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Abstract

We propose to add ranking restrictions on impulse-responses to sign restrictions to narrow

the identified set in vector autoregressions (VARs). Ranking restrictions come from micro

data on heterogeneous industries in VARs, bounds on elasticities, or restrictions on dynamics.

Using both a fully Bayesian conditional uniform prior and prior-robust inference, we show that

these restrictions help to identify productivity news shocks in the data. In the prior-robust

paradigm, ranking restrictions, but not sign restrictions alone, imply that news shocks raise

output temporarily, but significantly. This holds both in an application with rankings in the

form of heterogeneity restrictions and in another applications with slope restrictions as rankings.

Ranking restrictions also narrow bounds on variance decompositions. For example, the bound

of the contribution of news shocks to the forecast error variance of output narrows by about

30pp at the one-year horizon. While misspecification can be a concern with added restrictions,

they are consistent with the data in our applications.
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1 Introduction

While SVARs have remained the workhorse for analyzing the dynamic effects of macroeconomic

shocks since Sims (1980), the standards for identification have risen: Much of the literature has

abandoned the traditional zero restrictions on short-run or long-run responses. One popular strand

of the literature, going back to Uhlig (2005), Faust (1998), and Canova and De Nicolo (2002), aban-

dons point identification. Most prominently, Uhlig (2005) introduces qualitative sign restrictions

on impulse response functions to identify a set of impulse response functions, or other structural

parameters. Several recent papers, both frequentist and Bayesian, have proposed inference over the

parameters in the identified set, or the identified set directly (Granziera, Moon, and Schorfheide

(2018), Gafarov, Meier, and Montiel Olea (2018), Gafarov, Meier, and Montiel Olea (2016), Giaco-

mini and Kitagawa (2018)). We build on this approach to set identification and show how to use

rankings of impulse-responses to sharpen identification.

Researchers often have qualitative prior information beyond the sign of impulse-responses that

can be used for identification. De Graeve and Karas (2014) use “heterogeneity restrictions” that

rank the responses of banks with and without deposit insurance. Kilian and Murphy (2012) in-

troduce bounds on macroeconomic elasticities such as the oil supply elasticity. Both types of

restrictions rank the responses of different variables in a VAR at the same horizon and are formally

equivalent. One can also restrict shapes of responses, by ranking the responses of the same variable

at different horizons. Ranking responses over time can discriminate between news and surprise

shocks, for example, or impose other priors on the shape of responses.1 We refer to all three types

of restrictions as ranking restrictions. We view these as underutilized.2 Thus, we explore ranking

restrictions systematically here.

In set identified VARs, identifying assumptions have effects if they restrict covariances of

impulse-responses to be at odds with unconditional covariances of forecast errors. The uncon-

ditional covariance is a reduced-form object that averages over all shocks. Sign restrictions shrink

the identified set if they impose covariances conditional on a shock that are at odds with these

unconditional covariances. Heterogeneity restrictions sharpen identification based on linear combi-

nations of covariances. Slope restrictions sharpen identification if they restrict conditional dynamic

covariances in ways that are at odds with their unconditional counterparts. Whether ranking

restrictions are useful is thus an empirical matter.

We demonstrate empirically that ranking restrictions can meaningfully sharpen inference by

analyzing productivity news shocks. Beaudry and Portier (2006) and, more recently, Kurmann and

Sims (2017) have argued that productivity news shocks are an important determinant of output

fluctuations. In the literature, TFP news shocks raise the value of stocks, are expansionary, and

lead to higher TFP in the future. We impose these patterns as sign restrictions and add three

different types of ranking restrictions in two closely related applications. In the first application, a

nine-variable VAR, we introduce disaggregated data in the form of stock returns for five Fama and

French (1997) industries. The industries differ in their R&D intensity. We impose the heterogeneity

1Plagborg-Møller (2019) proposes shape restrictions for point-identified impulse-response function estimation.
2For example, Uhlig (2017) advocates elasticity bounds as easy to convey to audiences (p. 101).
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restrictions that more innovative industries returns load more heavily on TFP news. Motivated

by the literature, we also consider a macro elasticity bound, restricting the impact response of

productivity following a news shock. Last, we show that without additional slope restrictions, the

identified set likely includes both productivity surprises and productivity news shocks. We also

analyze how to discriminate between different shocks to productivity in the second application.

There, we identify news and surprise shocks to TFP in a five-variable VAR, along with a monetary

policy shock. We use slope restrictions to distinguish the two productivity shocks: TFP initially

rises after a news shock, but is mean-reverting after a surprise shock. Ranking restrictions sharpen

inference substantially relative to pure sign restrictions in both applications.

We provide two types of inference. One type is fully Bayesian, which uses a conditionally uniform

prior (Uhlig, 2017). This prior uses the Haar measure popularized by Uhlig (2005). Baumeister and

Hamilton (2015) criticize such priors because they may induce undesirable priors over structural

parameters and are never updated by the data. They propose to parameterize the prior over the

structural parameters directly. This alternative approach may be challenging in higher dimensional

VARs, which would require priors over many elasticities, or when dynamic restrictions are required

(see Kilian and Zhou (2018)). Prior-robust inference, the second type of inference we use, allow us

to simultaneously use multi-horizon restrictions and prior information on elasticities via bounds.

Giacomini and Kitagawa (2018) characterize prior-robust inference with general sign restrictions.

Like the earlier work of Faust (1998), this approach provides bounds on structural parameters,

which are impulse-response and variance decompositions here. These bounds apply to a family

of priors consistent with sign or ranking restrictions. Our approach to prior-robust inference also

yields Lagrange multipliers that measure the importance of individual restrictions.

Ranking restrictions yield more precise inference using either the conditionally uniform prior

or the prior robust approach. In both applications, ranking restrictions narrow the width of the

average 68% robust credible set for the response of output and TFP to productivity news by more

than 30%. Similarly, the posterior median reduction in the upper bound on the output response is

around 30pp at the one-year horizon in both applications. With the conditionally uniform prior, we

generally also obtain narrower credible sets. In some cases, however, ranking restrictions put more

mass on stronger responses with a conditionally uniform prior. This can be associated with wider

credible sets when the expected response shifts away from zero. In both applications, Lagrange

multipliers confirm that ranking restrictions are more important than standard sign restrictions for

sharpening the upper bound. In the smaller VAR with its multiple identified shocks, the Lagrange

multipliers also show that the identified set for the responses to news shocks is unaffected by the

restrictions on the other identified shocks.3

A natural concern about additional restrictions is whether they are consistent with the data.

Following Kline and Tamer (2016) and Giacomini, Kitagawa, and Volpicella (2017), we therefore

characterize the posterior probability that the identified set is nonempty. Giacomini and Kitagawa

3To draw from the conditionally uniform prior, we develop a new Gibbs sampler, described in Appendix E.3.
Unlike the accept-reject samplers in the literature (see Uhlig (2005), Rubio-Ramı́rez, Waggoner, and Zha (2010)),
this sampler directly draws from the identified set for the underlying rotation matrices.
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(2018) refer to this probability as the posterior plausibility. The added restrictions allow us to

compute a conservative test of the restrictions: If the posterior probability of an empty set increases

significantly when ranking restrictions are added to the sign restrictions, this provides evidence

against the restrictions. With proper priors over the reduced-form VAR parameters, we also report

a closely related Bayes factor. To compute the probabilities, we develop a fast computational

condition that is necessary and sufficient to determine whether the identified set for a single shock

has positive measure. The prior-robust posterior plausibility coincides with the fully Bayesian

posterior probability under the conditionally uniform prior.

The qualitative ranking restrictions are consistent with the data in our two applications, based

on their posterior plausibility. This result is not mechanical. In our first application, we show that

posterior plausibilities quickly decline when strengthening the heterogeneity restrictions beyond the

qualitative restrictions we propose. We also show that, combined with slope restrictions, the data

reject a model with reversed heterogeneity restrictions. Such tests are, thus, useful for researchers

wishing to assess the plausible strength of restrictions or possible misspecification.

Structure and notation. First, we set up the general statistical model and identification prob-

lem with sign and ranking restrictions. We provide intuition for the determinants of the identified

sets in small VARs in the case of heterogeneity and slope restrictions. Second, we show how to

detect whether identified sets are non-empty for given restrictions and discuss inference. Third, we

analyze productivity news shocks. The appendix contains all proofs and additional results.

We use bold lower (upper) case letters to denote vectors (matrices). ||a|| =
√
a′a is the Euclidean

norm. ei is a vector of zeros with a one in its ith position. Σtr denotes the lower triangular Cholesky

factor of Σ. Aij denotes element (i, j) of A and ai = (a)i denotes the ith element of a. A′ denotes

the transpose of A. ⊗ represents the Kronecker product. On denotes the space of n-dimensional

orthonormal matrices. 1{◦} denotes the indicator function. The scalar s is in {−1, 0, 1}.

2 Model

Here we set up the standard Bayesian VAR framework and define sign and ranking restrictions.

Several examples illustrate the concept of ranking restrictions. We then develop intuition about

how sign and ranking restrictions affect the identified set in small-scale VARs.

2.1 Setup

We consider a Gaussian VAR in the n × 1 vector of observables yt. The VAR has p lags and iid

normally distributed forecast errors ut.

yt = c+

p
∑

i=1

Biyt−i + ut, ut
iid∼ N (0,Σ), (2.1)

where c is the constant term, Bi, i ≥ 1 denotes the lag coefficients, and Σ the covariance matrix.

3



Structural VARs are underidentified and require additional restrictions to map the reduced-form

innovations ut to structural shocks εt by factoring Σ. This can be summarized as follows:

ut = Aεt, εt
iid∼ N (0, In), Σ = AA′. (2.2)

Besides this generic VAR restriction on A, we impose qualitative restrictions on the impulse-

responses to set-identify the VAR model. We now lay out notation to formalize these restrictions.

We define impulse vectors following Uhlig (2005):

Definition 1 (Impulse vectors). The vectors as ∈ R
n, s = 1, . . . , S, S ≤ n are called impulse

vectors, iff there is some matrix A with AA′ = Σ so that each as is a column of A.

Formally, letΣtr be the lower Cholesky matrix and take any orthonormal matrixQ = [q1, . . . ,qn].

Then the columns of ΣtrQ are impulse vectors. We can thus express impulse vectors without loss

of generality as:

as = Σtrqs, q′
sqs = 1, q′

sqs̄ = 0, s̄ 6= s. (2.3)

The orthogonality restriction q′
sqs̄ = 0 matters only if we restrict multiple shocks. For unrestricted

shock, we can always construct vectors qs̄ in the Nullspace of the restricted shocks. Generally,

the impulse vectors as have no economic interpretation, unless they satisfy economic restrictions

introduced below.

Defining B ≡ [c,B1, . . . ,Bp], we can now write our full model as:

p(yT ,B,Σ,Q) = ℓ(B,Σ|yT )π0(B,Σ)πQ(Q|B,Σ), (2.4)

where yT collects the history of observables, ℓ is the likelihood function, π0 denotes the prior

over the identifiable reduced-form parameters, and πQ denotes the prior over Q that incorporates

restrictions on impulse responses. We later assume a standard conjugate prior over (B,Σ) and take

these parameters for now as given. We discuss estimation and comparison of models with different

restrictions on Q in section 3. Now, we focus on what the reduced-form parameters and beliefs

about impulse responses imply about Q. We assume that πQ has full support over the identified

set.

