
Work Stealing Based Volunteer Computing Coordination in 

P2P Environments 
 

Wei Li and William W. Guo  
School of Engineering & Technology, Central Queensland University, Australia 

Email: w.li@cqu.edu.au; w.guo@cqu.edu.au 

 

 

Abstract—This paper aims at the evaluation of work stealing 

based Volunteer Computing (VC) coordination with the goal of 

confirming the scalability of VC for Peer-to-Peer (P2P) 

environments. Our previous work has successfully modelled 

work stealing for VC coordination and been evaluated by a few 

applications and a small number of machines. However, this 

paper argues that the evaluation of scalability of VC by the 

statistical data of real world applications or through 

mathematical modelling is either limited by the number of 

volunteer machines or difficult to achieve because of the peer 

churn in P2P opportunistic environments. This paper proposes a 

simulation model for the same VC functions but performing the 

virtual work so that the statistical data can be quickly obtained 

for the dynamic behaviors of a large number of volunteers. The 

initial evaluation results have demonstrated that the work 

stealing based VC coordination scales up to 10K volunteers 

against varying churn rate, communication cost and stealing 

granularity. The confirmation of scalability ensures that VC can 

be effectively applied to P2P opportunistic environments. 
 
Index Terms—Work stealing, simulation, volunteer computing, 

peer-to-peer 

 

I. INTRODUCTION 

In parallel computing, work stealing was originally 

proposed by Blumofe & Leiserson [1] as a scheduling 

strategy of multithreading, where the underutilized 

processors steal threads from overloaded processors. 

Work stealing was demonstrated effective for dynamic 

work load balancing in multicore and shared or 

distributed memory systems [2]-[4], where parallel 

computations use processors in a time-varying manner. 

Work stealing makes every processor busy in such a 

dynamic environment to maximize the overall speedup. 

Volunteer Computing (VC) [5] is to gain the potential 

computing capacity from millions of volunteer computers 

from the Internet for large-scale scientific computations. 

VC releases the reliance on expensive super-computers 

and therefore has attracted a large amount of research 

effort and has been applied to a large number of scientific 

projects [6] such as SETI@home [7]. VC is generally 

implemented through a centralized master/worker 

structure [8], which is criticized for poor scalability or 

reliability, susceptibility to churn (join, leave and crash of 
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volunteers) and inefficient load balancing mechanisms 

[9]-[11].  

Peer-to-Peer (P2P) is a distributed architecture in 

which all computers act as peers to connect over the 

Internet and share distributed resources with no 

distinction between the role of client and server. There is 

no centralized or hierarchical control in a P2P overlay, 

and each peer has identical functionality. When P2P 

environments are heterogeneous in computing power, 

storage and network bandwidth, and dynamics (peer 

churn), their merits such as no single point of failure, 

decentralization and self-organization, are the significant 

benefits for many distributed applications in terms of 

scalability and adaptability [12]-[14]. 

To our best knowledge, P2P based VC has not been 

well modelled to adapt to churn of peers or to ensure the 

scalability with the increase of peer numbers. For 

example, Dou et al. [13] attempted a P2P approach by 

forming volunteers into an unstructured cluster, but their 

model did not cope with work and data lost or the 

maintenance of an effective neighborhood when peers left 

or crashed. Ni & Harwood [15] used peers to form a tuple 

space as the work and result storage, where a peer was 

able to contribute to storage space, CPU cycles or both. 

However, peer communication in such an unstructured 

P2P overlay had to be message flooding, which incurred 

significant bandwidth usage. Zhao et al. [16] built VC 

coordination as a decentralized P2P system. Their 

unstructured P2P overlay was not one of the currently 

stability-or scalability-proved P2P overlays. If some peers 

crashed, the overlay would break into multiple parts and 

could not be reunited.   

