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Abstract

Workflow-nets are mathematical frameworks that are used to formally describe, model and im-

plement workflows. First, we propose critical section workflow nets (abbreviated WFCSnet).

This framework allows feedbacks in workflow systems while ensuring the soundness of the

workflow. Feedback is generally not recommended in workflow systems as they threaten the

soundness of the system. The proposed WFCSnet allows safe feedback and limits the maxi-

mum number of activities per workflow as required. A Theorem for soundness of WFCSnet

is presented. Serializability, Separability, Quasi-liveness and CS-Properties of WFCSnet are

examined and some Theorems and Lemmas are proposed to mathematically formalize them. In

this Thesis, we define some formal constructs that we then build upon. We define the smallest

formal sub-workflow that we call a unit. We propose some mathematical characteristics for the

unit and show how it can be used. We study similarities between units and whether two units

can be used interchangeably or not. We then use composites out of simple units to build more

complex constructs and we study their properties. We define the concept of cooperation and

propose a mathematical definition of the concept. We discuss the concept of task coverage and

how it affects cooperation. We claim that task coverage is necessary for any task to be achieved

and therefore, a necessity for cooperation. We use mathematical methods to determine the task

coverage and the candidate cooperative partners based on their capabilities that can contribute

to the desired task. Workflow-net based cooperative behaviour among agents is proposed.

First, we propose a cooperative algebra, which takes the desired objective of cooperation as a

plan and then transforms this plan into a workflow-net structure describing dependencies and

concurrency among sub-workflow elements constituting the overall plan. Our proposed coop-
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erative algebra converts the plan into a set of matrices that model the cooperative workflow

among agents. We then propose a cooperative framework with operators that assign tasks to

agents based on their capabilities to achieve the required task.

Keywords: Workflow-net, Multi-Agent cooperation
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Chapter 1

Introduction

Cooperative multi-agent systems is a crucial research topic in the field of robotics. Cooperative

behavior is sometimes necessary for a multi-robot task, such as robot soccer. At other times it

is beneficial for increasing performance. In this Thesis, we use an extension of Petri-nets called

workflow-nets to solve the problem of cooperative multi-agent systems. Multi-robot systems

are the case study for the proposed framework. We use workflow-nets to model the behavior

of every agent involved in a cooperation process. Barron [13] used Petri-nets to model the

synchronization communication of actions in an editor-referee system. The work presented in

this Thesis is more encompassing than that as well as being provably theoretically sound.

1.1 Thesis Contributions

The following are the contributions of the Thesis:

1. We introduce a framework that synchronizes activities in mutually exclusive workflow-

nets (critical sections),

1



2 Chapter 1. Introduction

2. We introduce a cooperative composite logic-based algebra for recursive workflow-net

construction and

3. We introduce a workflow-net based cooperative framework for autonomous multi-agent

cooperation.

1.2 Thesis Contents

This Thesis is organized as follows:

Chapter 2 surveys the current research on cooperative agents and workflow-nets.

Chapter 3 gives an introduction to Petri-nets and workflow-nets. In this Chapter, all the re-

quired concepts are presented and illustrated. These concepts are the bases for many proposed

Theorems and Lemmas throughout this Thesis.

Chapter 4 introduces a new model for workflow-nets. This model deals with feedback

and synchronization between cascaded activities in an automated operation. The proposed

model is called workflow-nets with critical sections WFCSnet. It guarantees the soundness

of a workflow-net while using feedback. A Theorem and Lemma of soundness are presented.

Another Theorem shows the relationship between the soundness of a WFCSnet and the quasi-

liveness and the CS-properties of that same net.

Separability and serializability are two features that are desirable in workflow-nets. Chapter

4 presents the two concepts and gives a Theorem that shows the soundness of a WFCSnet with

serializability and separability.

Chapter 5 demonstrates a new composite logic based algebra for constructing a closed form

algorithm, which can be used to build a workflow-net based on a given plan.



1.2. Thesis Contents 3

Chapter 6 proposes a cooperative framework using workflow-nets. The Chapter starts with

a definition of a minimum cooperative object (we call this a unit). It also provides a mathemat-

ical description for what we call choice-independent units, similar units and identical units. We

expand the definition to include sub-workflow-nets which are composed of several units (we

call them compositions). We propose a Theorem of soundness for our cooperative framework.

We then propose a cooperative operator. We then expand our platform to include N agents

and we study its behavior when performing deterministic and non-deterministic time-sensitive

tasks. Finally Chapter 7 ends the Thesis with conclusions and future work.