2.1.1 Sign and ranking restrictions

To identify structural impulse vectors, we impose qualitative restrictions on the impulse-responses

that Q induces. We need extra notation to define these restrictions. Given the companion form

xt = µ+Bxxt−1+Axεt,xt ≡ [y′
t,y

′
t−1, . . . ,y

′
t−p+1]

′ of the VAR (2.1) the vector of impulse-response

at horizon h is:

rha =
[

In 0n,n×(p−1)

]

(Bx)
h

[

a

0n×(p−1),1

]

(2.5)

Restrictions on a single shock. We now define sign restrictions on a single impulse-vector,

following Amir-Ahmadi and Uhlig (2015). Later, we extend the setup to multiple shocks.
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Imposing sign restrictions is equivalent to picking a list LSR ⊆ {(s, k)|s ∈ {−1, 0, 1}, k ∈
{1, . . . , n}} of variables k and signs s as well as a restriction horizon H ≥ 0. We allow for s = 0 to

accommodate restrictions for a subset of the maximum horizon H. For example, there could be no

impact restriction with news shocks.

Definition 2 (Sign restrictions). The impulse vector a satisfies the sign restrictions (LSR, H) iff

sh × rha,k ≥ 0 for all (sh, k) ∈ LSR and h ∈ {0, . . . , H}.

We define ranking restrictions similarly, but for pairs of variables (n,m) and a pair of horizons

(h, h+h̄λ). We use h̄λ 6= 0 for shape restrictions, as explained below. Ranking restrictions also have

an associated strength λ ∈ R+. Define LRR ⊆ {(s, k, ℓ, λ, h̄λ)|s ∈ {−1, 0, 1}, (k, ℓ) ∈ {1, . . . , n}2, λ ≥
0}. Ranking restrictions nest sign restrictions if λ = 0.

Definition 3 (Ranking restrictions). The impulse vector a satisfies the ranking restrictions (LRR, H)

iff sh × rha,k ≥ λsh × rh+h̄λ

a,ℓ for all (s, k, ℓ, λ, h̄λ) ∈ LRR and h ∈ {0, . . . , H}.

Sign or ranking restrictions shape the identified set of q and the corresponding identified set of

structural parameters, defined as follows:

Definition 4 (Identified set for q). The identified set Q(L, H) is the collection of all q, with

q′q = 1 for which a = Σtrq satisfies the restrictions in (L, H).

Definition 5 (Identified set for structural parameters). The identified set F(f | L, H) = f(Q(L, H))

is the set of all f(q) with q in the identified set for q, where f(q) is some objective function.

f(q) can be any function of q, such as an impulse response function or a variance decomposition,

and is implicitly indexed by the reduced form parameters A,Σtr.

For the identified set, there is a clear sense in which heterogeneity restrictions improve inference

compared to sign restrictions: Heterogeneity restrictions can nest the standard sign restrictions.

One can easily formalize that if they nest the sign restrictions, the identified set is weakly smaller.

Below and in Appendix B we provide conditions under which the identified sets are also strictly

smaller than with pure sign restrictions in small-scale VARs. A specific prior over Q, however, can

lead to more dispersed credible sets on the interior of the identified set: The additional restrictions

can shift mass away from the center of the prior toward the tails of the distribution.4

Ranking restrictions may also apply when no sign restrictions are available because we can only

sign the difference in the responses. For example, we might know that lump-sum fiscal transfers

raise the expenditure of highly leveraged households more than those with low leverage. Depending

on how the transfers are financed, some households might actually cut expenditures, e.g., if they

pay most taxes. In that case, we might want to impose only heterogeneity restrictions that do not

nest the standard sign restrictions.5

4For example, we find that the TFP response has a lower (prior-robust) upper bound with ranking restrictions,
but more mass away from zero than with sign restrictions under the conditionally uniform prior.

5In simple cases, ranking restrictions can be equivalent to sign restrictions after a change of variables in a VAR.
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Restrictions on multiple shocks. We build on the notation above to deal with multiple iden-

tified shocks. The analogues to Definition 4 and Definition 5 for multiple shocks are:

Definition 6 (Identified set for Q: multiple shocks). The identified set Q((Ls, Hs)
S
s=1) is the

collection of all [q1, . . . ,qS ], with [q1, . . . ,qS ]
′[q1, . . . ,qS ] = IS for which as = Σtrqs satisfy the

restrictions in Ls, Hs for all s = 1, . . . , S.

Definition 7 (Identified set for structural parameters: multiple shocks). The identified set F(f |
(Ls, Hs)

S
s=1) = f((Ls, Hs)

S
s=1) is the set of all f([q1, . . . ,qS ]) with [q1, . . . ,qS ] in the identified set

Q((Ls, Hs)
S
s=1), where f(·) is some objective function.

The only link between the restrictions is through the orthogonality condition on the columns

of the rotation matrix, and thereby on the shocks. This link may matter more when the number of

identified shocks is close to the number of variables in the VAR. For example, if S = n = 2, then

q2 is already pinned down from the unit-norm and the orthogonality to q1 up to sign, without any

additional restriction.

2.1.2 Types of ranking restrictions

In our applications, we use three types of ranking restrictions: Heterogeneity restrictions on micro

responses, restrictions on macro elasticities, and slope restrictions. The former two restrict different

variables at the same horizon, while the latter restricts the same variable at different horizons.

Heterogeneity restrictions. For heterogeneity restrictions, we have a theory of a qualitative

ordering of disaggregate responses and simply pick pairs (k, ℓ). We set h̄λ = 0, λ = 1 for the

restricted pairs while imposing standard sign restrictions on the variable with the weakest response.

As we show below, however, one can also consider λ 6= 1 and let the data discipline the choice of λ.

Elasticity restrictions. Beliefs about macroeconomic relationships can generate bounds that

translate to heterogeneity restrictions of varying strengths. For example, to restrict impact multi-

pliers for government spending to be smaller than two in a VAR in log-levels, write:

r0a,output < λ×r0a,government spending with λ = 2× Ḡ

Ȳ
.

Thus, our framework allows us to use prior information on some elasticities, as advocated by

Baumeister and Hamilton (2015), without specifying full priors for all elasticities. In prior work,

Kilian and Murphy (2012) introduce elasticity bounds in the context of oil markets. In an earlier

version of this paper, we analzye a fiscal application with an upper bound on multipliers.

When we restrict elasticities to be close to zero, we can also impose approximate zero restrictions

(i.e., soft zero restrictions). For example, Christiano, Eichenbaum, and Evans (1999) identify

For example, we could run a VAR in durable and and overall consumption and impose the ranking restriction that
durable consumption drops more than overall consumption in response to a monetary policy shock. Equivalently, we
could run a VAR in overall consumption and the ratio of durables to overall consumption, and impose that the latter
falls. However, this approach breaks down with ranking restrictions relative to multiple other variables.
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monetary policy shocks via zero short-run restrictions, imposing, among other things, that real

output cannot respond contemporaneously to monetary policy shocks. Here, we could also impose

an analogous, but less dogmatic, soft zero restriction using the following restrictions:6

−λ× r0a,FFR < r0a,GDP < λ× r0a,FFR with λ small, e.g., λ = 0.01.

We can impose the above restrictions at various horizons, including the long-run.

Slope restrictions. Ranking impulse-responses to the same variable over time yields what we

call slope restrictions. In this case, k = ℓ and hλ 6= 0. Macroeconomists now consider various types

of news shocks, beginning with TFP news (Beaudry and Portier, 2006), and including government

spending news (Ramey, 2011) and monetary policy news (Campbell, Evans, Fisher, and Justiniano,

2012). Plagborg-Møller (2019) estimates point-identified IRFs with news shocks directly using a

prior on shapes. We use ranking restrictions to condition on shocks that lead to a TFP build-up

for TFP news shocks (the first shock) and mean-reversion for TFP surprises.

− λ× r0a1,TFP > −r1a1,TFP > −λ× r2a1,TFP with λ = 1,

λ× r0a2,TFP > r1a2,TFP > λ× r2a2,TFP with λ = 1.

These restrictions rule out aliasing of news and surprise shocks. Combining slope restrictions yields

other shape restrictions, such as a hump-shapes.

2.2 Set reduction through ranking restrictions: Examples and intuition

We now discuss when ranking restrictions sharpen the inference compared to pure sign restrictions

in small VARs, building on Moon, Schorfheide, and Granziera (2013).7 We focus on heterogeneity

restrictions in a bivariate VAR with impact restrictions, and summarize extensions. Together, these

examples yield intuition about how sign and ranking restrictions impact the identified set.

Consider a bivariate VAR and restrict the first shock. Re-write the restrictions using (2.3):

Standard sign restrictions Heterogeneity restrictions

(r0a)1 ≥ 0 ⇔ q1Σ
tr
1,1 ≥ 0 (r0a)1 ≥ 0 ⇔ q1Σ

tr
1,1 ≥ 0 (2.6a)

(r0a)2 ≥ 0 ⇔ q1Σ
tr
2,1 + q2Σ

tr
2,2 ≥ 0 (r0a)2 ≥ λ(r0a)1 ⇔ (q1Σ

tr
2,1 + q2Σ

tr
2,2)− λq1Σ

tr
1,1 ≥ 0 (2.6b)

Since the heterogeneity restriction nests the standard sign restriction for λ = 0, we proceed by

analyzing just the heterogeneity restrictions.8 See Appendix B for details.

6Special care is required for the limit-point of actual zero restrictions: See Arias, Rubio-Ramirez, and Waggoner
(2018), who analyze sign and hard zero restrictions in a fully Bayesian fashion using an accept-reject sampler.

7Uhlig (2017) also analyzes sign restrictions in a bivariate VAR. He discusses that restrictions on both shocks
sometimes, but not always, sharpen identification.

8An example of a VAR with one sign and one heterogeneity restriction is identifying a cost shock in a competitive
industry with decreasing returns for which we observe prices and quantities. The restriction that demand is elastic
translates to the heterogeneity restriction that minus the quantities fall more than the prices within that industry.
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It is easiest to analyze these restrictions graphically. The restrictions form two hyperplanes in

R
2. The intersection of these hyperplanes with the unit circle yields the identified set Q. Figure 2.1,

an extension of Moon, Schorfheide, and Granziera (2013), shows the results. Since variances are

strictly positive, the first restrictions simply requires q1 to be weakly positive. The second restriction

requires q2 to lie above a line through the origin, whose slope depends on the covariances of the

reduced form forecast errors and λ. Its slope is increasing in λ. Note that the lower-left element of

the Cholesky decomposition Σtr
2,1 is proportional to the reduced form covariance Σ2,1.

Three cases can arise, given λ > 0, : (a) the reduced-form covariance is positive and dominates

the positive contribution of the heterogeneity restriction, (b) the reduced-form covariance is positive,

but the contribution from the heterogeneity restriction dominates, or (c) the covariance is negative

so that both contributions are positive. In cases (b) and (c), the identified set for q1 is strictly

smaller with heterogeneity restrictions. In case (a), the identified set for q1 is [0, 1] in both cases,

but the identified set for q2 is strictly smaller with heterogeneity restrictions.

(a) λΣtr
1,1 − Σtr

2,1 ≤ 0,Σtr
2,1 ≥ 0 (b) λΣtr

1,1 − Σtr
2,1 ≥ 0,Σtr

2,1 ≥ 0 (c) λΣtr
1,1 − Σtr

2,1 ≥ 0,Σtr
2,1 ≤ 0

Weak heterogeneity restriction Strong heterogeneity restriction Strong heterogeneity restriction
Positive correlation Positive correlation Negative correlation

q1

q2

SR

RR

q1

q2

SR

RR

q1

q2

SR

RR

Note: The identified set is given by the intersection of the unit circle with the q1 > 0 plane and the plane above

the ranking restrictions (RR, here as heterogeneity restrictions) and sign restrictions (SR) lines, respectively. The

resultant joint set on the unit circle as well as the marginal sets on the axes are marked in blue (and solid) lines for

the case of RR and in dashed and red lines for the traditional SR. The RR set is strictly smaller on the unit circle;

this always translates into a tighter set for q2 and in cases (b) and (c) also in smaller sets for q1.

Figure 2.1: The identified set with sign and heterogeneity restrictions

We are typically interested in the identified set F for structural parameters such as IRFs rather

than in Q. Since a1 ∝ q1, results for the Q carry over directly to the identified set for the impact

IRF of the first variable. For a2 = e2Σ
trq, we carry out the extra calculations in Appendix B.1.

Intuitively, we find set reductions with sign restrictions if the reduced-form covariance between

the variables is of the opposite sign than the one attributed to the identified shock: In this case, the

identified shock cannot account for the entire impact response or else the VAR could not generate

the observed reduced-form covariance (see Proposition B.1 in Appendix B.1.). This intuition also

applies to the case of heterogeneity restrictions, with the reduced-form covariance between the

linear combinations [1, 0]yt and [−λ, 1]yt replacing the covariance between variables 1 and 2.
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Our analysis implies that for λ large enough, the identified sets for both responses a1 and a2 are

strictly smaller. A different way to understand our results is through Proposition 4 in Amir-Ahmadi

and Uhlig (2015). They show that in a bivariate VAR, all possible sign restrictions are spanned by

two sign restrictions with a maximal 180◦ angle. Standard sign restrictions as defined above imply

an angle of 90◦, but heterogeneity restrictions imply an angle of more than 90◦.9 As λ ր ∞, the

angle spanned by the heterogeneity restriction approaches 180◦. In this case, our identified sets for

a2 converge to a point mass at Σtr
22. This case is informative when we impose a soft zero restriction:

For large λ, we are constraining the response of variable one, that is, (r0a)1, to lie in [0, λ−1(r0a)2].

Given that (r0a)2 > 0, the limit of λ ր ∞ is point identification.10

Misspecification. Sign and ranking restrictions can be misspecified, leading to identified sets

that exclude the truth. Consider a simple example of a lower triangular VAR – consistent, for

example, with a “fast-moving” first variable and a “slow-moving” second variable. Formally, let

A =

[

a11 0

a21 a22

]

, where we normalize a11, a22 > 0. Here, Σtr =

[

a11 0

a21 a22

]

, so that the true q∗

is [1, 0]. Clearly, from case (c) in Figure 2.1, if a21 < 0, both sign and ranking restrictions falsely

exclude the truth from Q. In contrast, when a21 > 0, sign restrictions are never misspecified,

but ranking restrictions are misspecified if λ > a21
a11

. If λ ∈ (0, a21
a11

] the identified set Q shrinks

and still includes q∗. Ranking restrictions can thus narrow the identified set. However, both sign

and ranking restrictions can narrow the identified set to exclude the truth. To address this issue,

we discuss tests of the restrictions in the next section, albeit conservative ones. In addition, we

implement a placebo-type test in our empirical application of heterogeneity restrictions.

Extensions The bivariate case with static restrictions is useful to build intuition. However, it

does not allow us to speak to the effect ranking restrictions have on responses that are not directly

restricted, or to the role of dynamics. In appendix B we first cover trivariate VARs and show

that a similar condition on covariances as in the bivariate case is sufficient for set reduction for the

identified set for the first impact-response a1. This identified set can be strictly smaller with ranking

restrictions involving only the other two variables. Second, we consider dynamic slope restrictions

in a bivariate VAR(1). The key intuition is again that the restrictions sharpen inference if they

require covariances between IRFs different from the unconditional covariances in the data. With

dynamic restrictions, we also provide examples when the identified set is empty. This occurs, for

example, if the VAR is mean reverting and the restrictions impose enough persistence.

9Because [1, 0][−λ, 1]′ < 0 but [1, 0][0, 1] = 0, the angle implied by sign restrictions is wider.
10The idea of ranking the responses of two different variables to one shock carries over to ranking the response

of a single variable to two different shocks: The response of the first variable to the two shocks can be written as
a1,1(Q) = Σtr

11[Q1,1, Q1,2] subject to ||[Q1,1, Q1,2]|| = 1. Assuming positive responses, the heterogeneity restriction

then takes the form of Q1,1 > 0 and λQ1,1 > Q1,2 =
√

1−Q2
1,1 > 0 so that Q11 > 1√

1+λ2
> 0. Because Q12 =

√

1−Q2
11 = |λ|√

1+λ2
> 0, we have a strict set reduction.
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3 Estimation

The identified set depends on reduced form parameters and rotation matrices. We first summarize

the (standard) Bayesian inference on the reduced form parameters. Second, we develop a simple

computational criterion for determining whether the identified set has positive measure for given

reduced form parameters. This lends itself readily to testing the identifying assumptions relative

to VARs with weaker (or fewer) restrictions, the third part of this section. Last, we discuss two

types of inference: A Bayesian prior-robust approach, and a conditionally uniform prior over Q.

3.1 Reduced form parameter uncertainty

We quantify the uncertainty about the reduced form parameters using a Bayesian approach with

a natural conjugate prior. The posterior distribution is standard for our Gaussian Bayesian VAR.

Defining β ≡ vec(B), we have the following conjugate prior distribution over the reduced form

parameters B,Σ:

β|Σ−1 ∼ N (β̄0,N
−1
0 ⊗Σ) (3.1)

Σ−1 ∼ Wn(ν0(Σ̄0)
−1, ν0). (3.2)

The posterior distribution for Σ−1 is a Wishart distribution, from which we draw directly. Given

the draw for Σ−1, we can draw from the conditional normal distribution for the coefficients β. The

resultant draws are independent realizations of the reduced form posterior; see Uhlig (1994). We

drop reduced form draws if their companion form Bx has a maximum absolute eigenvalue of ≥ 1.03

or if their identified set Q is empty.

For future reference, we now map the restrictions LRR and the reduced form draws into matrices

that encode linear inequality restrictions. For all j ∈ {1, . . . , Js} and h ∈ {0, . . . , Hs}:

s
(j)
h en(j)r

h
aqs ≥ s

(j)
h λ(j)em(j)r

hλ
a qs ⇔ (s

(j)
h en(j)r

h
a − s

(j)
h λ(j)em(j)r

hλ
a )

︸ ︷︷ ︸

≡w′
s,h,j

qs ≥ 0. (3.3)

Stacking over all Js restrictions at horizon h, we obtain the Js × n dimensional matrix W̃s,h =

[w′
s,h,j ]

Js
j=1. Stacking over all h = 0, . . . , Hs, we obtain the (Hs+1)Js×n dimensional matrix W̃s =

[W̃s,h]
Hs

h=0. We define Ws as the subset of rows of W̃s that are non-zero. This is relevant when

s
(j)
h = 0 implies restrictions that apply only to a subset of the horizon 0, . . . , Hs. For restrictions

on cumulative responses, e.g., when the VAR is estimated in differences, replace rha with
∑h

ℓ=0 r
h
a.

When there are only sign and ranking restrictions involving some common horizons h =

hs, . . . , Hs, we can also construct the matrix Ws directly as:

Ws ≡












Ss(Es −Λs)B
hs
x

[

Σtr

0(p−1)×n

]

...

Ss(Es −Λs)B
Hs
x

[

Σtr

0(p−1)×n

]












. (3.4)
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When the restrictions are on cumulative responses, replace Bh
x with

∑h
s=0B

s
x. The matrix Es

selects response variables, (Es)kℓ = 1{n(k)
s = ℓ}, the matrix Λs is zero except for rows k with

λ(k) 6= 0, in which case (Λs)kℓ = λ
(k)
s 1{m(k)

s = ℓ}, and Ss = diag(s
(j)
s ) encodes the signs. With

p = 1 and impact restrictions only, (3.4) simplifies to Ws = Ss(Es −Λs)Σ
tr.

For identified shocks s = 1, . . . , S, we can summarize the identifying restrictions, shock normal-

izations, and the shock orthogonality conditions as follows:

Wsqs ≥ 0 q′
sqs = 1 q′

squ = 0, u 6= s. (3.5)

Since Ws depends on the random parameters B (via Bx) and Σ (via Σtr), each reduced form draw

d is associated with a draw for W
(d)
s . We denote the matrix-valued function constructed above as

Wf,s(B,Σ;LRR), so that W
(d)
s = Wf,s(B

(d),Σ(d);LRR).

3.2 Empty identified set with a single identified shock

We provide a novel condition for assessing whether identified sets have positive measure: We

check that the Chebychev center of the constrained set (prior to normalization) is nondegenerate.

Intuitively, the Chebychev center is the center of the largest ball inscribed in the constrained set.

We prove below that for continuous prior distributions, existence of a Chebychev center zc with a

ball of radius r > 0 around it is equivalent to an identified set with positive measure. To ensure

that the problem is well defined, we additionally restrict the solution to [−1, 1]n, the unit n-cube.

If r > 0, we can then construct a set of positive measure on the constrained unit n-sphere. And if

the identified set has positive measure, some element of it lies strictly in the interior. We can then

use that element of construct a candidate Chebychev center that has positive radius.

Definition 8 (Chebychev center). The Chebychev center of the constrained set Wz ≤ 0 is given

by zc that solves:

{zc, r} = arg max
zc,r≥0

r s.t. W(zc + u) ≤ 0, zc + u ≤ 1, −(zc + u) ≤ 1, ∀u : ||u|| ≤ r,

where the inequalities are element by element.

The center point zc need not be unique. We illustrate this by computing the Chebychev center

for the three examples from Figure 2.1. Figure 3.1 shows the results. In all three cases, the Cheby-

chev center is non-degenerate. In the first case, however, it is not unique. Still, the constrained set

is convex and the objective linear. Any local maximum r∗ is therefore a global maximum.

Proposition 1 (Non-empty identified set Q). Take any continuous prior πq over q with strictly

positive support on the unit sphere. The identified set for reduced form parameters (B,Σ) has

positive measure under πq iff the Chebychev center zc of the constrained set in [−1, 1]n satisfies

r > 0 with strict inequality.

Proof. See Appendix A.1.
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(a) λΣtr
1,1 − Σtr

2,1 ≤ 0,Σtr
2,1 ≥ 0 (b) λΣtr

1,1 − Σtr
2,1 ≥ 0,Σtr

2,1 ≥ 0 (c) λΣtr
1,1 − Σtr

2,1 ≥ 0,Σtr
2,1 ≤ 0

Chebychev center zc not unique Chebychev center zc unique Chebychev center zc unique
Largest radius r Smaller radius r Smallest radius r

q1

q2

1

1

0

RR

zc
z′c

q1

q2

1

1

0

RR

zc

q1

q2

1

1

0

RR

zc

Note: The plot shows the Chebychev centers zc for the cases considered in Figure 2.1. While the center is not unique

in case (a), the radius r of the largest ball inscribed in the intersection of Wz ≤ 0 and the unit n-cube is well defined.

If r is strictly positive, the identified set has positive measure under any strictly positive prior on the unit n-sphere.

Figure 3.1: Chebychev center: Examples in R
2.