The above situation has motivated us to transform 

work stealing into P2P environments to model VC 

coordination. The work stealing based VC coordination 

model in our previous work [17] was based on Chord [18] 

P2P protocol and therefore has naturally inherited the 

proved performance, reliability and scalability of Chord; 

the model was evaluated as effective in a distributed 

environment. However, our previous evaluation with the 

limit number of peer machines could not give us enough 

confidence to answer whether work stealing scales for 

VC vs. a large number of peers. We argue that the 

evaluation of scalability through real world applications 

is difficult to achieve in two ways. P2P has no central 

server to perform data statistics or putting a peer as such a 

server is impractical in terms of peer churn or computing 
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power or storage capacity. In addition, evaluation by 

mathematical modelling is impractical because of the 

uncertainty that is brought by peer churn. Those issues 

have motivated us to propose a simulation model in this 

paper to be fully compatible with the real work stealing 

based VC coordination model of our previous work. On 

this basis, this paper evaluates the scalability of work 

stealing for VC coordination in a virtual P2P environment 

for up to 10K peers against different churn rate, 

communication cost and stealing granularity of the entire 

work. 

The rest of this paper has been structured as follows: 

related work is reviewed in Section 2. The work stealing 

based P2P VC coordination is briefly reviewed in Section 

3. Section 4 describes the necessity of a simulation model 

for the evaluation of the scalability of work stealing in 

P2P environments. Section 5 details the simulation model 

for virtual work and virtual P2P environments. The initial 

evaluation of scalability of the work stealing VC 

coordination is detailed with results and analysis in 

Section 6. Section 7 concludes the initial evaluation that 

the work stealing based VC coordination scales for 10K 

peers in P2P opportunistic environments. 

II. RELATED WORK 

The performance of work stealing has been studied in 

general or on particular concerns by the current literature. 

Tallent & Mellor-Crummey [19] proposed a profiling 

strategy to identify performance bottlenecks in work 

stealing based computations. They also implemented an 

HPCToolkit to quantify parallel idleness (waiting for 

work) and overhead (working on non-user code). They 

aimed to find the regions of a given computation that 

needed concurrency but failed with parallelization 

because of idleness and overhead. Their studies of the 

computations in Cilk language demonstrated that a 

decrease in stealing granularity could enhance parallel 

efficiency for the computation with high idleness and low 

overhead. On the contrary, an increase in stealing 

granularity could reduce overhead for the computation 

with high overhead and low idleness. However 

adjustment of stealing granularity would not help for high 

overhead and inefficient parallelism situations. 

Perarnau & Sato [4] evaluated the different victim 

selection strategies for work stealing performance on K 

Computer, which is a supercomputer consisting of 80K 

nodes (each with 8 cores) and distributed memories. 

Among Deterministic Selection and Random Selection 

with Skewed Distribution and with or without Half-

Stealing, Random Selection with Skewed Distribution 

and Half-Stealing behaved the best performance to scale 

up to 8,192 nodes. 

Dinan et al. [2] designed and implemented a runtime 

system to support work stealing on distributed memory 

systems. Different work stealing strategies named 

ARMCI (Aggregate Remote Memory Copy Interface) 

Locks, Spin Locks and Spin Locks with Aborting Steals 

were evaluated by the Bouncing Producer-Consumer 

(BPC) benchmark, Unbalanced Tree Search (UTS) 

benchmark and Madness 3d Tree Creation Kernel 

(Madness) benchmark on a HP cluster with 2,310 nodes. 

When the other 2 strategies scaled up to 8,192 processors 

on UTS benchmark but only scaled to 6,144 processors 

on BPC and Madness benchmarks, the Spin Locks with 

Aborting Steals scaled up to 8,192 processors on all 3 

benchmarks.  

Kumar et al. [20] identified the key sources of 

overhead in work stealing, i.e. sequential overhead (from 

the special support from the runtime system for the 

initiation, state management and termination) and steal 

ratio (the fraction of tasks actually stolen). They 

optimized X10WS runtime system into X10WS 

(OffStack) by avoiding to maintain an explicit deque but 

allowing the runtime to extract the information from the 

worker’s call stack; they also modified X10WS compiler 
to compile computations to X10WS (Try-Catch) to 

reduce the overhead of exception handling for the work 

stealing related operations. The evaluation results showed 

that those optimized runtime systems had better 

performance (about 15% overhead on an Intel Xeon 

E7530 machine with 12 cores for a number of 

embarrassingly parallel computations) than the traditional 

Fork-Join and original X10WS runtime systems. 

