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Abstract
Objective Modeling the workflow of a surgery is a topic of
growing interest. Workflow models can be used to analyze
statistical properties of a surgery, for intuitive visualization,
evaluation and other applications. In most cases, workflow
models are created manually, which is a time consuming
process that might suffer from a personal bias. In this work,
an approach for automatic workflow mining is presented.
Materials and methods Ten process logs, each describing a
single instance of a laparoscopic cholecystectomy, are used
to build a Hidden Markov Model (HMM). Using a merging
approach, models at different levels of detail are generated.
These embody statistical information concerning aspects like
duration of actions or tool usage during the surgery.
Results A Graphical User Interface (GUI) is presented, that
uses a graph representation of the HMM to intuitively visu-
alize surgical workflow. It allows changing the level of detail
by expanding and merging nodes. The GUI can also be used
to compare videos of surgeries which are synchronized to the
model.
Conclusions The proposed method allows automatic gener-
ation and visualization of a statistical model describing the
workflow of a surgery.
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Introduction

van der Aalst [1] distinguishes between two approaches
towards workflow design. The traditional approach is typ-
ically used to improve a process or develop a new one. Here,
experts design a new workflow that is implemented after-
wards. In recent years, there has been an increasing interest
in another approach called Workflow mining. It reverses the
traditional method by collecting data at runtime and automat-
ically deriving a model from this data. The Workflow Mining
approach, also called Process Mining, relies on an existing
workflow and is therefore complementary to the traditional
one. Obtaining a model that reflects an existing workflow is
of great value for understanding and redesigning it.

While it is possible to design such a model of an existing
workflow manually, there are many advantages of automating
this work. Manual design is a very time consuming process
that requires expert knowledge and it may be affected by
a personal bias. Often, manually designed models are nor-
mative in the sense that they describe what should be done
rather than describing the actual process [1]. To avoid this,
workflow mining uses a set of process logs, each describing
one instance of the process, and automatically derives the
model from these logs. Automatic modeling can certainly
not replace expert knowledge, but analysis of workflow can
benefit from such more objective methods.

Most work in this area focuses on higher level workflows,
e.g. patient or information flows in the medical domain. In
[2], simulated process logs of hospital-wide workflows, con-
taining events like blood test or surgery, were used to build
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Petri-Net like models. A merging technique is used to build
a model based on 500 event traces.

Also for computer aided surgery, models that are built by
retrospective analysis of surgical data are of great use [3].
So for example a model that describes an existing surgical
workflow is extremely valuable when analyzing a surgery
for pre-development planning of surgical assist systems.
Neumuth et al. [4] analyzed important aspects of micro-
surgical lumbar distectomies for the purpose of assessing
the potential of a new system. They defined several aggre-
gations tasks for aspects of interest and directly derived the
information from the process logs.

For designing future Operating Rooms (ORs), which are
specialized for certain surgeries, a model can also reveal
important information concerning the surgery. Workflow
mining could be used efficiently in post-development stages
as well: for example to evaluate new surgical assist systems,
by comparing a model of the old workflow to a model of
the new one, or by comparing the model of the designed and
planned workflow to a model of the real workflow, once the
staff is daily using the system. When using statistical models,
this can even be used to perform quantitative comparisons. So
it is possible to analyze aspects like the time spent for differ-
ent phases, the use of surgical tools and imaging modalities,
or the different courses an intervention can take.

Furthermore, models can be used to visualize the work-
flow of a surgery. An important advantage of graphical
representations is that they ease interdisciplinary communi-
cation, which is a crucial issue for developing surgical assist
systems. Additionally, they can be used for educational pur-
poses. Advantages and methods for visualizing the process
log of a single instance of a surgery have been discussed
by Neumuth et al. [5]. They used different perspectives on
the process log, emphasizing either on temporal or logical
relations between work steps.