Our Chebychev center criterion implies the condition for a non-empty identified set in Granziera,

Moon, and Schorfheide (2018). In Appendix A.2, we show this formally using Gordan’s alternative

(Border, 2013). Intuitively, their approach is the dual to ours. They rule out the existence of some

nonzero v ≥ 0 such that W′v = 0. If one formulates the search for an interior element of the

identified set Q as a constrained optimization problem, existence of an interior point such as the

Chebychev center implies that at these points that the “shadow price” v of the constraints is zero:

Tightening them marginally leaves the optimal solution unaffected. Vice versa, strictly positive

shadow prices v on any of the constraints implies that it is binding with equality, and no interior

solution exists.

The key condition for our criterion is whether the radius around the Chebychev center is positive.

zc = 0 is always a candidate solution, since the restrictions always admit a (degenerate) cone

through the origin as a solution. As discussed by Granziera, Moon, and Schorfheide (2018) and in

Appendix B, multi-horizon restrictions can easily cause Q to be empty. A simple example is the

case of persistent restrictions when the VAR displays oscillations. In the case of point identification,

the case of λ ր ∞ in Figure 3.1(c), the Chebychev center also implies an empty identified set.11

3.3 Testing the identifying restrictions

Restrictions on impulse-response functions are testable. Piffer (2016) proposes a parametric test. In

contrast, we build on Kline and Tamer (2016) to build a test that is free of parametric assumptions

about the distribution of Q. Kline and Tamer (2016) propose, inter alia, the use of posterior model

probabilities to assess set-identified models, i.e., the probability under the reduced form posterior

that Q is empty. Giacomini and Kitagawa (2018) refer to this quantity as posterior plausibility. We

11Any xc = [0, c], c > 0 is a Chebychev center with λ = ∞. Projected onto the unit circle, this yields a singleton.
To admit such zero measure events, one could replace the criterion that r > 0 with either r > 0 or xc 6= 0. However,
for our fully Bayesian inference we need to rule out point identification.
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also use this measure, but also report Bayes Factors to compare the model that includes ranking

restrictions to either the model with only sign restrictions or without any restrictions. These

Bayes Factors also reflect the prior probability that the identified set is empty. Unlike Giacomini,

Kitagawa, and Volpicella (2017), who consider model averaging more generally, we focus on set-

identified models. The posterior plausibility and the Bayes Factor also apply to our fully Bayesian

prior: Because the parametric prior, which we introduce below, is conditionally uniform, it does

not change the reduced form posterior density as long as the identified set Q has positive measure.

The Bayes Factor of the model with ranking restrictions (RR) relative to the model with only

sign restrictions (SR) relates to the posterior model probabilities as follows, with θ ≡ (β,Σ):

BFRR,SR ≡
∫
f(yT |θ) π(θ)1{RR}∫

π(θ̃)1{RR}dθ̃
dθ

∫
f(yT |θ) π(θ)1{SR}∫

π(θ̃)1{SR}dθ̃
dθ

=

∫
1{RR} f(yT |θ)π(θ)∫

f(yT |θ̃))π(θ̃))dθ̃
dθ

∫
1{SR} f(yT |θ)π(θ)∫

f(yT |θ̃)π(θ̃)dθ̃
dθ

×
∫
π(θ)1{SR}dθ

∫
π(θ)1{RR}dθ

=

∫
1{RR}π(θ|yT )dθ

∫
1{SR}π(θ|yT )dθ

×
∫
π(θ)1{SR}dθ

∫
π(θ)1{RR}dθ

≡ E
θ
T [1{RR}]/Eθ

0 [1{RR}]
E
θ
T [1{SR}]/Eθ

0 [1{SR}]

where 1{◦} = 1 if the identified set Q has positive measure. The second equality uses that the

normalizing constant
∫
f(yT |θ)π(θ)dθ of the reduced form posterior π(θ|yT ) is the same across

models. The third equality uses the definition of the reduced form posterior π(θ|yT ). The last

inequality defines expectations over θ, under the reduced form prior and posterior.

The components of the Bayes Factor have clear interpretations. The first term,
E
θ

T
[1{RR}]

E
θ

T
[1{SR}]

is

the ratio of posterior probabilities of empty sets of Kline and Tamer (2016). Particularly, when

computed relative to a model with no sign restrictions or with sign restrictions that are always

satisfied, this term is exactly the posterior probability proposed by Kline and Tamer (2016) and from

Giacomini and Kitagawa (2018). The second term adjusts for the prior probabilities E
θ
0 [1{◦}].12

As noted by Giacomini and Kitagawa (2018), if the ratio
E
θ

T
[1{RR}]

E
θ
0 [1{RR}]

is larger than one, the data

favor the plausibility of the restrictions. If the reference model has unitary prior and posterior

probabilities, such as models with no restrictions, the Bayes factor only reflects this last ratio.

To implement our test numerically, we use the Chebychev center criterion. In the case of

multiple shocks, discussed in Appendix E, our extended Chebychev center criterion only provides

two sufficient conditions. When both sufficient conditions fail, we resort to numerical methods.

This results in a conservative test that overstates the instances of empty sets.

3.4 Prior-robust inference

In a standard BVAR with sign restrictions such as Uhlig (2005), the posterior distribution of

impulse response functions (IRFs) reflects uncertainty about the reduced form parameters and the

rotation matrix Q. However, the possible prior distributions over Q may imply different shapes

12As our derivation shows, Eθ

0 [1{RR}] is the normalizing constant of the prior.
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for the resultant IRF, even conditional on reduced form parameters. Baumeister and Hamilton

(2015) point out that the commonly used prior that Q is uniformly distributed in the space of

orthonormal matrices does not translate to a uniform distribution over the identified set of the

structural parameters, since these transform the underlying parameters of the reduced form and

the rotation matrices. We also find this in our applications below. Additionally, Arias, Rubio-

Ramirez, and Waggoner (2018) argue that practitioners have combined sign and zero restrictions

in ways that introduced unnoticed prior information.

One can address the criticism by Baumeister and Hamilton (2015) and side-step Arias, Rubio-

Ramirez, and Waggoner (2018) by being conservative and choosing the worst-case prior possible

over Q, following Giacomini and Kitagawa (2018). However, the posterior distribution over the

reduced-form parameters (β,Σ) is updated by the data and one can apply standard Bayesian

inference to this parameter vector. For each draw of reduced form parameter, we can then compute

bounds over the possible distributions of Q.

Specifically, we follow Moon, Schorfheide, and Granziera (2013) to compute the infimum and

supremum over all admissible rotation matrices Q. The resulting identified set is distribution free,

as we compute the infimum and supremum over the set of all prior distributions over admissable

rotation matrices. We compute this set conditional on the reduced form parameters (β,Σ), similar

to Faust (1998) and Giacomini and Kitagawa (2018). While the identified set is robust to any

full-support prior over rotation matrices, we still care about the parameter uncertainty: Parameter

combinations (β,Σ) differ in their posterior density. We therefore compute a distribution over the

[inf, sup]-bounds that reflects the posterior reduced-form parameter uncertainty.13

Formally, define the fully Bayesian posterior distribution over the IRF for variable j at horizon

h given the prior π over the rotation vectors q as:

F̃ π
j,h(x) =

∫ ∫

q

1{r
Σtrq(h;Σ,β)j≤x}1{r

Σtrq(s;Σ,β)n≥λr
Σtrq(s;Σ,β)m∀(n,m,λ)∈L

(j)
RR

∀j=1,...J}
π(q)dq× p(Σ,β;yT )dΣdβ

In contrast, we define the prior-robust posterior distribution over upper bounds of the IRFs as:

Fj,h(x) =

∫

sup
π,q|π(q)>0

1{r
Σtrq(h;Σ,β)j≤x}1{r

Σtrq(s;Σ,β)n≥λr
Σtrq(s;Σ,β)m∀(n,m,λ)∈L

(j)
RR

∀j=1,...J}
p(Σ,β;yT )dΣdβ

That is, we are evaluating the probability under the best-case prior. The probability that the

response of variable j at horizon h is x or lower is, therefore, at most Fj,h(x). The definitions for

lower bounds and variance decompositions are analogous.

The prior-robust variant of the algorithm we use for inference (Algorithm 1) avoids taking a

stance on the shape of the prior over the identified set. It therefore follows the principle of trans-

parent parameterization summarized in Schorfheide (2016). The algorithm combines the standard

sampling scheme for the reduced form parameters with the Chebychev center criterion and a nu-

13Giacomini and Kitagawa (2018) show that, under regularity conditions, robust credible sets for IRFs based on
such bounds also provide frequentist confidence intervals that are pointwise consistent in level, for any given (β0,Σ0).
From a frequentist perspective, however, this pointwise consistency is often considered unappealing: Unlike uniform
consistency, pointwise consistency does not guarantee adequate size in all samples that are large enough. See Canay
and Shaikh (2016) for a discussion.
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merical optimizer to characterize bounds. This approach mimics our analytical characterization

of the identified set in the bivariate VAR examples. It also yields Lagrange multipliers on the

constraints as a byproduct of the optimization. These multipliers measure how much restrictions

shrink the identified set, as we illustrate in our empirical applications.

The prior-robust variant of Algorithm 1 is similar to the algorithms in Faust (1998) and Gia-

comini and Kitagawa (2018). Faust (1998) analyzes upper bounds for the variance decomposition.

Giacomini and Kitagawa (2018) focus on impulse response functions. The numerical optimization

problem in the algorithm has a simple structure: A linear objective, a linear inequality constraint,

and an equality constraint with gradient 2q. We find that Matlab’s fmincon implementation of the

active set algorithm, the algorithm Gafarov, Meier, and Montiel Olea (2018) also use, solves the

problem efficiently in the single-shock case here.14 For high-dimensional problems, we can run the

algorithm in parallel, given independent posterior draws for B(d) and (Σtr)(d). Unlike the literature,

we quantify the importance of restrictions by computing Lagrange multipliers.

We can adapt the prior-robust algorithm to compute bounds for any well-defined function of

the reduced form parameters and rotation vectors. Examples are implied policy rules (see Arias,

Caldara, and Rubio-Ramirez, 2015), fiscal multipliers, or the FEV decomposition. Besides impulse

responses, we focus here on the FEV decomposition. In Appendix C we follow Uhlig (2003) to

show that the conditional FEV for variable i at horizon H associated with the orthonormal vector

q can be expressed as q′Vi,Hq where Vi,H ≡ ∑H
h=0(ei(B

(d)
x )h(Σtr)(d))′(ei(B

(d)
x )h(Σtr)(d)). We can

then compute bounds on the FEV contribution of any variable i up to horizon H by replacing

the objective e′j(B
(d)
x )h(Σtr)(d)q in the previous algorithm with q′Vi,Hq. This approach is the

algorithm used in Faust (1998) to assess whether the finding that monetary policy shocks only

explain a small proportion of output is robust.

To summarize the prior-robust posterior, we report percentiles of the distribution of bounds.

These percentiles yield equal-tailed credible regions, which may be conservative in their coverage,

as Kline and Tamer (2016) discuss. In practice, when we compared these equal-tailed credible sets

to the shortest credible sets proposed by Giacomini and Kitagawa (2018), we found only minor

differences; see Figure D.2. Since Bayesian practitioners commonly use equal-tailed credible sets,

we therefore follow this simpler approach below.

3.5 Fully Bayesian inference

If a researcher has beliefs that provide information in addition to the sign restrictions, she might

want to impose these beliefs. Here, we provide a framework for conducting inference under the

belief that the rotation vector q is distributed uniformly over the unit n-sphere, conditional on

lying in the identified set Q. Fittingly, Uhlig (2017) labels this belief “conditionally uniform”.15

14We experimented with different algorithms and solvers to ensure robustness of the results. We use Knitro 11.0
(Byrd, Nocedal, and Waltz, 2006) for higher dimensional cases to speed up computations. Knitro and fmincon offer
the same algorithm. In our testing, both gave the same results, but Knitro cut computing times by two thirds.

15Here, we strengthen the restrictions to involve strict inequalities, i.e., we attempt to sample on the interior of
the identified set only. Recall that we drop trivial rows in W with s = 0.
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Algorithm 1 Inference with a single shock

For d = 1, . . . , D do:
1. Draw B(d) and Σ(d) from p(B,Σ|Y ).
2. Given B(d) and (Σtr)(d), compute W(d) = Wf (B

(d),Σ;L) according to (3.4).
3. Solve for the Chebychev center {zc, r} of the set W(d)z ≤ 0.
4. Proceed if r > 0, i.e., the identified set has positive measure. Otherwise, go to Step 1.

4.(a) Prior robust variant:

For each variable i = 1, . . . , n and for each horizon h = 0, . . . , H, calculate bounds:

min
q

and max
q

e′j(B
(d)
x )h[(Σtr)(d);0(p−1)n×n]q

s.t. W(d)q ≤ 0, and ||q|| = 1.

Save the resulting values as upper and lower bounds as well as the Lagrange multipliers
on the constraints Wq ≤ 0.

4.(b) Conditionally uniform variant:

TakeM draws from the truncated Haar measure p(q|B(d),Σ(d);L) using either an accept-
reject sampler or a direct sampler.

The conditionally uniform prior yields the following complete Bayesian model:16

p(yT ,B,Σ,q;L) = ℓ(B,Σ|yT )πB,Σ(B,Σ)πq(q|B,Σ;L), (3.6a)

πq(q|B,Σ;L) =
1{Wf (B,Σ;L)q ≤ 0}

∫

Q 1{Wf (B,Σ;L)q̃ ≤ 0}dq̃ (3.6b)

The conditionally uniform variant of Algorithm 1 generates draws from this prior.

While one can sample from the conditionally uniform prior using the accept-reject sampler in

the literature (Uhlig, 2005; Rubio-Ramı́rez, Waggoner, and Zha, 2010), this may require many

proposals: To implement the conditionally uniform prior, we require a fixed number M of accepted

draws of Q for each (B,Σ). Accepting M draws for q can require a large number of proposals when

the identified set is small or the dimension of the VAR is large. In Appendix A.3, we therefore

also describe a direct sampler, which we used for the computations here. Intuitively, the accept-

reject sampler for a single shock draws vectors z from the rotation-invariant multivariate normal

distribution N (0, In) and accepts them if Wz < 0. After acceptance, these draws are projected

onto the unit sphere by rescaling to q = z
||z|| . Instead, our approach samples directly from the

normal distribution z ∼ N (0, In) restricted to lie in the cone described by {z : Wz < 0}, before
rescaling. While direct draws from this truncated distribution are typically not available, Li and

Ghosh (2015) provide a simple Gibbs sampler.17

16Our prior implies that the marginal data density is unaffected by the prior over q when the identified setQ is never
empty: p(y) =

∫ ∫ ∫

p(y|B,Σ)p(B,Σ)p(q|B,Σ;R(·))dqdBdΣ =
∫ ∫

p(y|B,Σ)p(B,Σ)
∫

p(q|B,Σ;R(·))dqdBdΣ =
∫ ∫

p(y|B,Σ)p(B,Σ)dBdΣ.
17Geweke (1991) and Robert (1995) provide earlier, related Gibbs samplers. More efficient direct samplers such

as Botev (2016), which uses a recursive sampler based on the LQ decomposition of the W matrix, are available when
the number of restrictions is no larger than the dimension of q.
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4 Application: Productivity news shocks

4.1 Productivity news and industry data: Heterogeneity restrictions

We show here how adding and exploiting heterogeneity yields credible sets that are substantially

narrower than with standard restrictions. To incorporate heterogeneity restrictions, we include and

rank the exposure of different industry returns to news shocks. The novel identifying assumption is

that we restrict productivity news shocks to move the stock returns of the most innovative sectors

more. Even though we use a model with more time series and, thus, more unknown parameters, our

approach also yields narrower robust credible sets relative to a model with only an aggregate stock

index. Inverting the order of the industries in the heterogeneity restrictions suggests, however, that

our restrictions are not strong enough to distinguish TFP news from surprise shocks. Adding slope

restrictions on TFP narrows the robust credible sets for key macro responses further.

4.1.1 Data, specification, and identification

Data. Our benchmark data set consists of nine variables at quarterly frequency. We include four

macro variables: Real gross value added in the business sector (output), utilization-adjusted TFP,

hours worked in the business sector (all taken from Fernald, 2014) and consumer confidence. For

the industry series, we use readily available real industry stock returns. To keep the estimation

simple, we focus on the five-industry classification by Fama and French (1997), namely consumers,

manufacturing, high tech, health and other. For firms within each industry, we compute the

distribution of R&D intensities, measured as the ratio of the three-year moving average of R&D

expenses to a lagged measure of firm size. Figure 4.1 displays the distribution of the R&D intensity,

pooled across firm-years, for each of the five industries using either gross operating income or total

assets as a measure of size.18 While we focus on five industries to keep the model parsimonious,

we show in Appendix F.1 that our results hold using the finer ten industry classification. Table 4.1

summarizes the benchmark data. The sample period is from 1960:Q1 to 2015:Q4.

Specification. We use quarterly data in log-levels and allow for four lags. Our benchmark

specification uses a flat prior. When we use a flat prior, we also include a deterministic quadratic

trend, as recommended by Ramey (2016). In Appendix F.1 we also report results with a Minnesota

prior. Throughout, we take 500 reduced-form draws from the posterior. For each reduced-form

draw, we generate 10, 000 draws of the rotation vector q from the Gibbs sampler, with a thinning

parameter of 10 that leaves us 1, 000 draws of q.

Identification. We require a news shock to raise real GDP, hours, productivity, and consumer

confidence as well as cumulative real stock returns. Based on the R&D intensities in Figure 4.1,

we impose the following ranking restrictions on industry returns: (1) Health and high tech returns

increase more than those in manufacturing, and (2) manufacturing returns increase more than

18We use Compustat data and drop observations with negative net sales, assets, or employment. We only keep
U.S. firms. For our analysis, we winsorize the data at the 1st and 99th percentile year by year.
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The boxes show the median along with the interquartile range (IQR) of the R&D intensity for the five industries

in the coarsest Fama and French (1997) classification. The upper (lower) whiskers end in the values just above the

75th (25th) percentile plus (minus) 1.5 times the IQR. We measure firm size either as the lagged three-year moving

average of operating income or total assets. Source: Compustat. U.S. firms, 1960–2015.

Figure 4.1: R&D intensity by industry in the five industry classification

Benchmark data Sign restrictions Heterogeneity restrictions

Macro
(common)

Real output Real output ≥ 0 Real output ≥ 0
TFP TFP ≥ 0 TFP ≥ 0
Confidence Confidence ≥ 0 Confidence ≥ 0
Hours worked Hours worked ≥ 0 Hours worked ≥ 0

Industry

FF-5 Consumers FF-5 Consumers ≥ 0 FF-5 Manu ≥ FF-5 Consumers ≥ 0
FF-5 Manufacturing FF-5 Manufacturing ≥ 0 FF-5 Manufacturing ≥ FF-5 Other ≥ 0
FF-5 High Tech FF-5 High Tech ≥ 0 FF-5 High Tech ≥ FF-5 Manu
FF-5 Health FF-5 Health ≥ 0 FF-5 Health ≥ FF-5 Manu
FF-5 Other FF-5 Other ≥ 0 FF-5 Other ≥ 0

Table 4.1: Benchmark data and identifying restrictions in the VAR with industry-level data

those in the consumer and other industries. We also impose that stock returns in the consumer

and other industries increase. All restrictions are on impact and in the four subsequent quarters.

Below we also report an extension that imposes a (soft) zero restriction on initial TFP in the spirit

of Beaudry and Portier (2006) and Barsky and Sims (2011).

Turning to the results, we discuss the impulse-responses first because this is where we impose

the restrictions. We then turn to the FEV decomposition. Last, we analyze which restrictions are

the most important and then conclude with robustness checks. We focus on a subset of results here,

but we provide all results for each subsection in Appendix F.1. The posterior plausibility of ranking

restrictions is 99.8% without soft zero restrictions and 97% otherwise. Except for the extensions,

we show results for heterogeneity and sign restrictions for the same reduced-form draws.
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4.1.2 Impulse response functions

We now present results on impulse-response functions, (set-)identified with sign restrictions alone,

and with added ranking restrictions. Our focus here is on the response of output, TFP, and hours –

Appendix F.1 shows the full set of results. The following figures present robust and fully Bayesian

credible sets. Throughout, we contrast the traditional sign restrictions (SR) in the left panels for

each response, in shades of red. The results with ranking restrictions are shown on the same scale

on the right, in shades of blue.
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With parameter uncertainty we can only bound the responses after impact. Heterogeneity restrictions sharpen the

bounds: The peak upper bounds with heterogeneity restrictions are a third smaller for output and hours at the 99th

percentile. Heterogeneity restrictions cut the lowest lower bound for TFP also by half.

Figure 4.2: Prior-robust responses of output, TFP, and hours worked to a one standard deviation
productivity news shock

Heterogeneity restrictions (HR) narrow the robust credible set significantly. Figure 4.2 shows,

in varying shades, the 98%, 95%, and 68% point-wise robust credible sets for the impulse-responses

of output, TFP, and hours. Overlaid, in dashed lines, is the identified set at the posterior mean.

HR enable us to make stronger statements about the output response than SR alone. Consider the

three year horizon when the upper bound peaks with SR. The figure implies the output response

is below 1.71% with 99% posterior probability, regardless about the prior over rotations one might

hold. The associated width of the 98% robust credible set shrinks from 2.05pp (=1.71%-(-0.34%))

with SR to 1.42, a 30.7% reduction.

More generally, we find meaningful reductions in the width of the robust credible sets for all

macro variables across all horizons. The reductions tend to increase at lower levels of the credible

set. While these reductions can be deduced from Figure 4.2, Table D.1 in the Appendix tabulates

them for convenience. At the two-year horizon, the reduction for output is 30.7% at the 98% level,

but 39.2% at the 68% level. This compares to a reduction of 16.8% on impact and 31.9% after

six years, at the 68% level. The patterns for hours and confidence are similar, while the largest

reduction for TFP is near the 6-year horizon.

On the substantive side, the HR rule out economically significant reversals in TFP. While the
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robust credible set includes zero once the restrictions are lifted, with HR the posterior probability

attached to negative response is much lower. Specifically, at the six year horizon, the posterior

probability of a response of at least -0.11% is 90% with HR, but only 28% with SR. We can

therefore rule out large declines following a positive TFP news shocks with HR, but not with SR.

HR also point to more modest responses of output and hours worked: The probability of

increases in these measures of real activity of 1% or more at the two-year horizon is less than 2.5%

with HR. With SR, this probability could be as high as 28% for output and 72% for hours. Despite

being smaller in size overall, heterogeneity restrictions also bound the output response away from

zero at intermediate horizons: With HR, the posterior probability that output rises by at least

0.05% after one year is almost 98%. With SR, Figure 4.2 implies that this probability is less than

84% – 56%, to be specific.
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Our fully Bayesian posterior implies that TFP increases in a hump-shaped fashion after a productivity news shock.

The hump shape in TFP is well defined only with heterogeneity restrictions. Heterogeneity restrictions also visibly

reduce the credible sets for hours and TFP.

Figure 4.3: Fully Bayesian responses of output, TFP, and hours worked to a one standard deviation
productivity news shock

What are the implications of sign or heterogeneity restrictions under conditionally uniform pri-

ors? Figure 4.3 shows that a conditionally uniform prior over q sharpens inference substantially:

The pointwise 98% credible sets all exhibit well-defined shapes. While we can say little about the

shape of the TFP response while being robust to any prior, our fully Bayesian posterior implies

that TFP increases in a hump-shaped fashion in response to a productivity news shock, plausibly

reflecting technology diffusion. Inference about the hump is much sharper with HR. They imply a

peak increase in TFP of 0.1% to 0.5% about three years after the initial shock with 95% proba-

bility.19 This causes a hump-shaped expansion in output, peaking one year out between 0.3-0.8%

with 95% probability, according to the model with HR or 0.3-1.1% with SR only. Hours worked

19For comparison with the applied literature and because we also treat prior-robust identification, we present
pointwise credible sets. See Inoue and Kilian (2013) and Montiel Olea and Plagborg-Møller (2018) for references on
joint confidence sets. For output in Figure 4.3 we compute that for 98.6% of all draws with HR and 82.2% of all
draws with SR the responses exhibit a hump, i.e., they first rise and then fall in the first eight quarters.
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peak at 0.15% to 0.6% (0.15% to 0.9% with SR) with 95% probability and then may turn negative:

In the long term, the negative wealth effect on labor supply seems to offset the positive effect of

productivity growth, returning output to trend. Overall, we see economically sensitive responses

that are much sharper with heterogeneity restrictions.20

We now turn to the industry-responses of cumulative industry stock returns in Figure 4.4. HR

on these responses yield tighter bounds on the macro variables. Mechanically, they also yield more

precise inference about the industry responses themselves. The initial returns erode more quickly

under heterogeneity restrictions in the other industries and the manufacturing industry than sign

restrictions would indicate. We find similar patterns for all five industries and show here one of

each category: the low R&D intensive other industries, manufacturing, and high tech. HR reduce

the width of the 98th percent robust credible sets of all industry responses between 10% and 34%

on impact and between 26% and 63% one year out (not shown).
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Heterogeneity restrictions rank the responses of stock returns of industries from zero to four quarters according to

their R&D intensity to sharpen inference about macro variables. Heterogeneity restrictions mechanically imply larger

response in more R&D intensive industries. These differences are absent with only sign restrictions.

Figure 4.4: Fully Bayesian responses of (cumulative) industry returns to a one standard deviation
productivity news shock.

4.1.3 Forecast error variance decomposition

The literature on news shocks often highlights that news shocks explain a significant part of the

FEV in macro variables (e.g., Beaudry and Portier, 2014). Barsky and Sims (2011), and Kurmann

and Sims (2017) advocate identifying productivity news shocks by maximizing the FEV. Here, we

decompose the FEV using both prior-robust and conditionally uniform beliefs. The substantive

20The credible sets alone could obscure irregular posterior distributions, but Figure D.3 in the Appendix shows
that they do not. The posterior densities are unimodal and largely symmetric. The plot also confirms that the
densities assign positive measure to almost the extremes of the distribution over identified sets, shown as thick lines
underneath the zero line. On the substantive side, the densities show that for output and hours worked, the posterior
mass shifts toward zero using heterogeneity restrictions. In contrast, the mass shifts toward positive values for TFP.
For all variables, the densities are more concentrated with heterogeneity restrictions.
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conclusion that emerges is that, under some beliefs, news shocks could indeed drive most of the FEV

in macro variables over some horizons. But the conditionally uniform belief points to a significant,

yet more modest, role.

We first consider the identified set for the FEV contribution of productivity news to the macro

shocks. For every reduced form parameter, there is always some prior over rotation vectors that

yields a near-zero variance contribution. Figure 4.5(a) therefore only shows the posterior median

upper bound for the contribution of productivity news, at horizons of up to six years. Given

the lower bound of zero, this is also an estimate of the identified set. The red line, the posterior

median upper bound with sign restrictions, shows that SR alone are uninformative because the FEV

contribution could be as high as 60% to 100% of the total FEV with 50% posterior probability,

depending on the horizon. HR, in contrast, consistently lower the median upper bound for the

FEV contribution to below 70%. At the one-year horizon, the median reduction in upper bound

for the FEV contribution is 32pp for output. The 68% posterior credible set for the reduction in

the upper bound, the shaded area, ranges from 20pp to 38pp.

While our prior-robust results show that news shocks can play a very large role even under

HR, they play a modest role under conditionally uniform beliefs. Figure 4.5(b) shows the variance

decomposition in this case. News shocks are still important, but far less so than under prior-robust

beliefs: For output, news explains 14-28% of the total FEV at the one-year peak, and 11-27% of

TFP after six years with HR. Compared with SR, HR suggest that news shocks are less important

for output, hours, and confidence, but more important for TFP. This suggests that HR identify a

productivity news shocks more precisely.

4.1.4 Important restrictions

We impose tighter restrictions to achieve sharper identification. Which of these restrictions matter?

We use the Langrange Multipliers from the prior-robust Algorithm 1(a) to quantify the importance

of individual restrictions. This makes our results even more transparent.

Lagrange multipliers quantify the role of restrictions in sharpening our inference by answering

the question: How would impulse-responses change if we tightened a given restriction by a small

amount? For example, how would the output response two years after a news shock change if we

required consumer confidence not only to be positive initially, but bigger than ǫ? Or what if manu-

facturing stock returns had to increase more than consumer goods stock returns plus ǫ? Figure 4.6

answers these questions for all restrictions. The left panel shows the multipliers characterizing the

lower bound, and the right panel shows those for the upper bound. Because multipliers depend on

uncertain parameters, we show their distribution across reduced-form parameters. To simplify, we

sum multipliers on restrictions across all horizons for which we impose them.

Heterogeneity restrictions are the most important for tightening the upper bound on the output

response, but matter little for the lower bound, according to Figure 4.6. For example, the upper

bound would not decrease if we imposed that consumer confidence had to rise more initially. In

contrast, tightening the heterogeneity restriction that stock returns in the manufacturing industry

rise relative to returns in the other industry would lower the upper bound of output by 0.11 to 0.23
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(a) Prior-robust: Upper bound on FEV contribution of news shocks
Output TFP Hours Confidence
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(b) Fully Bayesian: Posterior over FEV contribution of news shocks
Output TFP Hours Confidence

 4  8 12 16 20 24
Horizon (quarters)

0

10

20

30

40

50

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

 4  8 12 16 20 24
Horizon (quarters)

0

5

10

15

20

25

30

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

 4  8 12 16 20 24
Horizon (quarters)

0

5

10

15

20

25

30

35

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

 4  8 12 16 20 24
Horizon (quarters)

0

5

10

15

20

25

30

35

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

fully Bayesian:
SR (68%)

fully Bayesian:
RR (68%)

FEV contributions are relative to the total FEV. Heterogeneity restrictions reduce the maximum role of news shocks

(upper panel): With sign restrictions alone, news could explain all of the initial output and confidence FEV. Hetero-

geneity restrictions shrink the maximum FEV by 20–50pp for output with 68% posterior probability. The reduction

in the bound for TFP is up to 30pp. The bounds remain wide in the short-run. With conditionally uniform beliefs

(lower panel), the importance of news peaks at below 30% for output after one year with 68% probability, compared

to the prior-robust result that with 50% posterior probability the response could be as high as 60%.

Figure 4.5: Forecast error variance contribution of productivity news shock: Macro variables.

pp. The restriction that manufacturing stocks rise more than consumer industry stocks still would

lower the upper bound by 0.02 to 0.14 pp. When we look at the determinants of the lower bound,

the opposite picture emerges: The initial restrictions on macro variables, particularly consumer

confidence, matter the most, while the industry-level restrictions hardly matter.

Our analysis of multipliers in the Appendix also shows that standard SR on stock returns have

little effect: The distribution (across reduced form draws) of differences in multipliers with λ = 0

and λ = 1 shows that multipliers on industry restrictions would be close to zero if we set λ = 0 and

worked with pure sign restrictions. In contrast, multipliers on macro restrictions do not change

systematically (Figure F.7), highlighting the importance of HR.21

4.1.5 Robustness

Information set. Although we need more observables to implement HR, they still sharpen infer-

ence. More observables increase both the information set and the number of unknown parameters

in the VAR. Figures F.18 and F.19 show how the larger VAR with sectoral stock returns and het-

21We show in Figure F.8, that the first and the last restriction horizon matter the most. Intuitively, when responses
are monotone over the restriction horizon the first and last restriction determine the shape in between.
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(a) Lower bound multipliers (b) Upper bound multipliers
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multipliers 2 years out (posterior median – 68% – 2.5th/97.5th)

This figure quantifies the importance of all sign and heterogeneity restrictions for the lower and upper bound of the

output response at the two-year horizon. It shows the distribution of Lagrange multipliers on all restrictions across

reduced-form draws. The multipliers are summed across the restriction horizons 0, . . . , H̄. Multipliers on upper

bounds are negative as tighter restrictions lower the bound. For pinning down the upper bound, the heterogeneity

restrictions on stock return industry data matter more than the macro sign restrictions. Restrictions on manufacturing

are particularly important. In contrast, for the lower bound, sign restrictions on macro variables dominate.

Figure 4.6: Lagrange multipliers on restrictions for output responses to news shocks after two years.

erogeneity restrictions sharpens inference relative to a smaller VAR, despite the extra parameter

uncertainty. The VAR has the same four macro variables, but only uses the mean of the sec-

toral returns (results hardly change with the Wilshire 5000). For output, hours, and confidence,

the estimated IRFs are sharper with HR and industry-level data. For TFP, the credible sets are

comparable at the six-year horizon and sharper at short horizons.

Soft zero restrictions. Beaudry and Portier (2006) and Barsky and Sims (2011) impose the

restriction that news cannot raise TFP immediately to identify news shocks. Here we incorporate

this assumption as a “soft” zero restriction on the initial TFP response.22 Table F.4 shows that

this extra restriction yields an additional set reduction: For output, this reduces the maximal FEV

by an additional 10pp to 15pp compared with heterogeneity restrictions alone. The reduction for

employment is 5pp to 10pp, while consumer confidence is hardly affected. By construction, the

FEV for TFP that can be explained drops dramatically at short horizons but rises with the forecast

horizon. The impulse-responses change little, except for TFP (Figures F.14 and F.15).

Other. Appendix F.1 discusses four more checks: (1) More industries, (2) an informative reduced

form prior, (3) a shorter restriction horizon, and (4) identifying both TFP news and surprise shocks.

22Formally, we impose on impact that output > 10 × TFP, in addition to TFP > 0.
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4.1.6 Strength of ranking restrictions: Effects and inference

Ranking restrictions give researchers the opportunity to impose both qualitative and quantitative

restrictions: Response i is restricted to be stronger than λ times the response of j. In contrast,

standard SR only require responses to be positive or negative, so that there is no role for an

intensity. Throughout most of this paper, we take the stand that in most cases, qualitative ranking

restrictions are the natural benchmark. λ = 1 reflects this conservative approach. In some cases,

such as elasticity bounds, λ can be calibrated to implement these bounds. Researchers could,

however, also let the data speak to the plausible magnitude of λ, as we now illustrate.

