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Abstract

Many of today�s information systems are driven by explicit process models. Workflow management

systems, but also ERP, CRM, SCM, and B2B, are configured on the basis of a workflow model specifying

the order in which tasks need to be executed. Creating a workflow design is a complicated time-consuming

process and typically there are discrepancies between the actual workflow processes and the processes as

perceived by the management. To support the design of workflows, we propose the use of workflow mining.
Starting point for workflow mining is a so-called ‘‘workflow log’’ containing information about the

workflow process as it is actually being executed. In this paper, we introduce the concept of workflow

mining and present a common format for workflow logs. Then we discuss the most challenging problems

and present some of the workflow mining approaches available today.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

During the last decade workflow management technology [2,4,21,35,41] has become readily
available. Workflow management systems such as Staffware, IBM MQSeries, COSA, etc. offer
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generic modeling and enactment capabilities for structured business processes. By making process
definitions, i.e., models describing the life-cycle of a typical case (workflow instance) in isolation,
one can configure these systems to support business processes. These process definitions need to
be executable and are typically graphical. Besides pure workflow management systems many other
software systems have adopted workflow technology. Consider for example Enterprise Resource
Planning (ERP) systems such as SAP, PeopleSoft, Baan and Oracle, Customer Relationship
Management (CRM) software, Supply Chain Management (SCM) systems, Business to Business
(B2B) applications, etc. which embed workflow technology. Despite its promise, many problems
are encountered when applying workflow technology. One of the problems is that these systems
require a workflow design, i.e., a designer has to construct a detailed model accurately describing
the routing of work. Modeling a workflow is far from trivial: It requires deep knowledge of the
business process at hand (i.e., lengthy discussions with the workers and management are needed)
and the workflow language being used.

To compare workflow mining with the traditional approach towards workflow design and
enactment, consider the workflow life cycle shown in Fig. 1. The workflow life cycle consists of
four phases: (A) workflow design, (B) workflow configuration, (C) workflow enactment, and (D)
workflow diagnosis. In the traditional approach the design phase is used for constructing a
workflow model. This is typically done by a business consultant and is driven by ideas of man-
agement on improving the business processes at hand. If the design is finished, the workflow
system (or any other system that is ‘‘process aware’’) is configured as specified in the design phase.
In the configuration phases one has to deal with limitation and particularities of the workflow
management system being used (cf. [5,65]). In the enactment phase, cases (i.e., workflow instances)
are handled by the workflow system as specified in the design phase and realized in the configu-
ration phase. Based on a running workflow, it is possible to collect diagnostic information which
is analyzed in the diagnosis phase. The diagnosis phase can again provide input for the design
phase thus completing the workflow life cycle. In the traditional approach the focus is on the
design and configuration phases. Less attention is paid to the enactment phase and few organi-
zations systematically collect runtime data which is analyzed as input for redesign (i.e., the diag-
nosis phase is typically missing).

The goal of workflow mining is to reverse the process and collect data at runtime to support
workflow design and analysis. Note that in most cases, prior to the deployment of a workflow
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Fig. 1. The workflow life-cycle is used to illustrate workflow mining and Delta analysis in relation to traditional

workflow design.
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system, the workflow was already there. Also note that in most information systems transactional
data is registered (consider for example the transaction logs of ERP systems like SAP). The in-
formation collected at run-time can be used to derive a model explaining the events recorded.
Such a model can be used in both the diagnosis phase and the (re)design phase.

Modeling an existing process is influenced by perceptions, e.g., models are often normative in
the sense that they state what ‘‘should’’ be done rather than describing the actual process. As a
result models tend to be rather subjective. A more objective way of modeling is to use data related
to the actual events that took place. Note that workflow mining is not biased by perceptions or
normative behavior. However, if people bypass the system doing things differently, the log can still
deviate from the actual work being done. Nevertheless, it is useful to confront man-made models
with models discovered through workflow mining.

Closely monitoring the events taking place at runtime also enables Delta analysis, i.e., detecting
discrepancies between the design constructed in the design phase and the actual execution regis-
tered in the enactment phase. Workflow mining results in an ‘‘a posteriori’’ process model which
can be compared with the ‘‘a priori’’ model. Workflow technology is moving into the direction of
more operational flexibility to deal with workflow evolution and workflow exception handling
[2,7,10,13,20,30,39,40,64]. As a result workers can deviate from the prespecified workflow design.
Clearly one wants to monitor these deviations. For example, a deviation may become common
practice rather than being a rare exception. In such a case, the added value of a workflow system
becomes questionable and an adaptation is required. Clearly, workflow mining techniques can be
used to create a feedback loop to adapt the workflow model to changing circumstances and detect
imperfections of the design.

The topic of workflow mining is related to management trends such as Business Process Re-
engineering (BPR), Business Intelligence (BI), Business Process Analysis (BPA), Continuous
Process Improvement (CPI), and Knowledge Management (KM). Workflow mining can be seen
as part of the BI, BPA, and KM trends. Moreover, workflow mining can be used as input for BPR
and CPI activities. Note that workflow mining seems to be more appropriate for BPR than for
CPI. Recall that one of the basic elements of BPR is that it is radical and should not be restricted
by the existing situation [23]. Also note that workflow mining is not a tool to (re)design processes.
The goal is to understand what is really going on as indicated in Fig. 1. Despite the fact that
workflow mining is not a tool for designing processes, it is evident that a good understanding of
the existing processes is vital for any redesign effort.

This paper is a joint effort of a number of researchers using different approaches to workflow
mining and is a spin-off of the ‘‘Workflow Mining Workshop’’. 1 The goal of this paper is to
introduce the concept of workflow mining, to identify scientific and practical problems, to present
a common format to store workflow logs, to provide an overview of existing approaches, and to
present a number of mining techniques in more detail.

The remainder of this paper is organized as follows. First, we summarize related work. In
Section 3 we define workflow mining and present some of the challenging problems. In Section
4 we propose a common XML-based format for storing and exchanging workflow logs. This
format is used by the mining tools developed by the authors and interfaces with some of the
1 This workshop took place on May 22nd and 23rd 2002 in Eindhoven, The Netherlands.
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leading workflow management systems (Staffware, MQSeries Workflow, and InConcert). Sec-
tions 5–9 introduce five approaches to workflow mining focusing on different aspects. These
sections give an overview of some of the ongoing work on workflow mining. Section 10
compares the various approaches and list a number of open problems. Section 11 concludes the
paper.
2. Related work