Most workflow mining methods use Petri-Net like mod-
els, as these share many similarities to workflow models that
are established in business sciences. In this work, a statistical
approach, using Hidden Markov Models (HMMs) is taken to
model the workflow inside the OR. Unlike Petri-Nets, HMMs
do not allow for concurrent actions, but can be used to model
properties like the average duration of actions, the variance
of their duration or transitions probabilities between single
actions. They are also very flexible and can be used with con-
tinuous data, like positions of the surgeon or tools, obtained
by a tracking system. Another reason for choosing HMMs
is that usually the process logs contain only a relative low
number of different high-level events. Each of these events
can be represented by one Petri-Net state. In our case, the sur-
gical workflow is modeled at a finer level of detail and many
different combinations of tools might be used. Using Petri-
Nets, we would have to represent each of these combinations
with one state, resulting in a huge model. Using HMMs we

can represent different combinations of tools using only one
state.

HMMs with a small number of states have been used pre-
viously to model surgical actions for evaluating and under-
standing surgical skills. In [6] a surgical simulator was used
to obtain position data of two surgical tools during an exer-
cise of touching a virtual sphere. Based on this data, a four-
state HMM was trained and used to gain insights about hand
movement patterns. In a similar setup [7] used position data
from a simulator to train four-state HMMs in order to clas-
sify instrument trajectories of experts or novices. In [8] force-
and torque-data from a simulator were used to build a 15-state
Markov Model describing the action of tying a knot in a min-
imally invasive setup. Using models of experts and residents,
a learning curve could be shown. In these models however,
it is difficult to give semantic meaning to each single state.

Laparoscopic cholecystectomy has been modeled previ-
ously in [9] using timed automata for the sake of developing
a surgical assist robot system. They modeled the behavior
of a surgeon and a scrub nurse, but currently this model is
not linked to process logs and does not allow for any sta-
tistical analysis. We have presented a completely automated
approach for generating a model of a laparoscopic cholecys-
tectomy using dynamic time warping (DTW) in [10]. This
method allows analyzing the sequence and average duration
of actions and their occurrence along the timeline. The main
drawback of this approach is that DTW can only handle
variations over time and has problems when an interven-
tion can take different courses. Its graphical representation is
linear and contains less information than an HMM, which
is therefore more intuitive. For segmentation purposes, a
HMM model of cholecystectomies was presented in [11].
It allows recovering identified surgical phases automatically,
but contains few states. As each phase is represented by only
one HMM state, the actions occurring inside one phase are
loosely modeled and no insight is given about the ordering
of their occurrences.

In this work, we present the use of a probabilistic merging
approach to generate HMMs, describing the workflow of a
laparoscopic cholecystectomy at different levels of detail.
This is done based on process logs, representing tool usage
during ten surgeries. It is investigated, how this model can
be used to provide an intuitive graphical visualization of the
workflow. A GUI is presented that can be used to display
the model at different levels of detail and gives access to
statistical properties.

Materials and methods

Cholecystectomy is a common but complex surgery that is
performed laparoscopically in 95% of the cases. The objec-
tive of this surgery is to remove the gallbladder and it is
usually performed because of symptomatic gallstone disease.
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It starts with the positioning of four trocars which are used for
insertion of the instruments into the body. The most important
intermediate steps are the dissection, clipping and cutting of
the bile duct and of the cystic artery. Next, the gallbladder is
separated from the liver and removed using a retraction sac.
It finishes with the removal of the trocars and the suturing of
the induced holes.

In minimally-invasive surgeries, the instrument use
strongly correlates with the underlying surgical workflow. To
record the surgical actions during the procedure, instrument
presence was acquired for K = 17 laparoscopic instruments
and represented as a multivariate time series S, where

St,k = 1 i f and only i f instrument k is used at time t.

The instrument signals for an exemplary operation are
displayed in Fig. 1. The vertical lines display the segmen-
tation in 14 phases. These phases have been defined by sur-
geons according to clinical practice. The beginning and end
of all phases could be identified without ambiguity in all ten
surgeries. These multivariate time series can also be seen as
process logs where each time an instrument is inserted or
removed, a new action starts. So, several consecutive, iden-
tical instrument vectors will be referred to as action.

For this work ten surgeries V = {S1, . . . , S10} have been
acquired and labeled with 14 phases. One surgeon did nine
of the surgeries, where some parts have been performed by
assistants. The tenth surgery has been done completely by
another surgeon from the same school.