Impulse response functions of Output across varying intensity parameter λ
SR HR λ = 1

3 HR λ = 1 HR λ = 2
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Intensities of λ above the benchmark value of λ = 1 yield to an increasingly smaller posterior plausibility PrHR(λ),

but also narrower prior-robust credible sets. λ = 1 yields narrower credible sets than λ = 1
3
with essentially the same

posterior plausibility.

Figure 4.7: Prior-robust responses of output to a one standard deviation productivity news shock
across varying values for intensity parameter λ = {0, 13 , 1, 2}

The data can inform the choice of λ through the plausibility of the implied restrictions. This

criterion is conservative, since it is satisfied if there is any belief that a researcher could hold under

which the identified set has positive measure. While conservative, we show that in our application

the data are informative about the strength of the HR. Intuitively, as λ increases, the restrictions

become stronger. When they are too strong, the associated identified set is empty for a large region

of the parameter space. In practice, the plausibility starts to fall below unity once λ rises above

one; see Figure D.4 in the appendix.

While λs above unity are less plausible, they provide sharper identification in our application.

Figure 4.7 illustrates that. The figure shows the output response under SR and HR, where λ ∈
{1
3 , 1, 2}. Under each panel, we report the plausibility of each model. (See Figure D.4 for λ ∈ [13 , 3].)

The plausibility is, essentially, unity, except for λ = 2, when it is 29.2%. The loss in plausibility is
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associated with a reduction of the width of the robust credible set. At the one-year and two-year

horizons, the 98% credible set shrinks by about 30% relative to our benchmark case of λ = 1. HR

with λ = 1
3 yield results similar to SR.23

4.1.7 Misspecification of ranking restrictions

Misspecification of shocks can take two forms: (1) Wrong or overly tight restrictions can result in

empty identified sets. Kline and Tamer (2016) and Giacomini and Kitagawa (2018) suggest the

posterior probability of empty identified sets as a measure of misspecification. (2) Weak restrictions

allow the identified to include a significant measure of linear combinations of other shocks. For

example, a combination of expansionary demand and supply shocks can masquerade as monetary

policy shocks if the restrictions are weak (Wolf, forthcoming).

Ranking restrictions allow us to go beyond the conservative test for empty identified sets. Of

course, testing the posterior plausibility of the restrictions is a necessary first step. In addition, we

can revert the rankings, in the spirit of placebo tests. If the restrictions imposed on the original

model are strong, we expect the model with inverted restrictions to be rejected by the data. If not,

one would be concerned that the heterogeneity restrictions are not operating through the channel

advocated by the researcher. Alternatively, the viability of the inverted restrictions can reveal that

the original restrictions are weak, so that the misspecification test has too little power.

Reverting the HR in our full sample suggests that the baseline restrictions are, indeed, too weak:

They fail to isolate TFP news shocks. Excluding the early years from our sample, or imposing slope

restrictions on TFP, gives our proposed restrictions bite – and allows us to reject the model with

inverted restrictions as misspecified.

Specifically, inverting heterogeneity restrictions – so that returns on the less innovative sectors

are restricted to rise the most in response to the identified shocks – yields impulse-responses of

TFP that are mean-reverting (see Figure D.5 in the Appendix). This suggests that the original

restrictions cannot discriminate between TFP news and TFP surprises. A natural remedy is to

strengthen the restrictions by requiring that TFP rises initially after a TFP news shock. With this

restriction, the posterior probability of non-empty identified sets is only 40% with the inverted HR

when imposed for five quarters. With the actual HR it is 84.7%, as Table 4.2 shows.

Focusing on the data from 1983Q1 on, as we do in our second application, yields similar con-

clusions. The Compustat data motivating the HR is initially sparse: In the 1960s, we only have

R&D expenditures for 10% of firms. The coverage is improves drastically in the 1970s, but given

the number of Compustat firms, the years from 1983 to 2000 still feature 50% more observations

than we have for 1970 to 1983. In this subsample, the actual HR have a probability of non-empty

identified sets of 99.2%, compared to 71.2% for the inverted restrictions. Applying the slope re-

strictions in this subsample results in a probability of non-empty identified sets of only 0.6% with

inverted restrictions, but 80.2% with the actual HR. We conclude that during periods when the

23While we chose to report results separately for each λ for transparency, researchers could also integrate over λ if
they have specific priors. Specifically, one could use prior weights and the plausibility in the data to form a (robust)
posterior over the IRF that reflects uncertainty about the intensity of the restrictions.
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Sample Restriction No slope restrictions Added slope restrictions
start horizon Only SR Actual HR Inverted HR Actual HR Inverted HR

1960 1 100% 100% 100% 99.8% 99.8%
1960 3 100% 100% 100% 98.4% 85.5%
1960 5 99.2% 99.8% 100% 84.7% 40.0%

1983 1 100% 100% 100% >99.9% 98.3%
1983 3 100% 100% 98.8% 98.9% 34.1%
1983 5 100% 99.2% 71.2% 80.2% 0.6%

The table displays the posterior plausibilities of three different models, each for the full sample and the post 1983

sample. The results based on 2,500 draws. With added slope restrictions and in the late sub-sample, the data appear

inconsistent with the inverted HR.

Table 4.2: Posterior probability of non-empty identified sets with reversed rankings and added
slope restrictions.

data speak to the HR, and with slope restrictions, the actual HR are supported by the data, while

there is little support for the inverted restrictions that we consider misspecified.

The model contrasts the prior-robust 68% and 98% credible sets for the benchmark model with HR (shown in solid

and dashed lines) with an extension that also includes slope restrictions on TFP (shown as shaded areas). Slope

restrictions narrow the credible sets both for TFP and the other macro variables.

Figure 4.8: The effect of slope restrictions on TFP on the prior-robust credible sets of macro
variables.

Strengthening the HR with slope restrictions on TFP also sharpens inference on the other

responses Figure 4.8 shows that, mechanically, TFP increases more with the slope restrictions: The

posterior probability that TFP is positive after ten quarters is now at least 97.5%, whereas this

bound on the posterior probability is less than 84% in the baseline model. For output, which is

not subject to additional restrictions, we also obtain a narrower robust credible set: The posterior

probability that output rises by at least 0.1% one year out and is positive throughout the first 1.5

years is at least 95% with the slope restrictions, but only at least 84% with the baseline restrictions.
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4.2 Productivity news and macro data: Slope restrictions and multiple shocks

We now examine how much slope restrictions help to disentangle productivity news from produc-

tivity surprises. To do so, we use a smaller VAR that controls for nominal factors and restricts

multiple shocks simultaneously. On the substantive side, our focus is on comparing our results for

the impulse-responses and the characterization of the variance decomposition to the larger VAR.

On the methodological side, this analysis illustrates our approach in the presence of multiple shocks.

4.2.1 Data, specification, and identification

Data. Here, our data set consists of five macro variables at quarterly frequency: (1) real gross

value added in the business sector (output), (2) utilization-adjusted TFP, (3) the real S&P500, (4)

a measure of nominal interest rates, and (5) the CPI price level. The sample runs from 1983Q1

to 2016Q4. To accommodate the Zero Lower Bound period, we use the two-year treasury rate as

a simple baseline measure, the shortest maturity used in Wright (2012). As a robustness check in

the appendix, we consider a measure of the shadow-rate of monetary policy (Wu and Xia, 2016).

Specification. As before, we use quarterly data in log-levels, allow for four lags, include a deter-

ministic quadratic trend, and use a flat prior in our benchmark specification. To test the identifying

assumptions and as a robustness check, we also use a proper Minnesota prior. Throughout, we take

500 reduced-form draws from the posterior. For each reduced-form draw, we generate 50, 000 draws

of the rotation vector q from the Gibbs sampler, with a thinning parameter of 10.

Shock 1 Shock 2 Shock 3
Variable “TFP news” “TFP surprise” “Monetary policy”

Sign restrictions

Output + (0, . . . , 4 ) + (0, . . . , 4 ) – (0, . . . , 4 )
TFP + (0, . . . , 4 ) + (0, . . . , 4 ) n/a
SP500 + (0, . . . , 4 ) n/a n/a
Nominal rate n/a n/a + (0, . . . , 2)
CPI level n/a – (0, . . . , 4) – (0, . . . , 2)

Ranking restrictions

TFP slope + (0 vs 1 and 1 vs 2) – (0 vs 1 and 1 vs 2) n/a
Nominal rate slope n/a n/a – (0 vs 1 and 1 vs 2)

Restriction horizon in parenthesis.

Table 4.3: Data and identifying restrictions in the 5-variable VAR

Identification. We identify a productivity news shock, a productivity surprise shock, and a

monetary policy shock. As before, we impose the standard sign restrictions that TFP news increases

output, TFP itself, and stock market valuations. TFP surprises also raise output and TFP, and lead

to a drop in the price level. While the restrictions are distinct, a TFP surprise shock may alias as a

news shock and vice versa, because the restrictions are mutually compatible. The slope restriction
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distinguishes the two shocks – by imposing that the news shock leads to a (weak) buildup in TFP,

and the surprise shock to a mean-reversal. The slope restrictions are similar to the extension in

the previous application. The monetary policy shock raises rates temporarily, and lowers output

and the price level. For this shock, we impose the nominal restrictions for up to two quarters out

and the output restrictions for up to four quarters out, to reflect the typically short half-life of

monetary policy shocks (e.g. Smets and Wouters, 2007). The slope restriction also imposes that

it be mean-reverting, unlike forward-guidance shocks (Campbell, Evans, Fisher, and Justiniano,

2012). See Table 4.3.

SR SR + RR SR SR + RR SR + RR vs. only SR
Prior Posterior probability E

θ
T [1{◦}] Prior probability E

θ
0 [1{◦}] 2 ln Bayes factor

Flat 100.0% 90.4%
Weak (φ = 1

4) 100.0% 91.2% 80.2% 41.0% 1.16
Intermediate (φ = 1

2) 100.0% 94.4% 92.6% 73.0% 0.36
Stronger (φ = 1) 100.0% 95.6% 98.6% 87.2% 0.16

Estimated standard errors for prior and posterior probabilities are below 0.1% and below 0.03 for Bayes factors. For

various priors over the reduced form parameters and a weak, proper prior over the covariance matrix, the data are

consistent with the ranking restrictions.

Table 4.4: Posterior model probabilities and model comparison

The additional slope restrictions are overall consistent with the data, even though they are

inconsistent with some regions of the reduced form parameter space. Specifically, we compute the

posterior plausibility, i.e., the probability that the identified set is non-empty when evaluated using

the reduced-form posterior. With sign restrictions alone, the posterior plausibility is 100%. It

drops slightly, to 90.4%, with the added slope restrictions given the flat prior used in most of our

analysis – see the first row in Table 4.4. These results change little when we introduce proper priors.

Specifically, we use a version of the Minnesota prior that is consistent with the trends that we also

allow for. For the covariance matrix, our prior is a Wishart distribution with n degrees of freedom

centered at the diagonal matrix with the standard deviations of the observed p observations prior

to our sample start. For the coefficients, we use a sums-of-coefficients prior and a co-persistence

prior with common hyperparameter φ.24 With proper priors, the posterior plausibility of the model

with added slope restrictions rises slightly, to up to 95.6%.

With proper priors, we can also use standard model comparison tools and evaluate the Bayes

Factor between the two models. Since the added slope restrictions are, a priori, less likely than

the sign restrictions alone, we actually find that the data slightly favors the model with slope

restrictions. Mechanically, the reason is that the posterior probability of the identified set rises

24In the notation of Del Negro and Schorfheide (2011), we set the overall tightness hyperparameter λ1 = φ,
λ2 = 2.5 for the decay parameter to scale the prior standard deviations for lagged coefficients, λ3 = 1 denoting a
priori number of observations used for obtaining the prior for the covariance matrix of error terms, λ4 = φ denoting
the hyperparameter for the sums-of-coefficients dummy observations prior and λ5 = φ in denoting the hyperparameter
for the co-persistence dummy observations prior. See the summary in Table 4.4.
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more relative to the prior probability with slope restrictions than with sign restrictions alone.

Overall, the added slope restrictions are thus consistent with the data.

4.2.2 Impulse response functions

Compared to pure sign restrictions, slope restrictions sharpen the inference, particularly at the

posterior mean, as Figure 4.9 shows.25 At the posterior mean, the identified set with slope restric-

tions is small enough that even its pointwise characterization implies a hump-shaped increase in

output following a TFP news shock.26 TFP builds up and remains above zero after three years.

The identified set for the real SP500 also implies a hump-shaped rise, given the peak of its lower

bound, which is narrowly above the upper bound on impact. The price index falls and returns to

trend after five years. Sign restrictions alone reveal none of these patterns.
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Slope restrictions shrink the size of the identified set at the posterior mean significantly. For the three real variables,

this is robust to parameter uncertainty, yielding narrower credible sets. The responses of output, TFP, and the SP500

are strictly positive with at least 84% posterior probability with slope restrictions even at unrestricted horizons.

Figure 4.9: Prior-robust posterior over responses to a one standard deviation TFP news shock.

Parameter uncertainty is important, but slope restrictions are useful even in its presence. At

the two-year horizon, the robust credible sets shrinks between 11.8% and 33.6%, depending on the

variable and the level of the credible set. While Figure 4.9 contains the underlying information for

three of the five variables, Table D.2 reports the reductions in the credible set directly. Interestingly,

even though the slope restrictions affect only TFP directly, the reductions are weakest for TFP

itself at shorter horizons: At the two-year horizon, the reductions range from 11.8% for TFP at the

98% level to 21.8% at the 68% level. At this horizon, they are strongest for output, whose robust

credible set is reduced between 19.9% and 33.6%. This reduction in the credible set for the output

response is similar in magnitude to what we found in the previous application.

Also similar to the previous application, the ranking restrictions rule out meaningful reversals

25Here, fewer reduced form draws underlie the inference on ranking restrictions, due to empty identified set Q. In
the Appendix we use the same reduced-form draws for both and show that we still get sharper identified sets.

26The lower bound after two years is higher than the upper bound on impact and after six years.
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in TFP following a news shock. With slope restrictions, the TFP response is positive two to three

years after the news is revealed with at least 84% posterior probability. Without slope restrictions,

the probability of a positive response could be as low as 5% over this horizon. This finding for

TFP is unsurprising given that we restricted the TFP response to be increasing for one year. But

the effects carry over to output: Sign restrictions alone do not allow us to sign the output response

after the restrictions have ended. With slope restrictions, we find that output increases with about

90% posterior probability between five quarters and eight quarters after the TFP news is revealed,

irrespective of the beliefs over q.27

With the slope restrictions the fully Bayesian posterior credible sets resemble the identified

set at the posterior mean in shape (Figure 4.10). By construction, the conditional uniform belief

provides tighter credible sets than the prior-robust approach. In addition, it is easy to compute

inference on the shape of the responses. For example, we find that both with sign restrictions alone

and with added slope restrictions, the posterior probability of a hump-shaped output response is

above 95%. Slope restrictions make the results significant over longer IRF horizons. For example,

with slope restrictions the probability that output responds positively three years after the TFP

news is 95%. With sign restrictions alone, this is true only at the two-year horizon. Interestingly,

the credible sets for the output response are wider with the slope restrictions, reflecting an increase

in the inferred magnitude of the output response, in line with the inferred stronger buildup in

TFP. We conclude that slope restrictions as a form of ranking restrictions are useful for refining

identification schemes.28

4.2.3 Forecast error variance decomposition

The set reduction for impulse-responses also translates to a set reduction for the upper bounds

of the forecast error variance decomposition. Table 4.5 shows the contribution of the TFP news

shock to the variance of output at various horizons.29 With sign restrictions only, the posterior

probability that TFP news account for 100% (up to rounding error) of the output variance on

impact is at least 50%. With slope restrictions, this median upper bound falls to 32.1%. Note

that the robust credible set always includes zero (not shown). Across draws, the posterior median

reduction in the upper bound is 67.5pp. The 68% credible set (across reduced form draws) for this

reduction in bounds is 36.4% to 87.4%. After one year, the respective upper bounds are 92.2%

27For the SP500, the restrictions have less bite. The probability that the SP500 responds strictly positively after
two years is only at least 67% with slope restrictions. The 90% robust credible set still narrows by 17.1% at this
horizon.

28The responses to the other two set-identified shocks are sensible: The posterior-robust credible sets remain too
wide to identify any patterns beyond the identifying restrictions themselves. While Figure F.28 shows that the slope
restrictions also narrow the identified set for these shocks at the posterior mean, the gains in precision at the posterior
mean are undone by the parameter uncertainty. This is unsurprising if mean-reverting TFP surprises and monetary
policy surprises are the common shocks – the additional restrictions then add no qualitative information. For the
fully Bayesian posterior for the other two shocks, we do see some quantitative gains in posterior precision for the
output, TFP, and the CPI responses to a TFP surprise shock. (See Figure F.29.)

29The results for TFP itself are very similar to those for output itself, see Table F.5(a). For the other two shocks,
the results with slope restrictions are very similar to those with sign restrictions only, see Tables F.6 and F.7.
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Slope restrictions lead to longer-lasting and stronger increase in output, TFP, and the SP500 than pure sign restric-

tions.

Figure 4.10: Fully Bayesian posterior over responses to a one standard deviation TFP news shock.

and 58.6%, with a median reduction in bounds of 30.3% – similar to the reduction we found in the

first application at this horizon. Here, however, the set reducion further diminishes at the 2-year

horizon and largely disappears at the six-year horizon. This contrasts with the slightly increasing

set reductions in the first application.

(a) prior robust upper bounds (b) fully Bayesian 68% sets
SR RR Bound reduction SR RR

On impact 100.0 32.1 67.5 (36.4,87.4) On impact (2.0,52.6) (0.1,13.3)
4 qtrs out 92.2 58.6 30.3 (12.7,59.4) 4 qtrs out (6.4,50.0) (12.2,47.3)
8 qtrs out 88.0 74.0 14.2 (2.7,36.6) 8 qtrs out (5.6,47.6) (25.9,63.8)
24 qtrs out 76.9 70.0 3.6 (0.1,18.6) 24 qtrs out (6.4,36.2) (24.7,62.8)

Posterior medians (and 68% credible sets) of foreceast error variance decompositions (FEVD), relative to total FEVD

at given horizon. The set reduction is computed for draw by draw, for draws accepted under ranking restrictions.

Table 4.5: Forecast error variance decomposition for output: TFP news shock

The conditionally uniform Bayesian FEVD reflect both the narrower identified set as well as the

stronger TFP build-up that we found in the IRF analysis. At short horizons, the 68% credible set

is narrower with slope restrictions than with sign restrictions, see Table 4.5(b). At longer horizons,

the bands are wider, and put more mass on bigger FEV contributions of productivity news shocks.

While the 68th fully Bayesian percentile lies below the median prior-robust upper bound, the

68th percentile is only about 10pp. below the median upper bound with slope restrictions at

longer horizons. These findings mirror what we found for the TFP variance decomposition using

heterogeneity restrictions. Since ranking restrictions identify stronger productivity news shocks,

the inferred variance contribution can be larger than with only sign restrictions.
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4.2.4 Important restrictions

Figure 4.11 shows the Lagrange multipliers on the various restrictions for the lower bounds of the

IRFs of output to TFP news two years out. For each response, we show the multipliers computed

when the TFP news shock is identified separately and when it is identified jointly with two other

shocks. The appendix (Figure F.26) shows similar patterns for the upper bounds. These figures

imply, for example, that an ε of tightening the slope restriction that TFP rises less on impact than

after one quarter would raise the output response two years out by about 3.5ε at the posterior

median. The 68% posterior excludes zero.

Output
(a) Identified separately (b) Identified jointly

0 5 10 15
Lagrange multipliers

s1:TFP rises

s1:TFP rises

s1:Stocks>0
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Slope restrictions

Slope restrictions

Slope restrictions

multipliers 2 years out (posterior median – 68% – 2.5th/97.5th)

“s1” refers to TFP news shocks, “s2” to TFP surprises, and “s3” to monetary policy shock restrictions. The multipliers

for standard sign restrictions are summed across restriction horizons. Slope restriction have the largest multipliers.

Multipliers on the restrictions on other shocks are zero for almost all reduced form draws, so that the identified set

is pinned down from the restrictions on the productivity news shock itself.

Figure 4.11: Lagrange Multipliers for the lower bound of the two-year output response, comparing
joint and separate identification.

These plots imply that, in this application, restrictions on other shocks matter little for the

identification of the TFP news shock: First, the multipliers on the restrictions that identify the

TFP surprise shock itself are virtually the same whether we identify the shocks separately or jointly.

Second, the multipliers on the restrictions on the other two shocks are close to zero with at least

68% posterior probability. Correspondingly, identifying the news shock jointly or separately makes

little difference for the impulse-response functions (see Figure F.27).
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5 Conclusion

A growing literature uses sign restrictions on impulse-response functions to set-identify shocks in

VARs. We argue that in many applications, researchers have beliefs over additional qualitative

relationships between impulse-response functions that can be used to sharpen inference. Here, we

consider one class of such beliefs, which we refer to as ranking restrictions.

There are three types of ranking restrictions. First, ranking restrictions based on micro data,

which we label heterogeneity restrictions. Formally, these are equivalent to elasticity bounds on

macro variables, the second type. Both heterogeneity and elasticity restrictions impose a ranking

on the relative magnitude of impulse-responses of different variables at the same horizon. Third, we

introduce slope restrictions. They rank the responses of the same variables over different horizons.

In small VARs, we show which features of the reduced form parameters lead to tighter identification

compared to standard sign restrictions.

Whether sign or ranking restrictions narrow the identified set depends on the relationship be-

tween the restricted covariances between the forecast errors of variables conditional on the restricted

shock, and its unconditional counterpart. The effectiveness of ranking restrictions is, therefore, an

empirical manner. We illustrate their empirical relevance in two applications that analyze the ef-

fect of productivity news shocks on the economy. In both applications, ranking restrictions sharpen

inference about macro variables such as output compared to just sign restrictions. This is not me-

chanical, since we do not impose additional restrictions on output.

Our results are based on Bayesian inference. We document their usefulness both in a prior-

robust environment, which does not require us to specify beliefs over the distribution of the set-

identified rotation vectors, and under fully specified Bayesian beliefs. However, there is a growing

frequentist literature on inference in set-identified VARs and the restrictions we propose can be

implemented equally well in the frequentist paradigm.
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