
Workflow Mining:

Discovering process models from event logs

W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl

Abstract. Contemporary workflow management systems are driven by explicit process models,

i.e., a completely specified workflow design is required in order to enact a given workflow pro-

cess. Creating a workflow design is a complicated time-consuming process and typically there

are discrepancies between the actual workflow processes and the processes as perceived by the

management. Therefore, we have developed techniques for discovering workflow models. Starting

point for such techniques is a so-called “workflow log” containing information about the workflow

process as it is actually being executed. We present a new algorithm to extract a process model

from such a log and represent it in terms of a Petri net. However, we will also demonstrate that

it is not possible to discover arbitrary workflow processes. In this paper we explore a class of

workflow processes that can be discovered. We show that the α-algorithm can successfully mine

any workflow represented by a so-called SWF-net.

Key words: Workflow mining, Workflow management, Data mining, Petri nets.

1 Introduction

During the last decade workflow management concepts and technology [3, 5, 15, 26, 28]

have been applied in many enterprise information systems. Workflow management sys-

tems such as Staffware, IBM MQSeries, COSA, etc. offer generic modeling and enact-

ment capabilities for structured business processes. By making graphical process def-

initions, i.e., models describing the life-cycle of a typical case (workflow instance) in

isolation, one can configure these systems to support business processes. Besides pure

workflow management systems many other software systems have adopted workflow

technology. Consider for example ERP (Enterprise Resource Planning) systems such as

SAP, PeopleSoft, Baan and Oracle, CRM (Customer Relationship Management) soft-

ware, etc. Despite its promise, many problems are encountered when applying workflow

technology. One of the problems is that these systems require a workflow design, i.e.,

a designer has to construct a detailed model accurately describing the routing of work.

Modeling a workflow is far from trivial: It requires deep knowledge of the workflow

language and lengthy discussions with the workers and management involved.

Instead of starting with a workflow design, we start by gathering information about

the workflow processes as they take place. We assume that it is possible to record events

such that (i) each event refers to a task (i.e., a well-defined step in the workflow), (ii)

each event refers to a case (i.e., a workflow instance), and (iii) events are totally ordered

(i.e., in the log events are recorded sequentially even though tasks may be executed in

parallel). Any information system using transactional systems such as ERP, CRM, or

workflow management systems will offer this information in some form. Note that we

do not assume the presence of a workflow management system. The only assumption

we make, is that it is possible to collect workflow logs with event data. These workflow

logs are used to construct a process specification which adequately models the behavior

registered. We use the term process mining for the method of distilling a structured

process description from a set of real executions.

case identifier task identifier

case 1 task A

case 2 task A

case 3 task A

case 3 task B

case 1 task B

case 1 task C

case 2 task C

case 4 task A

case 2 task B

case 2 task D

case 5 task A

case 4 task C

case 1 task D

case 3 task C

case 3 task D

case 4 task B

case 5 task E

case 5 task D

case 4 task D

Table 1. A workflow log.

To illustrate the principle of process mining, we consider the workflow log shown in

Table 1. This log contains information about five cases (i.e., workflow instances). The

log shows that for four cases (1,2,3, and 4) the tasks A, B, C, and D have been executed.

For the fifth case only three tasks are executed: tasks A, E, and D. Each case starts with

the execution of A and ends with the execution of D. If task B is executed, then also task

C is executed. However, for some cases task C is executed before task B. Based on the

information shown in Table 1 and by making some assumptions about the completeness

of the log (i.e., assuming that the cases are representative and a sufficient large subset

2

of possible behaviors is observed), we can deduce for example the process model shown

in Figure 1. The model is represented in terms of a Petri net [39]. The Petri net starts

with task A and finishes with task D. These tasks are represented by transitions. After

executing A there is a choice between either executing B and C in parallel or just

executing task E. To execute B and C in parallel two non-observable tasks (AND-split

and AND-join) have been added. These tasks have been added for routing purposes

only and are not present in the workflow log. Note that we assume that two tasks are

in parallel if they appear in any order. However, by distinguishing between start events

and end events for tasks it is possible to explicitly detect parallelism. Start events and

end events can also be used to indicate that tasks take time. However, to simplify the

presentation we assume tasks to be atomic without losing generality. In fact in our

tool EMiT [4] we refine this even further and assume a customizable transaction model

for tasks involving events like “start task”, “withdraw task”, “resume task”, “complete

task”, etc. [4]. Nevertheless, it is important to realize that such an approach only works

if events these are recorded at the time of their occurrence.

A

AND
-split

B

C

AND
-join

D

E

Fig. 1. A process model corresponding to the workflow log.

The basic idea behind process mining, also referred to as workflow mining, is to

construct Figure 1 from the information given in Table 1. In this paper, we will present

a new algorithm and prove its correctness.

Process mining is useful for at least two reasons. First of all, it could be used as a tool

to find out how people and/or procedures really work. Consider for example processes

supported by an ERP system like SAP (e.g., a procurement process). Such a system

logs all transactions but in many cases does not enforce a specific way of working. In

such an environment, process mining could be used to gain insight in the actual process.

Another example would be the flow of patients in a hospital. Note that in such an

3

environment all activities are logged but information about the underlying process is

typically missing. In this context it is important to stress that management information

systems provide information about key performance indicators like resource utilization,

flow times, and service levels but not about the underlying business processes (e.g.,

causal relations, ordering of activities, etc.). Second, process mining could be used for

Delta analysis, i.e., comparing the actual process with some predefined process. Note

that in many situations there is a descriptive or prescriptive process model. Such a model

specifies how people and organizations are assumed/expected to work. By comparing

the descriptive or prescriptive process model with the discovered model, discrepancies

between both can be detected and used to improve the process. Consider for example the

so-called reference models in the context of SAP. These models describe how the system

should be used. Using process mining it is possible to verify whether this is the case. In

fact, process mining could also be used to compare different departments/organizations

using the same ERP system.

An additional benefit of process mining is that information about the way people

and/or procedures really work and differences between actual processes and predefined

processes can be used to trigger Business Process Reengineering (BPR) efforts or to

configure “process-aware information systems” (e.g., workflow, ERP, and CRM systems).

Table 1 contains the minimal information we assume to be present. In many appli-

cations, the workflow log contains a timestamp for each event and this information can

be used to extract additional causality information. Moreover, we are also interested in

the relation between attributes of the case and the actual route taken by a particular

case. For example, when handling traffic violations: Is the make of a car relevant for the

routing of the corresponding traffic violations? (E.g., People driving a Ferrari always

pay their fines in time.)

For this simple example, it is quite easy to construct a process model that is able

to regenerate the workflow log. For larger workflow models this is much more difficult.

For example, if the model exhibits alternative and parallel routing, then the workflow

log will typically not contain all possible combinations. Consider 10 tasks which can

be executed in parallel. The total number of interleavings is 10! = 3628800. It is not

realistic that each interleaving is present in the log. Moreover, certain paths through

4

the process model may have a low probability and therefore remain undetected. Noisy

data (i.e., logs containing rare events, exceptions and/or incorrectly recorded data) can

further complicate matters.

In this paper, we do not focus on issues such as noise. We assume that there is no

noise and that the workflow log contains “sufficient” information. Under these ideal

circumstances we investigate whether it is possible to rediscover the workflow process,

i.e., for which class of workflow models is it possible to accurately construct the model by

merely looking at their logs. This is not as simple as it seems. Consider for example the

process model shown in Figure 1. The corresponding workflow log shown in Table 1 does

not show any information about the AND-split and the AND-join. Nevertheless, they

are needed to accurately describe the process. These and other problems are addressed

in this paper. For this purpose we use workflow nets (WF-nets). WF-nets are a class of

Petri nets specifically tailored towards workflow processes. Figure 1 shows an example

of a WF-net.

generate workflow log
based on WF-net

construct WF-net based
on applying workflow

mining techniques

workflow log

WF-net WF-net

WF1 WF2

WF1 = WF2 ?

Fig. 2. The rediscovery problem: For which class of WF-nets is it guaranteed that WF 2 is equivalent to WF 1?

To illustrate the rediscovery problem we use Figure 2. Suppose we have a log based on

many executions of the process described by a WF-net WF 1. Based on this workflow log

and using a mining algorithm we construct a WF-net WF 2. An interesting question is

whether WF 1 = WF 2. In this paper, we explore the class of WF-nets for which WF 1 =

WF 2. Note that the rediscovery problem is only addressed to explore the theoretical

limits of process mining and to test the algorithm presented in this paper. We have used

5

these results to develop tools that can discover unknown processes and have successfully

applied these tools to mine real processes.

The remainder of this paper is organized as follows. First, we introduce some prelim-

inaries, i.e., Petri nets and WF-nets. In Section 3 we formalize the problem addressed

in this paper. Section 4 discusses the relation between causality detected in the log and

places connecting transitions in the WF-net. Based on these results, an algorithm for

process mining is presented. The quality of this algorithm is supported by the fact that

it is able to rediscover a large class of workflow processes. The paper finishes with an

overview of related work and some conclusions.

