lower speedup differences for a churn

difference range of [70% -10%] than that for 4,000, 6,000

and 8,000 peers. For example, for 20% churn difference

between 70% and 50% churn rate, the speedup difference

is 539 times for 10,000 peers but 666 times for 8,000

peers. However, for 20% churn difference between 90%

and 70% churn rate, the speedup difference is 1,020 times

for 10,000 peers but 1,009 times for 8,000 peers. From

the above, we cannot draw the conclusion that given a

churn difference, the speedup difference is directly

proportional or inversely proportional to peer numbers.

The reason for such a uncertainty comes from two aspects:

first 20% churn rate incurs more peers (2,000) to leave or

crash for 10,000 peer overlay than that (1,600) for 8,000

peer overlay, but it also keeps more peers (8,000)

working for 10,000 peer overlay than that (6,400) for

8,000 peer overlay. Second, a peer contributes more to

the speedup if it commits churn in the later stage of the

computation. On the contrary, a peer contributes less to

the speedup if it commits churn in the earlier stage of the

computation. However, when peers leave or crash is

random. Based on the above and in fact comparing

speedup differences vs. peer numbers is meaningless in

the scalability evaluation against churn rate in this paper.

In short the useful conclusions are: Fig. 3 shows the

scalability of VC in terms of peer numbers vs. churn rates

and Fig. 4 shows a higher churn rate affects more on

speedup than a lower churn rate does.

B. The Scalability against Communication Cost

The setting of this evaluation is the same as the setting

of A except:

 The churn rate is fixed as 30%.

 The communication cost varies for stealing a piece of

work and uploading the result of a piece of work as

8K TUs and 4K TUs (1/100K and 1/200K of the

entire WL of 800M TUs), 4K TUs and 2K TUs

(1/200K and 1/400K of the entire WL), 2K TUs and

1K TUs (1/400K and 1/800K of the entire WL), 800

TUs and 400 TUs (1/1M and 1/2M of the entire WL),

80 TUs and 40 TUs (1/10M and 1/20M of the entire

WL) and 8 TUs and 4 TUs (1/100M and 1/200M of

the entire WL).

The speedup evaluation is reported in Fig. 5, where

100K/200K represents 1/100K (work download) and

1/200K (result upload) of the entire WL of 800M TUs to

shorten the labels. It shows that the speedup scales with

the increase of peer numbers vs. different communication

cost. The speedup differences between neighbor

communication cost are reported in Fig. 6. It shows that

the speedup is affected much significantly by higher

communication cost than lower communication cost for

any number of peers.

Fig. 5. The speedup vs. different communication cost.

Fig. 6. The speedup differences between neighbor communication cost.

C. The Scalability against Stealing Granularity

The setting of this evaluation is the same as the setting

of A except:

 The churn rate is fixed as 30%.

 The stealing granularity varies as 8K TUs (1/100K of

the entire WL of 800M TUs), 4K TUs (1/200K of the

entire WL), 2K TUs (1/400K of the entire WL), 1K

TUs (1/800K of the entire WL), 800 TUs (1/1M of the

entire WL) and 80 TUs (1/10M of the entire WL).

Fig. 7. The speedup against different stealing granularities.

The speedup evaluation is reported in Fig. 7, where

100K represents 1/100K of the entire WL of 800M TUs to

562

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications

shorten the labels. It shows that the speedup scales with

the increase of peer numbers vs. different stealing

granularities. The speedup differences between neighbor

stealing granularities are reported in Fig. 8. It shows that

the speedup is affected much significantly by coarse

grained works than by fine grained works.

Fig. 8. The speedup differences between neighbor stealing granularities

VII. CONCLUSIONS

Work stealing based volunteer computing has been

modelled for P2P environments and the effectiveness of

the model has been evaluated for a small number of

volunteer machines [17]. This paper transforms the model

into a simulation version to evaluate the model’s
performance, not being influenced by the underlying

hardware limits (such as the number of machines) and

conditions (such as physical computing time). The results

from three evaluations have confirmed that the work

stealing based VC coordination scales for a larger number

(up to 10,000) of volunteers in P2P opportunistic

environments against different churn rates,

communication cost and stealing granularities of the

entire work. This implies that VC can be effectively

applied to P2P opportunistic environments.

Future work goes into 2 directions. More intensive

evaluations for scalability against a very large number of

volunteers such millions will be conducted by using an

optimized simulation algorithm for a higher time

efficience in simulation. Remodeling work stealing to fit

for non-embarrassingly parallel applications such as data-

intensive applications and evaluating its scalability is also

a necessity.

REFERENCES

[1] R. D. Blumofe and C. E. Leiserson, “Scheduling
multithreaded computations by work stealing,” Journal of

the ACM, vol. 46, no. 5, pp. 720-748, 1999.

[2] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,

and J. Nieplocha, “Scalable work stealing,” in Proc.

International Conf. on High Performance Computing

Networking, Storage and Analysis, 2009, pp. 53-63.

[3] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Steal
tree: low-overhead tracing of work stealing schedulers,”

ACM SIGPLAN Notices, vol. 48, no. 6, pp. 507-518, 2013.