Chapter 2

Literature Survey

Robot-based problems such as robotic navigation often benefit from the advantages provided

by multiple, cooperating mobile agents [16, 31, 41]. Such gains include improved performance

and simplicity of robot design. In addition, there are common multi-agent tasks that cannot

be carried out by a single robot, such as playing soccer and follow-the-leader swarms [8].

Conversely, predator-prey and terrain exploration problems are examples of tasks that can be

performed by a single agent yet may be more efficiently addressed with multiple robots [9].

Cooperation among a group of robots is defined as the process of allocating and managing

available resources to achieve a certain goal. Typically, these resources include time, actions,

knowledge, sensor readings and computations. As such, a cooperative situation must satisfy

various constraints on the goal, the tasks, and the robots themselves. These constraints can be

summarized as:

1. Constraints on the nature and the amount of resources to be assigned to each robot and

the time frame in which the goal must be reached,

4



5

2. Constraints on the tasks to perform, such as precedence ordering and the amount of time

to complete tasks and

3. Constraints on task and robot synchronization.

Cooperating mobile agents must negotiate for resources and perform task planning and schedul-

ing in order to accomplish common goals.

Aalst et-al. introduced the modeling of workflow systems with an extension to Petri-nets,

known as workflow-nets [56, 54]. A workflow-net is a Petri-net with unique input and output

places, and is said to be sound if it is possible for a token in the input place to reach the output

place. Aalst also introduced constructs for token routing known as AND split and join, and OR

split and join [1, 55].

Petri-net composition is an active area of research [62, 27, 65, 63, 48], where services may

be composed on the basis of complementarity. For instance, send and receive services are

complementary by nature and may be composed [10]. Most of the Petri-net based services

are composed directly. Direct composition is the process of fusing two or more Petri-nets

in a single one which provides a complete service. Strict conditions apply in direct Petri-net

composition: for two communicating services A and B, the structure of messages received by

A must match that of messages sent by B, and vice-versa. Services A and B must also consent

to an exchange sequence for the composition to be logically correct [62]. In practice, direct

composition is difficult because service designers cannot always anticipate the need for future

composition.

Wei et-al. propose a web service composition methodology based on mediators which

allow for the implementation of composition in the case of partial compatibility [62]. A me-
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diator is an object that is built upon the services that need to be composed and works as an

interface which unify their input and output message structures. The main objective of service

composition using mediators is to fuse incompatible services.

Baldan et-al. and Aalst et-al. both introduce an extension to Petri-nets called open Petri-

nets [10, 11, 57]. An open Petri-net is a workflow-net in which special sets of places act as

service access points. The principle of soundness may not be respected in workflow-nets which

possess multiple service access points. To overcome this problem, both Baldan et-al. and

Aalst et-al. classified these access points into two types: the workflow places and the external

places, acting as interfaces for the intermediate activity states [10, 57]. Two open Petri-nets

can be composed by external places if and only if these types of places are complementary.

This direction of research focuses on coupling services into a producer-consumer relationship.

Work distribution models have been investigated with the use of colored Petri-nets [49].

In a similar way, Aldred et-al. examine communication abstractions for distributed business

processes [7]. These recent advances address process integration and distribution with various

forms of Petri-net compositions.

Pederson proposed a technique to determine the minimum flow of composed Petri-nets

given the minimal flows of its components [47]. The notion of minimum flow is addressed

in the context of transition-based and place-based compositions. Determining the minimum

flow is interesting in many applications as it represents the minimum processing required for

an outcome.

Kindler et al. introduce a weaker condition for global soundness, first proposed by Aalst

[33, 55]. According to Aalst, every sub-workflow must terminate with a token in its output

place. Kindler et al. considers only the sub-workflows which have a token in their input places
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in determining the global soundness of the composed workflow.

Recently, Lima et al. [39] introduced various types of Petri-nets to model distinct views

of the robotic task model, in addition to quantifying task performance and using learning tech-

niques to improve the general efficiency of execution. However, soundness properties1 were

not addressed and it remains unclear whether his framework can guarantee successful cooper-

ative goal completion. Zhang proposed a Petri-net framework for task-level planning [67] in

which an algorithm that depends only on the goal and the constraints required to derive action

sequences is proposed. Gerkey and Matari [26] presented a domain-independent framework

for multi-robot task allocation in which it is shown that task-allocation may be thought of as

an instance of the optimal assignment problem. Alternatively, Noborio and Edashige [45] pro-

posed an on-line, deadlock-free path-planning algorithm for multiple agents operating in an

infinite world. Sauro et al. [53] proposed a framework that defines the cooperation problem

using three modules: the environment module, the action module, and the agent module. Both

the environment and the actions are modeled with a labeled-transition system where the states

represent the environment and the edges represent the various actions taken by the agent within

the environment. Each pair of states is connected with a single edge to represent the possibility

of the environment changing its state from state S to state S ′, when an action is performed.