2 Preliminaries

This section introduces the techniques used in the remainder of this paper. First, we

introduce standard Petri-net notations, then we define the class of WF-nets.

2.1 Petri nets

We use a variant of the classic Petri-net model, namely Place/Transition nets. For an

elaborate introduction to Petri nets, the reader is referred to [12, 37, 39].

Definition 2.1. (P/T-nets)1 An Place/Transition net, or simply P/T-net, is a tuple

(P, T, F) where:

1. P is a finite set of places,

2. T is a finite set of transitions such that P ∩ T = ∅, and

3. F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation.

A marked P/T-net is a pair (N, s), where N = (P, T, F) is a P/T-net and where s is a

bag over P denoting the marking of the net. The set of all marked P/T-nets is denoted

N .

A marking is a bag over the set of places P , i.e., it is a function from P to the natural

numbers. We use square brackets for the enumeration of a bag, e.g., [a2, b, c3] denotes

the bag with two a-s, one b, and three c-s. The sum of two bags (X + Y), the difference

1 In the literature, the class of Petri nets introduced in Definition 2.1 is sometimes referred to as the class of
(unlabeled) ordinary P/T-nets to distinguish it from the class of Petri nets that allows more than one arc
between a place and a transition.

6

(X − Y), the presence of an element in a bag (a ∈ X), and the notion of subbags

(X ≤ Y) are defined in a straightforward way and they can handle a mixture of sets

and bags.

Let N = (P, T, F) be a P/T-net. Elements of P ∪ T are called nodes. A node x is an

input node of another node y iff there is a directed arc from x to y (i.e., (x, y) ∈ F).

Node x is an output node of y iff (y, x) ∈ F . For any x ∈ P ∪ T , N• x = {y | (x, y) ∈ F}
and xN•= {y | (x, y) ∈ F}; the superscript N may be omitted if clear from the context.

Figure 1 shows a P/T-net consisting of 8 places and 7 transitions. Transition A has

one input place and one output place, transition AND-split has one input place and

two output places, and transition AND-join has two input places and one output place.

The black dot in the input place of A represents a token. This token denotes the initial

marking. The dynamic behavior of such a marked P/T-net is defined by a firing rule.

Definition 2.2. (Firing rule) Let (N = (P, T, F), s) be a marked P/T-net. Transition

t ∈ T is enabled, denoted (N, s)[t〉, iff •t ≤ s. The firing rule [〉 ⊆ N × T × N
is the smallest relation satisfying for any (N = (P, T, F), s) ∈ N and any t ∈ T ,

(N, s)[t〉 ⇒ (N, s) [t〉 (N, s− •t + t•).

In the marking shown in Figure 1 (i.e., one token in the source place), transition A is

enabled and firing this transition removes the token from the input place and puts a

token in the output place. In the resulting marking, two transitions are enabled: E and

AND-split. Although both are enabled only one can fire. If AND-split fires, one token is

consumed and two tokens are produced.

Definition 2.3. (Reachable markings) Let (N, s0) be a marked P/T-net in N . A

marking s is reachable from the initial marking s0 iff there exists a sequence of enabled

transitions whose firing leads from s0 to s. The set of reachable markings of (N, s0) is

denoted [N, s0〉.

The marked P/T-net shown in Figure 1 has 8 reachable markings. Sometimes it is

convenient to know the sequence of transitions that are fired in order to reach some

given marking. This paper uses the following notations for sequences. Let A be some

alphabet of identifiers. A sequence of length n, for some natural number n ∈ IN, over

alphabet A is a function σ : {0, . . . , n − 1} → A. The sequence of length zero is called

7

the empty sequence and written ε. For the sake of readability, a sequence of positive

length is usually written by juxtaposing the function values: For example, a sequence

σ = {(0, a), (1, a), (2, b)}, for a, b ∈ A, is written aab. The set of all sequences of arbitrary

length over alphabet A is written A∗.

Definition 2.4. (Firing sequence) Let (N, s0) with N = (P, T, F) be a marked

P/T net. A sequence σ ∈ T ∗ is called a firing sequence of (N, s0) iff, for some natural

number n ∈ IN, there exist markings s1, . . . , sn and transitions t1, . . . , tn ∈ T such that

σ = t1 . . . tn and, for all i with 0 ≤ i < n, (N, si)[ti+1〉 and si+1 = si − •ti+1 + ti+1•.

(Note that n = 0 implies that σ = ε and that ε is a firing sequence of (N, s0).) Sequence

σ is said to be enabled in marking s0, denoted (N, s0)[σ〉. Firing the sequence σ results

in a marking sn, denoted (N, s0) [σ〉 (N, sn).

Definition 2.5. (Connectedness) A net N = (P, T, F) is weakly connected, or simply

connected, iff, for every two nodes x and y in P ∪ T , x(F ∪ F−1)∗y, where R−1 is the

inverse and R∗ the reflexive and transitive closure of a relation R. Net N is strongly

connected iff, for every two nodes x and y, xF ∗y.

We assume that all nets are weakly connected and have at least two nodes. The P/T-net

shown in Figure 1 is connected but not strongly connected because there is no directed

path from the sink place to the source place, or from D to A, etc.

Definition 2.6. (Boundedness, safeness) A marked net (N = (P, T, F), s) is bounded

iff the set of reachable markings [N, s〉 is finite. It is safe iff, for any s′ ∈ [N, s〉 and any

p ∈ P , s′(p) ≤ 1. Note that safeness implies boundedness.

The marked P/T-net shown in Figure 1 is safe (and therefore also bounded) because

none of the 8 reachable states puts more than one token in a place.

Definition 2.7. (Dead transitions, liveness) Let (N = (P, T, F), s) be a marked

P/T-net. A transition t ∈ T is dead in (N, s) iff there is no reachable marking s′ ∈ [N, s〉
such that (N, s′)[t〉. (N, s) is live iff, for every reachable marking s′ ∈ [N, s〉 and t ∈ T ,

there is a reachable marking s′′ ∈ [N, s′〉 such that (N, s′′)[t〉. Note that liveness implies

the absence of dead transitions.

None of the transitions in the marked P/T-net shown in Figure 1 is dead. However, the

marked P/T-net is not live since it is not possible to enable each transition continuously.

8

2.2 Workflow nets

Most workflow systems offer standard building blocks such as the AND-split, AND-join,

OR-split, and OR-join [5, 15, 26, 28]. These are used to model sequential, conditional,

parallel and iterative routing (WFMC [15]). Clearly, a Petri net can be used to specify the

routing of cases. Tasks are modeled by transitions and causal dependencies are modeled

by places and arcs. In fact, a place corresponds to a condition which can be used as pre-

and/or post-condition for tasks. An AND-split corresponds to a transition with two or

more output places, and an AND-join corresponds to a transition with two or more input

places. OR-splits/OR-joins correspond to places with multiple outgoing/ingoing arcs.

Given the close relation between tasks and transitions we use the terms interchangeably.

A Petri net which models the control-flow dimension of a workflow, is called a Work-

Flow net (WF-net). It should be noted that a WF-net specifies the dynamic behavior

of a single case in isolation.

Definition 2.8. (Workflow nets) Let N = (P, T, F) be a P/T-net and t̄ a fresh

identifier not in P ∪ T . N is a workflow net (WF-net) iff:

1. object creation: P contains an input place i such that •i = ∅,

2. object completion: P contains an output place o such that o• = ∅,

3. connectedness: N̄ = (P, T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}) is strongly connected,

The P/T-net shown in Figure 1 is a WF-net. Note that although the net is not strongly

connected, the short-circuited net N̄ = (P, T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}) (i.e., the net

with transition t̄ connecting o to i) is strongly connected. Even if a net meets all the

syntactical requirements stated in Definition 2.8, the corresponding process may exhibit

errors such as deadlocks, tasks which can never become active, livelocks, garbage being

left in the process after termination, etc. Therefore, we define the following correctness

criterion.

Definition 2.9. (Sound) Let N = (P, T, F) be a WF-net with input place i and output

place o. N is sound iff:

1. safeness: (N, [i]) is safe,

2. proper completion: for any marking s ∈ [N, [i]〉, o ∈ s implies s = [o],

3. option to complete: for any marking s ∈ [N, [i]〉, [o] ∈ [N, s〉, and

9

4. absence of dead tasks: (N, [i]) contains no dead transitions.

The set of all sound WF-nets is denoted W .

The WF-net shown in Figure 1 is sound. Soundness can be verified using standard Petri-

net-based analysis techniques. In fact soundness corresponds to liveness and safeness of

the corresponding short-circuited net [1, 2, 5]. This way efficient algorithms and tools

can be applied. An example of a tool tailored towards the analysis of WF-nets is Woflan

[47].

3 The rediscovery problem

After introducing some preliminaries we return to the topic of this paper: workflow

mining. The goal of workflow mining is to find a workflow model (e.g., a WF-net) on

the basis of a workflow log. Table 1 shows an example of a workflow log. Note that the

ordering of events within a case is relevant while the ordering of events amongst cases

is of no importance. Therefore, we define a workflow log as follows.