Hidden Markov models

A HMM is a statistical model that can be used to classify
and generate time series. We will follow the notation of the
classical HMM tutorial [12]. A HMM is described by the
quintuplet λ = (A, B, π, N , M), where N is the number of

hidden states and A defines the probabilities of making a
transition from one hidden state to another. M is the number
of observation symbols. In our case the observation symbols
consist of one symbol for each combination of tools that can
be used. B defines a probability distribution over all observa-
tion symbols for each state. π is the initial state distribution
accounting for the probability of being in one state at time
t = 0. An exemplary HMM, describing one phase of the
laparoscopic cholecystectomy, is shown in Fig. 2. The nat-
ural way to visualize a HMM is by using a graph, where
nodes represent the hidden states and the edges represent
the transition probabilities. The nodes are labeled according
to the observation symbol probability. In this example, the
average time spent in one state is visualized by the size of
the state and the occurrence of a transition by the size of
the edge. The phase visualized here usually consists of three
clipping actions and the use of scissors at the end. But it also
happens that clipping is performed two or four times and in
some cases additional instruments are used. The remainder
of this section addresses the problem of automatically gen-
erating a model as seen in Fig. 2 from a set of process logs or
time series. Instead of directly building a model of the whole
surgery, for computational issues, every phase is processed
independently, and the resulting models are concatenated at
the end.

Given the parameters λ, the probability of a HMM gener-
ating, or explaining, a certain observation sequence P(S|λ)

can be computed. When modeling the workflow of a surgery
we seek for a model that explains the training examples
well, i.e. find a set of parameters with a high probability
P(V |λ) = P(S1|λ) ∗ · · · ∗ P(S10|λ). A common way to
do this is to randomly initialize a HMM several times and
use the expectation maximization (EM) method which itera-
tively changes A, B and π , converging to a local maximum
of P(V |λ). However, since the initialization is random, the

Fig. 1 Instrument use during
one exemplary surgery. Phases
are indicated by the dotted lines
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Fig. 2 Visualization of an HMM describing phase 4 of the surgery

obtained model is not easily reproducible and the method
does not comply with the objective of generating a human-
readable graph. This method is also not capable of changing
the topology as it cannot change the number of states or add
transitions. Another way to build an HMM would be to design
the topology manually using approximate values for A, B
and π and then use EM to estimate better values for them.
This however is a laborious task that requires much expert
knowledge. Instead, we use another approach that automati-
cally derives both, the topology and also the other parameters
from the training data.

Model merging

In order to automatically build the HMM topology, a HMM
merging approach is used [13]. Here, an initial HMM λ0

is constructed by adding parallel paths of states for each
surgery. Each of these paths contains one state for each action
and describes the actions that occurred in one process log. An
illustrative example of this, using only two surgeries and sim-
plified transition probabilities, is shown in Fig. 3. This initial
model is of no use as it only explains the training data but does
not describe the general workflow of this phase. To obtain a
more compact model that describes the general workflow,
states are merged iteratively. In each step t , a HMM with
parameters λt is generated by merging two states from λt−1.
The algorithm uses a best-first heuristic, always choosing the
two states with maximum value forP(V |λt ). As can be seen
in the example in Fig. 3, after several merging steps a more
compact model is obtained that still explains both training
sequences.

A straightforward implementation of this method can-
not be computed in reasonable time, as its complexity is
O(N 5T L), where N is the number of initial states, T the
duration of the surgeries and L the number of training surg-
eries. Using an approximation of P(V |λt ) based on the
Viterbi path approximation (see [14] for a detailed expla-
nation) and a graph implementation of the HMM structure,
this can be reduced to O(N 2T L). For the observation sym-
bol probability, different distributions have been tested. The
merging process showed to be largely unaffected by the
choice of the probability distribution. To obtain a sequen-
tial model, that does not contain loops, the algorithm can be
modified to only allow merges that do not lead to a topology
with loops.

Some properties of the merging approach can be seen in
Fig. 2. For the typical workflow of this phase, one state per
action is maintained. If there are several actions that occur
less frequently, they are likely to be merged as this will only
slightly reduce P(V |λt ). So we obtain a model that focuses
on the typical workflow, but also contains unusual events.