The agent is defined by the set of actions it can perform. In this case, the cooperation of two

or more agents is the union of the two or more action sets that belong to the agents. The main

disadvantage of this approach is that it cannot represent concurrency in a direct way. More-

over, when the environment is complex and the number of agents exceeds a certain limit, the

framework becomes unsuitable for many applications, especially those that need to maintain

1If a Petri-net has an input token then it will eventually have an output token; i.e. it will execute and terminate.
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real-time performance measures.

Herzig and Longin [32] developed a new logic of intention which addresses the problem of

cooperation. They showed that cooperation not only involves the contribution of some agent

to goal satisfaction but also the adoption of the beliefs and intentions of that agent so as to

indirectly allow it to achieve its goal. They proposed various techniques for belief adoption

and intention generation. However, they did not propose a solution for the case where two or

more beliefs contradict each other.

Chaimowicz et al. [18] proposed a technique for tightly coupled multi-robot cooperation,

in which robots work in concert to achieve a common goal. Their work focused on merging

communication with simple control techniques in order to achieve cooperation. Their platform

allows heterogeneous robots with different sensors and control mechanisms to cooperate in

order to achieve complex goals. Their platform was tested using a follow-the-leader task.

Chong et al. [22] proposed a coordination control between telerobots in such a way as to

overcome the problem of delayed round-trip signals. Their testing environment consisted of

two robots and two human operators who remotely controlled the robots. Thus, the robots were

not fully autonomous and their coordination approach was aimed at solving the delay problem

only.

Botelho and Alami [15] proposed a decentralized multi-robot system scheme for loosely

coupled task planning and negotiation. The main protocol consists of three services: task

allocation, cooperative reaction and task execution. Task allocation is achieved by sending the

same set of tasks to be executed to all robots, followed by a negotiation for task selection. Each

robot creates a plan for achieving the task under consideration. Those robots unable to generate

a plan move to an idle state, waiting for another task, whereas those who can generate plans
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are considered candidates. The best candidate is chosen by the robot asking for the service. A

cooperative reaction occurs when a robot fails to achieve its task. The robot asks for help and

evaluates the offers from other robots to choose the best one. If no other robot responds, the

failed robot abandons the task. The execution task is responsible for synchronization between

the set of cooperative robots and the execution of the required tasks. Together, these three

services constitute a framework the authors call M+.

Alami et al. [4, 6] proposed a framework for multi-robot systems called the Martha Project.

The Martha project deals with trans-shipment tasks using multi-robot systems (from 10 to 100

robots). The system is comprised of a central station and a set of autonomously guided vehicles

that communicate among themselves and with the central station. They proposed a topological

graph-based environment model that is suitable for the problem of robot cooperation. The

topological graph models areas, routes, and docking stations. The model is known to each

autonomous vehicle and when a task is submitted to a robot from the central station, it is

required to refine the plan generated to achieve the task after coordinating the route access

with the other robots. The coordination is achieved through a plan-merging paradigm that

guarantees a conflict-free overall plan for the cooperating robots.

Lin et al. [40] proposed an agent-based robot control that achieves multi-robot cooperation

for environment exploration. The proposed approach depends on merging the partial environ-

ment maps simultaneously obtained by many robots to constitute a complete mapping. Their

experiments show good results when using two robots. However, the problem of coordinating

more than two robots was not specifically addressed.

An interesting approach to robot cooperation was proposed by Yingying et al. [66]. They

proposed a way to define a personality for each cooperating robot via a function with param-
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eters that can be tuned to create different modes of personalities for the robots. The authors

claim that giving the agents their own personality produces more cooperation modes. These

modes can lead to better performance for the multi-agent system. They did not show how these

modes can be controlled to yield a better performance.

Al-Jumaily and Kozak [3] proposed a robot cooperation framework that is based on nego-

tiation. The negotiation among agents is achieved in several steps. The first step, performed by

the agent who is required to attend to a task, is to negotiate with other agents, by broadcasting

the negotiation request to all. In the meantime, all other agents listen to the broadcast. These

steps (Broadcasting and Listening) achieve together the data sharing that is required for the

agents to negotiate. The third step is for every agent to calculate its distance to the negotiator.

After calculating all distances, a decision is made. The robot that is closest to the target is the

one that will achieve the required goal.