Definition 3.1. (Workflow trace, Workflow log) Let T be a set of tasks. σ ∈ T ∗ is

a workflow trace and W ∈ P(T ∗) is a workflow log.2

The workflow trace of case 1 in Table 1 is ABCD. The workflow log corresponding to

Table 1 is {ABCD, ACBD, AED}. Note that in this paper we abstract from the identity

of cases. Clearly the identity and the attributes of a case are relevant for workflow mining.

However, for the theoretical results in this paper, we can abstract from this. For similar

reasons, we abstract from the frequency of workflow traces. In Table 1 workflow trace

ABCD appears twice (case 1 and case 3), workflow trace ACBD also appears twice (case

2 and case 4), and workflow trace AED (case 5) appears only once. These frequencies

are not registered in the workflow log {ABCD,ACBD,AED}. Note that when dealing

with noise, frequencies are of the utmost importance. However, in this paper we do not

deal with issues such as noise. Therefore, this abstraction is made to simplify notation.

For readers interested in how we deal with noise and related issues, we refer to [31, 32,

48–50]

2 P(T ∗) is the powerset of T ∗, i.e., W ⊆ T ∗.

10

To find a workflow model on the basis of a workflow log, the log should be analyzed

for causal dependencies, e.g., if a task is always followed by another task it is likely that

there is a causal relation between both tasks. To analyze these relations we introduce

the following notations.

Definition 3.2. (Log-based ordering relations) Let W be a workflow log over T ,

i.e., W ∈ P(T ∗). Let a, b ∈ T :

– a >W b iff there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n− 2} such that σ ∈ W

and ti = a and ti+1 = b,

– a →W b iff a >W b and b �>W a,

– a#W b iff a �>W b and b �>W a, and

– a‖W b iff a >W b and b >W a.

Consider the workflow log W = {ABCD,ACBD,AED} (i.e., the log shown in Table 1).

Relation >W describes which tasks appeared in sequence (one directly following the

other). Clearly, A >W B, A >W C, A >W E, B >W C, B >W D, C >W B, C >W D,

and E >W D. Relation →W can be computed from >W and is referred to as the (direct)

causal relation derived from workflow log W . A →W B, A →W C, A →W E, B →W D,

C →W D, and E →W D. Note that B �→W C because C >W B. Relation ‖W suggests

potential parallelism. For log W tasks B and C seem to be in parallel, i.e., B‖WC

and C‖WB. If two tasks can follow each other directly in any order, then all possible

interleavings are present and therefore they are likely to be in parallel. Relation #W

gives pairs of transitions that never follow each other directly. This means that there

are no direct causal relations and parallelism is unlikely.

Property 3.3. Let W be a workflow log over T . For any a, b ∈ T : a →W b or b →W a or

a#W b or a‖W b. Moreover, the relations →W , →−1
W , #W , and ‖W are mutually exclusive

and partition T × T .3

This property can easy be verified. Note that →W = (>W \ >−1
W), →−1

W = (>−1
W \ >W),

#W = (T × T) \ (>W ∪ >−1
W), ‖W = (>W ∩ >−1

W). Therefore, T × T = →W ∪ →−1
W ∪

#W ∪ ‖W . If no confusion is possible, the subscript W is omitted.

To simplify the use of logs and sequences we introduce some additional notations.

3 →−1
W is the inverse of relation →W , i.e., →−1

W = {(y, x) ∈ T × T | x →W y}.

11

Definition 3.4. (∈, first , last) Let A be a set, a ∈ A, and σ = a1a2 . . . an ∈ A∗ a

sequence over A of length n. ∈, first , last are defined as follows:

1. a ∈ σ iff a ∈ {a1, a2, . . . an},

2. first(σ) = a1, if n ≥ 1, and

3. last(σ) = an, if n ≥ 1.

To reason about the quality of a workflow mining algorithm we need to make assump-

tions about the completeness of a log. For a complex process, a handful of traces will

not suffice to discover the exact behavior of the process. Relations →W , →−1
W , #W , and

‖W will be crucial information for any workflow-mining algorithm. Since these relations

can be derived from >W , we assume the log to be complete with respect to this relation.

Definition 3.5. (Complete workflow log) Let N = (P, T, F) be a sound WF-net,

i.e., N ∈ W. W is a workflow log of N iff W ∈ P(T ∗) and every trace σ ∈ W is a

firing sequence of N starting in state [i] and ending in [o], i.e., (N, [i])[σ〉(N, [o]). W is

a complete workflow log of N iff (1) for any workflow log W ′ of N : >W ′⊆>W , and (2)

for any t ∈ T there is a σ ∈ W such that t ∈ σ.

A workflow log of a sound WF-net only contains behaviors that can be exhibited by the

corresponding process. A workflow log is complete if all tasks that potentially directly

follow each other in fact directly follow each other in some trace in the log. Note that

transitions that connect the input place i of a WF-net to its output place o are “invis-

ible” for >W . Therefore, the second requirement has been added. If there are no such

transitions, this requirement can be dropped as is illustrated by the following property.

Property 3.6. Let N = (P, T, F) be a sound WF-net. If W is a complete workflow log

of N , then {t ∈ T | ∃t′∈T t >W t′ ∨ t′ >W t} = {t ∈ T | t �∈ i • ∩ • o}.

Proof. Consider a transition t ∈ T . Since N is sound there is firing sequence containing

t. If t ∈ i • ∩ • o, then this sequence has length 1 and t cannot appear in >W because

this is the only firing sequence containing t. If t �∈ i • ∩ • o, then the sequence has

at least length 2, i.e., t is directly preceded or followed by a transition and therefore

appears in >W . ✷

The definition of completeness given in Definition 3.5 may seem arbitrary but it is not.

Note that it would be unrealistic to assume that all possible firing sequences are present

12

in the log. First of all, the number of possible sequences may be infinite (in case of loops).

Second, parallel processes typically have an exponential number of states and, therefore,

the number of possible firing sequences may be enormous. Finally, even if there is no

parallelism and no loops but just N binary choices, the number of possible sequences

may be 2N . Therefore, we need a weaker notion of completeness. If there is no parallelism

and no loops but just N binary choices, the number of cases required may be as little

as 2. Of course for large N it is unlikely that all choices are observed in just 2 cases but

still it indicates that this requirement is considerably less demanding than observing

all possible sequences. The same holds for processes with loops and parallelism. If a

process has N sequential fragments which each exhibit parallelism, the number of cases

needed to observe all possible combinations is exponential in the number of fragments.

Using our notion of completeness, this is not the case. One could consider even weaker

notions of completeness, however, as will be shown in the remainder, even this notion

of completeness (i.e., Definition 3.5) is in some situations too weak to detect certain

advanced routing patterns.

We will formulate the rediscovery problem introduced in Section 1 assuming a com-

plete workflow log as described in Definition 3.5. Before formulating this problem we

define what it means for a WF-net to be rediscovered.

Definition 3.7. (Ability to rediscover) Let N = (P, T, F) be a sound WF-net, i.e.,

N ∈ W, and let α be a mining algorithm which maps workflow logs of N onto sound

WF-nets, i.e., α : P(T ∗) → W . If for any complete workflow log W of N the mining

algorithm returns N (modulo renaming of places), then α is able to rediscover N .

Note that no mining algorithm is able to find names of places. Therefore, we ignore

place names, i.e., α is able to rediscover N iff α(W) = N modulo renaming of places.

The goal of this paper is twofold. First of all, we are looking for a mining algorithm

that is able to rediscover sound WF-nets, i.e., based on a complete workflow log the

corresponding workflow process model can be derived. Second, given such an algorithm

we want to indicate the class of workflow nets which can be rediscovered. Clearly, this

class should be as large as possible. Note that there is no mining algorithm which is able

to rediscover all sound WF-nets. For example, if in Figure 1 we add a place p connecting

transitions A and D, there is no mining algorithm able to detect p since this place is

13

implicit, i.e., the addition of the place does not change the behavior of the net and

therefore is not visible in the log.

To conclude we summarize the rediscovery problem: “Find a mining algorithm able

to rediscover a large class of sound WF-nets on the basis of complete workflow logs.”

This problem was illustrated in the introduction using Figure 2.

4 Workflow mining

In this section, the rediscovery problem is tackled. Before we present a mining algorithm

able to rediscover a large class of sound WF-nets, we investigate the relation between

the causal relations detected in the log (i.e., →W) and the presence of places connecting

transitions. First, we show that causal relations in →W imply the presence of places.

Then, we explore the class of nets for which the reverse also holds. Based on these

observations, we present a mining algorithm.

4.1 Causal relations imply connecting places

If there is a causal relation between two transitions according to the workflow log, then

there has to be a place connecting these two transitions.

Theorem 4.1. Let N = (P, T, F) be a sound WF-net and let W be a complete workflow

log of N . For any a, b ∈ T : a →W b implies a • ∩ • b �= ∅.