Vu & Derbel [21] focused on designing an effective 

work stealing algorithm to deal with the heterogeneity of 

linked parallel computing resources, which were assumed 

to have heterogeneous computing and communication 

capacities. Their studies were closer to distributed 

environments such as computing grids but still away from 

P2P environments because they did not consider churn. 

Their proposed algorithms were the fine tune of the 

existing Probabilistic Work Stealing (PWS) and Adaptive 

Cluster-aware Random Stealing (ACRS) by introducing 

new adaptive control operations to increase work locality 

and decrease stealing cost. The evaluation results showed 

that the proposed algorithms could save about 30% 

computing time on the experimental environment of 16 

clusters with 128 nodes. 

Although the above studies have provided both a broad 

and a deep view of the performance of work stealing and 

there are more studies [3], [22], [23] in this domain, they 

are based on parallel or distributed environments with a 

certain number of stable computing nodes (most of the 

cases are homogeneous and in some cases are 

heterogeneous). The issue, whether work stealing is 

effective and scalable for VC in P2P opportunistic 

environments, remains open. This paper aims at filling up 

the gap by confirming the scalability to clarify the issue. 

III. THE WORK STEALING BASED P2P VC 

COORDINATION 

Our previous work [17], [24] has modelled the VC 

coordination framework as a Chord [18] ring formed by 

available volunteers to take the advantages of 
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theoretically proved performance, scalability and 

reliability of Chord protocol in P2P environments. 

Volunteers use the standard Chord operations to join and 

leave the P2P community or crash at any time. When a 

volunteer joins, it will collect and then compute a piece of 

unfinished work that is left by a peer who has already left 

or crashed. If there is no such a left-over work piece, a 

peer will steal a piece of work from another working peer, 

which splits its current work and yields half of the 

unfinished portion of the work to the thief peer. By the 

time a peer leaves or crashes, the finished portion of a left 

peer’s work piece is effective and counted for the overall 
progress of the entire work. However, the whole work 

piece of a crashed peer needs to be recomputed. A peer 

returns the computing results back to the Chord ring and 

the termination condition is that the overall progress of 

the entire work is 100%. The work stealing model adapts 

to the heterogeneity of volunteers in terms of computing 

power, storage capacity and network bandwidth. No 

matter what the original distribution of work pieces is, a 

faster peer can dynamically obtain more work pieces to 

keep busy all the time. In addition, the model adapts to 

the churn of peers. When a new peer joins or an existing 

peer leaves or crashes, the existing work distribution is no 

longer valid. Work stealing is able to reflect churn and 

therefore re-balance workload among the dynamic peers. 

As a consequence, the overall speedup is maximized. The 

formal description of the model is as follows for a general 

VC scenario with peer churn considered. 

 There are n number of peers P = {p1, p2,…, pn}, 

where p1 is the work owner and the others are pure 

volunteers. 

 The compute-capacity (in terms of computing time) 

for a peer pP to independently solve the whole 

given VC problem (e.g. the N-Queen problem) is Cp. 

 The work owner p1 starts the work from time point 0. 

When another peer joins the community, it will get a 

piece of work to compute at time point jtp. The join 

time points of all peers comprise the set JT = {jtp}, 

where pP. 

 Some peers, which comprise the set L and where LP, 

will leave the community before the completion of the 

entire work. Leave means that the partial result is 

valid. That is, for pLp p1, when p leaves, the 

result of finished portion of the current piece of work 

of p is valid and the unfinished portion will be picked 

up by another peer. 

 Some peers, which comprise the set CR and where 

CRP(CRL = ), will crash. Crash means that the 

partial result is invalid. That is, for pCRp p1, it 

just crashes but is not able to upload any partial 

results. That is, if the last piece of work was accepted 

by p at time point atlast-p and the time point when the 

peer p crashes is ctp, the computing between atlast-p 

and ctp is totally wasted. The whole piece of work will 

be picked up by another peer to recompute.  

 Except for the work owner, all the leave or crash time 

points of peers comprise the set LCT = {ltp}, where 

pLCR and when a peer as the last peer to leave or 

crash, the entire work has not been completed. 

 Except for the work owner, the time point of the last 

join or leave or crash of a peer is tlast, where 

tlastJTLCT and t(tJTLCT t ≤ tlast) is true. 

After tlast, there will be no more join or leave or crash 

of peers and the entire work will be completed by the 

community P-L-CR.  

Our previous work has successfully modelled such a 

work stealing based VC coordination for pure P2P 

environments by using the standard Chord protocol [18]. 

The model has been successfully implemented in Java by 

using the Open Chord APIs [25].  

IV. THE NECESSITY OF VC SIMULATION 

Our previous model has been evaluated for the 

effectiveness by a small number of peer machines in a 

distributed environment [17], [24]. Although the results 

showed linear speedup, it could not give us enough 

confidence on whether the model would scale for a large 

number of peers with churn, varying communication cost 

and stealing granularity. It could be argued that another 

way of evaluation is mathematical modelling. However, 

this section will describe why such a way is very difficult 

due to the uncertainty that is brought by peers’ churn. 
Based on the formal work stealing model as described 

in Section 3, we assume that the computing of a peer with 

compute-capacity of Cp is paused several times for 

stealing or supplying a piece of work or uploading results 

for ts long in the time period t1 to t2. In that situation, the 

compute-capacity Cp of the peer needs to be adjusted by 

formula (1). 
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t t t
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That capacity is called adjusted capacity for the time 

period of t1 to t2 and denoted as 1 2 .
t t
pC  Under such an 

adjustment, the computing time for the entire work by the 

peers with churn as described in Section 3 will be 

determined by formula (2), where tfinal-p is the time point 

of peer p when it completes the last piece of the entire 

work and WL is the computing load of the entire work in 

terms of computing time. 
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   (2) 

For a given VC scenario, although jtp, ltp, ctp and tlast 

could be predetermined or calculated for the evaluation, ts 

in formula (1) and tfinal-p, atlast-p in formula (2) cannot be 

predetermined/calculated. These dynamic factors, ts, tfinal-p 

and atlast-p, are determined by: 
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 The randomness from whom a peer steals a piece of 

work. 

 The stealing granularity (such as half-stealing or 

someway else). 

 The stealable portion of a piece of work that is based 

on the computing progresses of each peer. 

Consequently, the speedup of the given scenario 

cannot be obtained by the calculation of using formula (1) 

and (2). For example, the first peer p1 is the work owner, 

when the second peer p2 joins, it is certain that p2 will 

steal a piece of work from p1. However when the ith peer 

pi joins, it could steal a piece of work from p1, p2,…, pi-1, 

depending on whom pi is going to contact, the availability 

of p1 to pi-1 for servicing a piece of work, and whether the 

current piece of work of p1 to pi-1 is splittable. Therefore 

VC speedup in P2P environments can only be simulated 

rather than mathematically calculated.  

V. THE SIMULATION MODEL 

The determination of the entire work (computing) load 

of a VC work is modelled relatively to peer compute-

capacity in terms of computing time. Each peer owns a 

certain compute-capacity Cp. In real world applications, 

this Cp can be obtained by testing the computing time of a 

predefined benchmark on full concentration. If a standard 

compute-capacity C is chosen, the workload WL of the 

entire work will be certain. For example, the workload 

WL of 800M Time Units (TUs) means that a peer with 

the compute-capacity Cp that is equal to the standard 

compute-capacity C needs 800M TUs to complete the 

entire work on its own, where a TU could be a second, a 

hour or a day etc., and M stands for a million. Thus if a 

peer’s compute-capacity Cp is half or doubled of the 

standard C, it can finish the same work in 1.6G or 400M 

TUs respectively, where G stands for a billion. 

The computing progresses in different speeds at each 

peer in accordance to the peer’s compute-capacity. When 

a peer is assigned a piece of work, its computing will 

progress step by step. A certain number of steps will 

complete a TU. For example, depending on the 

simulation requirement, a step or 10 steps could progress 

a TU. To describe in another way, if a peer with capacity 

Cp can progress a TU by a single step, another peer with 

compute-capacity of Cp/10 will progress a TU by 10 steps.  

Peers commit churn in terms of join, leave or crash. A 

peer can join at any time. Once it joins, it starts to pick up 

a left piece of work or steal a piece of work from another 

peer to compute. A peer can leave at any time, e.g. in 

computing, uploading results or searching for another 

piece of work. If it leaves whilst computing, its current 

progress is treated as valid. The progress is check-pointed 

and the left work will be picked up by other peers in the 

future. If it leaves when uploading results, the model 

allows it to finish the uploading. A peer can crash at any 

time. Whilst a peer crashes, its current progress is treated 

as invalid. The whole piece of work of the peer will be re-

computed by another peer who picks it up in the future. 

In simulation, a peer is assigned a join time, which is the 

time point in terms of TU since the start of the entire 

work from time point 0, or a leave or crash time if it 

leaves or crashes in the future. The churn of the peer will 

occur when the current simulation time matches those 

leave or crash time points. 

The communication cost is counted for stealing a piece 

of work or uploading the result of a completed piece of 

work. When stealing a piece of work from another 

working peer or picking up a piece work from a left or 

crashed peer, a peer will pause for a certain time in terms 

of TU. When supplying a piece of work to another peer, a 

peer will pause for a certain time as well. The pause 

reflects the communication cost. During the paused time, 

a peer will not be able to do anything else except for the 

current demanding or supplying. 

The stealing granularity of a piece of work is 

controllable. When the current piece of work is bigger 

than a predefined granularity in terms of TUs, the piece 

of work is splittable. Otherwise it is not splittable and the 

requesting peer must search another peer for available 

pieces of work. When a piece of work is split, the 

unfinished portion is divided into 2 halves in terms of TU 

and one half is sent to the requesting peer. 

Every peer is modelled by a finite state machine; a 

peer exhibits 3 states: servicing, computing and 

terminating during its life cycle. A computing peer (i.e. a 

peer in computing state) is computing a piece of work to 

progress according to its compute-capacity. A computing 

peer can change to the servicing state if it completes 

current work to upload results or to steal a piece of work 

from another peer, or its work is being stolen and it is 

supplying a portion of it. A servicing peer will return to 

the computing state if it completes supplying work or 

receives a new piece of work. A computing or servicing 

peer will change to the terminating state if it is to leave or 

crash or there is no available work. If a terminating peer 

is to leave, it will upload the partial results; if a 

terminating peer is to crash, it will not do anything. A 

terminating peer will never go back to any other states. 

Such state changes of a peer are showed in Fig. 1. 

 
Fig. 1. The state change of a peer 

The simulation procedure is to manage the set of all 

state machines for thousands of peers. The simulation 

560

Journal of Communications Vol. 12, No. 10, October 2017

©2017 Journal of Communications



monitor needs to initialize (according to the join time) 

every peer to the servicing state to get a piece of work, 

change the states between servicing and computing for 

many times, and change the computing or servicing peers 

to the terminating state (according to the leave or crash 

time). The termination condition of the entire work for all 

peers is the overall progress of 100%. The overall 

speedup is the division of WL by the termination time of 

the simulation. The simulation monitor is showed in 

pseudo code in Fig. 2. 
/* Set simulation scenario such as the overallProgress=0, 
   the currentTime=0 and the computing load of the entire work WL  

   and peer profiles such as compute capacity etc. 
*/       
setScenario(); 
initialise(); //Initialise the work owner into computing state 
while (overalProgress!=100) { 

      /* Leave or crash a peer if its leave or crash time is due,  
         i.e. change the peer’s state into terminating 
      */ 
      leavePeers(); 
      crashPeers(); 

      /* Join a peer if its join time is due, i.e. 
 initialise the peer into servicing state. 
 A newly joining peer can make another computing peer into 
 the servicing state if the latter is stolen for a piece 
 of work. 

      */  
      joinPeers(); 
      /* Make progress for every peer for 1 step. A progress may 
         result in a servicing peer into the computing state 
         (if it gets a piece of work or if it finishes supplying  

         a piece of work) or a computing peer into the servicing state  
         (if it finishes its current work to upload the result or 

          is stolen for supplying a piece of work). 
      */ 
      setCurrentTime(getCurrentTime()+1); 

      makeProgress(); 
      /* Collect the current available results and  
         count for the overallProgress. 
      */ 
      collectResult(); 

       
}  

Fig. 2. The simulation monitor 

VI. EVALUATION OF SCALABILITY 

The evaluation has been performed by three particular 

settings to assess the influence of churn, communication 

cost and stealing granularity on the scalability of the 

model with increasing number of volunteers. The three 

particular settings are based on our investigations into a 

real world application SETI@home [26]. Everyday SETI 

collects 35GB data to process. A work unit is 0.25MB, so 

the number of units is 35GB/0.25GB=140K. A work unit 

needs some additional information. Consequently, a SETI 

work unit is 0.34MB (340KB). The return result of a 

work unit is 64KB. Based on the available statistical data 

from SETI, each work unit takes about 18 to 25 hours to 

process. Thus each day needs 140Kx18 or 

140Kx25=2,520,000 to 3,500,000 (on average 3M) hours 

of computing time with a 233MHz or 300MHz computer.  

A test of the speed of internet connection by ADSL2+ 

(a very common internet plan for home use) was 438KB/s 

for downloading and 81KB/s for uploading. We can 

assume that downloading a work unit or uploading the 

result of a work unit is less than 1 second. Based on the 

above data, downloading a work unit or uploading the 

result of a work unit is on average 1/10G of the total 

computing load, where G stands for billion. Similarly, 

downloading 10K work units or uploading the results of 

10K work units is on average 1/1M of the total 

computing load.  

A. The Scalability against Churn 

The setting of the overall workload WL is 800M TUs 

that are big enough to simulate a common VC work. The 

download of a piece of work is 80 TUs, which are 1/10M 

of WL. The upload of a result is 40TUs, which are 1/20M 

of WL. The setting of download and upload time is big 

enough to simulate the task exchange of an 

embarrassingly parallel computing. The stealing 

granularity of the entire work is 80 TUs, which are 1/10M 

of WL and small enough for a common VC work. The 

numbers of peer of this evaluation are set to 2K, 4K, 6K, 

8K and 10K and peers join the community sequentially in 

every 20 TUs (randomly chosen). The standard compute-

capacity of peer is 800M TUs and half peers have the 

standard capacity and the other half peers have the 

capacity of 400M TUs (half of the standard capacity). 

The numbers of churn peers are set to 10%, 30%, 50%, 

70% and 90% of the total peers, of which half leave and 

the other half crash. The leave or crash peers are 

distributed from the middle backward and forward. For 

example, if the number of peers is 8K and the churn rate 

is 50%, there will be 4K peers to leave or crash. The 

middle position is P4000 and then the first leave or crash 

peer will be P2000 and the last leave or crash peer will be 

P5999. Peers start to leave or crash when half (randomly 

chosen) of the total peers have joined. A peer will leave 

or crash in 20 TUs (randomly chosen), which is the same 

as the peer join interval.  

 
Fig. 3. The speedup vs. different churn rates. 

 
Fig. 4. The speedup differences between neighbor churn rates 

The speedup evaluation is reported in Fig. 3. It shows 

that the speedup scales with the increase of peer numbers 

vs. different churn rates. The speedup differences 
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between neighbor churn rates are reported in Fig. 4. What 

can be concluded from the speedup difference vs. churn 

difference diagram (Fig. 4) is that the speedup is affected 

much more significantly by a higher churn rate than a 

lower churn rate for a given number of peers. That is 

confirmed by the observation that for a given number of 

peers, the speedup difference always decreases with the 

same churn difference (20% or 10%), starting from the 

highest churn difference of [90% -70%] to the lowest 

churn difference [10% -0%].  

Another observation from Fig. 4 is that 10,000 peers 

show mostly lower speedup differences for a churn 

difference range of [70% -10%] than that for 4,000, 6,000 

and 8,000 peers. For example, for 20% churn difference 

between 70% and 50% churn rate, the speedup difference 

is 539 times for 10,000 peers but 666 times for 8,000 

peers. However, for 20% churn difference between 90% 

and 70% churn rate, the speedup difference is 1,020 times 

for 10,000 peers but 1,009 times for 8,000 peers. From 

the above, we cannot draw the conclusion that given a 

churn difference, the speedup difference is directly 

proportional or inversely proportional to peer numbers. 