Brokowski et al. [14] proposed a robot cooperation framework based on Finite State Au-

tomata (FSA). They designed cooperation protocols using FSA between two robots to manip-

ulate and displace objects within a simple environment. The model they used did not address

the problem of scalability. It is known that the complexity of representing concurrency with

FSAs increases exponentially with the number of agents. To avoid this problem, they claimed

that their framework is only applicable in simple environments.

Chan and Yow introduced a strategy-driven framework for multi-robot cooperation [20].

They used robot soccer as an application to demonstrate their framework. Each team has a

set of strategies stored in a database in the form of a multi-dimensional cube. Each node of

this cube is a single strategy and, according to the context, a team may change its strategy

for a neighboring one within the cube. Their work represents a way to model a global plan



11

for the whole team. However, cooperation between robots is not explicitly achieved; their

work represents a role assignment based on a predefined set of global plans rather than explicit

cooperation.



Chapter 3

Introduction To Petri-nets

Petri-nets were invented by Carl Adam Petri in 1939 for the purpose of describing chemical

processes. He documented the Petri-net in 1962 as part of his dissertation, Kommunikation mit

Automaten (communication with automata). Petri’s work significantly advanced the fields of

parallel and distributed computing and it helped define the modern studies of complex systems

and workflow management.

A Petri-net is a directed bipartite graph with two types of nodes, namely places (circles)

and transitions (solid rectangles). Transitions model discrete events that may occur. Places

are pre- or post-conditions for the transitions they are connected to. Places and transitions are

connected via directed weighted arcs and if these arcs are not weighted than the weight is

assumed to be one. These integer weights determine the number of activities that flow from

places along the arcs per transition. These activities are called tokens (small solid circles that

reside by places). The distribution of tokens over places is called a marking. Figure 3.1 shows

the structure of a Petri-net.

Arcs connect places to transitions and transitions to places but they never connect two

12



13

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�������������� ������������������������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

������������

Place

Token

Arc

Transition

Weight

2

Figure 3.1: The structure of a Petri-net.

nodes of the same type together. When arcs run from places to a transition, these places are

input places to this transition, and, when they run from a transition to places, these places

are output places to this transition. A transition in a Petri-net is enabled if and only if there

are tokens in all the input places to this transition and each input place contains a number of

tokens that is greater than or equal to the weight of its connecting arc to this transition. After

a transition is enabled, it will eventually fire by consuming tokens from its input places and

producing tokens in its output places. The number of produced/consumed tokens per place is

equal to the weight of the arc that connects this place with this transition. Figure 3.2 shows

the firing process of a Petri-net. Figure 3.2(a) shows a petri-net with an initial marking of 4

tokens in place P1. Transition T1 is enabled because place P1 has more tokens than the weight

of the arc to T1. In figure 3.2(b) , transition T1 fires and 3 tokens are consumed from P1 and

2 tokens are produced in place P2 because the weight of the arc that goes from T1 to P2 is 2.

Transition T2 is then enabled. Consequently, in figure 3.2(c), transition T2 fires and a token is

consumed from P2 and a token is produced in P3. Therefore,in Figure 3.2(d), transition T2 is
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still enabled and another token is consumed from P2 and a new token is produced in P3. Notice

that transition T1 is never enabled again during the scenario because the number of tokens in

place P1 is less than the weight of the arc that joins P1 and T1.
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Figure 3.2: The firing of a Petri-net: (a) A petri-net with an initial marking of 4 tokens in place

P1. (b) Transition T1 fires and 3 tokens are consumed from P1 and 2 tokens are produced in

place P2. (c) Transition T2 fires and a token is consumed from P2 and a token is produced in

P3. (d) Transition T2 is still enabled and another token is consumed from P2 and a new token

is produced in P3.

Two transitions that have the same input place are called choice-dependent and in this

case, the behavior of the Petri net is non-deterministic and one of the transitions is enabled and
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fired while the other has to wait to be re-enabled again. Figure 3.3 shows a Petri-net of two

transitions that are not choice-free (choice-dependent).
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Figure 3.3: Transitions T1 and T2 are choice-dependent because if one of them fires, it will

disable the other from firing. This is a non-deterministic case of Petri-nets, any one of them

could fire before the other.

Consider a Petri-net for the famous dining philosopher’s problem as shown in Figure 3.4.