Proof. Assume a →W b and a• ∩ •b = ∅. We will show that this leads to a contradiction

and thus prove the theorem. Since a > b there is a firing sequence σ = t1t2t3 . . . tn−1

and i ∈ {1, . . . , n − 2} such that σ ∈ W and ti = a and ti+1 = b. Let s be the state

just before firing a, i.e., (N, [i]) [σ′〉 (N, s) with σ′ = t1 . . . ti−1. Let s′ be the marking

after firing b in state s, i.e., (N, s) [b〉 (N, s′). Note that b is enabled in s because it is

enabled after firing a and a • ∩ • b = ∅ (i.e., a does not produce tokens for any of the

input places of b). a cannot be enabled in s′, otherwise b > a and not a →W b. Since a

is enabled in s but not in s′, b consumes a token from an input place of a and does not

return it, i.e., ((•b) \ (b•)) ∩ •a �= ∅. There is a place p such that p ∈ •a, p ∈ •b, and

p �∈ b•. Moreover, a • ∩ • b = ∅. Therefore, p �∈ a•. Since the net is safe, p contains

precisely one token in marking s. This token is consumed by ti = a and not returned.

14

Hence b cannot be enabled after firing ti. Therefore, σ cannot be a firing sequence of N

starting in i. ✷

Let N1 = ({i, p1, p2, p3, p4, o}, {A,B,C,D}, {(i, A), (A, p1), (A, p2), (p1, B), (B, p3),

(p2, C), (C, p4), (p3, D), (p4, D), (D, o)}). (This is the WF-net with B and C in par-

allel, see N1 in Figure 4.) W1 = {ABCD,ACBD} is a complete log over N1. Since

A →W1 B, there has to be a place between A and B. This place corresponds to p1 in

N1. Let N2 = ({i, p1, p2, o}, {A,B,C,D}, {(i, A), (A, p1), (p1, B), (B, p2), (p1, C), (C, p2),

(p2, D), (D, o)}). (This is the WF-net with a choice between B and C, see N2 in Fig-

ure 4.) W2 = {ABD,ACD} is a complete log over N2. Since A →W2 B, there has to

be a place between A and B. Similarly, A →W2 C and therefore there has to be a place

between A and C. Both places correspond to p1 in N1. Note that in the first example

(N1/W1) the two causal relations A →W1 B and A →W1 C correspond to two different

places while in the second example the two causal relations A →W1 B and A →W1 C

correspond to a single place.

4.2 Connecting places “often” imply causal relations

In this subsection we investigate which places can be detected by simply inspecting

the log. Clearly, not all places can be detected. For example places may be implicit

which means that they do not affect the behavior of the process. These places remain

undetected. Therefore, we limit our investigation to WF-nets without implicit places.

Definition 4.2. (Implicit place) Let N = (P, T, F) be a P/T-net with initial marking

s. A place p ∈ P is called implicit in (N, s) iff, for all reachable markings s′ ∈ [N, s〉 and

transitions t ∈ p•, s′ ≥ •t \ {p} ⇒ s′ ≥ •t.

Figure 1 contains no implicit places. However, as indicated before, adding a place p

connecting transition A and D yields an implicit place. No mining algorithm is able to

detect p since the addition of the place does not change the behavior of the net and

therefore is not visible in the log.

For the rediscovery problem it is very important that the structure of the WF-net

clearly reflects its behavior. Therefore, we also rule out the constructs shown in Figure 3.

The left construct illustrates the constraint that choice and synchronization should never

meet. If two transitions share an input place, and therefore “fight” for the same token,

15

Fig. 3. Two constructs not allowed in SWF-nets.

they should not require synchronization. This means that choices (places with multiple

output transitions) should not be mixed with synchronizations. The right-hand construct

in Figure 3 illustrates the constraint that if there is a synchronization, all preceding

transitions should have fired, i.e., it is not allowed to have synchronizations directly

preceded by an OR-join. WF-nets which satisfy these requirements are named structured

workflow nets.

Definition 4.3. (SWF-net) A WF-net N = (P, T, F) is an SWF-net (Structured

workflow net) iff:

1. For all p ∈ P and t ∈ T with (p, t) ∈ F : |p • | > 1 implies | • t| = 1.

2. For all p ∈ P and t ∈ T with (p, t) ∈ F : | • t| > 1 implies | • p| = 1.

3. There are no implicit places.

At first sight the three requirements in Definition 4.3 seem quite restrictive. From a

practical point of view this is not the case. First of all, SWF-nets allow for all routing

constructs encountered in practice, i.e., sequential, parallel, conditional and iterative

routing are possible and the basic workflow building blocks (AND-split, AND-join, OR-

split and OR-join) are supported. Second, WF-nets that are not SWF-nets are typically

difficult to understand and should be avoided if possible. Third, many workflow manage-

ment systems only allow for workflow processes that correspond to SWF-nets. The latter

observation can be explained by the fact that most workflow management systems use

a language with separate building blocks for OR-splits and AND-joins. Finally, there is

a very pragmatic argument. If we drop any of the requirements stated in Definition 4.3,

relation >W does not contain enough information to successfully mine all processes in

the resulting class.

The reader familiar with Petri nets will observe that SWF-nets belong to the class

of free-choice nets [12]. This allows us to use efficient analysis techniques and advanced

16

theoretical results. For example, using these results it is possible to decide soundness in

polynomial time [2].

SWF-nets also satisfy another interesting property.

Property 4.4. Let N = (P, T, F) be an SWF-net. For any a, b ∈ T and p1, p2 ∈ P : if

p1 ∈ a • ∩ • b and p2 ∈ a • ∩ • b, then p1 = p2.

This property follows directly from the definition of SWF-nets and states that no two

transitions are connected by multiple places. This property illustrates that the structure

of an SWF-net clearly reflects its behavior and vice versa. This is exactly what we need

to be able to rediscover a WF-net from its log.

We already showed that causal relations in →W imply the presence of places. Now

we try to prove the reverse for the class of SWF-nets. First, we focus on the relation

between the presence of places and >W .

Theorem 4.5. Let N = (P, T, F) be a sound SWF-net and let W be a complete

workflow log of N . For any a, b ∈ T : a • ∩ • b �= ∅ implies a >W b.

Proof. See [6]. ✷

Unfortunately a• ∩ •b �= ∅ does not imply a →W b. To illustrate this consider Figure 4.

For the first two nets (i.e., N1 and N2), two tasks are connected iff there is a causal

relation. This does not hold for N3 and N4. In N3, A →W3 B, A →W3 D, and B →W3 D.

However, not B →W3 B. Nevertheless, there is a place connecting B to B. In N4,

although there are places connecting B to C and vice versa, B �→W3 C and B �→W3 C.

These examples indicate that loops of length one (see N3) and length two (see N4) are

harmful. Fortunately, loops of length three or longer are no problem as is illustrated in

the following theorem.

Theorem 4.6. Let N = (P, T, F) be a sound SWF-net and let W be a complete

workflow log of N . For any a, b ∈ T : a • ∩ • b �= ∅ and b • ∩ • a = ∅ implies a →W b.

Proof. See [6]. ✷

Acyclic nets have no loops of length one or length two. Therefore, it is easy to derive

the following property.

17

A

B

C

D

A

B

C

D

A

B

D

A

B

C

D

A B

C

D

E

N1

N2

N3

N4

N5

Fig. 4. Five sound SWF-nets.

Property 4.7. Let N = (P, T, F) be an acyclic sound SWF-net and let W be a complete

workflow log of N . For any a, b ∈ T : a • ∩ • b �= ∅ iff a →W b.

The results presented thus far focus on the correspondence between connecting places

and causal relations. However, causality (→W) is just one of the four log-based ordering

relations defined in Definition 4.3. The following theorem explores the relation between

the sharing of input and output places and #W .

Theorem 4.8. Let N = (P, T, F) be a sound SWF-net such that for any a, b ∈ T :

a • ∩ • b = ∅ or b • ∩ • a = ∅ and let W be a complete workflow log of N .

1. If a, b ∈ T and a • ∩ b• �= ∅, then a#W b.

2. If a, b ∈ T and •a ∩ •b �= ∅, then a#W b.

3. If a, b, t ∈ T , a →W t, b →W t, and a#W b, then a • ∩ b • ∩ • t �= ∅.

4. If a, b, t ∈ T , t →W a, t →W b, and a#W b, then •a ∩ •b ∩ t• �= ∅.

18

Proof. See [6]. ✷

The relations →W , →−1
W , #W , and ‖W are mutually exclusive. Therefore, we can derive

that for sound SWF-nets with no short loops, a‖W b implies a • ∩ b• = •a ∩ •b = ∅.

Moreover, a →W t, b →W t, and a • ∩ b • ∩ • t = ∅ implies a‖W b. Similarly, t →W a,

t →W b, and •a ∩ •b ∩ t• = ∅, also implies a‖W b. These results will be used to underpin

the mining algorithm presented in the following subsection.

4.3 Mining algorithm

Based on the results in the previous subsections we now present an algorithm for mining

processes. The algorithm uses the fact that for many WF-nets two tasks are connected

iff their causality can be detected by inspecting the log.

Definition 4.9. (Mining algorithm α) Let W be a workflow log over T . α(W) is

defined as follows.