The idea of process mining is not new [8,11,15–17,24–29,42–44,53–57,61–63]. Cook and Wolf
have investigated similar issues in the context of software engineering processes. In [15] they
describe three methods for process discovery: one using neural networks, one using a purely
algorithmic approach, and one Markovian approach. The authors consider the latter two the
most promising approaches. The purely algorithmic approach builds a finite state machine
(FSM) where states are fused if their futures (in terms of possible behavior in the next k steps)
are identical. The Markovian approach uses a mixture of algorithmic and statistical methods
and is able to deal with noise. Note that the results presented in [6] are limited to sequential
behavior. Cook and Wolf extend their work to concurrent processes in [16]. They propose
specific metrics (entropy, event type counts, periodicity, and causality) and use these metrics to
discover models out of event streams. However, they do not provide an approach to generate
explicit process models. Recall that the final goal of the approach presented in this paper is to
find explicit representations for a broad range of process models, i.e., we want to be able to
generate a concrete Petri net rather than a set of dependency relations between events. In [17]
Cook and Wolf provide a measure to quantify discrepancies between a process model and the
actual behavior as registered using event-based data. The idea of applying process mining in the
context of workflow management was first introduced in [11]. This work is based on workflow
graphs, which are inspired by workflow products such as IBM MQSeries workflow (formerly
known as Flowmark) and InConcert. In this paper, two problems are defined. The first problem
is to find a workflow graph generating events appearing in a given workflow log. The second
problem is to find the definitions of edge conditions. A concrete algorithm is given for tackling
the first problem. The approach is quite different from other approaches: Because the nature of
workflow graphs there is no need to identify the nature (AND or OR) of joins and splits. As
shown in [37], workflow graphs use true and false tokens which do not allow for cyclic graphs.
Nevertheless, [11] partially deals with iteration by enumerating all occurrences of a given task
and then folding the graph. However, the resulting conformal graph is not a complete model. In
[44], a tool based on these algorithms is presented. Schimm [53,54,57] has developed a mining
tool suitable for discovering hierarchically structured workflow processes. This requires all splits
and joins to be balanced. Herbst and Karagiannis also address the issue of process mining in
the context of workflow management [24–29] using an inductive approach. The work presented
in [27,29] is limited to sequential models. The approach described in [24–26,28] also allows for
concurrency. It uses stochastic task graphs as an intermediate representation and it generates a
workflow model described in the ADONIS modeling language. In the induction step task nodes
are merged and split in order to discover the underlying process. A notable difference with other
approaches is that the same task can appear multiple times in the workflow model. The graph
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generation technique is similar to the approach of [11,44]. The nature of splits and joins (i.e.,
AND or OR) is discovered in the transformation step, where the stochastic task graph is
transformed into an ADONIS workflow model with block-structured splits and joins. In con-
trast to the previous papers, the work in [8,42,43,61,62] is characterized by the focus on
workflow processes with concurrent behavior (rather than adding ad hoc mechanisms to capture
parallelism). In [61,62] a heuristic approach using rather simple metrics is used to construct
so-called ‘‘dependency/frequency tables’’ and ‘‘dependency/frequency graphs’’. In [42] another
variant of this technique is presented using examples from the health-care domain. The pre-
liminary results presented in [42,61,62] only provide heuristics and focus on issues such as noise.
The approach described in [8] differs from these approaches in the sense that for the a algorithm
it is proven that for certain subclasses it is possible to find the right workflow model. In [3] the a
algorithm is extended to incorporate timing information.

Process mining can be seen as a tool in the context of Business (Process) Intelligence (BPI).
In [22,52] a BPI toolset on top of HPs Process Manager is described. The BPI tools set includes a
so-called ‘‘BPI Process Mining Engine’’. However, this engine does not provide any techniques
as discussed before. Instead it uses generic mining tools such as SAS Enterprise Miner for the
generation of decision trees relating attributes of cases to information about execution paths (e.g.,
duration). In order to do workflow mining it is convenient to have a so-called ‘‘process data
warehouse’’ to store audit trails. Such as data warehouse simplifies and speeds up the queries
needed to derive causal relations. In [19,46–48] the design of such warehouse and related issues are
discussed in the context of workflow logs. Moreover, [48] describes the PISA tool which can be
used to extract performance metrics from workflow logs. Similar diagnostics are provided by the
ARIS Process Performance Manager (PPM) [34]. The later tool is commercially available and a
customized version of PPM is the Staffware Process Monitor (SPM) [59] which is tailored towards
mining Staffware logs. Note that none of the latter tools is extracting the process model. The main
focus is on clustering and performance analysis rather than causal relations as in [8,11,15–17,24–
29,42–44,53–57,61–63].

Much of the work mentioned above will be discussed in more detail in Sections 5–9. Before
doing so, we first look at workflow mining in general and introduce a common XML-based
format for storing and exchanging workflow logs.
3. Workflow mining

The goal of workflow mining is to extract information about processes from transaction logs.
Instead of starting with a workflow design, we start by gathering information about the workflow
processes as they take place. We assume that it is possible to record events such that (i) each event
refers to a task (i.e., a well-defined step in the workflow), (ii) each event refers to a case (i.e., a
workflow instance), and (iii) events are totally ordered. Any information system using transac-
tional systems such as ERP, CRM, or workflow management systems will offer this information in
some form. Note that we do not assume the presence of a workflow management system. The only
assumption we make, is that it is possible to collect workflow logs with event data. These workflow
logs are used to construct a process specification which adequately models the behavior registered.
The term process mining refers to methods for distilling a structured process description from a set
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of real executions. Because these methods focus on so-called case-driven process that are sup-
ported by contemporary workflow management systems, we also use the term workflow mining.

Table 1 shows a fragment of a workflow log generated by the Staffware system. In Staffware
events are grouped on a case-by-case basis. The first column refers to the task (description), the
second to the type of event, the third to the user generating the event (if any), and the last column
shows a time stamp. The corresponding Staffware model is shown in Fig. 2. Case 10 shown in
Table 1 follows the scenario where first task Register is executed followed Send questionnaire,
Receive questionnaire, and Evaluate. Based on the Evaluation, the decision is made to directly
archive (task Archive) the case without further processing. For Case 9 further processing is nee-
ded, while Case 8 involves a timeout and the repeated execution of some tasks. Someone familiar
with Staffware will be able to decide that the three cases indeed follow a scenario possible in the
Staffware model shown in Fig. 2. However, three cases are not sufficient to automatically derive
the model of Fig. 2. Note that there are more Staffware models enabling the three scenarios shown
in Table 1. The challenge of workflow mining is to derive ‘‘good’’ workflow models with as little
information as possible.

To illustrate the principle of process mining in more detail, we consider the workflow log shown
in Table 2. This log abstracts from the time, date, and event type, and limits the information to the
order in which tasks are being executed. The log shown in Table 2 contains information about five
cases (i.e., workflow instances). The log shows that for four cases (1, 2, 3, and 4) the tasks A, B, C,
and D have been executed. For the fifth case only three tasks are executed: tasks A, E, and D.
Each case starts with the execution of A and ends with the execution of D. If task B is executed,
then also task C is executed. However, for some cases task C is executed before task B. Based on
the information shown in Table 2 and by making some assumptions about the completeness of the
log (i.e., assuming that the cases are representative and a sufficient large subset of possible be-
haviors is observed), we can deduce for example the process model shown in Fig. 3. The model is
represented in terms of a Petri net [50]. The Petri net starts with task A and finishes with task D.
These tasks are represented by transitions. After executing A there is a choice between either
executing B and C in parallel or just executing task E. To execute B and C in parallel two non-
observable tasks (AND-split and AND-join) have been added. These tasks have been added for
routing purposes only and are not present in the workflow log. Note that for this example we
assume that two tasks are in parallel if they appear in any order. By distinguishing between start
events and complete events for tasks it is possible to explicitly detect parallelism (cf. Section 4).

Table 2 contains the minimal information we assume to be present. In many applications, the
workflow log contains a time stamp for each event and this information can be used to extract
additional causality information. In addition, a typical log also contains information about the
type of event, e.g., a start event (a person selecting an task from a worklist), a complete event (the
completion of a task), a withdraw event (a scheduled task is removed), etc. Moreover, we are also
interested in the relation between attributes of the case and the actual route taken by a particular
case. For example, when handling traffic violations: Is the make of a car relevant for the routing of
the corresponding traffic violation? (For example, People driving a Ferrari always pay their fines
in time.)

For this simple example (i.e., Table 2), it is quite easy to construct a process model that is able
to regenerate the workflow log (e.g., Fig. 3). For more realistic situations there are however a
number of complicating factors:



Table 1

A Staffware log

Directive description Event User yyyy/mm/dd hh:mm

Case 10

Start bvdongen@staffw_e 2002/06/19 12:58

Register Processed to bvdongen@staffw_e 2002/06/19 12:58

Register Released by bvdongen@staffw_e 2002/06/19 12:58

Send questionnaire Processed to bvdongen@staffw_e 2002/06/19 12:58

Evaluate Processed to bvdongen@staffw_e 2002/06/19 12:58

Send questionnaire Released by bvdongen@staffw_e 2002/06/19 13:00

Receive questionnaire Processed to bvdongen@staffw_e 2002/06/19 13:00

Receive questionnaire Released by bvdongen@staffw_e 2002/06/19 13:00

Evaluate Released by bvdongen@staffw_e 2002/06/19 13:00

Archive Processed to bvdongen@staffw_e 2002/06/19 13:00

Archive Released by bvdongen@staffw_e 2002/06/19 13:00

Terminated 2002/06/19 13:00

Case 9

Start bvdongen@staffw_e 2002/06/19 12:36

Register Processed to bvdongen@staffw_e 2002/06/19 12:36

Register Released by bvdongen@staffw_e 2002/06/19 12:35

Send questionnaire Processed to bvdongen@staffw_e 2002/06/19 12:36

Evaluate Processed to bvdongen@staffw_e 2002/06/19 12:36

Send questionnaire Released by bvdongen@staffw_e 2002/06/19 12:36

Receive questionnaire Processed to bvdongen@staffw_e 2002/06/19 12:36

Receive questionnaire Released by bvdongen@staffw_e 2002/06/19 12:36

Evaluate Released by bvdongen@staffw_e 2002/06/19 12:37

Process complaint Processed to bvdongen@staffw_e 2002/06/19 12:37

Process complaint Released by bvdongen@staffw_e 2002/06/19 12:37

Check processing Processed to bvdongen@staffw_e 2002/06/19 12:37

Check processing Released by bvdongen@staffw_e 2002/06/19 12:38

Archive Processed to bvdongen@staffw_e 2002/06/19 12:38

Archive Released by bvdongen@staffw_e 2002/06/19 12:38

Terminated 2002/06/19 12:38

Case 8

Start bvdongen@staffw_e 2002/06/19 12:36

Register Processed to bvdongen@staffw_e 2002/06/19 12:36

Register Released by bvdongen@staffw_e 2002/06/19 12:35

Send questionnaire Processed to bvdongen@staffw_e 2002/06/19 12:36

Evaluate Processed to bvdongen@staffw_e 2002/06/19 12:36

Send questionnaire Released by bvdongen@staffw_e 2002/06/19 12:36

Receive questionnaire Processed to bvdongen@staffw_e 2002/06/19 12:36

Receive questionnaire Expired bvdongen@staffw_e 2002/06/19 12:37

Receive questionnaire Withdrawn bvdongen@staffw_e 2002/06/19 12:37

Receive timeout Processed to bvdongen@staffw_e 2002/06/19 12:37

Receive timeout Released by bvdongen@staffw_e 2002/06/19 12:37

Evaluate Released by bvdongen@staffw_e 2002/06/19 12:37

Process complaint Processed to bvdongen@staffw_e 2002/06/19 12:37

Process complaint Released by bvdongen@staffw_e 2002/06/19 12:37

Check processing Processed to bvdongen@staffw_e 2002/06/19 12:37

(continued on next page)
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Table 2

A workflow log

Case identifier Task identifier

Case 1 Task A

Case 2 Task A

Case 3 Task A

Case 3 Task B

Case 1 Task B

Case 1 Task C

Case 2 Task C

Case 4 Task A

Case 2 Task B

Case 2 Task D

Case 5 Task A

Case 4 Task C

Case 1 Task D

Case 3 Task C

Case 3 Task D

Case 4 Task B

Case 5 Task E

Case 5 Task D

Case 4 Task D

Fig. 2. The staffware model.

Table 1 (continued)

Directive description Event User yyyy/mm/dd hh:mm

Check processing Released by bvdongen@staffw_e 2002/06/19 12:38

Process complaint Processed to bvdongen@staffw_e 2002/06/19 12:37

Process complaint Released by bvdongen@staffw_e 2002/06/19 12:37

Check processing Processed to bvdongen@staffw_e 2002/06/19 12:37

Check processing Released by bvdongen@staffw_e 2002/06/19 12:38

Archive Processed to bvdongen@staffw_e 2002/06/19 12:38

Archive Released by bvdongen@staffw_e 2002/06/19 12:38

Terminated 2002/06/19 12:38
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Fig. 3. A process model corresponding to the workflow log.
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• For larger workflow models mining is much more difficult. For example, if the model exhibits
alternative and parallel routing, then the workflow log will typically not contain all possible
combinations. Consider 10 tasks which can be executed in parallel. The total number of inter-
leavings is 10!¼ 3628800. It is not realistic that each interleaving is present in the log. More-
over, certain paths through the process model may have a low probability and therefore
remain undetected.

• Workflow logs will typically contain noise, i.e., parts of the log can be incorrect, incomplete, or
refer to exceptions. Events can be logged incorrectly because of human or technical errors.
Events can be missing in the log if some of the tasks are manual or handled by another sys-
tem/organizational unit. Events can also refer to rare or undesired events. Consider for example
the workflow in a hospital. If due to time pressure the order of two events (e.g., make X-ray and
remove drain) is reversed, this does not imply that this would be part of the regular medical
protocol and should be supported by the hospital�s workflow system. Also two causally unre-
lated events (e.g., take blood sample and death of patient) may happen next to each other with-
out implying a causal relation (i.e., taking a sample did not result in the death of the patient; it
was sheer coincidence). Clearly, exceptions which are recorded only once should not automat-
ically become part of the regular workflow.

• Table 2 only shows the order of events without giving information about the type of event, the
time of the event, and attributes of the event (i.e., data about the case and/or task). Clearly, it is
a challenge to exploit such additional information.

Sections 5–9 will present different approaches to some of these problems.
To conclude this section, we point out legal issues relevant when mining (timed) workflow logs.

Clearly, workflow logs can be used to systematically measure the performance of employees. The
legislation with respect to issues such as privacy and protection of personal data differs from
country to country. For example, Dutch companies are bound by the Personal Data Protection Act
(Wet Bescherming Persoonsgegeven) which is based on a directive from the European Union. The
practical implications of this for the Dutch situation are described in [14,31,51]. Workflow logs are
not restricted by these laws as long as the information in the log cannot be traced back to indi-
viduals. If information in the log can be traced back to a specific employee, it is important that the
employee is aware of the fact that her/his activities are logged and the fact that this logging is used to
monitor her/his performance. Note that in a timed workflow log we can abstract from information
about the workers executing tasks and still mine the process. Therefore, it is possible to avoid
collecting information on the productivity of individual workers and legislation such as the Personal
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Data Protection Act does not apply. Nevertheless, the logs of most workflow systems contain
information about individual workers, and therefore, this issue should be considered carefully.
4. Workflow logs: A common XML format

In this section we focus on the syntax and semantics of the information stored in the workflow
log. We will do this by presenting a tool independent XML format that is used by each of the
mining approaches/tools described in the remainder. Fig. 4 shows that this XML format connects
transactional systems such as workflow management systems, ERP systems, CRM systems, and
case handling systems. In principle, any system that registers events related to the execution of
tasks for cases can use this tool independent format to store and exchange logs. The XML format
is used as input for the analysis tools presented in Sections 5–9. The goal of using a single format
is to reduce the implementation effort and to promote the use of these mining techniques in
multiple contexts.

Table 3 shows the Document Type Definition (DTD) [12] for workflow logs. This DTD specifies
the syntax of a workflow log. A workflow log is a consistent XML document, i.e., a well-formed
and valid XML file with top element WorkFlow_log (see Table 3). As shown, a workflow log
consists of (optional) information about the source program and information about one or more
workflow processes. Each workflow process (element process) consists of a sequence of cases
(element case) and each case consists of a sequence of log lines (element log_line). Both processes
and cases have an id and a description. Each line in the log contains the name of a task (element
task_name). In addition, the line may contain information about the task instance (element
task_instance), the type of event (element event), the date (element date), and the time of the event
(element time).