This problem illustrates a common multi-process synchronization problem first presented by

Dijkstra and Hoare [61, 24]. The dining philosophers problem is summarized as five philoso-

phers sitting at a circular table to either eat spaghetti or think. Eating and thinking actions in

this problem are mutually exclusive and therefore any philosopher can either eat or think at

any point of time. Between each pair of adjacent philosophers there is a fork that is placed

and therefore, each philosopher has a fork on his left hand side and another one on his right

hand side. The rule for eating in this problem is that two forks are needed for a philosopher
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to eat and a philosopher can only use the forks on his immediate left and right. In Figure 3.4,
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Philosopher 1 eating

Philosopher 2 eating

Philosopher 3 eatingPhilosopher 4 eating

Philosopher 5 eating

�
�
�

�
�
�

Philosopher 1 eating

Philosopher 2 eating

Philosopher 3 eatingPhilosopher 4 eating

Philosopher 5 eating

(a) (b)

Figure 3.4: The Petri-net that models the dinning philosophers problem. Tokens in this case

represent forks. (a) The initial state of the five philosopher model with forks on the right and

left-hand sides of each philosopher. (b) The Petri-net marking when philosophers one and three

eating. After they finish eating the transitions consume the tokens and the marking becomes

like that shown in (a).

forks are represented by tokens. Transitions represent the action of eating. When a transition is

enabled and consequently fires (consumes two token from the two input place, one from each

place) then the philosopher that is represented by this transition is eating. If the transition is

enabled but did not fire yet or is not enabled at all then the philosopher represented by this

transition is thinking.

Figure 3.5 shows some important features of Petri-nets. The first feature is concurrency
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Figure 3.5: Two processes are modeled by a Petri-net. The two processes can not accept

any new input unless both transitions T1 and T2 have been executed. Such synchronization is

achieved by using transition T3, which only becomes enabled when both T1 and T2 are fired.

When T3 is fired, it enables one or both transitions (T1 and T2) depending on which input places

have tokens. Note that Process 2 can not deliver an output token unless Process 1 is executed.

The 2 processes are delimited by the dashed lines.

modeling. This Petri-net can model two processes working together. The second feature is

synchronization. None of the processes can start a new execution instance unless the other
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process reaches a certain point in its execution, as defined by the model. The third feature is

execution dependency. Note that Process 2 can not be executed until Process 1 is finished. Also

note that the marking in the feedback places must be as shown for the very first execution.

3.1 Characteristics of Petri-nets

Characteristics of Petri-nets can be classified into structural and behavioral properties. Struc-

tural properties are those that describe how the Petri-net is built and how the topology describes

the execution of tasks within the system. An example of these characteristics is boundness.

Some higher level structural description for Petri-nets are state machine, marking graph, and

siphons. Behavioral properties are those properties that describe how the machine will be-

have during run time. The behavioral properties depend on the structural properties and initial

marking of the Petri-net. Examples for these properties are reachability, soundness, livness,

serializability, separability and Controlled Siphons. In this Section, we describe some of the

structural and bevabioral properties of the Petri-nets that is discussed through out this thesis.

3.1.1 Reachability

The reachability of a Petri-net depends on whether a certain marking can be obtained in the

Petri-net from an initial marking. To study such a feature of Petri-nets, a reachability graph is

constructed to determine all possible marking in this net, given some initial marking. Examples

of reachability are shown in Figures 3.6 and 3.7. As shown in the Figure 3.6, T3 needs tokens

in both P3 and P6 to be enabled and consequently fired. T2 and T5 are competing for the token

that will eventually reside in P2 because they are choice-dependent. This token will eventually
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Figure 3.6: Non-reachable markings in a Petri-net. (a): A Petri-net with an output place that is

not reachable and (b): A reachability graph for the Petri Net shown in (a).

reside in either P3 or P6, depending on whether T2 or T5 will fire, and therefore, T3 will never

be enabled with this marking, and therefore, P4 will never be marked. Figure 3.7, on the other

hand, shows a case of reachability. The output of this Petri-net is reachable provided that

transition T5 consumes the token in place P2 before transition T2 does. The Petri-net in Figure

3.8 is strongly connected in that every node in the Petri-net is reachable from any other node

in this Petri-net and therefore this net represents full reachability.

3.1.2 Livness

The livness of a Petri-net ℵ is a property that indicates whether all the transitions that belong to

ℵ can be enabled or not. A Petri-net with fully reachable transitions is an example of liveness.

Figure 3.6 shows a Petri-net that is not live because there are transitions that will never be
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Figure 3.7: Reachable markings in a Petri Net. (a): A Petri Net with an output place that is

reachable and (b): A reachability graph for the Petri Net shown in (a).

enabled or fired. Figure 3.8, on the other hand, shows a live Petri-net because all transitions

can be enabled.