1. TW = {t ∈ T | ∃σ∈W t ∈ σ},

2. TI = {t ∈ T | ∃σ∈W t = first(σ)},

3. TO = {t ∈ T | ∃σ∈W t = last(σ)},

4. XW = {(A,B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a∈A∀b∈Ba →W b ∧ ∀a1,a2∈Aa1#Wa2 ∧
∀b1,b2∈Bb1#W b2},

5. YW = {(A,B) ∈ XW | ∀(A′,B′)∈XW
A ⊆ A′ ∧B ⊆ B′ =⇒ (A,B) = (A′, B′)},

6. PW = {p(A,B) | (A,B) ∈ YW} ∪ {iW , oW},

7. FW = {(a, p(A,B)) | (A,B) ∈ YW ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈ YW ∧ b ∈
B} ∪ {(iW , t) | t ∈ TI} ∪ {(t, oW) | t ∈ TO}, and

8. α(W) = (PW , TW , FW).

The mining algorithm constructs a net (PW , TW , FW). Clearly, the set of transitions TW

can be derived by inspecting the log. In fact, as shown in Property 3.6, if there are no

traces of length one, TW can be derived from >W . Since it is possible to find all initial

transitions TI and all final transition TO, it is easy to construct the connections between

these transitions and iW and oW . Besides the source place iW and the sink place oW ,

places of the form p(A,B) are added. For such place, the subscript refers to the set of

19

input and output transitions, i.e., •p(A,B) = A and p(A,B)• = B. A place is added in-

between a and b iff a →W b. However, some of these places need to be merged in case

of OR-splits/joins rather than AND-splits/joins. For this purpose the relations XW and

YW are constructed. (A,B) ∈ XW if there is a causal relation from each member of A to

each member of B and the members of A and B never occur next to one another. Note

that if a →W b, b →W a, or a‖W b, then a and b cannot be both in A (or B). Relation

YW is derived from XW by taking only the largest elements with respect to set inclusion.

(See the end of this section for an example.)

A

B

D

A

B

C
D

(N3)

(N4)

Fig. 5. The α algorithm is unable to rediscover N3 and N4.

Based on α defined in Definition 4.9, we turn to the rediscovery problem. Is it possible

to rediscover WF-nets using α(W)? Consider the five SWF-nets shown in Figure 4. If

α is applied to a complete workflow log of N1, the resulting net is N1 modulo renaming

of places. Similarly, if α is applied to a complete workflow log of N2, the resulting net is

N2 modulo renaming of places. As expected, α is not able to rediscover N3 and N4 (cf.

Figure 5). α(W3) is like N3 but without the arcs connecting B to the place in-between

A and D and two new places. α(W4) is like N4 but the input and output arc of C are

removed. α(W3) is not a WF-net since B is not connected to the rest of the net. α(W4) is

not a WF-net since C is not connected to the rest of the net. In both cases two arcs are

missing in the resulting net. N3 and N4 illustrate that the mining algorithm is unable

to deal with short loops. Loops of length three or longer are no problem. For example

α(W5) = N5 modulo renaming of places. The following theorem proves that α is able to

rediscover the class of SWF-nets provided that there are no short loops.

20

Theorem 4.10. Let N = (P, T, F) be a sound SWF-net and let W be a complete

workflow log of N . If for all a, b ∈ T a • ∩ • b = ∅ or b • ∩ • a = ∅, then α(W) = N

modulo renaming of places.

Proof. Let α(W) = (PW , TW , FW). Since W is complete, it is easy to see that T = TW .

Remains to prove that every place in N corresponds to a place in α(W) and vice versa.

Let p ∈ P . We need to prove that there is a pW ∈ PW such that N• p =
NW• pW and

pN•= pW
NW• . If p = i, i.e., the source place or p = o, i.e., the sink place, then it is easy

to see that there is a corresponding place in α(W). Transitions in iN• ∪ N• o can fire only

once directly at the beginning of a sequence or at the end. Therefore, the construction

given in Definition 4.9 involving iW , oW , TI , and TO yields a source and sink place

with identical input/output transitions. If p �∈ {i, o}, then let A =N• p, B = p N• , and

pW = p(A,B). If pW is indeed a place of α(W), then N• p =
α(W)• pW and pN•= pW

α(W)• . This

follows directly from the definition of the flow relation FW in Definition 4.9. To prove

that pW = p(A,B) is a place of α(W), we need to show that (A,B) ∈ YW . (A,B) ∈ XW ,

because (1) Theorem 4.6 implies that ∀a∈A∀b∈Ba →W b, (2) Theorem 4.8(1) implies that

∀a1,a2∈Aa1#Wa2, and (3) Theorem 4.8(2) implies that ∀b1,b2∈Bb1#W b2. To prove that

(A,B) ∈ YW , we need to show that it is not possible to have (A′, B′) ∈ X such that

A ⊆ A′, B ⊆ B′, and (A,B) �= (A′, B′) (i.e., A ⊂ A′ or B ⊂ B′). Suppose that A ⊂ A′.

There is an a′ ∈ T \A such that ∀b∈Ba
′ →W b and ∀a∈Aa#Wa′. Theorem 4.8(3) implies

that a N• ∩ a′ N• ∩ N• b �= ∅ for some b ∈ B. Let p′ ∈ a N• ∩ a′ N• ∩ N• b. Property 4.4

implies p′ = p. However, a′ �∈ A =N• p and a′ ∈N• p′, and we find a contradiction (p′ = p

and p′ �= p). Suppose that B ⊂ B′. There is a b′ ∈ T \ B such that ∀a∈Aa →W b′ and

∀b∈Bb#W b′. Using Theorem 4.8(4) and Property 4.4, we can show that this leads to a

contradiction. Therefore, (A,B) ∈ YW and pW ∈ PW .

Let pw ∈ PW . We need to prove that there is a p ∈ P such that N• p =
NW• pW and

p N•= pW
NW• . If pw = iw or pw = ow, then pw corresponds to i or o respectively. This

is a direct consequence of the construction given in Definition 4.9 involving iW , oW ,

TI , and TO. If pw �∈ {iw, ow}, then there are sets A and B such that (A,B) ∈ YW and

pw = p(A,B).
α(N)• pw = A and pw

α(N)• = B. Remains to prove that there is a p ∈ P

such that N• p = A and p N•= B. Since (A,B) ∈ YW implies that (A,B) ∈ XW , for any

a ∈ A and b ∈ B there is a place connecting a and b (use a →W b and Theorem 4.1).

21

Using Theorem 4.8, we can prove that there is just one such place. Let p be this place.

Clearly, N• p ⊆ A and pN•⊆ B. Remains to prove that N• p = A and pN•= B. Suppose that

a′ ∈N• p \ A (i.e., N• p �= A). Select an arbitrary a ∈ A and b ∈ B. Using Theorem 4.6, we

can show that a′ →W b. Using Theorem 4.8(1), we can show that a#Wa′. This holds for

any a ∈ A and b ∈ B. Therefore, (A∪{a′}, B) ∈ XW . However, this is not possible since

(A,B) ∈ YW ((A,B) should be maximal). Therefore, we find a contradiction. We find

a similar contradiction if we assume that there is a b′ ∈ pN• \B. Therefore, we conclude

that N• p = A and pN•= B. ✷

A

B

C D

E

Fig. 6. Another process model corresponding to the workflow log shown in Table 1.

Nets N1, N2 and N5 shown in Figure 4 satisfy the requirements stated in Theorem 4.10.

Therefore, it is no surprise that α is able to rediscover these nets. The net shown in

Figure 1 is also an SWF-net with no short loops. Therefore, we can successfully rediscover

the net if the AND-split and the AND-join are visible in the log. The latter assumption

is not realistic if these two transitions do not correspond to real work. Given the fact

the log shown in Table 1 does not list the occurrence of these events, indicates that

this assumption is not valid. Therefore, the AND-split and the AND-join should be

considered invisible. However, if we apply α to this log W = {ABCD, ACBD, AED},

then the result is quite surprising. The resulting net α(W) is shown in Figure 6.

To illustrate the α algorithm we show the result of each step using the log W =

{ABCD, ACBD, AED} (i.e., a log like the one shown in Table 1):

1. TW = {A,B,C,D,E},

2. TI = {A},

3. TO = {D},

22

4. XW = {({A}, {B}), ({A}, {C}), ({A}, {E}), ({B}, {D}), ({C}, {D}), ({E}, {D}),

({A}, {B,E}), ({A}, {C,E}), ({B,E}, {D}), ({C,E}, {D})},

5. YW = {({A}, {B,E}), ({A}, {C,E}), ({B,E}, {D}), ({C,E}, {D})},

6. PW = {iW , oW , p({A},{B,E}), p{A},{C,E}), p({B,E},{D}), p({C,E},{D})},

7. FW = {(iW , A), (A, p({A},{B,E})), (p({A},{B,E}), B) . . . , (D, oW)}, and

8. α(W) = (PW , TW , FW) (as shown in Figure 6).

Although the resulting net is not an SWF-net it is a sound WF-net whose observable

behavior is identical to the net shown in Figure 1. Also note that the WF-net shown in

Figure 6 can be rediscovered although it is not an SWF-net. This example shows that

the applicability is not limited to SWF-nets. However, for arbitrary sound WF-nets it

is not possible to guarantee that they can be rediscovered.