[4] S. Perarnau and M. Sato, “Victim selection and distributed
work stealing performance: A case study,” in Proc. 28th

IEEE International Symp. on Parallel and Distributed

Processing, 2014, pp. 659-668.

[5] L. Sarmenta, “Volunteer computing,” PhD thesis,

Massachusetts Institute of Technology, 2001.

[6] BOINC. [Online]. Available:

http://boinc.berkeley.edu/projects.php

[7] E. J. Korpela, “SETI@ home, BOINC, and volunteer

distributed computing,” Annual Review of Earth and

Planetary Sciences, vol. 40, pp. 69-87, 2012.

[8] D. P. Anderson, “BOINC: A system for public-resource

computing and storage,” in Proc. Fifth IEEE/ACM

International Workshop on Grid Computing, 2004, pp. 4-

10.

[9] D. P. Anderson and J. McLeod, “Local scheduling for

volunteer computing,” in Proc. IEEE International Symp.

on Parallel and Distributed Processing, 2007, pp. 1-8.

[10] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq,

and V. S. Pande, “Folding@home: Lessons from eight

years of volunteer distributed computing,” in Proc. IEEE

International Symp. on Parallel & Distributed Processing,

2009, pp. 1-8.

[11] F. Costa, J. N. Silva, L. Veiga, and P. Ferreira, “Large-

scale volunteer computing over the Internet,” Journal of

Internet Services and Applications, vol. 3, no. 3, pp. 329-

346, 2012.

[12] S. Androutsellis-Theotokis and D. Spinellis, “A survey of
peer-to-peer content distribution technologies,” ACM

Computing Surveys, vol. 36, no. 4, pp. 335-371, 2004.

[13] W. Dou, Y. Jia, H. M. Wang, W. Q. Song, and P. Zou, “A

P2P approach for global computing,” in Proc. Parallel and

Distributed Processing Symp., 2003, pp. 1-6.

[14] R. Rodrigues and P. Druschel, “Peer-to-peer systems,”

Communications of the ACM, vol. 53, no. 10, pp. 72-82,

2010.

[15] L. Ni and A. Harwood, “P2P-Tuple: Towards a robust

volunteer computing platform,” in Proc. International

Conf. on Parallel and Distributed Computing, Applications

and Technologies, 2009, pp. 217-223.

[16] Z., Zhao, F. Yang, and Y. Xu, “PPVC: a P2P volunteer

computing system,” in Proc. 2nd IEEE International Conf.

on Computer Science and Information Technology, 2009,

pp. 51-55.

[17] W. Li, W. Guo, and E. Franzinelli, “Achieving dynamic

workload balancing for P2P volunteer computing,” in Proc.

44th International Conf. on Parallel Processing

Workshops, 2015, pp. 240-249.

[18] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: a

scalable peer-to-peer lookup protocol for Internet

applications,” IEEE/ACM Transactions on Networking, vol.

11, no. 1, pp. 17-32, 2003.

[19] N. R. Tallent and J. M. Mellor-Crummey, “Identifying
performance bottlenecks in work-stealing computations,”

Computer, vol. 42, no. 12, pp. 44-50, 2009.

[20] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and

O. Tardieu, “Work-stealing without the baggage,” ACM

SIGPLAN Notices, vol. 47, no. 10, pp. 297-314, 2012.

[21] T. T. Vu and B. Derbel, “Link-heterogeneous work

stealing,” in Proc. 4th IEEE/ACM International Symp. on

Cluster, Cloud and Grid Computing, 2014, pp. 354-363.

[22] U. A. Acar, A. Charguéraud, and M. Rainey, “Scheduling

parallel programs by work stealing with private deques,”

ACM SIGPLAN Notices, vol. 48, no. 8, pp. 219-228, 2013.

[23] G. Varisteas and M. Brorsson, “DVS: Deterministic victim

selection to improve performance in work-stealing

schedulers,” in Proc. MULTIPROG 2014:

Programmability Issues for Heterogeneous Multicores,

2014.

563

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications

http://boinc.berkeley.edu/projects.php

[24] W. Li and E. Franzinelli, “Decentralizing volunteer

computing coordination,” in Proc. International Conf. of

Young Computer Scientists, Engineers and Educators,

2016, pp. 299-313.

[25] S. Kaffille and K. Loesing, Open Chord (1.0.4) User's

Manual, The University of Bamberg, Germany, 2007.

[26] SETI@home. [Online]. Available:

http://setiathome.ssl.berkeley.edu/

Dr Wei Li holds a PhD degree in

computer science from the Institute of

Computing Technology of Chinese

Academy of Sciences China. He

currently works for the School of

Engineering & Technology, Central

Queensland University Australia. His

research interests include dynamic

software architecture, P2P volunteer computing and multi-agent

systems. Dr Wei Li has been a peer reviewer of a number of

international journals, including IEEE Transactions on Software

Engineering, ELSEVIER Journal of Systems and Software and

John Wiley & Sons Journal of Software Maintenance and

Evolution: Research and Practice, and a program committee

member of more than 30 international conferences.

Dr William Guo is currently a professor in applied

mathematics and computation at Central Queensland University

Australia. His research interests include applied mathematics

and computational intelligence, simulation and modelling, data

mining, and STEM education.

564

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications

