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Abstract

This paper reports the results of experiments designed to test the theory of the optimal

composition of prizes in contests. We …nd that while in the aggregate the behavior of our subjects

is consistent with that predicted by the theory, such aggregate results mask an unexpected

compositional e¤ect on the individual level. While theory predicts that subject e¤orts are

continuous and increasing functions of ability, the actual e¤orts of our laboratory subjects

bifurcate. Low ability workers drop out and exert little or nor e¤ort while high ability subjects

try too hard. This discontinuity, which is masked by aggregation, has signi…cant consequences

for behavior in organizations.
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1 Introduction

Casual empiricism indicates that many organizations are characterized by a bifurcation of e¤ort

among workers. While one subset appears to not be able to stop themselves from working (the fast

track) the other seem alienated and exerts no e¤ort at all. One immediate reaction to this stylized

fact is to assume that the incentive structure underlying these work patterns is sub-optimal and

that if the organizer of the …rm could only redesign the pay or promotion structure in the …rm,

such dichotomous behavior could be eliminated.1

In this paper we suggest that in hierarchic organizations where promotion possibilities

are limited, such an e¤ort bifurcation is the natural behavioral response to an optimally designed

incentive structure. In other words, the problem in these organizations is not that the designer

has failed to set the organizational prizes correctly but rather, given the optimal prize (promotion)

structure, talented workers seem to enter into a rat race for promotions with each other while less

talented ones, see the writing on the wall, and drop out knowing that their chances for promotion

are limited.2;3

To illustrate our point we experimentally test a model proposed by Benny Moldovanu

and Aner Sela (2001) entitled “Optimal Allocation of Prizes in Contests” (henceforth M-S). In
1An interesting case in point is discussed in Rafael Tenorio (2000). In this paper it is argued that the compensation

scheme used in professional boxing according to which a boxer’s payment or purse for a given …ght is entirely

guaranteed, provide sub-optimal incentives which may (and sometimes does) result in improper preparation for the

…ght and, therefore, in an increased likelihood of a poor showing.
2The phenomena of worcaholism and dropping out is common among junior faculty. Some of them work hard

(maybe even to the extent of getting burnt out, Amegashie, 2003) to get tenure whereas others drop out of academia

for fear not to be able to meet promotion standards despite high investments. The same may apply to lawyers

and management consultants (see e.g. Akerlof, 1976). Also, casual observation in sports tournaments suggests that

contestants sometimes “give up” when they are behind towards the end of a game (see e.g. Prendergast, 1999).

If there are asymmetric budget constraints of parties involved in in a legal dispute (which can be interpreted as

a contest), the party having the higher budget can hire a better lawyer and can therefore increase its chances of

winning. If this is realized by the other party, it might give up (drop out) immediately. Moreover, drop-out behavior

in tournanaments has been noted before by Schotter and Weigelt (1992) for workers with relativley high costs of

e¤ort. In that paper a¢rmative action laws were suggested as a policy intervention that could be used to rectify the

situation.
3Note that dropping out can be equilibrium behavior. This is, for example, demonstrated in Benoit (1999). In

his model, members of socioeconomically disadvantaged groups and members of other groups have to decide—after

learning about their ability—whether or not to invest, say, in schooling and then take a test. Benoit …nds that if

there is no a¢rmative action, members of the disadvantaged group might not invest (i.e. drop out).
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this paper M-S derive the optimal set of prizes for an organization involved in motivating workers

through an e¤ort tournament. They investigate …rms where workers have either linear, convex

or concave cost-of-e¤ort functions and where an organizational designer has a limited amount of

money available for bonuses to be awarded to those workers whose outputs are highest. (Assume

that output is linear in e¤ort and non-stochastic so in essence e¤ort is equivalent to output and

both are observable). They demonstrate that for organizations where workers have linear or concave

cost-of-e¤ort functions, the optimal prize structure is one where the entire prize budget is allocated

to one big prize while if costs are convex, it might be optimal to distribute the budget amongst

several prizes. What is interesting is that in these contests the equilibrium e¤ort functions are

continuous functions of the abilities of the workers while in the lab we observe individual e¤ort

functions which appear to be discontinuous step functions where low ability workers drop out and

exert zero e¤ort while high ability workers over exert themselves leading to the bifurcation of e¤orts

described above.

The ironic aspect of our experimental results is that despite this bifurcation of e¤ort,

on average the prize structures proposed by M-S elicit approximately the correct e¤ort levels so

that with respect to the mean you could say they work. Even more interesting is the fact that

when we aggregate our data across laboratory work groups, e¤orts appear to be continuous so that

the observed bifurcation of e¤orts is hard to detect on the aggregate level.

To illustrate this point, say a corporation has many plants each using the same incentive

structure. In addition, say that the corporation’s headquarter sets the same incentive structure up

in each plant. If one could observe the e¤orts and abilities of the workers in all of these plants

(as we can in the lab) and aggregate them, it would appear that behavior is very consistent with

the M-S theory (i.e., it would appear that the aggregate e¤ort function had the right shape, was

approximately continuous, and exhibited a mean e¤ort level that was approximately equal to that

predicted by the theory) while behavior on the individual and plant level would tell a very di¤erent

story. Our discussion here concerns itself with higher moments of the distribution of e¤ort on the

plant level. While economists might feel that a risk neutral …rm might only care about the mean

e¤ort levels of its workers and not the higher moments, we suspect that psychologists would be the

…rst to indicate that an incentive system that creates an organization composed of a set of alienated

drop-outs and a set of workaholics is bound, in the long run to be dysfunctional.

Our results have consequences far beyond those associated with eliciting e¤orts in a

work organization. For example, let us say that colleges have money available for scholarships
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and want to distribute these funds amongst its applicants. In a society where some students are

disadvantaged our experimental results would indicate that such students would drop out and exert

no or suboptimal amount of e¤ort in the competition for these prizes while others would enter a

rat race. In fact, this phenomenon is what has worried so many people interested in education

policy in the United States. The children of the privileged are obsessed with college admissions

and eagerly enter the rat-race associated with it, while the under-privileged drop out.4

In this paper we will proceed as follows: In the next section we will present the M-S

model and its results. In Section 3 we will describe our experimental design while in Section 4 we

will present our results. Finally, in Section 5 we will o¤er some conclusions and discussion.

2 The Moldovanu-Sela Theory

2.1 Model Speci…cation

In this section we lay out the model underlying our experiments and its predictions. In doing so

we con…ne ourselves to the special cases relevant for our experiments. For more general results see

Moldovanu and Sela (2001).

Assume that there exists an organization with k ¸ 3 contestants competing in a contest in

which two prizes can be awarded. The (commonly known) values of the prizes are V1 ¸ V2 ¸ 0 with

V1 + V2 = 1: In the contest players simultaneously exert e¤ort xi thereby incurring cost ci°(xi).

The function °: R+! R+ is strictly increasing with °(0) = 0 and ci > 0 is an ability parameter.

Notice that the lower ability ci the more able is player (i.e., the lower is his or her costs) and vice

versa.

It is assumed that the ability of player i is private information to i. Abilities are indepen-

dently drawn from the interval [m; 1]; m > 0; according to the (commonly known) distribution

function F with F 0 > 0: The contestant with the highest e¤ort wins the prize V1, the contestant

with the second highest e¤ort wins prize V2 whereas all other contestants win nothing. Accordingly,

the payo¤ of contestant i who has ability ci and exerts e¤ort xi is either Vj¡ci°(xi) if i wins prize j;

or ¡ci°(xi) if i does not win a prize. Note, then, that this contest de…nes an all-pay auction where

bidders make e¤ort bids and pay the cost associated with their decision numbers whether they win
4Drop-out behavior is not only observed in education but also in employment, and contracting opportunities. To

work against this phenomenon, many countries, …rms and universities implement a¢rmative action programes. For

an overview of such programes in the US and their assessment see Holzer and Neumark (2000).
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or not. The contest designer determines the number of prizes and how to allocate the prize sum

among the prizes in order to maximize the expected value of the sum of the e¤orts
Pk
i=1 xi given

the contestants’ equilibrium-e¤ort functions.

Assuming that all contestants other than i make an e¤ort according to the function b and

assuming that this function is strictly monotonic and di¤erentiable, player i’s maximization problem

is:

max
x

h
V1(1 ¡ F(b¡1(x)))k¡1 +V2(k ¡ 1)F(b¡1(x))(1 ¡ F(b¡1(x)))k¡2 ¡ c°(x)

i
: (1)

Here the factor after V1 is the probability that x is the highest among all e¤orts and the factor

after V2 is the probability that x is the second highest among all e¤orts.

In the experiments we chose k = 4; m = 0:5 and a uniform distribution of abilities, i.e.,

F(c) = 2c ¡ 1; c 2 [0:5; 1]:

2.2 Predictions and Prescriptions5

Linear cost functions: In case all contestants have linear costs, i.e., °(x) = x the optimal and

symmetric e¤ort function can be shown to be

b(c) = V1A(c) +V2B(c) (2)

with

A(c) = ¡36 + 48c ¡ 12c2 ¡ 24lnc and B(c) = 84 ¡ 120c + 36c2+ 48 lnc: (3)

Turning to the designers problem, let V2 = ® and V1 = 1 ¡ ®; where 0 � ® � 1=2 such

that the second prize is smaller than the …rst. A contestant’s equilibrium e¤ort is therefore given

by b(c) = (1 ¡ ®)A(c) + ®B(c) = A(c) + ® (B(c) ¡A(c)) : Since each contestant’s average e¤ort is

given by
R 1
0:5 [A(c) + ® (B(c) ¡A(c))]F 0(c)dc; the designer’s problem reads

max
0�®�1=2

4

Z 1

0:5

[A(c) + ® (B(c) ¡A(c))]F 0(c)dc

or, equivalently,

max
0�®�1=2

®

Z 1

0:5
[B(c) ¡A(c)]F 0(c)dc:

Since the de…nite integral in this case is negative, the solution to this problem is ® = 0 such

that it is optimal for the designer to award only one prize, i.e., V1 = 1 and V2 = 0:

5See Moldovanu and Sela (2001) for a full derivation of these results.
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Quadratic cost functions: In case all contestants have quadratic costs, i.e., °(x) = x2; the

optimal and symmetric e¤ort function can be shown to be

b(c) = °¡1(V1A(c) +V2B(c)) =
p

V1A(c) +V2B(c) (4)

where A(c) and B(c) are de…ned as in (3).

The designer’s problem in this case reads

max
0�®�1=2

4

Z 1

0:5

°¡1 (A(c) + ® (B(c) ¡A(c)))F 0(c)dc

and it turns out that in this case it is optimal to award two equal prizes, i.e. V1 = V2 = 0:5:

Hence, the prescriptions of the model are clear. When costs are linear the optimal prize

structure is one where all the budget available for prizes in the organization are lumped together

into one grand prize while when costs are quadratic two equally valuable prizes de…ne the optimal

prize structure.

3 Experimental Design and Procedures

In the experiments we rely on a classic 2-by-2 design: We implemented contests with either linear or

quadratic costs and combine them with the compositions of prizes that are optimal in each of these

two cases. To be more precise, in treatment LC-1 all subjects have linear costs and there is only

one positive-valued prize: V1 = 1; V2 = 0. As we have seen above, this prize composition is optimal

from the designer’s perspective if contestants have linear costs. In treatment QC-2 all subjects

have quadratic costs and there are two equal prizes: V1 = 0:5; V2 = 0:5. This prize composition is

optimal from the designer’s perspective if contestants have quadratic costs. In treatment LC-2 all

contestants have linear costs and the composition of prizes is the one that is optimal in the quadratic

case. Finally, in treatment QC-1 all contestants have quadratic costs and the composition of prizes

is the one that is optimal in the linear case. A summary of our four treatments is shown in Table

1.

The computerized6 experiments were conducted in the experimental laboratory of the Eco-

nomics Department at New York University and the Center for Experimental Social Science. In

each session …xed groups of four subjects were repeatedly matched to participate in a contest. Each

of the experiments consisted of 50 periods. Payo¤s were denoted in “points”. At the beginning
6We used the software tool kit z-Tree, developed by Fischbacher (1999).
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Treatment Description #Subjects Period Endowm. Max. E¤ort #Periods

LC-1 linear costs 6 £ 4 = 24 0.22 1.96 50

V1 = 1; V2 = 0

LC-2 linear costs 6 £ 4 = 24 0.20 0.82 50

V1 = V2 = 0:5

QC-1 quadratic costs 5 £ 4 = 20 0.22 1.53 50

V1 = 1; V2 = 0

QC-2 quadratic costs 5 £ 4 = 20 0.20 0.99 50

V1 = V2 = 0:5

Table 1: Treatments.

of each period each subject was assigned a “random number” indicating their type or ability, ci.

Each random number was an iid draw from the set of numbers f0:5; 0:51; :::; 1:00g: After subjects

were informed about their individual random numbers, they simultaneously submitted “decision

numbers”. The set of admissible decision numbers was f0:01; 0:02; :::; Maxe¤ortg where Maxe¤ort

was a number that was 20 per cent higher than the optimal e¤ort of a contestant with ability

c = 0:5 (the “best” ability possible) in a given treatment. In treatment LC-1, LC-2, QC-1, and

QC-2 this number was respectively 1.96, 0.82, 1.53, and 0.99. Subjects were informed that by

choosing a decision number they would incur “decision costs.” The form of the costs (depending

on the treatment) was explained both verbally and in the form of a “decision cost calculator” that

was accessible in each round. When fed with a trial decision number it showed the associated costs

given the subject’s random number in the current period. We implemented this cost calculator to

help to avoid a bias due to the subjects’ (possibly) limited computational capabilities.

After each member of a group had entered his or her decision number, the computer com-

pared all of the decision numbers of the four members of a group. In one-prize contests, the player

with the highest decision number received a “…xed payment” of one point whereas all other play-

ers received no additional payment. In two-prize contests, the two players with the two highest

decision numbers received a “…xed payment” of 0.5 points whereas all other players received no

additional payment. If in the one-prize contests, two or more group members chose the highest

decision number, it was randomly decided which of these “tied” members received the prize of

one point. In case of ties in the two-prize contests we proceeded in a similar fashion which was

explained in the instructions. It was also explained and emphasized that decision costs would be
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subtracted no matter whether or not a subject had won. This implies that subjects could make

losses. To cover those, subjects got a lump-sum fee of $5. (Given the exchange rate of 15 points

= $1 in each treatment, all subjects started with an amount of 75 points in their experimental

accounts.) Additionally, in each period subjects received an initial per-period endowment that was

equal to their expected costs in equilibrium.7 The speci…c numbers are shown in Table 1.

After each period, the feedback screen …rst informed a subject whether or not she had won

an additional payment. Furthermore, the screen reiterated a subject’s random number, decision

number, decision costs, the di¤erence between the payment in the previous period and the decision

costs (excluding the initial endowment per period) and individual earnings in the previous period

including the initial endowment per period. A last piece of information that was given to subjects

depended on the number of prizes in a treatment and on whether or not a subject had won a prize.

In one-prize contests, a subject that had not won a prize was informed about the random number

of the winning subject. In two-prize contests, a subject that had won a prize was informed about

the random number of the other winning subject whereas a subject that had not won a prize was

informed about the random numbers of the two winning subjects.

In order to avoid income e¤ects participants were informed that after the completion of

the experiment ten out of the …fty periods would be randomly selected to count towards monetary

earnings. That is, subjects were paid according to the sum of their individual earnings in these ten

rounds. Finally, in order to make sure subjects had a good understanding of the decision problem

and the procedures, we started each experiment with three trial periods that did not count towards

monetary earning.

The experiments replicated the examples of contests described in section 2. The decision

number corresponds to e¤ort, the random number to a subject’s ability, the decision costs to a

subject’s disutility of e¤ort, and the payment corresponds to the prize(s).

Some remarks regarding our experimental design are in order. First, we avoided value-laden

terms in the instructions. Subjects were never called contestants or competitors. Similarly, other

players were called “other group members.” Also “prizes” were called “…xed payments. Second,

each subject participated in only one treatment.

7In equilibrium expected costs equal
R 1
:5 c(V1A(c)+V2B(c))dc where V1 and V2 depend on the treatment and A(C)

and B(c) are given by (3). Note that expected costs in equilibrium do not depend on the form of the cost function.
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4 Results

In this section we will present the results of our experiments. We will do this by …rst presenting

the aggregate results that, as we have noted in the introduction, appear to strongly support the

theory. However, when this is done we will disaggregate our results and look at them more …nely.

Here we will demonstrate that these aggregate results mask the bifurcation phenomenon we have

discussed above.

4.1 Aggregate Results

There is a sense in which an organizational designer need care only about aggregate or average

results. Since he is designing the organization to maximize mean e¤ort levels and revenues, these

should be the variables he looks at. In addition, if he is risk neutral he need not worry how these

means were composed.

In line with this way of thinking we …rst present the aggregate or mean results of our

experiment and concentrate on e¤ort behavior and revenue in the four treatments. Although we

will also present summary statistics for all rounds of the experiment, we will concentrate on results

in the second half of the experiment when subjects are more experienced. Also, unless we explicitly

state otherwise, in all subsequent statistical tests of this section we take one session’s average total

e¤ort in the second half of the experiment as one observation.

4.1.1 E¤ort Behavior

We will start our discussion by looking at the e¤ort behavior of our subjects at the aggregate level.

To do this consider Figure 1.

In Figure 1 we have four graphs, one for each of our four treatments. In each graph we

present the equilibrium e¤ort function (solid line) for the parameters de…ning that treatment as

well as the average e¤ort function (dashed line) being that non-linear function of the same form as

the equilibrium function that best …ts the scatter of mean e¤orts presented in the diagram. In other

words, for any ability realization on the horizontal axis, the height of equilibrium e¤ort function

de…nes that e¤ort which is a best response to that realization and the assumption that all others

are using the same equilibrium function, while the height of the average e¤ort function presents the

conditional mean e¤ort made at that realization. To show the pattern of e¤orts we also present the

scatter of e¤orts representing the mean of the actual e¤orts placed when that ability was realized.
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Figure 1: Average (²), optimal (solid line), and estimated (dashed line) bid functions in the second

half of the experiment.
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There are several things to note about Figure 1. First the average e¤orts made seem to

track the shape of the equilibrium e¤ort function quite well. Second, e¤ort behavior appears to be

continuous in that, on average there does not appear to be any large discontinuities in behavior.

Finally, the levels of e¤orts appear to be consistent with the equilibrium e¤ort function. This is

particularly true for the QC-2 experiment where the equilibrium e¤ort function appears to pass

directly through the middle of the scatter of mean e¤orts. For the other treatments there appears

to be overexertion in LC-1 and LC-2 and slight under-exertion in QC-1.

This behavior manifests itself in the average revenue data as well. Table 2 presents the mean

revenue generated in each of our treatments along with the revenue that would have been generated

by our subjects if, given their realizations, they had all submitted their equilibrium e¤orts. (For

the column labeled “Sorting” see below.)

The revenue data presented in Table 2 are consistent with the observed e¤ort behavior

exhibited in Figure 1. While revenue levels were above those predicted by the equilibrium theory

in the LC-1 and LC-2 treatments (with average observed revenue being about 65% higher than

average equilibrium revenue in the LC-1 treatment (2.391 vs. 1.452) and 25% higher in the LC-

2 treatment (1.452 vs. 1.164), in the QC-1 treatment they were below by about 18% (1.524 vs.

1.859). In the QC-2 treatment actual average revenues were remarkably on target (1.963 vs. 1.944).

Applying a sign-test8 to the data from the second half of the experiment we can reject the hypothesis

that the median observed revenue is equal to the equilibrium level at the 1 per cent level in

treatments LC-1, LC-2 and QC-1. For treatment QC-2, however, this hypothesis can not be

rejected at any conventional signi…cance level �(p = 0:858, two-tailed).

Recall that theory predicts that in a linear-cost contest revenue is maximal if only one prize

is awarded while, in our quadratic-cost contest, the designer maximizes total e¤ort by awarding

two equal prizes. Both of theses predictions are con…rmed by our data. According to Table 2 and

concentrating on results in the second half of the experiment, we see that whereas in treatment LC-1

average observed revenue is 2.391 it is only 1.452 in treatment LC-2. Taking one session’s average

total e¤ort as one observation, a one-tailed Mann-Whitney U-test reveals that this di¤erence is

highly signi…cant (p = :001). In the quadratic-cost contests, the average total e¤ort of 1.963 in

treatment QC-2 compares to an average of 1.524 in treatment QC-1. Again this di¤erence is
8Consider the variable yjt with yjt = 0 in case the observed revenue in period t in session j is less than or equal

to the equilibrium level and yjt = 1 if observed revenue exceeds the equilibrium level. Then test whether or not the

variable yjt is binomial with 0.5 probability that yjt = 1:
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Treatment Rounds Average Revenue Sorting

optimal observed

LC-1 All

Last 25

1.444

(0.169)

1.452

(0.168)

2.385

(0.344)

2.391

(0.281)

170/300

(56.7%)

86/150

(57.3%)

LC-2 All

Last 25

1.236

(0.050)

1.164

(0.061)

1.602

(0.172)

1.452

(0.312)

149/300

(49.7%)

70/150

(46.7%)

QC-1 All

Last 25

1.854

(0.076)

1.859

(0.160)

1.701

(0.217)

1.524

(0.270)

147/250

(58.8%)

77/125

(61.6%)

QC-2 All

Last 25

1.966

(0.090)

1.944

(0.093)

2.045

(0.308)

1.963

(0.364)

121/250

(48.4%)

65/125

(52.0%)

Table 2: Observed revenue and e…iciency (Standard deviations based on group averages in paren-

theses)
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statistically signi…cant (p = 0:028):

One might also ask, how reliable the di¤erent contests are in terms of producing the levels

of average total e¤orts reported in Table 2. A look at standard deviations given in parentheses in

Table 2 is revealing: One-prize contests are more stable than two-prize contests in the sense that

standard deviations are lower in the …rst than in the latter (contests with linear costs: 0.281 vs.

0.312; contests with quadratic costs: 0.270 vs. 0.364).

Finally, one can ask whether our contests were e¢cient in sorting and promoting workers.

For example, if there are one or two positions available for promotion (as in our experimental

contests), the goal would be to select the worker with the highest ability or, respectively, the

workers with the two highest abilities. This can be achieved with the contests studied in this

paper since the equilibrium-e¤ort functions are strictly monotonic with respect to ability. Thus if

all subjects exert e¤ort according to the equilibrium e¤ort function, optimal sorting should occur.

That is, in each round and each group of four contestants we would observe that the subject with

the highest ability would exert the highest e¤ort, the subject with the second highest ability would

exert the second highest e¤ort, and so on. Clearly, in an experimental setting optimal sorting in

this strict sense cannot be expected throughout the entire experiment.9 Instead we just ask, in

how many cases it was true that the contestant with the highest ability won a one-prize contest

respectively in how many cases it was true that the contestants with the two highest abilities were

winners in a two-prize contest. The results are displayed in the …fth column of Table 2 labeled

“Sorting”. The entry in each cell gives the number of cases in which sorting worked and the number

of all cases along with the percentage in parentheses. Concentrating on the results in the second

half of the experiment, sorting in this weaker sense occurred in respectively 57.3%, 46.7%, 61.6%

and 52.0% of the cases in treatment LC-1, LC-2, QC-1 and QC-2, respectively. Put di¤erently,

in about 40% (50%) of the cases in the one-prize (two-prize) contests, contestants not having the

highest abilities won the contests. However, note that for example in the majority of cases in which

sorting did not work in the two one-prize contests, the winner of the contest was the subject having

the second highest ability who happened to exert an e¤ort greater than the highest-ability subject.

Hence it is the rat race that is responsible for ine¢ciencies.10 Note …nally that, non-surprisingly,

the percentage of cases in which sorting does work is higher in one-prize contests than in two-prize
9In fact, optimal sorting in this strict sense is only observed in roughly ten per cent of all rounds in the second

half of the experiment in the four di¤erent treatments.
10There are, however, also cases in which contestants with the second to last ability or the least ability won a

contest.
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contests.

In summary as predicted by the theory, we …nd that in case of linear costs a one-prize contest

raises higher revenues than a two-prize contest whereas in case of quadratic costs a two-prize contest

raises higher revenues than a one-prize contest. Furthermore, contests with linear costs seem to

elicit excess e¤orts while those with quadratic costs elicit e¤ort levels which are either too low or

approximately equal to the equilibrium e¤orts. Finally, we observe that in only 50-60% of the cases

(depending on the treatment), the contests are won by those subjects having the highest abilities.

4.2 Disaggregated Results

As we have seen above, if one were to look only at our data aggregated within treatments, one could

come away with the impression that behavior was basically continuous and, on average, not far from

that predicted by the theory. In this section of the paper we will attempt to disabuse you of those

impressions by presenting a more disaggregated analysis of our data. We will do this in several

steps. First we will present a small sample of individual e¤ort functions presented just to give you

a quick …rst impression of what typical e¤ort behavior looked like. While this is not an exhaustive

presentation of all e¤ort functions, the subjects we select are by no means outliers so they should

give you a good idea of what we are talking about. Second, we will present a set of histograms,

one for each of our four treatments, which describe the e¤orts subjects made. These histograms

will illustrate the fact that e¤orts tended to be bimodal. They were either heavily concentrated

around zero (for those who dropped out) or scattered across high e¤ort levels (for those entering

the rat race) with relatively few e¤ort levels chosen in the middle e¤ort ranges. In other words,

either people dropped out or they entered a rat race. Finally, we performed a model-selection

test by contrasting, individual by individual, the goodness of …t of the best …tting step-wise linear

e¤ort function against the best …tting continuous function of the form speci…ed by the equilibrium

theory. Here we try to convince you that subject behavior can best be described by a step function

characterized by an ability cut-o¤ level c¤ such that for all abilities below c¤ (low costs) e¤ort is

very high while for abilities above c¤ (high costs) e¤orts are low (or zero).

4.2.1 Individual e¤ort functions

Figure 2 presents a set of 8 individual e¤ort functions two each selected from our four treatments.

While not all individuals e¤ort in this manner, in this section we will attempt to convince you that

these e¤ort functions are the rules and not the exception. More precisely, we will try to convince
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you that rather than e¤ort is chosen in a smooth and continuous manner, typical behavior can

be characterized by a discontinuous step function with a cut o¤ e¤ort level of c¤i for individual i.

While c¤i varies from individual to individual, and while some individuals violate the rule, we still

consider these 8 e¤ort functions to be broadly representative of behavior.

Note how dramatic these e¤ort functions are. For example, subject 4 in treatment LC-2

clearly exhibits a c¤i of 0.70 and clearly drops out for all ability levels above it while subject 4 in

treatment QC-1 drops out for all c¤i ¸ 0.60. Note, in addition, that when subjects exert positive

e¤ort they do so very often at levels far above those prescribed by the equilibrium e¤ort function.

These drop-out e¤orts and over exertions are precisely the bifurcations that were described in our

introduction.

4.2.2 E¤ort Histograms

Perhaps a more e¢cient way to demonstrate the bifurcation of individual e¤ort in these experiments

is to present Figure 3 which describes the histograms of individual e¤ort levels (on the right hand

side) in our four treatments along with what we would expect these histograms to look like if, given

the actual ability draws of our subjects, they had all made their equilibrium e¤ort choices (on the

left hand side).

To describe these histograms let us look …rst at the those of treatment LC-2 (second from

the top in Figure 3). As we see in the left panel, if subjects had all used their equilibrium e¤ort

functions to select e¤ort levels, given the ability realizations in the sessions, we would have expected

to see a more or less uniform distribution of e¤orts. By contrast, the right panel presents what

we actually saw which is quite di¤erent. Note that there are a huge numbers of e¤orts around the

0 e¤ort level indicating a large amount of drop-out behavior as well as a larger number of e¤ort

levels above 0.60 indicating larger than expected e¤orts. The same pattern exists in all of the other

Figures with an even more pronounced bifurcation in treatment QC-1 and QC-2.

From these histograms it should be clear that behavior in these experiments was bimodal.

Either subjects dropped out or they exerted above expected e¤ort levels which is consistent with

our bifurcation hypothesis.
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Figure 2: Examples of individual behavior (optimal ¦; observed ²): Note: Cut-o¤ levels c¤i in

parentheses.
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Figure 3: Histograms of individual e¤ort choices
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4.2.3 Step-Functions

Final support for our bifurcation hypothesis comes from the following model selection exercise. If

we are correct in supposing that individual behavior was bimodal and exhibits either drop-out or

over-exertion behavior, then we would expect that the best …tting model of individual e¤ort would

be a step-function characterized by a cut-o¤ ability level, c¤i , such that if subject i’s observed ability,

ci, were above c¤i then the subject would “drop out” and exert either zero or at least very low e¤ort,

while if ci were below c¤i , the individual would exert positive and substantial e¤orts. This model

can be tested against the equilibrium model which posits a continuous e¤ort function of the form

speci…ed by (2) and (4), or the best …tting continuous e¤ort function of that general form.

To compare these models we …rst …t a simple switching regression model for each subject

(using only data from the second half of the experiment) of the form,

bit = ®0+ ®1cit +®2Dc¤i + ®3Dc¤i cit + "it (5)

where bit (cit) is subject i’s e¤ort (ability) in period t; and Dc¤i is a dummy which is equal to 1 if cit >

c¤i and equal to 0 otherwise. The parameter c¤i 2 f:51; :52; :::;1g is the value of the ability at which

the structural break in the subject’s e¤ort behavior occurs. Note that in case of Dc¤i = 0 equation

(5) reads bit = ®0+®1cit+"it whereas in case of Dc¤i = 1 it reads bit = (®0+®2)+ (®1+®3)cit+"it:

Thus the graph of (5) consists of two line segments with intercepts ®0 before and ®0 + ®2 after

the break and slopes ®1 before and ®1 + ®3 after the break, respectively. Note that in case of

¡®2 6= ®3c¤i the graph in (5) has a discontinuity occurring at the point of structural break. The

best-…tting breakpoint c¤i and the respective coe¢cients in (5) were estimated from the data.

For this purpose, we estimated equation (5) for all possible points of structural break c¤i 2
f:51; :52; :::; 1g and chose as the the optimal breakpoint the one that maximizes the adjusted R2:

Using the corresponding estimates of the coe¢cients in (5), we then computed for each subject

i and for each period t 2 f26; 27; :::; 50g the predicted e¤ort
¡
bti

¢predand computed, subject by

subject, the sum of the square deviation, SSDi, de…ned as SSDi =
P50
t=26

³¡
bti

¢pred ¡
¡
bti

¢obs´2

where
¡
bti

¢obs
is the observed e¤ort of subject i in period t: The average SSD for each treatment is

given in the second column in Table 3.

We compared the resulting SSDi’s of this estimation to two others. The …rst was the SSDi

generated using,
¡
bti

¢pred
; the predictions of the equilibrium e¤ort functions as given in (2) and (4).

Second we compared our SSDi’s to those generated by estimating the best …tting e¤ort function

for each individual of the f orm of the respective equilibrium-e¤ort function in each of the four
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Treatment Average sum of the square deviation (SSD) based on p-level

switching regr. model equilibrium “equilibrium form” Wilcoxon test

LC-1 2.86 8.77 3.63 0.000

LC-2 0.29 1.82 0.48 0.000

QC-1 0.87 3.49 2.10 0.000

QC-2 0.59 2.08 1.05 0.000

Table 3: Overview: Sum of the square deviation (SSD)

treatments as given in equations (2) and (4). For instance, using OLS regression we estimated for

each subject in treatment LC-1 the model

bit = ¯0 + ¯1cit + ¯2c
2
it +¯3 ln cit + "it (6)

where, again, bit (cit) is subject i’s e¤ort (ability) in period t: (Note that equation (6) has the

form of the equilibrium e¤ort function given in (2) with the exception that the coe¢cients are

undetermined.) Likewise for treatment LC-2. Recall that the equilibrium-e¤ort functions for the

treatments with quadratic costs, i.e. treatments QC-1 and QC-2, are the square roots of the

equilibrium e¤ort-functions in the respective linear-costs treatments (compare equations (2) and

(4)). In order to be able to use OLS regression for the estimation in these treatments, too, we

proceed as follows. Consider e.g. treatment QC-1. Instead of estimating (4) we estimated the

model

(bit)
2 = ¯0 +¯1cit +¯2c

2
it +¯3 ln cit + "it

i.e., the squared equation. In order to compute the SSDi for these cases we then used the radical

of the predicted e¤orts.

The results of our exercise are given in Table 3 which presents the average SSDi value for

each treatment. Column 2 presents the results of our switching regression model while columns 3

and 4 present the results of our equilibrium and equilibrium-form models, respectively.

As can be seen, our simple switching regression models clearly outperform the prediction of

both the equilibrium and equilibrium-form models. In fact, using a Wilcoxon test to compare the

SSDi’s based on either the switching regression model and the estimates based on the equilibrium-

form regressions indicates, that the former gives a highly signi…cantly better …t than the latter.

Table 4 shows the average cut-o¤ levels in each of the four treatments as well as (two tailed)

p-values of pairwise Mann-Whitney U-tests. Recall that the switching regime consists of two line
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LC-1 LC-2 QC-1 QC-2

(mean) (0.71) (0.78) (0.67) (0.81)

LC-1 — — — —

LC-2 0.013 — — —

QC-1 0.174 0.000 — —

QC-2 0.003 0.403 0.000 —

Table 4: Average cut-o¤ levels and (two tailed) p-values of pairwise di¤erences in the second half

of the experiment

segments with a (possible) jump between the two segments. Note that the average cut-o¤ points

in the one-prize contests are lower than the average cut-o¤ points in the two-prize contests (0.71

in LC-1 vs. 0.78 in LC-2; 0.67 in QC-1 vs. 0.81 in QC-2). As it turns out, these di¤erences are

also statistically highly signi…cant. This means that subjects in the one-prize contests only start

to exert serious e¤ort when their ability parameters, the ci’s, are comparatively low. This implies

that they exert low e¤ort levels over a much larger interval of the domain of their e¤ort function.

Finally, note that the di¤erences between cut-o¤ levels in the two one-prize and the two two-prize

contests are small and not signi…cant.

4.2.4 Conclusions and Discussion

It should be clear from what we have described that behavior in laboratory organizations with

what is claimed to be an optimal incentive structure, while eliciting average e¤ort levels that

were approximately what the theory expected, also determined behavior that we …rmly expect

to be dysfunctional in the long run. More precisely, in the real world, unlike in our experiment,

subjects arrive at the organization with an ability that does not change from period to period.

They are either high or low ability workers. What our results predict is that such organizations

will evolve over time into a caste system in which a set of high ability workers will compete for

the organizational prizes while the remaining low ability workers will be left behind. Once low

ability workers drop out, as long as we assume they do not reenter the …ght for organizational

prizes, we would expect the high ability workers to also lower their e¤orts since they will eventually

realize that there is less competition out there than they initially expected.11 Hence, in the long
11For this line of reasoning see also e.g. Pema (2002) p.39.
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run we might actually expect lower e¤orts than predicted by Moldovanu and Sela. Further, we can

also expect such organizations to have higher than optimal turnover levels since any organization

composed of over achievers and alienated drop outs can not be a pleasant place to work.

A second …nding is that contests with linear costs, on average, elicit excess e¤orts while

those with quadratic costs elicit e¤ort levels which are either too low (in case of one prize) or

approximately equal to the equilibrium e¤orts (in case of two prizes). It is instructive to compare

this result with those reported in related studies. There is ample evidence that there is over-

dissipation relative to the Nash equilibrium in rent-seeking contests (Davis and Reilly, 1998; Potters

et al., 1998) as well as in single-unit all-pay auctions (Gneezy and Smorodinsky, 1999; Amann and

Leininger, 1998). Barut et al. 2002 show that the over-dissipation result carries over to multiple-

unit all-pay auctions. Also, “e¤ort above the RNNE [risk-neutral Nash equilibrium] is the most

common outcome in single unit …rst-price private value auctions.” (Kagel 1995, p. 523). In

sum, the evidence concerning over-dissipation in rent-seeking contests or over-exertion in (all-pay)

auctions is overwhelming. In the light of this evidence, our over-exertion result in the contests with

linear costs is hardly surprising. However, the under-exertion or close-to-optimal e¤ort result in the

contests with quadratic costs is. Furthermore, while over bidding in e.g. …rst-price auctions can be

rationalized by assuming that subjects are risk-averse (see e.g. Cox et al. 1988), risk aversion cannot

coherently explain the di¤erent patterns regarding revenue observed in our experiments since risk

aversion would predict under-exertion relative to the risk-neutral Nash equilibrium independent of

the kind of costs contestants have to bear.

Finally, our third …nding is related to the e¢ciency of contests in organizations: Workers

are to be promoted on the basis of their skills and abilities. Since workers usually di¤er with respect

to their abilities and since the equilibrium-e¤ort functions are strictly monotonic with respect to

ability, the contests analyzed in this study theoretically serve the purpose of awarding promotion

prizes to those workers having the highest abilities. We observe, however, that in only 50-60% of

the cases our experimental contests are won by highest-ability subjects. The reasons driving this

result are likely errors in decision making and idiosyncratic or random behavior of some of the

subjects as revealed by the answers to a post-experimental questionnaire.12

12A case in point is a subject in treatment LC-1 who stated: “[...] Then I was still frustrated that I hadn’t ever

had the highest number. Just for fun, I typed 1.96 and got the extra point, as well as a positive pro…t. From that

point, I only picked extremely high numbers.” Another subject in treatment QC-2, wrote “After a while it became

clear that numbers, which did not win, would receive a high negative value. Therefore I started to choose values over

0.80 to receive the 0.50 payment, despite the fact that it reduced the pro…t.”
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In conclusion, what may appear to be an optimal organization (or contest) on paper may not

be one in reality. The propensity of workers to drop out when they suspect that they do not have

a su¢cient chance of winning an organizational prize leads to a caste system within organizations

which is many times demoralizing to all who work there.
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A Instructions for treatment LC-2

This is an experiment in decision-making. If you make good decisions you can earn a substantial amount of

money, which will be paid to you when you leave. The currency in this decision problem is called Points.

All payo¤s are denominated in this currency. At the end of the experiment your earnings in Points will be

converted into real U.S. dollars at a rate indicated below.

As you read these instructions you will be in a room with a number of other subjects. Each subject

has been randomly assigned an (electronic) ID number.

The experiment consists of 50 decision rounds. In each decision round you will be grouped with

three other subjects by a random drawing of ID numbers. These three sub jects will be called your “group

members.” Your group members will remain the same throughout the entire experiment. The identity of

your group members will not be revealed to you.

The Decision Problem
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In the experiment you will perform a simple task. At the beginning of each round the computer will

…rst independently generate a random number for every group member. The random number will be one of

the 51 numbers in the set {0.50, 0.51, , 1.00}. Each of these 51 numbers has an equally likely chance of being

chosen. You will then be informed about the random number that was chosen for you. You will, however,

not be informed about the random numbers that were chosen for the other group members. These random

numbers will be important to you since they will determine your costs in the experiment as explained below.

After informing you about your random number, the computer will ask all group members to simultaneously

choose a Decision Number (which will be the only decision you have to make in a round.) This Decision

Number must be chosen from the set of numbers {0, 0.01, 0.02, ..., 0.82}. Associated with each Decision

Number are decision costs. These decision costs depend on your random number as well as on the Decision

Number you chose. More precisely, the decision costs will be equal to the product of the random number

and your Decision Number. For example, say you receive a random number of 0.6 and in the experiment

choose a Decisions Number of 0.7. Then your cost would be 0.42 = 0.7 x 0.6. If instead your random

number was 0.9 and you chose a Decision Number of 0.7, your decision costs would be 0.63 = 0.7 x 0.9. You

can consider your random number to be the per-unit cost of choosing a Decision Number so the higher the

random number the higher is that per unit cost. Note that the decision costs associated with the Decision

Number 0 are equal to 0.

To help you calculate what the cost of any Decision Number will be given your random number, we

have provided you with a calculator that is located on the left hand side of your decision screen. To …nd the

decision cost associated with any Decision Number simply enter a Decision Number into the box and then

push the button “compute”. Your cost will then be shown to you at the top left corner of your screen.

When you are ready to make your …nal decision, please enter your Decision Number into the box on

the right hand side of your screen and push the button “OK”.

Calculation of Payo¤s

Your payo¤ in each decision round will be computed as follows. First of all, in each round each

participant will receive a ‡at payment of 0.20 Points no matter which number he or she and the other group

members have chosen. Whether or not you receive an additional …xed payment will be determined in the

following way. After every member of your group has entered his or her Decision Number, the computer

will compare all of the Decision Numbers of the four members of your group. If your Decision Number is

one of the two highest, you will receive the …xed payment of 0.5 Points otherwise you receive no additional

…xed payment. If three or more group members chose the highest Decision Number, then the computer will

randomly determine which two of these “tied” members receive the additional …xed payment of 0.5 Points.
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Those subjects with Decision Numbers that are not the highest two will receive nothing. From your …xed

payment (of either 0.5 Points or 0 Points) you will have to subtract your decision cost. Hence, while choosing

a high Decision Number increases the probability that you will win a positive …xed payment it also increases

the cost of doing so. In addition, if your Decision Number is not one of the two highest of the group, you will

receive no additional …xed payment and have to subtract your decision costs from your initial ‡at payment.

Your payo¤ in a given round is calculated as follows: First, as mentioned above, you receive a ‡at

payment (FP) of 0.20 Points. In addition if you chose one of the two highest Decision Numbers you will be

paid a …xed payment of 0.5 Points from which you will subtract your decision cost. If you do not choose

one of the two highest Decision Numbers, you will receive a …xed payment of 0 and still have to subtract

your decision costs. The resulting number is multiplied by 100 to yield your …nal Points payo¤. This is then

converted into dollars at the rate of 15 Points = $1. Thus, your …nal payo¤ in Points in a given round is:

Payo¤ = 100*(Flat payment + Fixed payment (0 or 0.5) - Decision Cost).

Note: To make life easier for you so that you do not have to enter decimal Points, you will not be

asked to enter a Decision Number from the set {0, 0.01, 0.02, ..., 0.82} but from the set {0, 1, 2, ..., 82}. The

computer will then automatically divide the Decision Numbers of all group members by 100 before starting

to evaluate them.

Example of Payo¤ Calculation

Suppose the following occurs: Group member 1 gets assigned random number 0.80 and chooses

Decision Number 0.21 (21). Group member 2 gets assigned random number 0.55 and chooses Decision

Number 0.17 (17). Group member 3 gets assigned random number 0.91 and chooses Decision Number 0.05

(5). Group member 4 gets assigned random number 0.77 and chooses Decision Number 0.33 (33).

Since group members 4 and 1 chose the highest two Decision Numbers they receive the Payment

of 0.5 Points whereas all other group members receive no payment. Therefore, group member 4’s earnings

in this round would be 100*(0.20 + 0.5 - 0.77*0.33) = 44.59 Points whereas group member 1’s earnings in

this round would be 100*(0.20 + 0.5 - 0.80*0.21) = 53.2 Points. Group members 2, and 3 each receive no

additional payment. Therefore group member 2 would earn 100*(0.20 + 0 - 0.55*0.17) = 10.65 Points, and,

…nally, group member 3 would earn 100*(0.20 + 0 - 0.91*0.05) = 15.45 Points.

Note again that the decision cost is a function of the random number and the Decision Number. Note

also that your earnings in a round depend on the following: your random number, your Decision Number

and your group members’ Decision Numbers. Your earnings do not depend on your group members’ random

numbers.

Continuing Rounds
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After round 1 is over, the same procedure will be repeated for round 2, and so on for 50 rounds.

That is, in each round a random number will …rst be generated for you, then you will choose a Decision

Number which will be compared to the Decision Numbers of the other members of your group, and the

computer will calculate your earnings for the round.

After each round you will be informed about which payment you receive. In case you do receive

a positive payment you will be informed about the random number of the other group member who also

received a payment of 0.5 Points. In case you do not receive a positive payment (because your Decision

Number was not one of the two highest among the Decision Numbers of all group members or because you

were not randomly selected in case you and at least two other group members chose the highest Decision

Number) you will be informed about the random numbers of the group members who received the payment

of 0.5 Points.

Calculation of Final Monetary Payment

At the start of the experiment you get a one-o¤ endowment of 75 Points. (This is the $5 show-up

fee you were promised, see below.)

When round 50 is completed, the computer will randomly select 10 of the 50 rounds. Your …nal

payo¤ in the experiment will be the sum of your individual earnings in Points for only these 10 rounds (plus

your endowment). For each 15 Points you will be paid 1 $.

Trial Periods

At the beginning of the experiment there will be three trial periods that do not count towards

payment of real money.
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