4.4 Limitations of the α algorithm

As demonstrated through Theorem 4.10, the α algorithm is able to rediscover a large

class of processes. However, we did not prove that the class of processes is maximal, i.e.,

that there is not a “better” algorithm able to rediscover even more processes. Therefore,

we reflect on the requirements stated in Definition 4.3 (SWF-nets) and Theorem 4.10

(no short loops).

A D

C

E

N6

B

A D

C

E

N7

B

Fig. 7. The non-free-choice WF-net N6 cannot be rediscovered by the α algorithm.

23

A
N8

B

C

D

E

F

G

A
N9

B

C

D

E

F

G

Fig. 8. WF-net N8 cannot be rediscovered by the α algorithm. Nevertheless α returns a WF-net which is
behavioral equivalent.

Let us first consider the requirements stated in Definition 4.3. To illustrate the ne-

cessity of the first two requirements consider figures 7 and 8. The WF-net N6 shown in

Figure 7 is sound but not an SWF-net since the first requirement is violated (N6 is not

free-choice). If we apply the mining algorithm to a complete workflow log W6 of N6, we

obtain the WF-nets N7 also shown in Figure 7 (i.e., α(W6) = N7). Clearly, N6 cannot be

rediscovered using α. Although N7 is a sound SWF-net its behavior is different from N6,

e.g., workflow trace ACE is possible in N7 but not in N6. This example motivates the

first requirement in Definition 4.3. The second requirement is motivated by Figure 8. N8

violates the second requirement. If we apply the mining algorithm to a complete work-

flow log W8 of N8, we obtain the WF-net α(W8) = N9 also shown in Figure 8. Although

N9 is behaviorally equivalent, N8 cannot be rediscovered using the mining algorithm.

Although the requirements stated in Definition 4.3 are necessary in order to prove

that this class of workflow processes can be rediscovered on the basis of a complete

workflow log, the applicability is not limited to SWF-nets. The examples given in this

section show that in many situations a behaviorally equivalent WF-net can be derived.

24

Note that the third requirement stated in Definition 4.3 (no implicit places) can be

dropped thus allowing even more behaviorally equivalent WF-nets. Even in the cases

where the resulting WF-net is not behaviorally equivalent, the results are meaningful,

e.g., the process represented by N7 is different from the process represented by N6 (cf.

Figure 7). Nevertheless, N7 is similar and captures most of the behavior.

A

B

C E

D

N10

A

B

C E

D

N11

Fig. 9. Although both WF-nets are not behavioral equivalent they are identical with respect to >.

Another requirement imposed by Theorem 4.10 is the absence of short loops. We

already showed examples motivating this requirement. However, it is clear that the α

algorithm can be improved to deal with short loops. Unfortunately, this is less trivial

than it may seem. We use Figure 9 and Figure 10 to illustrate this. Figure 9 shows two

WF-nets. Although both WF-nets have clearly different behaviors their complete logs

will have identical > relations. Note that the two WF-nets are not SWF-nets because

of the non-free-choice construct involving E. However, the essence of the problem is the

short loop involving C. Because of this short loop the α algorithm will create for both

N10 and N11 the Petri net where C is unconnected to the rest of the net. Clearly, this

can be improved since for complete logs of N10 and N11 the following relations hold:

B > C, C > B, C > D, D > C, B‖C, C‖D, and B‖D. These relations suggest that B,

C, and D are in parallel. However, in any complete log it can be seen that this is not the

case since A is never followed by C. Despite this information, no algorithm will be able

to distinguish N10 and N11 because they are identical with respect to >. Figure 10 gives

another example demonstrating that dealing with short loops is far from trivial. N12 and

N13 are SWF-nets that are behavioral equivalent, therefore, no algorithm will be able to

25

distinguish N12 from N13 (assuming the notion of completeness and not logging explicit

start and end events). This problem may seem similar to Figure 8 or examples with and

without implicit places. However, N12 and N13 are SWF-nets while N8 or examples with

implicit places are just WF-nets not satisfying the requirements stated in Definition 4.3.

A

B

D

C

N12

A

B

D

C

N13

Fig. 10. Both SWF-nets are behavioral equivalent and therefore any algorithm will be unable to distinguish
N12 from N13 (assuming a notion of completeness based on >).

Despite the problems illustrated by Figure 9 and Figure 10, it is possible to solve the

problem using a slightly stronger notion of completeness. Assume that it is possible to

identify 1-loops and 2-loops. This can be done by looking for patterns AA (1-loop) and

ABA (2-loop). Then refine relation > into a new relation >+ which splits the existing

transitions involved in a short loop into 2 or 3 transitions. Tasks involved in a 1-loop

are mapped onto three transitions (e.g., start, execute, and end). Tasks involved in a

2-loop but not a 1-loop are mapped onto two transitions (e.g., start and end). The goal

of this translation is to make the short loops longer by using additional information

about 1-loops and 2-loops (and while preserving the original properties). This refined

relation >+ can be used as input for the α algorithm. This approach is able to deal with

all possible situations except the one illustrated in Figure 10. Note that no algorithm

will be able to distinguish the logs of the two processes shown in Figure 10. However,

this is not a real problem since they are behaviorally equivalent. In formal terms: we can

replace the requirement in Theorem 4.10 by the weaker requirement that there are no

two transitions having identical input and output places. A detailed description of this

preprocessing algorithm and a proof of its correctness are however beyond the scope of

this paper.

26

Besides the explicit requirements stated in Definition 4.3 and Theorem 4.10, there

are also a number of implicit requirements. As indicated before, hidden tasks cannot

be detected (cf. the AND-split and AND-join in Figure 1). Moreover, our definition of

a Petri net assumes that each transition bears a unique label. Instead, we could have

used a labeled Petri net [39]. The latter choice would have been more realistic but also

complicate matters enormously. The current definition of a WF-net assumes that each

task appears only once in the network. Without this assumption, every occurrence of

some task t could refer to one of multiple indistinguishable transitions with label t.

Preliminary investigations show that the problems of “hidden tasks” and “duplicate

tasks” are highly related, e.g., a WF-net with two transitions having the same label t

has a corresponding WF-net with hidden transitions but only one transition labeled t.

Moreover, there are relations between the explicit requirements stated in Definition 4.3

and Theorem 4.10 and the implicit requirements just mentioned, e.g., in some cases a

non-free-choice WF-net can be made free choice by inserting hidden transitions. These

findings indicate that the class of SWF-nets is close to the upper bound of workflow

processes that can be mined successfully given the notion of completeness stated in

Definition 3.5. To move beyond SWF-nets we either have to resort to heuristics or

strengthen the notion of completeness (and thus require more observations).

To conclude this section, we consider the complexity of the α algorithm. Event logs

may be huge containing millions of events. Fortunately, the α algorithm is driven by

relation >. The time it takes to build this relation is linear in the size of the log. The

complexity of the remaining steps in α algorithm is exponential in the number of tasks.

However, note that the number of tasks is typically less than 100 and does not depend

on the size of the log. Therefore, the complexity is not a bottleneck for large-scale

application.

5 Related Work

The idea of process mining is not new [7, 9–11, 19–24, 31–33, 41–45, 48–50]. Cook and

Wolf have investigated similar issues in the context of software engineering processes.

In [9] they describe three methods for process discovery: one using neural networks,

one using a purely algorithmic approach, and one Markovian approach. The authors

27

consider the latter two the most promising approaches. The purely algorithmic approach

builds a finite state machine where states are fused if their futures (in terms of possible

behavior in the next k steps) are identical. The Markovian approach uses a mixture

of algorithmic and statistical methods and is able to deal with noise. Note that the

results presented in [9] are limited to sequential behavior. Related, but in a different

domain, is the work presented in [29, 30] also using a Markovian approach restricted to

sequential processes. Cook and Wolf extend their work to concurrent processes in [10].