The reason for such a uncertainty comes from two aspects: 

first 20% churn rate incurs more peers (2,000) to leave or 

crash for 10,000 peer overlay than that (1,600) for 8,000 

peer overlay, but it also keeps more peers (8,000) 

working for 10,000 peer overlay than that (6,400) for 

8,000 peer overlay. Second, a peer contributes more to 

the speedup if it commits churn in the later stage of the 

computation. On the contrary, a peer contributes less to 

the speedup if it commits churn in the earlier stage of the 

computation. However, when peers leave or crash is 

random. Based on the above and in fact comparing 

speedup differences vs. peer numbers is meaningless in 

the scalability evaluation against churn rate in this paper. 

In short the useful conclusions are: Fig. 3 shows the 

scalability of VC in terms of peer numbers vs. churn rates 

and Fig. 4 shows a higher churn rate affects more on 

speedup than a lower churn rate does. 

B. The Scalability against Communication Cost 

The setting of this evaluation is the same as the setting 

of A except:  

 The churn rate is fixed as 30%. 

 The communication cost varies for stealing a piece of 

work and uploading the result of a piece of work as 

8K TUs and 4K TUs (1/100K and 1/200K of the 

entire WL of 800M TUs), 4K TUs and 2K TUs 

(1/200K and 1/400K of the entire WL), 2K TUs and 

1K TUs (1/400K and 1/800K of the entire WL), 800 

TUs and 400 TUs (1/1M and 1/2M of the entire WL), 

80 TUs and 40 TUs (1/10M and 1/20M of the entire 

WL) and  8 TUs and 4 TUs (1/100M and 1/200M of 

the entire WL). 

The speedup evaluation is reported in Fig. 5, where 

100K/200K represents 1/100K (work download) and 

1/200K (result upload) of the entire WL of 800M TUs to 

shorten the labels. It shows that the speedup scales with 

the increase of peer numbers vs. different communication 

cost. The speedup differences between neighbor 

communication cost are reported in Fig. 6. It shows that 

the speedup is affected much significantly by higher 

communication cost than lower communication cost for 

any number of peers. 

 
Fig. 5. The speedup vs. different communication cost. 

 
Fig. 6. The speedup differences between neighbor communication cost. 

C. The Scalability against Stealing Granularity 

The setting of this evaluation is the same as the setting 

of A except:  

 The churn rate is fixed as 30%. 

 The stealing granularity varies as 8K TUs (1/100K of 

the entire WL of 800M TUs), 4K TUs (1/200K of the 

entire WL), 2K TUs (1/400K of the entire WL), 1K 

TUs (1/800K of the entire WL), 800 TUs (1/1M of the 

entire WL) and 80 TUs (1/10M of the entire WL). 

 
Fig. 7. The speedup against different stealing granularities. 

The speedup evaluation is reported in Fig. 7, where 

100K represents 1/100K of the entire WL of 800M TUs to 
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shorten the labels. It shows that the speedup scales with 

the increase of peer numbers vs. different stealing 

granularities. The speedup differences between neighbor 

stealing granularities are reported in Fig. 8. It shows that 

the speedup is affected much significantly by coarse 

grained works than by fine grained works. 

 
Fig. 8. The speedup differences between neighbor stealing granularities 

VII.   CONCLUSIONS 

Work stealing based volunteer computing has been 

modelled for P2P environments and the effectiveness of 

the model has been evaluated for a small number of 

volunteer machines [17]. This paper transforms the model 

into a simulation version to evaluate the model’s 
performance, not being influenced by the underlying 

hardware limits (such as the number of machines) and 

conditions (such as physical computing time). The results 

from three evaluations have confirmed that the work 

stealing based VC coordination scales for a larger number 

(up to 10,000) of volunteers in P2P opportunistic 

environments against different churn rates, 

communication cost and stealing granularities of the 

entire work. This implies that VC can be effectively 

applied to P2P opportunistic environments. 

Future work goes into 2 directions. More intensive 

evaluations for scalability against a very large number of 

volunteers such millions will be conducted by using an 

optimized simulation algorithm for a higher time 

efficience in simulation. Remodeling work stealing to fit 

for non-embarrassingly parallel applications such as data-

intensive applications and evaluating its scalability is also 

a necessity. 
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