3.1.3 Boundness

Boundness is a structural property of a Petri-net. It indicates how many tokens can reside in

each place at any time. The maximum capacity for all places is the boundness of a Petri-net. If

a Petri-net is 1-bound (the capacity for every place is a single token) then the Petri-net is said

to be safe.
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Figure 3.8: A strongly connected Petri-net. (a): Every node in this Petri-net is reachable from

any other node that belongs to this net. (b): A reachability graph for the Petri Net shown in

(a). The graph shows that any marking can be reached from any other marking.

3.1.4 State Machine

A Petri-net is said to be a state machine if and only if for every transition there is a single input

place and a single output place. Figure 3.9 (a) shows a Petri-net that is a state machine while

Figure 3.9 (b) shows a Petri-net that is not a state machine (transition T2 has 2 input places).

3.1.5 Marking Graph

A Petri-net is said to be a marking graph if and only if for every place there is a single input

transition if any, and a single output transition if any. Figure 3.9 (b) is a marking graph. Figure

3.10 shows a Petri-net that is both a state machine and a marking graph at the same time.
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Figure 3.9: Different Petri-net structure nets. (a): A State Machine Petri-net and (b): A Mark-

ing Graph Petri-net.
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Figure 3.10: A Petri Net that is both a state transition and a marking graph.

3.2 Siphons

A Siphon is a place that is if insufficiently marked; it will never receive new tokens. An

example of a siphon is place P5 as shown in Figure 3.11.

3.3 Petri-net Symbols

The following Petri-net symbols occur most often in the literature and are used through out this

thesis:
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P1
T1 T2P2 P3 T3

P4

P5
Siphon

Figure 3.11: An example of a Siphon. When place P5 loses its marking, it will never again be

sufficiently marked.

- •t is the set of input places to transition t

- t• is the set of output places from transition t

- •p is the set of transitions that are connected to place p as input

- p• the set of transitions that are connected to place p as output

- |N〉 is the reachable set of nodes from node N

- | • t| is the number of input places to transition t

- |t • | is the number of output places to transition t

- P is the set of places

- T is the set of transitions

- pk is the place number k

- tk is the transition number k
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- i is the set of input places of a Petri-net

- o is the set of output places of a Petri-net

- M(k) or Mk is the Petri-net marking in step number k

- M(0) is the initial marking of the Petri-net

- Mo is the output marking of the Petri-net

- A ∈ |B〉 means A is reachable from B.

Mathematically, a Petri-net is a 4-tuple:

ℵ =< P,T, F,W >, (3.1)

where P is a set of places, T a set of transitions, F a set of arcs between transitions and places,

expressed as P × T ∪ T × P, and W is a vector containing the weights of the arcs in F.

3.4 Workflow-nets

Workflow management and business engineering processes consider industrial systems com-

posed of business processes competing for resources [35]. The workflow space is spanned by

three dimensions [35]. The 1st dimension is the control flow dimension, which is concerned

with the partial ordering of tasks. The 2nd dimension is the resource dimension, in which

resources are classified by identifying roles and organization units. The 3rd dimension of a

workflow is concerned with individual cases. Figure 3.12 shows the different dimensions of

the workflow.
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Control

Case

Workflow ActivityResources

Figure 3.12: The three dimensions of a Workflow-net.

Workflow-nets (WFnet) are used to model the structural and dynamic behaviors of work-

flows. The structural behavior of a workflow defines task dependencies and their structure

which guarantees the desired output. The dynamic behavior is how the structure reacts online

with activities which are handled by the workflow. A workflow-net is a special type of Petri-

net that has two special places, i and o, where i is the only place that does not have any input

transitions and o is the only place that does not have any output transitions. Nodes i and o are

called the source and sink nodes. Workflow-nets are preferred over normal Petri-nets in in-

dustrial applications because they guarantee the success of the industrial process (soundness).

The following are definitions for Workflow-nets and their characteristics.

Definition 1 A Petri-net ℵ is a WFnet if and only if

1. ℵ has an input place i, where •i = φ,
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2. ℵ has an output place o, where o• = φ and

3. if a transition t∗ is added to ℵ such that •t∗ = o and t∗• = i, the Petri-net ℵ∗ becomes

strongly connected.

Note that t∗ is a transition which connects the input to the output of the WFnet.

In the above definition, •i is the set of all input transitions to place i and o• is the set of

output transitions from place o. When a Petri-net is strongly connected, there is a sound path

between any two transitions in the net.

One of the Petri-net properties that is considered essential to workflow-nets is the property

of soundness. Soundness guarantees that the Petri-net will eventually terminate and, at this

moment, there will be tokens in the output place and all other places will be empty. This

signifies that all activities will reach the output place and none of them will be ”lost” inside the

net. When automating a process, it is essential to make sure that the Workflow-net is sound.