They propose specific metrics (entropy, event type counts, periodicity, and causality)

and use these metrics to discover models out of event streams. However, they do not

provide an approach to generate explicit process models. Recall that the final goal of

the approach presented in this paper is to find explicit representations for a broad range

of process models, i.e., we want to be able to generate a concrete Petri net rather than

a set of dependency relations between events. In [11] Cook and Wolf provide a measure

to quantify discrepancies between a process model and the actual behavior as registered

using event-based data. The idea of applying process mining in the context of workflow

management was first introduced in [7]. This work is based on workflow graphs, which

are inspired by workflow products such as IBM MQSeries workflow (formerly known as

Flowmark) and InConcert. In this paper, two problems are defined. The first problem

is to find a workflow graph generating events appearing in a given workflow log. The

second problem is to find the definitions of edge conditions. A concrete algorithm is given

for tackling the first problem. The approach is quite different from other approaches:

Because the nature of workflow graphs there is no need to identify the nature (AND

or OR) of joins and splits. As shown in [27], workflow graphs use true and false tokens

which do not allow for cyclic graphs. Nevertheless, [7] partially deals with iteration

by enumerating all occurrences of a given task and then folding the graph. However,

the resulting conformal graph is not a complete model. In [33], a tool based on these

algorithms is presented. Schimm [41, 42, 45] has developed a mining tool suitable for

discovering hierarchically structured workflow processes. This requires all splits and joins

to be balanced. Herbst and Karagiannis also address the issue of process mining in the

context of workflow management [21, 19, 20, 23, 24, 22] using an inductive approach. The

work presented in [22, 24] is limited to sequential models. The approach described in [21,

28

19, 20, 23] also allows for concurrency. It uses stochastic task graphs as an intermediate

representation and it generates a workflow model described in the ADONIS modeling

language. In the induction step task nodes are merged and split in order to discover the

underlying process. A notable difference with other approaches is that the same task

can appear multiple times in the workflow model, i.e., the approach allows for duplicate

tasks. The graph generation technique is similar to the approach of [7, 33]. The nature

of splits and joins (i.e., AND or OR) is discovered in the transformation step, where

the stochastic task graph is transformed into an ADONIS workflow model with block-

structured splits and joins. In contrast to the previous papers, our work [31, 32, 48–50] is

characterized by the focus on workflow processes with concurrent behavior (rather than

adding ad-hoc mechanisms to capture parallelism). In [48–50] a heuristic approach using

rather simple metrics is used to construct so-called “dependency/frequency tables” and

“dependency/frequency graphs”. In [31] another variant of this technique is presented

using examples from the health-care domain. The preliminary results presented in [31,

48–50] only provide heuristics and focus on issues such as noise. The approach described

in this paper differs from these approaches in the sense that for the α algorithm it is

proven that for certain subclasses it is possible to find the right workflow model. In [4] the

EMiT tool is presented which uses an extended version of α algorithm to incorporate

timing information. Note that in this paper there is no detailed description of the α

algorithm nor a proof of its correctness.

Process mining can be seen as a tool in the context of Business (Process) Intelligence

(BPI). In [18, 40] a BPI toolset on top of HP’s Process Manager is described. The BPI

tools set includes a so-called “BPI Process Mining Engine”. However, this engine does

not provide any techniques as discussed before. Instead it uses generic mining tools such

as SAS Enterprise Miner for the generation of decision trees relating attributes of cases

to information about execution paths (e.g., duration). In order to do workflow mining it

is convenient to have a so-called “process data warehouse” to store audit trails. Such as

data warehouse simplifies and speeds up the queries needed to derive causal relations. In

[13, 34–36] the design of such warehouse and related issues are discussed in the context

of workflow logs. Moreover, [36] describes the PISA tool which can be used to extract

performance metrics from workflow logs. Similar diagnostics are provided by the ARIS

29

Process Performance Manager (PPM) [25]. The later tool is commercially available and

a customized version of PPM is the Staffware Process Monitor (SPM) [46] which is

tailored towards mining Staffware logs. Note that none of the latter tools is extracting

the process model. The main focus is on clustering and performance analysis rather than

causal relations as in [7, 9–11, 19–24, 31–33, 41–45, 48–50].

More from a theoretical point of view, the rediscovery problem discussed in this paper

is related to the work discussed in [8, 16, 17, 38]. In these papers the limits of inductive

inference are explored. For example, in [17] it is shown that the computational problem of

finding a minimum finite-state acceptor compatible with given data is NP-hard. Several

of the more generic concepts discussed in these papers could be translated to the domain

of process mining. It is possible to interpret the problem described in this paper as an

inductive inference problem specified in terms of rules, a hypothesis space, examples,

and criteria for successful inference. The comparison with literature in this domain raises

interesting questions for process mining, e.g., how to deal with negative examples (i.e.,

suppose that besides log W there is a log V of traces that are not possible, e.g., added

by a domain expert). However, despite the many relations with the work described in

[8, 16, 17, 38] there are also many differences, e.g., we are mining at the net level rather

than sequential or lower level representations (e.g., Markov chains, finite state machines,

or regular expressions).

Additional related work is the seminal work on regions [14]. This work investigates

which transition systems can be represented by (compact) Petri nets (i.e., the so-called

synthesis problem). Although the setting is different and our notion of completeness is

much weaker than knowing the transition system, there are related problems such as

duplicate transitions, etc.

6 Conclusion

In this paper we addressed the workflow rediscovery problem. This problem was for-

mulated as follows: “Find a mining algorithm able to rediscover a large class of sound

WF-nets on the basis of complete workflow logs.” We presented the α algorithm that is

able to rediscover a large and relevant class of workflow processes (SWF-nets). Through

examples we also showed that the algorithm provides interesting analysis results for

30

workflow processes outside this class. At this point in time, we are improving the min-

ing algorithm such that it is able to rediscover an even larger class of WF-nets. We

have tackled the problem of short loops and are now focusing on hidden tasks, duplicate

tasks, and advanced routing constructs. However, given the observation that the class

of SWF-nets is close to the upper limit of what one can do assuming this notion of

completeness, new results will either provide heuristics or require stronger notions of

completeness (i.e., more observations).

It is important to see the results presented in this paper in the context of a larger effort

[31, 32, 48–50]. The rediscovery problem is not a goal by itself. The overall goal is to be

able to analyze any workflow log without any knowledge of the underlying process and in

the presence of noise. The theoretical results presented in this paper provide insights that

are consistent with empirical results found earlier [31, 32, 48–50]. It is quite interesting

to see that the challenges encountered in practice match the challenges encountered in

theory. For example, the fact that workflow process exhibiting non-free-choice behavior

(i.e., violating the first requirement of Definition 4.3) are difficult to mine was observed

both in theory and in practice. Therefore, we consider the work presented in this paper

as a stepping stone for good and robust process mining techniques.

We have applied our workflow mining techniques to two real applications. The first

application is in health-care where the flow of multi-disciplinary patients is analyzed. We

have analyzed workflow logs (visits to different specialists) of patients with peripheral

arterial vascular diseases of the Elizabeth Hospital in Tilburg and the Academic Hospital

in Maastricht. Patients with peripheral arterial vascular diseases are a typical example

of multi-disciplinary patients. We have preliminary results showing that process mining

is very difficult given the “spaghetti-like” nature of this process. Only by focusing on

specific tasks and abstracting from infrequent tasks we are able to successfully mine such

processes. The second application concerns the processing of fines by the CJIB (Centraal

Justitieel Incasso Bureau), the Dutch Judicial Collection Agency located in Leeuwarden.

We have successfully mined the process using information of 130136 cases. The process

comprises 99 tasks and has been validated by the CJIB. This positive result shows that

process mining based on the α algorithm and using tools like EMiT and Little Thumb

31

is feasible for at least structured processes. These findings are encouraging and show the

potential of the α algorithm presented in this paper.

Acknowledgements The authors would like to thank Ana Karla Alves de Medeiros

and Eric Verbeek for proof-reading earlier versions of this paper and Boudewijn van

Dongen for his efforts in developing EMiT and solving the problem of short loops.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors, Application and

Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science, pages 407–426. Springer-

Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal of Circuits,

Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Management: Models, Tech-

niques, and Empirical Studies, volume 1806 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

2000.

4. W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance Models from Timed Logs.

In Y. Han, S. Tai, and D. Wikarski, editors, International Conference on Engineering and Deployment of

Cooperative Information Systems (EDCIS 2002), volume 2480 of Lecture Notes in Computer Science, pages

45–63. Springer-Verlag, Berlin, 2002.

5. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems. MIT

press, Cambridge, MA, 2002.

6. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Which Processes can be

Rediscovered? BETA Working Paper Series, WP 74, Eindhoven University of Technology, Eindhoven, 2002.

7. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow Logs. In Sixth

International Conference on Extending Database Technology, pages 469–483, 1998.

8. D. Angluin and C.H. Smith. Inductive Inference: Theory and Methods. Computing Surveys, 15(3):237–269,

1983.

9. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based Data. ACM Trans-

actions on Software Engineering and Methodology, 7(3):215–249, 1998.

10. J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings of the Sixth International

Symposium on the Foundations of Software Engineering (FSE-6), pages 35–45, 1998.

11. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring the Correspondence of a

Process to a Model. ACM Transactions on Software Engineering and Methodology, 8(2):147–176, 1999.

32

12. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, Cambridge, UK, 1995.

13. J. Eder, G.E. Olivotto, and Wolfgang Gruber. A Data Warehouse for Workflow Logs. In Y. Han, S. Tai, and

D. Wikarski, editors, International Conference on Engineering and Deployment of Cooperative Information

Systems (EDCIS 2002), volume 2480 of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag,

Berlin, 2002.

14. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2. Acta Informatica,

27(4):315–368, 1989.

15. L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition. Future Strategies, Light-

house Point, Florida, 2001.

16. E.M. Gold. Language Identfication in the Limit. Information and Control, 10(5):447–474, 1967.

17. E.M. Gold. Complexity of Automaton Identification from Given Data. Information and Control, 37(3):302–

320, 1978.

18. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Quality through Exception

Understanding, Prediction, and Prevention. In P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamoha-

narao, and R. Snodgrass, editors, Proceedings of 27th International Conference on Very Large Data Bases

(VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

19. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings 11th European Con-

ference on Machine Learning, volume 1810 of Lecture Notes in Computer Science, pages 183–194. Springer-

Verlag, Berlin, 2000.