It is advised to make sure that the process description and the case description are unique for
each process or case respectively. The task name should be a unique identifier for a task within
a process. If there are two or more tasks in a process with the same task name, they are as-
Staffware

InConcert

MQ Series

workflow management systems

FLOWer

Vectus

Siebel

case handling / CRM systems

SAP R/3

BaaN

Peoplesoft

ERP systems

common XML format for storing/
exchanging workflow logs

EMiT Little
Thumb

mining tools

InWoLvE Process
Miner

Exper-
DiTo

Fig. 4. The XML format as the solver/system independent medium.



Table 3

The XML DTD for storing and exchanging workflow logs

<!ELEMENT WorkFlow_log (source?, process+)>

<!ELEMENT source EMPTY>

<!ATTLIST source

program (staffware|inconcert|pnet|IBM_MQ|other) #REQUIRED>

<!ELEMENT process (case*)>

<!ATTLIST process

id ID #REQUIRED

description CDATA 00none00>

<!ELEMENT case (log_line*)>

<!ATTLIST case

id ID #REQUIRED

description CDATA 00none00>

<!ELEMENT log_line (task_name, task_instance?, event?, date?, time?)>

<!ELEMENT task_name (#PCDATA)>

<!ELEMENT task_instance (#PCDATA)>

<!ELEMENT event EMPTY>

<!ATTLIST event

kind (normal|schedule|start|withdraw|suspend|

resume|abort|complete) #REQUIRED>

<!ELEMENT date (#PCDATA)>

<!ELEMENT time (#PCDATA)>
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sumed to refer to the same task. (For example, in Staffware it is possible to have two tasks with
different names, but the same description. Since the task description and not the task name
appears in the log this can lead to confusion.) Although we assume tasks to have a unique
name, there may be multiple instances of the same task. Consider for example a loop which
causes a task to be executed multiple times for a given case. Therefore, one can add the element
task_instance to a log line. This element will typically be a number, e.g., if task A is executed for
the fifth time, element task_name is ‘‘A’’ and element task_instance is ‘‘5’’. The date and time

elements are also optional. The date element must be in the following format: dd-mm-yyyy. So
each date consists of exactly 10 characters of which there are 2 for the day, 2 for the month
(i.e., 01 for January) and 4 for the year. The time element must be in the following format:
HH:MM(:ss(:mmmmmm)). So each time-element consists of five, eight or seventeen characters
of which there are two for the hour (00–23), two for the minutes (00–59) and optionally two for
the seconds (00–59) and again optionally six for the fraction of a second that has passed. The
complete log has to be sorted in the following way: Per case, all log entry�s have to appear in
the order in which they took place.

If information is not available, one can enter default values. For example, when storing the
information shown in Table 2 the event type will be set to normal and the date and time will be set
to some arbitrary value. Note that it is also fairly straightforward to map the Staffware log of
Table 1 onto the XML format.

Table 3 specifies the syntax of the XML file. The semantics of most constructs are self-
explaining except for the element event, i.e., the type of event. We identify eight event types:
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normal, schedule, start, withdraw, suspend, resume, abort, and complete. To explain these event
types we use the FSM shown in Fig. 5. The FSM describes all possible states of a task from
creation to completion. The arrows in this figure describe all possible transitions between states
and we assume these transitions to be atomic events (i.e., events that take no time). State New is
the state in which the task starts. From this state only the event Schedule is possible. This event
occurs when the task becomes ready to be executed (i.e., enabled or scheduled). The resulting
state is the state Scheduled. In this state the task is typically in the worklist of one or more
workers. From state Scheduled two events are possible: Start and Withdraw. If a task is
withdrawn, it is deleted from the worklist and the resulting state is Terminated. If the task is
started it is also removed from the worklist but the resulting state is Active. In state Active the
actual processing of the task takes places. If the processing is successful, the case is moved to
state Completed via event Complete. If for some reason it is not possible to complete, the task
can be moved to state Terminated via an event of type Abort. In state Active it is also possible
to suspend a task (event Suspend). Suspended tasks (i.e., tasks in state Suspended) can move
back to state Active via the event Resume.

The events shown in Fig. 5 are at a more fine grained level than the events shown in Table 2.
Sometimes it is convenient to simply consider tasks as atomic events which do not take any time
and always complete successfully. For this purpose, we use the event type Normal which is not
shown in Fig. 5. Events of type Normal can be considered as the execution of events Schedule,
Start, and Complete in one atomic action.

Some systems log events at an even more fine-grained level than Fig. 5. Other systems only log
some of the events shown in Fig. 5. Moreover, the naming of the event types is typically different.
As an example, we consider the workflow management system Staffware and the log shown in
Table 1. Staffware records the Schedule, Withdraw, and Complete events. These events are named
respectively ‘‘Processed To’’, ‘‘Withdrawn’’, and ‘‘Released By’’ (see Table 1). Staffware does not
record start, suspend, resume, and abort event. Moreover, it records event types not in Fig. 5, e.g.,
‘‘Start’’, 2 ‘‘Expired’’, and ‘‘Terminated’’. When mapping Staffware logs onto the XML format,
one can choose to simply filter out these events or to map them on events of type normal.
2 The start event in Staffware denotes the creation of a case and should not be confused with the start event in Fig. 5.
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The FSM representing the potential events orders recorded by IBM MQSeries Workflow is
quite different from the common FSM shown in Fig. 5. (For more details see [33].) Therefore, we
need a mapping of events and event sequences originating from MQSeries into events of the
common FSM. MQSeries records corresponding events for all events represented in the common
FSM. Due to the fact that MQSeries FSM has more states and transitions than the common
FSM, there are sets of events that must be mapped into a single event of the common FSM. The
most frequent event sequence in MQSeries is Activity ready––Activity started––Activity imple-

mentation completed. This sequence is logged whenever an activity is executed without any ex-
ceptions or complications. It is mapped into Schedule––Start––Complete. Furthermore, there are
a lot of different special cases. For example, an activity may be cancelled while being in state
Scheduled. The order of events in the common FSM is Schedule––Withdraw. The equivalent first
event in MQSeries FSM is Activity ready. The second event could be Activity inError, Activity
expired, User issued a terminate command, Activity force-finished or Activity terminated. So, a
sequence with first part Activity ready and one of the five events mentioned before as second part
is mapped into Schedule––Withdraw. Another difference is that an activity may be cancelled while
running, i.e., it is in state Active. MQSeries will log this case in form of a sequence starting with
Activity ready, proceeding with Activity started, and ending with one of the five events specified
above. Such a sequence is mapped into Schedule––Start––Abort. Beside these examples, there are
many more cases that have to be handled. The tool QuaXMap (MQSeries Audit Trail XML
Mapper [53]) implements the complete mapping.

Let us return to Fig. 4. At this moment, we have developed translations from the log files of
workflow management systems Staffware (Staffware PLC [58]), InConcert (TIBCO [60]), and
MQSeries Workflow (IBM [32]) to our XML format. In the future, we plan to provide more
translations from a wide range of systems (ERP, CRM, case handling, and B2B systems). Ex-
perience shows that it is also fairly simple to extract information from enterprise-specific infor-
mation systems and translate this to the XML format (as long as the information is there). Fig. 4
also shows some of the mining tools available. These tools support the approaches presented in
the remainder of this paper and can all read the XML format.
5. Which class of workflow processes can be rediscovered?––An approach based on Petri net theory

The first approach we would like to discuss in more detail uses a specific class of Petri nets,
named workflow nets (WF-nets), as a theoretical basis [1,4]. Some of the results have been reported
in [3,8] and there are two tools to support this approach: EMiT [3] andMiMo [8]. Note that the tool
Little Thumb (see Section 6) also support this approach but in addition is able to deal with noise.

In this more theoretical approach, we do not focus on issues such as noise. We assume that
there is no noise and that the workflow log contains ‘‘sufficient’’ information. Under these ideal
circumstances we investigate whether it is possible to rediscover the workflow process, i.e., for
which class of workflow models is it possible to accurately construct the model by merely looking
at their logs. This is not as simple as it seems. Consider for example the process model shown in
Fig. 3. The corresponding workflow log shown in Table 2 does not show any information about
the AND-split and the AND-join. Nevertheless, they are needed to accurately describe the pro-
cess.
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To illustrate the rediscovery problem we use Fig. 6. Suppose we have a log based on many
executions of the process described by a WF-net WF1. Based on this workflow log and using a
mining algorithm we construct a WF-net WF2. An interesting question is whether WF1 ¼ WF2. In
this paper, we explore the class of WF-nets for which WF1 ¼ WF2.

As shown in [8] it is impossible to rediscover the class of all WF-nets. However, the a algorithm
described in [3,8] can successfully rediscover a large class of practically relevant WF-nets. For this
result, we assume logs to be complete in the sense that if two events can follow each other, they
will follow each other at least once in the log. Note that this local criterion does not require the
presence of all possible execution sequences.

The a algorithm is based on four ordering relations which can be derived from the log: >W ,
!W , #W , and kW . Let W be a workflow log over a set of tasks T , i.e., W 2 PðT �Þ. (The workflow
log is simply a set or traces, one for each case, and we abstract from time, data, etc.) Let a; b 2 T :
(1) a >W b if and only if there is a trace r ¼ t1t2t3 � � � tn�1 and i 2 f1; . . . ; n� 2g such that r 2 W
and ti ¼ a and tiþ1 ¼ b, (2) a !W b if and only if a >W b and b �W a, (3) a #W b if and only if
a �W b and b �W a, and (4) akW b if and only if a >W b and b >W a. a >W b if for at least one case
a is directly followed by b. This does not imply that there is a causal relation between a and b,
because a and b can be in parallel. Relation !W suggests causality and relations kW and #W are
used to differentiate between parallelism and choice. Since all relations can be derived from >W ,
we assume the log to be complete with respect to >W (i.e., if one task can follow another task
directly, then the log should have registered this potential behavior).

It is interesting to observe that classical limits in Petri-net theory also apply in the case of
workflow mining. For example, the a algorithm has problems dealing with non-free-choice con-
structs [18]. It is well-known that many problems that are undecidable for general Petri nets are
decidable for free-choice nets. This knowledge has been used to indicate the limits of workflow
mining. Another interesting observation is that there are typicallymultipleWF-nets thatmatchwith
a given workflow log. This is not surprising because two syntactically different WF-nets may have
the same behavior. The a algorithm will construct the ‘‘simplest’’ WF-net generating the desired
behavior. Consider for example the log shown in Table 2. The a algorithm will construct a smaller
WF-net (i.e., smaller than the WF-net shown in Fig. 3) without explicitly representing the AND-
split and AND-join transitions as they are not visible in the log. The resulting net is shown in Fig. 7.
Note that the behavior of the WF-net shown in Fig. 7 is equivalent to the behavior of the WF-net
shown in Fig. 3 using trace equivalence and abstracting from the AND-split and AND-join.

A limitation of the a algorithm is that certain kinds of loops and multiple tasks having the same
name cannot be detected. It seems that the problems related to loops can be resolved. Moreover,
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the a algorithm can also mine timed workflow logs and calculate all kinds to performance metrics.
All of this is supported by the mining tool EMiT (Enhanced Mining Tool [3]). EMiT can read the
XML format and provides translators from Staffware and InConcert to this format. Moreover,
EMiT fully supports the transactional task model shown in Fig. 5. The output of EMiT is a
graphical process model including all kinds of performance metrics. Fig. 8 shows a screenshot of
EMiT while analyzing a Staffware log.
6. How to deal with noise and incomplete logs: Heuristic approaches

The formal approach presented in the preceding section presupposes perfect information: (i)
the log must be complete (i.e., if a task can follow another task directly, the log should contain an
example of this behavior) and (ii) we assume that there is no noise in the log (i.e., everything that
is registered in the log is correct). However, in practical situations logs are rarely complete and/or
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noise free. Therefore, in practical situations, it becomes more difficult to decide if between two
events say a, b one of the three basic relations (i.e., a !W b, a #W b, and a kW b) holds. For in-
stance the causality relation (a !W b) between two tasks a and b only holds if and only if in the
log there is a trace in which a is directly followed by b (i.e., the relation a >W b holds) and there is
no trace in which b is directly followed by a (i.e., not b >W a). However, in a noisy situation one
erroneous example can completely mess up the derivation of a right conclusion. For this reason
we try to developed heuristic mining techniques which are less sensitive for noise and the in-
completeness of logs. Moreover, we try to conquer some other limitations of the a algorithm (e.g.,
certain kinds of loops and non-free-choice constructs).

In our heuristic approaches [43,61,62] we distinguish three mining steps: Step (i) the con-
struction of a dependency/frequency table (D/F-table), Step (ii) the mining of the basic relations
out of the D/F-table (the mining of the R-table), and Step (iii) the reconstruction of the WF-net
out of the R-table.
6.1. Construction of the dependency/frequency table

The starting point in our workflow mining techniques is the construction of a D/F-table. For
each task a the following information is abstracted out of the workflow log: (i) the overall fre-
quency of task a (notation #A 3), (ii) the frequency of task a directly preceded by task b (notation
#B < A), (iii) the frequency of a directly followed by task b (notation #A > B), (iv) the frequency
of a directly or indirectly preceded by task b but before the previous appearance of b (notation
#BnA), (v) the frequency of a directly or indirectly followed by task b but before the next
appearance of a (notation #AoB), and finally (vi) a metric that indicates the strength of the
causal relation between task a and another task b (notation #A ! B).

Metrics (i) through (v) seem clear without extra explanation. The underlying intuition of
metric (vi) is as follows. If it is always the case that, when task a occurs, shortly later task b also
occurs, then it is plausible that task a causes the occurrence of task b. On the other hand, if task
b occurs (shortly) before task a, it is implausible that task a is the cause of task b. Below we
define the formalization of this intuition. If, in an event stream, task a occurs before task b and
n is the number of intermediary events between them, the #A ! B-causality counter is incre-
mented with a factor dn (d is a causality fall factor and d 2 ½0:0 � � � 1:0�). In our experiments d is
set to 0.8. The effect is that the contribution to the causality metric is maximal 1 if task b
appears directly after task a then n ¼ 0 and dn ¼ 1 and decreases if the distance increases. The
process of looking forward from task a to the occurrence of task b stops after the first oc-
currence of task a or task b. If task b occurs before task a and n is again the number of in-
termediary events between them, the #A ! B-causality counter is decreased with a factor dn.
After processing the whole workflow log the #A ! B-causality counter is divided by the min-
imum overall frequency of task a and b (i.e., minð#A;#BÞ). Note that the value of #A ! B can
be relatively high even when there is no trace in the log in which a is directly followed by b (i.e.,
the log is not complete).
3 Note that we use a capital letter when referring to the number of occurrences of some task.
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6.2. The basic relations table (R-table) out of the D/F-table

Using relatively simple heuristics, we can determine the basic relations (a !W b, a#W b, and
akW b) out of the D/F-table. As an example we look at a heuristic rule for the a !W b-relation as
presented in the previous section and [61].
IF ðð#A ! BPNÞ AND ð#A > BP hÞ AND ð#B < A6 hÞÞ THEN a !W b
The first condition (#A ! BPN ) uses the noise factor N (default value 0.05). If we expect more
noise, we can increase this factor. The first condition calls for a higher positive causality between
task a and b than the value of the noise factor. The second condition (#A > BP h) contains a
threshold value h. If we know that we have a workflow log that is totally noise free, then every
task-pattern-occurrence is informative. However, to protect our induction process against infer-
ences based on noise, only task-pattern-occurrences above a threshold frequency N are reliable
enough for our induction process. To limit the number of parameters the value h is automatically
calculated using the following equation: h ¼ 1þ ðRoundðN � #LÞ=#T Þ. In this expression N is
the noise factor, #L is the number of trace lines in the workflow log, and #T is the number of
elements (different tasks). Using these heuristic rules we can build a !W b-relation and group the
results in the so-called relations table (R-table).
6.3. The reconstruction of the WF-net out of the R-table

In step (iii) of our heuristic approaches, we can use the same a algorithm as in the formal
approach. The result is a process model (i.e., Petri net). In a possible extra step, we use the task
frequency to check if the number of task-occurrences is consistent with the resulting Petri-net.

To test the approach we use Petri-net-representations of different free-choice workflow models.
All models contain concurrent processes and loops. For each model we generated three random
workflow logs with 1000 event sequences: (i) a workflow log without noise, (ii) one with 5% noise,
and (iii) a log with 10% noise. Below we explain what we mean with noise. To incorporate noise in
our workflow logs we define four different types of noise generating operations: (i) delete the head
of a event sequence, (ii) delete the tail of a sequence, (iii) delete a part of the body, and finally (iv)
interchange two random chosen events. During the deletion-operations at least one event and at
most one third of the sequence is deleted. The first step in generating a workflow log with 5% noise
is a normal random generated workflow log. The next step is the random selection of 5% of the
original event sequences and applying one of the four above described noise generating operations
on it (each noise generation operation with an equal chance of 1/4). Applying the method pre-
sented in this section on the material without noise we found exact copies of the underlying WF-
nets. If we add 5% noise to the workflow logs, the resulting WF-nets are still perfect. However, if
we add 10% noise to the workflow logs the WF-nets contains errors. All errors are caused by the
low threshold value. If we increase the noise factor value to a higher value (N ¼ 0:10), all errors
disappear. For more details we refer to [61].

The use of a threshold value is a disadvantage of the first approach. We are working on two
possible solutions: (1) the use of machine learning techniques for automatically induction of an
optimal threshold [43], and (2) the formulation of other measurements and rules without
thresholds. Some of these heuristics are implemented in the heuristic workflow mining tool Little
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Thumb. (The tool is named after the fairy tail ‘‘Little Thumb’’ where a boy, not taller than a
thumb, first leaves small stones to find his way back. The stones refer to mining using complete
logs without noise. Then the boy leaves bread crusts that are partially eaten by birds. The latter
situation refer to mining with incomplete logs with noise. Another analogy is the observation that
the tool uses ‘‘rules of thumb’’ to extract causal relations.) Little Thumb follows the XML-input
standard presented in Section 4.

7. How to measure the quality of a mined workflow model?––An experimental approach

As we already mentioned in Section 5, there are classes of Petri nets for which we can formally
prove that the mined model is equivalent or has a behavior similar to the original Petri net. In this
section we search for more general methods to measure the quality of mined workflow models.

An important criterion for the quality of a mined workflow model is the consistency between
the mined model and the traces in the workflow log. Therefore, a standard check for a mined
model, is to try to execute all traces of the workflow log in the discovered model. If the trace of a
case cannot be executed in the Petri net, there is a discrepancy between the log and the model. This
is a simple first check. However, for each workflow log it is possible to define a trivial model that is
able to generate all traces of the workflow log (and many more). Another problem is the execution
of traces with noise (i.e., the error is not in the model but in the log).

In our experimental setup, we assume that we know the workflow model that is used to gen-
erate the workflow log. In this subsection we will concentrate on methods to measure the quality
of a mined workflow model by comparing it with the original model (i.e. the workflow model used
for generating the workflow log used for mining). We will measure the quality of the mined model
by specifying the amount of correctly detected basic relations, i.e. the correctness of the R-table
described in the previous section.

The basic idea is to define a kind of a test bed to measure the performance of different workflow
mining methods. In order to generate testing material that resembles real workflow logs, we
identify some of the elements that vary from workflow to workflow and subsequently affect the
workflow log. They are (i) the total number of events types, (ii) the amount of available infor-
mation in the workflow log, (iii) the amount of noise and (iv) the imbalance in OR-splits and
AND-splits. Therefore, we used a data generation procedure in which the four mentioned ele-
ments vary in the following way:

1. The number of task types: we generate Petri nets with 12, 22, 32 and 42 event types.
2. The amount of information in the process log or log size: the amount of information is ex-

pressed by varying the number of cases. We consider logs with 200, 400, 600, 800 and 1000 cases.
3. The amount of noise: we generate noise by performing four different operations on the event

sequences representing individual cases: (i) delete the head of a event sequence, (ii) delete the
tail of a sequence, (iii) delete a part of the body and (iv) interchange two randomly chosen
events. During the noise generation process, minimally one event and maximally one third
of the sequence is deleted. We generate five levels of noise: 0% noise (the initial workflow
log without noise), 5% noise, 10%, 20% and 50% (we select 5%, 10%, 20% and respectively
50% of the original event sequences and we apply one of the four above described noise gen-
eration operations).
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4. The imbalance of execution priorities: we assume that tasks can be executed with priorities be-
tween 0 and 2. In Fig. 9 there is a choice after executing the event A (which is an OR-split). This
choice may be balanced, i.e., task B and task F can have equal probabilities, or not. For exam-
ple, task B can have an execution priority of 0.8 and task F 1.5 causing F to happen almost
twice as often as B. The execution imbalance is produced on four levels:
• Level 0, no imbalance: all tasks have the execution priority 1;
• Level 1, small imbalance: each task can be executed with a priority randomly chosen between

0.9 and 1.1;
• Level 2, medium imbalance: each task can be executed with a priority randomly chosen be-

tween 0.5 and 1.5;
• Level 3, high imbalance: each task can be executed with a priority randomly chosen between

0.1 and 1.9.

The workflow logs produced with the proposed procedure allow the testing of different
workflow mining methods, especially when it is desired to assess the method robustness against
noise and incomplete data. We used the generated data for testing our heuristic approach dis-
cussed in the previous section.

The experiments show that our method is highly accurate when it comes to finding causal,
exclusive and parallel relations. In fact we have been able to find almost all of them in the presence
of incompleteness, imbalance and noise. Moreover, we gained the following insights:

• As expected, more noise, less balance and less cases, each have a negative effect on the quality
of the result. The causal relations (i.e. a !W b) can be predicted more accurately if there is less
noise, more balance and more cases.

• There is no clear evidence that the number of event types have an influence on the performance
of predicting causal relations. However, causal relations in a structurally complex Petri net
(e.g., non-free choice) can be more difficult to detect.

• Because the detection of exclusive/parallel relations (a#W b and akW b) depends on the detection
of the causal relation, it is difficult to formulate specific conclusions for the quality of exclusive/
parallel relations. It appears that noise is affecting exclusive and parallel relations in a similar
way as the causal relation, e.g., if the level of noise is increasing, the accuracy of finding par-
allelism is decreasing.
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When mining real workflow data, the above conclusions can play the role of useful recom-
mendations. Usually it is difficult to know the level of noise and imbalance beforehand. However,
during the mining process it is possible to collect more data about these metrics. This information
can be used to motivate additional efforts to collect more data.