A HMM embodies much information that can be used to
analyze the workflow. Using the transition probabilities, the
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Fig. 3 Illustration of the model
merging approach. The initial
model is build from two
exemplary sequences
{clipping, idle, scissors} and
{clipping, idle, clipping, idle,
clipping, idle, scissors}. The
two states that are merged in the
next step are indicated by the
bold border

average time spent in one state and the probability of making a
transition to another state can be computed. It is also possible
to compute the variance of the average duration or the average
time an instrument is used. From the transitions probabilities
or using sampling techniques, it is also possible to estimate
properties like the average time between two states or the
likelihood of taking a certain intervention course.

It should be noted that in every step a valid model is gen-
erated. So, the result of this merging algorithm is not a single
HMM but a set of HMMs with decreasing number of states.
The whole process can also be seen as a tree, where the states
of the initial HMM are the leaves and each state that is gen-
erated by merging is represented as the parent of the two
merged states. This will be used to allow changing the level
of detail when visualizing the workflow, as explained below.

Results

To allow visual analysis of the workflow and to access the
statistical properties of the HMM a GUI is used. An example
of this GUI is shown in Fig. 4. As already mentioned, the
natural way of visualizing a HMM is using a graph. For gen-
erating the spatial layout of the nodes and edges GraphViz
[15], an open source graph drawing tool, is used. The edges
are weighted according to the transition probability they rep-
resent, and GraphViz builds the layout of the graph to keep
edges with a high weight short and straight. Doing this, the
typical workflow is visualized along a straight line, while

unusual actions are visualized to the left or right of the typical
sequence of actions. The current version of the GUI allows to
access the most important statistical properties of the HMM.
The transition probabilities and average duration of a state
are shown when moving the mouse onto the corresponding
node or edge. The average time spent in one state across all
ten training surgeries is visualized by the size of the node.

A general problem in information visualization is to dis-
play the right amount of information. A graph, containing
only few nodes, for the most common actions, will be best
suited to understand and analyze the most important aspects
of the workflow. But it is not appropriate for detailed analy-
sis or for examining uncommon events. Displaying every
bit of information by using a graph with a huge number
of states, allows a more detailed analysis of the workflow.
But such a visualization will also include a lot of unimpor-
tant information and will be hard to interpret. To deal with
this problem, we reduce the number of visible elements by
clustering. When doing clustering, the graph is simplified
by merging several nodes into one. By allowing splitting it
again, it is possible to analyze parts of the graph in more
detail. Most mentions of clustering in graph visualization are
purely structure-based [16], using only the graph structure to
perform clustering. We use a content-based approach by uti-
lizing the information obtained during the model merging
process. Nodes can be expanded or merged using the merg-
ing information stored in the tree structure that was described
in the last section. This method is content-based as it does not
rely on aspect like neighborhood information in the graph,
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Fig. 4 In the GUI, the level of
detail of the HMM can be
changed simply by expanding or
merging states. On the left side a
coarse visualization is used,
where only one state for clipping
and idle and another for scissors
is used. On the right side, the
nodes have been expanded
several times. The level of detail
can also be changed during
video replay. While the video is
playing, the corresponding node
in the model is highlighted

but on the merging process, which is driven by the data.
A very compact visualization as seen in Fig. 4 on the left
side can be expanded to a more detailed view as seen on
the right side. While it would be possible to allow splitting
states until the initial HMM λo is reached, the GUI limits the
number of splits. Only splits are allowed that significantly
raise the probabilityP(V |λ). A split that does not raise this
probability, does also not contribute to better explaining the
workflow as it adds no significant amount of information.
It must be noted that the order of merges during the model
merging does not restrict the order in which the nodes can be
expanded in the GUI. So it is possible to expand one part of
the graph, while viewing another part at a low level of detail.

The GUI allows to simultaneously replay a video of the
surgery and highlight the corresponding state of the HMM.
This can also be seen in Fig. 4. On top of the video, the
instrument vector or process log of this surgery is displayed.
To synchronize the video of surgery i with the HMM, the
Viterbi algorithm [12] is used to estimate the most likely
sequence of states in the model given the observations of Si .
While the video is running, the level of detail of the HMM
can still be changed.