Definition 2 A WFnet ℵ is sound if:

1. ∀ M ∈ |Mi〉, Mo ∈ |M〉,

2. ∀ Mk ∈ |Mi〉, i f Mk ∈ |Mo〉 then Mk = Mo and

3. ∀ t ∈ T, ∃ M ∈ |Mi〉, t ∈ |M〉 and Mo ∈ |t〉

where M is a marking of the WFnet, Mi is the input marking, Mo is the output marking, Mk is

the marking at time k and t is a transition.

Other important properties of Petri-nets are Safeness and Quasi-Liveness. A Petri-net is

safe if it is 1-bound; that is, each place has a maximum number of 1 of tokens. Quasi-Liveness
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means that ∀ti ∈ T , ti is firable in a finite time given marking M. In other words, all transitions

will eventually be enabled and fired. If a transition T can not be enabled, then this transition is

said to be starving. To guarantee the success and the feasibility of applying workflow-nets in

industry the following three definitions are needed.

Definition 3 The Controlled Siphons property (CS-property) states that a siphon is controlled,

if and only if, for each reachable marking, the siphon remains sufficiently marked. A Siphon is

a place that is, if insufficiently marked, will never again get new tokens.

Figure 3.13 shows place P5 as controlled siphon. This place is guaranteed to remain sufficiently

marked through the firing of T3.

P1
T1 T2P2 P3 P4

P5

T3

Controlled siphon

Figure 3.13: Controlled Siphon.

Definition 4 Separability is a behavioral property which states that the behavior of a workflow-

net with k tokens in the initial node is seen as a combination of the behavior of k copies of the

net, each of them with one token in the initial node.

Figure 3.14 shows a workflow-net that is not separable. Th two transitions T1 and T2 have

to be enabled each by consuming one token from P1 for the workflow to be able to terminate.
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T1

T2

P1

P2

P3

T3
P4

P5

P6

T4

T5

Enabling T5 depends on the firing 
of T3 and T4

Figure 3.14: Non-Separable workflow-net.

So the two activities represented by the two tokens depend on each other for them to reach the

output.

Definition 5 Serialisability requires that the set of traces of a workflow-net with id-marking

(in this case each token has an identifier) is equal to the set of traces of an abstraction of the

workflow-net. In other words, an activity that exists in a workflow does not effect any other

activity that co-exists in that same workflow.

In other words, Serializability is the ability of seeing the execution of cascaded activities in a

workflow-net as if each of them owns the workflow-net execlusively at any time.

Figure 3.15 shows a workflow-net that is not serializable. it is also not separable. A token

needs to be consumed by T3 in order to enable T2. This means that the marking of one activity

depends on the marking of the other.

Serialisability and Separability are related. Serialisability views the workflow as a pipeline

while Separability views the workflow as a parallel system.
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T1

T2

P1

P2

P3

P4

P5

P6

T4

T5

T3

P7

Figure 3.15: Non-Serializable workflow-net.
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Critical Section Workflow-nets

The concept of workflow management systems first appeared in the field of business process

management [1]. Since then, workflow management has been applied to a wide spectrum of

applications. Kotb et al. proposed a workflow management based health care operating system

[35, 38, 37]. In later research, Kotb et al. proposed a workflow based cooperative platform for

multi-robot systems [36]. Since there is a large diversity of scientific applications, each field

presents its own view of workflow.

A Scientific Workflow Management System (SWMS) is a group of software modules that

handles the modeling and the execution of a scientific experiment. It also models the dependen-

cies among experiment activities and processes and manages resource allocation and utilization

during the experiment [69]. In the last decade, this type of research has been done in the grid

computing field and has made complex and intensive experimental processing feasible [68, 69].

30
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4.1 Critical Sections and Workflow-nets

One of many things that makes applying workflow-nets on scientific applications infeasible is

Workflow-net constraints. One of these constraints is that feedback and loops1 are not per-

mitted, as it threatens the soundness of the system [1]. Some workflow systems have critical

sections, a set of tasks that can only be executed by one activity at a time. This type of work-

flow needs very careful handling so that the critical sections are maintained. Real time require-

ments are fulfilled if and only if the soundness property is guaranteed. We control a critical

section in a workflow-net using a special feedback net. This net controls the flow of activity

in the workflow-net while maintaining system soundness. We call this net a critical section

workflow-net (denoted CSnet). This net is itself a workflow with special tokens known as con-

trol tokens. The original workflow-net and one or more of the control nets constitute what we

call a workflow-net with critical sections (denoted WFCSnet). An example of a WFCSnet is

shown in Figure 4.1. The following are definitions for our proposed WFCSnet:

Definition 1 A critical section is a workflow-net or a sub-workflow-net that can not serve more

than n activities at a time, where n is an integer, 1 ≤ n ≤ k, and k is the maximum number of

activities that can flow in the critical section at any point of time.