20. J. Herbst. Dealing with Concurrency in Workflow Induction. In U. Baake, R. Zobel, and M. Al-Akaidi,

editors, European Concurrent Engineering Conference. SCS Europe, 2000.

21. J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-Modellen. PhD thesis,

Universität Ulm, November 2001.

22. J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow Management to Support

Acquisition and Adaptation of Workflow Models. In Proceedings of the Ninth International Workshop on

Database and Expert Systems Applications, pages 745–752. IEEE, 1998.

23. J. Herbst and D. Karagiannis. An Inductive Approach to the Acquisition and Adaptation of Workflow

Models. In M. Ibrahim and B. Drabble, editors, Proceedings of the IJCAI’99 Workshop on Intelligent

Workflow and Process Management: The New Frontier for AI in Business, pages 52–57, Stockholm, Sweden,

August 1999.

24. J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow Management to Support Ac-

quisition and Adaptation of Workflow Models. International Journal of Intelligent Systems in Accounting,

Finance and Management, 9:67–92, 2000.

25. IDS Scheer. ARIS Process Performance Manager (ARIS PPM). http://www.ids-scheer.com, 2002.

33

26. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and Implementation.

International Thomson Computer Press, London, UK, 1996.

27. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling in Work-

flows. PhD thesis, Queensland University of Technology, Brisbane, Australia, 2002. Available via

http://www.tm.tue.nl/it/research/patterns.

28. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall PTR, Upper

Saddle River, New Jersey, USA, 1999.

29. H. Mannila and D. Rusakov. Decomposing Event Sequences into Independent Components. In V. Kumar

and R. Grossman, editors, Proceedings of the First SIAM Conference on Data Mining, pages 1–17. SIAM,

2001.

30. H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of Frequent Episodes in Event Sequences. Data

Mining and Knowledge Discovery, 1(3):259–289, 1997.

31. L. Maruster, W.M.P. van der Aalst, A.J.M.M. Weijters, A. van den Bosch, and W. Daelemans. Automated

Discovery of Workflow Models from Hospital Data. In B. Kröse, M. de Rijke, G. Schreiber, and M.

van Someren, editors, Proceedings of the 13th Belgium-Netherlands Conference on Artificial Intelligence

(BNAIC 2001), pages 183–190, 2001.

32. L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van den Bosch. Process Mining: Discovering

Direct Successors in Process Logs. In Proceedings of the 5th International Conference on Discovery Science

(Discovery Science 2002), volume 2534 of Lecture Notes in Artificial Intelligence, pages 364–373. Springer-

Verlag, Berlin, 2002.

33. M.K. Maxeiner, K. Küspert, and F. Leymann. Data Mining von Workflow-Protokollen zur teilautoma-

tisierten Konstruktion von Prozemodellen. In Proceedings of Datenbanksysteme in Büro, Technik und

Wissenschaft, pages 75–84. Informatik Aktuell Springer, Berlin, Germany, 2001.

34. M. zur Mühlen. Process-driven Management Information Systems Combining Data Warehouses and

Workflow Technology. In B. Gavish, editor, Proceedings of the International Conference on Electronic

Commerce Research (ICECR-4), pages 550–566. IEEE Computer Society Press, Los Alamitos, California,

2001.

35. M. zur Mühlen. Workflow-based Process Controlling-Or: What You Can Measure You Can Control. In

L. Fischer, editor, Workflow Handbook 2001, Workflow Management Coalition, pages 61–77. Future Strate-

gies, Lighthouse Point, Florida, 2001.

36. M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring and Controlling - Technical and

Organizational Issues. In R. Sprague, editor, Proceedings of the 33rd Hawaii International Conference on

System Science (HICSS-33), pages 1–10. IEEE Computer Society Press, Los Alamitos, California, 2000.

37. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77(4):541–580,

April 1989.

34

38. L. Pitt. Inductive Inference, DFAs, and Computational Complexity. In K.P. Jantke, editor, Proceedings

of International Workshop on Analogical and Inductive Inference (AII), volume 397 of Lecture Notes in

Computer Science, pages 18–44. Springer-Verlag, Berlin, 1889.

39. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes

in Computer Science. Springer-Verlag, Berlin, 1998.

40. M. Sayal, F. Casati, and M.C. Shan U. Dayal. Business Process Cockpit. In Proceedings of 28th International

Conference on Very Large Data Bases (VLDB’02), pages 880–883. Morgan Kaufmann, 2002.

41. G. Schimm. Process Mining. http://www.processmining.de/.

42. G. Schimm. Generic Linear Business Process Modeling. In S.W. Liddle, H.C. Mayr, and B. Thalheim,

editors, Proceedings of the ER 2000 Workshop on Conceptual Approaches for E-Business and The World

Wide Web and Conceptual Modeling, volume 1921 of Lecture Notes in Computer Science, pages 31–39.

Springer-Verlag, Berlin, 2000.

43. G. Schimm. Process Mining elektronischer Geschäftsprozesse. In Proceedings Elektronische

Geschäftsprozesse, 2001.

44. G. Schimm. Process Mining linearer Prozessmodelle - Ein Ansatz zur automatisierten Akquisition von

Prozesswissen. In Proceedings 1. Konferenz Professionelles Wissensmanagement, 2001.

45. G. Schimm. Process Miner - A Tool for Mining Process Schemes from Event-based Data. In S. Flesca and

G. Ianni, editors, Proceedings of the 8th European Conference on Artificial Intelligence (JELIA), volume

2424 of Lecture Notes in Computer Science, pages 525–528. Springer-Verlag, Berlin, 2002.

46. Staffware. Staffware Process Monitor (SPM). http://www.staffware.com, 2002.

47. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes using Woflan.

The Computer Journal, 44(4):246–279, 2001.

48. A.J.M.M. Weijters and W.M.P. van der Aalst. Process Mining: Discovering Workflow Models from Event-

Based Data. In B. Kröse, M. de Rijke, G. Schreiber, and M. van Someren, editors, Proceedings of the 13th

Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2001), pages 283–290, 2001.

49. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-Based Data. In

V. Hoste and G. de Pauw, editors, Proceedings of the 11th Dutch-Belgian Conference on Machine Learning

(Benelearn 2001), pages 93–100, 2001.

50. A.J.M.M. Weijters and W.M.P. van der Aalst. Workflow Mining: Discovering Workflow Models from Event-

Based Data. In C. Dousson, F. Höppner, and R. Quiniou, editors, Proceedings of the ECAI Workshop on

Knowledge Discovery and Spatial Data, pages 78–84, 2002.

35

About the authors

Wil van der Aalst is a full professor of Information Systems and head of the sec-

tion of Information and Technology of the Department of Technology Management at

Eindhoven University of Technology. He is also a part-time full professor at the Com-

puting Science faculty at the department of Mathematics and Computer Science at the

same university and an adjunct professor at Queensland University of Technology. His

research interests include information systems, simulation, Petri nets, process models,

workflow management systems, verification techniques, enterprise resource planning sys-

tems, computer supported cooperative work, and interorganizational business processes.

Ton Weijters is associate professor at the Department of Technology Management of

the Eindhoven University of Technology (TUE), and member of the BETA research

group. Currently he is working on (i) the application of Knowledge Engineering and

Machine Learning techniques for planning, scheduling, and process mining (ii) funda-

mental research in the domain of Machine Learning and Knowledge Discovering. He is

the author of many scientific publications in the mentioned research field.

Laura Maruster received her B.S. degree in 1994 and M.S. in 1995, both in Computer

Science Department at West University of Timisoara, Romania. At present she is a

Ph.D candidate of the Department of Technology Management of Eindhoven University

of Technology, Eindhoven, The Netherlands. Her research interests include induction of

machine learning and statistical models, process mining and knowledge discovery.

Contact information

Corresponding Author

Prof.dr.ir. W.M.P. van der Aalst

Eindhoven University of Technology

Faculty of Technology and Management (PAV D2)

Department of Information and Technology

PO Box 513

36

NL-5600 MB Eindhoven

The Netherlands

Phone: +31 40 247.4295/2290

Fax: +31 40 243.2612

E-mail: w.m.p.v.d.aalst@tm.tue.nl

WWW: http://www.tm.tue.nl/it/staff/wvdaalst/

Author 2

Dr.ir. A.J.M.M. Weijters

Eindhoven University of Technology

Faculty of Technology and Management

Department of Information and Technology

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

Phone: +31 40 247.3857/2290

Fax: +31 40 243.2612

E-mail: A.J.M.M.Weijters@tm.tue.nl

WWW: http://www.tm.tue.nl/it/staff/tweijters

Author 3

M.Sc. L. Maruster

Eindhoven University of Technology

Faculty of Technology and Management

Department of Information and Technology

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

37

Phone: +31 40 247.3703/2290

Fax: +31 40 243.2612

E-mail: L.Maruster@tm.tue.nl

WWW: http://www.tm.tue.nl/it/staff/lmaruster

38