In addition to visualizing the HMM as a graph, the statisti-
cal parameters can be analyzed directly. Table 1 shows some
of the parameters of the right HMM in Fig. 4. In this table, the
average time spent in the states, the probability of reaching
a state and the instrument use in the states are shown. Again
we can make use of the merging, and display the statistical
properties of a more compact HMM. The parameters of the
compact one shown on the left side of Fig. 4 are given in
Table 2.

Table 1 Statistical properties embodied in the 11-state HMM shown
on the right of Fig. 4

Avg. Probability Probability of an
Node duration of reaching instrument being

(s) (%) used

First clipping 11.44 100.00 Clipping device = 100.00

First idle 12.71 77.78 No instrument = 100.00

Second 9.00 77.78 Clipping device = 100.00

clipping

Second idle 13.25 88.89 No instrument = 100.00

Third 14.13 88.89 Clipping device = 100.00

clipping

Third idle 7.13 88.89 No instrument = 100.00

Scissors 21.33 100.00 Scissors = 100.00

Exception 1 29.00 22.22 Clipping device = 44.83

No instrument = 55.17

Exception 2 20.00 11.11 Clipping device = 65.00

No instrument = 35.00

Exception 3 27.00 11.11 Suction and irrigation = 75.00

No instrument = 25.00

Dissecting device =76.32

Exception 4 38.00 11.11 HF cutting = 5.26

No instrument = 18.42

Note, that the size of the nodes in Fig. 4 represents the average duration
multiplied by the probability of reaching the node

Discussion

Automatic generation of workflow models is of great value
for analyzing the surgical workflow. We presented a method
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Table 2 Statistical properties
embodied in the 2-state HMM
shown on the left of Fig. 4

Node Avg. Probability Probability of an instrument
duration (s) of reaching being used (%)

node (%)

Clipping and idle 78.67 100.00 Clipping device = 47.38

Suction and irrigation = 2.89

Dissecting device = 4.13

HF cutting = 0.28

No instrument = 45.32

Scissors 21.33 100.00 Scissors = 100.00

that allows mining of a statistical model from a set of process
logs. This method was demonstrated at the example of a
laparoscopic cholecystectomy. In this work only binary infor-
mation about instrument use during a surgery was used. As
HMMs are very flexible and can also deal with other types
of information, this approach can be adapted to use posi-
tion or movement data, biomedical signals and other kind of
sensors. We believe that in the future such workflow mining
methods will become even more important, as the number of
sensors in the OR is steadily increasing. In the future, process
logs could be generated automatically for each surgery, con-
taining information like tool presence or even tool position,
obtained using RFID-technology, position and orientation of
the patient table or information acquired from video images
using computer vision techniques.

The data used for this work was acquired manually by
videotaping the surgeries and labeling them afterwards,
which makes it hard to record a large number of surgeries. To
be able to get more data, we are currently developing a trocar
equipped with a sensor that is capable of detecting insertion
and removal of instruments. Mining large amounts of process
logs would not only result in accurate statistical information
about surgical procedures, but also allow to analyze common
or complex problems or to compare surgeons, hospitals and
different ways/schools to carry out a surgery. One limitation
of the model merging method is that, despite using some
approximations, it is still very slow. The computation has
however to be performed only once. For processing a larger
number of process logs it will be an issue how to speed it
up. Some ideas to handle this problem have already been
discussed in [14].

Always when dealing with information it must also be
taken into account, how to present this information in an
appropriate way. In addition to the generation of the model,
we have presented a graph visualization where the level of
detail can be changed by the user, based on a content-based
clustering. Using the GUI, that can also replay synchronized
surgical videos, it is very easy and intuitive to explore the
workflow of a surgery.

This work provides a novel approach to analyze the sur-
gical workflow. The model and its visualization were evalu-
ated by our medical partner, who verified the consistency of
the automatic generation. He is now very interested in using
this method for objective analysis of workflow, educational
purposes and benchmarking of experienced surgeons. Future
work will therefore focus on carrying out a systematic valida-
tion of the method, by collecting data from different surgeons
and analyzing their feedbacks on the resulting model. Such a
workflow mining approach can certainly not replace manual
modeling and analysis of workflow using expert knowledge.
It is, however, a complementary method, which allows get-
ting accurate statistical information and an unbiased view on
surgical workflow.
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