The software supporting this experimental approach is called ExperDiTo (Experimental Dis-
covery Tool). The generated data are available to be downloaded as benchmarks from http://
tmitwww.tm.tue.nl/staff/lmaruster/.
8. How to mine workflow processes with duplicate tasks?––An inductive approach

The approaches presented in the preceding sections assume that a task name should be a unique
identifier within a process, i.e., in the graphical models it is not possible to have multiple building
blocks referring to the same task. For some processes this requirement does not hold. There may
be more than one task sharing the same name. An example of such a process is the part release
process for the development of passenger car from [25], which is shown in Fig. 10. Although one
may find unique names (e.g. ‘‘notifyEng-1’’, ‘‘notifyEng-2’’) even for these kind of processes,
requiring unique names for the workflow mining procedure would be a tough requirement
(compare [16]). Providing unique task names requires that the structure of the process is known at
least to some extent. This is unrealistic if the workflow mining procedure is to be used to discover
the structure.

In [26] we present a solution for mining workflow models with non-unique task names. It
consists of two steps: the induction and the transformation step.

In the induction step a Stochastic Task Graph (also referred to as Stochastic Activity Graph,
SAG [26]) is induced from the workflow log. The induction algorithm can be described as a graph
generation algorithm (InduceUniqueNodeSAG) that is embedded into a search procedure.

The search procedure borrows ideas from machine learning and grammatical inference [49]. It
searches for a mapping from task instances in the workflow log to task nodes in the workflow
model. The search space can be described as a lattice of such mappings. Between the mappings
there is a partial ordering (more general than/more specific than). The lattice is limited by a top or
most general mapping (every task instance with name X is mapped to one single task node with
name X ) and a bottom or most specific element (the mapping is a bijection between task instances
in the log and task nodes of the workflow model). Our search algorithm searches top down
starting with the most general mapping for an optimal mapping. More specific mappings are
created using a split operator. The split operator splits up all task instances mapped to the same
task node of the model in two groups which are mapped two different task nodes by renaming
task nodes. In the example shown in Fig. 11 the task instances with names A and C of workflow
logE1 are split in A, A0, C and C0 using two split operations.

The InduceUniqueNodeSAG is called for a fixed mapping from instances to task nodes and it
generates a stochastic task graph for this mapping as indicated in Fig. 11. It is very similar to the
approach presented in [11]. The main differences are a slightly different definition of the depen-
dency relation and two additional steps for inserting copies of task nodes where required and for
clustering task nodes sharing common predecessors. A notable difference to the formal approach
in Section 5 is the determination of dependencies. InduceUniqueNodeSAG considers every pair

http://tmitwww.tm.tue.nl/staff/lmaruster/
http://tmitwww.tm.tue.nl/staff/lmaruster/
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of task instances occurring in the same instance––regardless of the number of task instances in
between––for the determination of the dependency relation. The transitive reduction is used to
identify direct successors. Note that the formal approach presented Section 5 considers only pairs
of direct successors for determining the dependency relation.

The search algorithm applies beam-search. The search is guided by the log likelihood of the
SAG per sample. The calculation of the log likelihood requires a stochastic sample. This means
that the induction algorithm handles n workflow instances sharing exactly the same ordering of
tasks as n different cases. For the formal approach (cf. Section 5) one instance for each ordering of
tasks is enough. Using this information one is able to calculate not only the likelihood of the SAG
but also the probability of tasks and edges. This information is useful to distinguish common from
rare behavior.

In the transformation step the SAG is transformed into a block-structured workflow-model
in the ADONIS format. This step is needed because the stochastic task graph provided by the
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induction phase does not explicitly distinguish alternative and parallel routing. The transforma-
tion phase can be decomposed into three main steps: (1) the analysis of the synchronization
structures of the workflow instances in the workflow log, (2) the generation of the synchronization
structure of the workflow model, and (3) the generation of the model. Details of the transfor-
mation steps are given in [26].

The workflow mining tool InWoLvE (Inductive Workflow Learning via Examples) implements
the described mining algorithm and two further induction algorithms, which are restricted to
sequential workflow models. InWoLvE has an interface to the business process management
system ADONIS [36] for interchanging workflow logs and process models. It has been success-
fully applied to workflow traces generated from real-life workflow models (such as the one shown
in Fig. 10) and from a large number of artificial workflow models.

Further details and additional aspects such as a transformation from the SAG to a well-
behaved Petri net, an additional split operator for dealing with noise, and the results of the ex-
perimental evaluation are described in [26].
9. How to mine block-structured workflows?––A data mining approach

The last approach discussed in this paper is tailored towards mining block-structured work-
flows. There are two notable differences with the approaches presented in the preceding four
sections. First of all, only block structured workflow patterns are considered. Second, the mining
algorithm is based on rewriting techniques rather than graph-based techniques. In addition, the
objective of this approach is to mine complete and minimal models: Complete in the sense that all
recorded cases are covered by the extracted model, minimal in the sense that only recorded cases
are covered. To achieve this goal the approach uses a stronger notion of completeness than e.g.
the completeness notion based on direct successor (cf. Section 5).

Before we can mine a workflow model from event-based data it is necessary to determine
what kind of model the output should be, i.e., the workflow language being used or the class
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of workflow models considered. Different languages/classes of models have different meta
models. We distinguish two major groups of workflow meta-models: graph-oriented meta-
models and block-oriented meta-models. This approach is based on a block-oriented
meta-model. Models of this meta-model (i.e., block-structured workflows) are always well-
formed and sound.

Block-structured models are made up from blocks which are nested. These building blocks of
block-structured models can be differentiated into operators and constants. Operators build the
process flow, while constants are the tasks or sub-workflows that are embedded inside the process
flow. We build a block-structured model in a top-down fashion by setting one operator as starting
point of the workflow and nest other operators as long as we get the desired flow structure. At the
bottom of this structure we embed constants into operators which terminate the nesting process.
A block-structured workflow model is a tree whose leafs are always operands.

Besides the tree representation of block-structured models we can specify them as a set of terms.
Let S denote the operator sequence, P denote the operator parallel, and a, b, c denote three dif-
ferent tasks, the term Sða; P ðb; cÞÞ, for example, represents a workflow performing task a com-
pletely before task b and task c are performed in parallel. Because of the model�s block-structure
each term is always well-formed. Further on, we can specify an algebra that consists of axioms for
commutativity, distributivity, associativity, etc. These axioms form the basis for term rewriting
systems we can use for mining workflows. A detailed description of the meta-model can be found
in [54].

Based on the block-structured meta-model a process mining procedure extracts workflow
models from event-based data. The procedure consists of the following five steps that are per-
formed in sequential order.

First, the procedure reads event-based data that belongs to a certain process and builds a trace
for each process instance from this data. A trace is a data structure that contains all start and
complete events of a process instance in correct chronological order. After building traces, they are
condensed on the basis of their sequence of start and complete events. Each trace group consti-
tutes a path in the process schema.

Second, a time-forward algorithm constructs an initial process model from all trace groups.
This model is in a special form called disjunctive normal form (DNF). A process model in this
form starts with an alternative operator and enumerates inside this block all possible paths of
execution as blocks that are built up without any alternative operator. For each trace group such
a block is constructed by the algorithm and added to the alternative operator that builds the root
of the model.

The next step deals with relations between tasks that result from the random order of per-
forming tasks without a real precedence relation between them. These pseudo precedence relations
have to be identified and then removed from the model. In order to identify pseudo precedence
relations the model is transformed by a term rewriting system into a form that enumerates all
sequences of tasks inside parallel operators embedded into the overall alternative. Then, a
searching algorithm determines which of these sequences are pseudo precedence relations. This is
determined by finding the smallest subset of sequences that completely explains the corresponding
blocks in the initial model. All sequences out of the subset are pseudo precedence relations and
therefore removed. At the end of this step, the initial transformation is reversed by a term re-
writing system.
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Because the process model was built in DNF, it is necessary to split the model�s overall al-
ternative and to move the partial alternatives as near as possible to the point in time where a
decision cannot be postponed any longer. This is done by a transformation step using another
term rewriting system. It is based on distributivity axioms and merges blocks while shifting
alternative operators towards later points in time. It also leads to a condensed form of the
model.

The last step is an optional decision-mining step that is based on decision tree induction. In this
step an induction is performed for each decision point of the model. In order to perform this step
we need data about the workflow context for each trace. From these data a tree induction al-
gorithm builds decision trees. These trees are transformed into rules and then attached to the
particular alternative operators.

After performing all steps, the output comes in form of a block-structured model that is
complete and minimal. The process mining procedure is reported in more detail in [55,56].

The approach on mining block-structured models is supported by a tool named Process Miner.
This tool can read event-based workflow data from data-bases or from files in the XML format
presented in Section 4. It then automatically performs the complete process mining procedure on
this data. The decision-mining step is omitted if no context data are provided.

Process Miner comes with an graphical user interface (see Fig. 12). It displays the output model
in a graphical editor in form of a diagram and a tree. Additionally, it allows the user to edit a
Fig. 12. The tool Process Miner.
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model and to export it for further use. It also contains a workflow simulation component. A
description of Process Miner can be found in [57].
10. Comparison and open problems

As indicated in Sections 5–9 tools such as EMiT, Little Thumb, InWoLvE, and Process Miner
are driven by different problems. In this section, we compare these approaches. To refer to each
approach we use the name of the corresponding tool. EMiT [3] was introduced in Section 5 to
explore the limits of mining (which class of workflow processes can be rediscovered?). Little
Thumb [9,63] was introduced in Section 6 to illustrate how heuristics can be used to tackle the
problem of noise. Section 8 presented the concepts the tool InWoLvE [26] is based on. One of
the striking features of this tool is the ability to deal with duplicate tasks. Section 9 introduced the
Process Miner [57], exploiting the properties of block-structured workflows through rewriting
rules. In the remainder, we will compare the approaches represented by EMiT, Little Thumb,
InWoLvE, and Process Miner. Note that we do not include the tool ExperDiTo (described in
Section 7) in this comparison because it builds on EMiT and Little Thumb and does not offer
alternative mining techniques.

To compare the approaches represented by EMiT, Little Thumb, InWoLvE, and Process
Miner, we focus on nine aspects: Structure, Time, Basic parallelism, Non-free choice, Basic loops,
Arbitrary loops, Hidden tasks, Duplicate tasks, and Noise. For each of these nine aspects we
compare the four tools as indicated in Table 4 and described as follows.

Structure. The first aspect refers to the structure of the target language. Languages such as Petri
nets [50] are graph-based while textual languages such as p-calculus [45] are block-oriented. EMiT
and Little Thumb are based on Petri nets and therefore graph-oriented. InWoLvE is also graph-
based and Process Miner is the only block-oriented language.

Time. Many logs also record time stamps of events. This information can be used to calculate
performance indicators such as waiting/synchronization times, flow times, utilization, etc.

Basic parallelism. All the tools are able to detect and handle parallelism. Simple processes where
each AND-split corresponds to an AND-join can be mined by EMiT, Little Thumb, InWoLvE,
and Process Miner. However, each of the four tools imposes requirements on the process in order
to correctly extract the right model.
Table 4

Comparing EMiT, Little Thumb, InWoLvE, and Process Miner

EMiT Little Thumb InWoLvE Process Miner

Structure Graph Graph Graph Block

Time Yes No No No

Basic parallelism Yes Yes Yes Yes

Non-free choice No No No No

Basic loops Yes Yes Yes Yes

Arbitrary loops Yes Yes No No

Hidden tasks No No No No

Duplicate tasks No No Yes No

Noise No Yes Yes No
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Non-free choice. The Non-free choice (NFC) construct was mentioned in Section 5 as an ex-
ample of a workflow pattern that is difficult to mine. NFC processes mix synchronization and
choice in one construct as described in [18]. None of the four tools can deal with such constructs.
Nevertheless, they are highly relevant as indicated in [6,38].

Basic loops. Each of the four tools can deal with loops. However, just like with parallelism, each
of the tools imposes restrictions on the structure of these loops in order to guarantee the cor-
rectness of the discovered model.

Arbitrary loops. None of the tools supports arbitrary loops. For example, the tool Process
Miner can only have loops with a clear block structure. Note that not every loop can be modeled
like this cf. [38]. EMiT and Little Thumb initially had problems with loops of length 1 or 2. These
problems have been (partially) solved by a preprocessing step. Note that to detect ‘‘short loops’’
more observations are required.

Hidden tasks. Occurrences of specific tasks may not be recorded in the log. This is a funda-
mental problem since without this information processes are incomplete. Despite the fact that it
will never be possible to detect task occurrences that are not recorded, there could be facilities to
indicate the presence of a so-called ‘‘hidden task’’. Suppose that a workflow language has special
control tasks to model AND-splits and AND-joins. Even if these control tasks are not logged, one
could still deduce their presence. None of the four tools supports the detection of hidden tasks in a
structured manner.

Duplicate tasks. EMiT, Little Thumb and Process Miner assume that each task appears only
once in the workflow, i.e., the same task cannot be used in two different parts of the processes.
(Note that this does not refer to loops. In a loop, the same part of the processes is repeatedly
executed.) InWoLvE is the only tool dealing with this issue.

Noise. The term noise is used to refer to the situation where the log is incomplete or contains
errors. A similar situation occurs if a rare sequence of events takes place which is not represen-
tative for the typical flow of work (i.e., an exception). In both cases the resulting model can be
incorrect (i.e., not representing the typical flow of work). EMiT and Process Miner do not offer
features for dealing with noise. Little Thumb is able to deal with noise by using a set of heuristics
which can be fine-tuned to tackle specific types of noise. InWoLvE uses a stochastic model which
allows for the distinguishing common from rare behavior.

Table 4 shows that there are still a number of open problems. Few of the tools exploit timing
information. Although EMiT extracts information on waiting times, flow times, and utilization
from the log, time stamps are not used to improve the mining result. Similarly, other pieces of
information like the data objects being changed or the identity of the person executing a task are not
exploited by the existing approaches. Existing approaches can deal with basic routing constructs
such as basic parallelism and basic loops. However, these approaches fail when facing advanced
routing constructs involving non-free choice constructs, hidden tasks, or duplicate tasks. Last but
not least, there is the problem of noise. Although tools such as Little Thumb and InWoLvE can deal
with some noise, empirical research is needed to evaluate and improve the heuristics being used.

The comparison shown in Table 4 can be used to position the various approaches. However, to
truly compare the results there should be a number of benchmark examples. Section 7 discussed a
number of small experiments that can be used for this purpose. However, for a real benchmark
larger and more realistic examples are needed. Clearly, the XML format presented in Section 4
can be used to store these benchmark examples.
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11. Conclusion

In this paper, we presented an overview of the various problems, techniques, tools, and ap-
proaches for workflow mining. It is quite interesting to see how the five approaches presented in
Sections 5–9 differ and are driven by different problems. The more formal approach described in
Section 5 uses Petri-net theory to characterize the class of workflow models that can be mined.
The more heuristic approaches in Sections 6 and 7 focus on issues such as noise and determining
the quality of mining result. Unlike the other approaches, the approach in Section 8 takes into
account the fact that there may be multiple tasks having the same label. Finally, the approach in
Section 9 exploits the block structure (i.e., corresponding AND/XOR splits and AND/XOR joins)
of many processes. Each of these approaches has its strengths and weaknesses.

Section 10 compared the approaches by focusing on nine aspects (Structure, Time, Basic
parallelism, Non-free choice, Basic loops, Arbitrary loops, Hidden tasks, Duplicate tasks, and
Noise). This comparison reveals differences and also points out problems that need to be tackled.

To join forces and to share knowledge and development efforts, we introduced a tool-inde-
pendent XML format. This format was given in Section 4 and we would like to encourage other
researchers/developers in this domain to use this format.
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