Definition 2 A CSnet Ψ is a control net for WFnet ℵ if:

1. Ψ is a sound WFnet,

2. iΨ is the input place of Ψ such that ∃ ti ∈ ℵ where iΨ ∈ ti•,

3. oΨ is the output place of Ψ such that ∃ to ∈ ℵ where oΨ ∈ •to and
1According to business process management, a workflow with loops is not a good design for workflow models.
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P5

Pc1Pc2 Tc

T4P4T3P1T2P2T1P1

Workflow net

Control net

Figure 4.1: A critical section workflow-net denoted as WFCSnet. The WFnet is defined by

{P1,T1, P2,T2, P3,T3, P4,T4, P5}. The input place is P1 and the output place is P5. The control

net CSnet is defined by {Pc1,Tc, PC2}. Note that M(Pc2) is part of the initial marking, otherwise

the net is not sound. After an activity is executed, PC2 must have the same inital marking. This

is the minimum sufficient marking for PC2 as a controlled siphon. The initial marking of PC2

determines the number of activities that can flow in the controlled workflow-net at any point of

time.

4. Ψ ∩WFnet = {iΨ × ti ∪ to × oΨ} where ti ∈ WFnet and to ∈ WFnet and ti ∈ | to〉.

Definition 3 A WFCSnet can be described in terms of a WFnet and a CSnet as follows:

WFCSnet = WFnet
⋃

CSnet. (4.1)

Definition 4 A WFCSnet ℵ is a 5-tuple:

ℵ = 〈P ∪ Pc, T ∪ Tc, F,W ∪Wc,M(0) ∪ Mc(0)〉 , (4.2)
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where P is a set of resource token places in the WFnet, Pc is a set of control places in the

CSnet, T is a set of transitions in the WFnet, and Tc is a set of transitions in the CSnet,

F = Fr ∪ Fc ∪ Fcr,

Fr = T × P ∪ P × T,

Fc = Tc × Pc ∪ Pc × Tc,

Fcr = T × Pc ∪ P × Tc ∪ Pc × T ∪ Tc × P,

W is the set of weights of the arcs of the WFnet, Wc is the set of weights of arcs of the CSnet,

M(0) is the initial marking of WFnet, and Mc(0) is the initial marking of CSnet. The weights

of Fcr and Fc are bound to 1. Figure 4.1 shows a simple WFnet.
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Figure 4.2: WFCSnet: Workflow-nets using control nets. a): A WFCSnet that is not sound,

as it violates the 4th condition in Theorem 4.1.1 and hence, the control token is consumed by

T4 from place P3 resulting in an insufficient marking in the siphon Pc2. b): A WFCSnet that is

sound.
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Definition 5 The following conditions must exist for a WFnet ℵ = ℵ f ∪ Ψ to be a WFCSnet,

where ℵ f is the original WFnet and Ψ is the CSnet:

1. ℵ f = 〈P,T, Fr,W〉 is a sound WFnet,

2. Ψ = 〈Pc,Tc, Fc,Wc〉 is a sound CSnet,

3. P , ∅ and Pc , ∅ and P ∩ Pc = ∅,

4. T , ∅ and Tc , ∅ and T ∩ Tc = ∅,

5. ∀Mk ∈ [M(0)〉 and Mck ∈ [M(0)〉, if Mk = M(0) then Mck = Mc(0) and

6. ∀ f ∈ Fcr, f is sound.

As stated earlier, it is essential to guarantee soundness in workflow systems. In Figure 4.2,

there are two models of WFCSnet. The model on the left-hand side is a WFCSnet that is not

sound, whereas the one on the right-hand side is sound. The following Theorem defines the

soundness of the WFCSnet.

In the following Theorem, we are adopting the following symbols:

- ℵ is the controled WFnet

- Ψ is the control net CSnet that is applied on ℵ

- ℵ f is WFCSnet where ℵ f = ℵ ∪ Ψ

- Pci is the input place of Ψ

- Pco is the output place of Ψ
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- i is the input place for ℵ

- o is the output place for ℵ

- ti is a single transition that has Pco among its input places

- to is a single transition that has Pci among its output places

- ε is a non-empty set of tokens

- M(WF) is the marking of Workflow-net WF

- T is the set of transitions in ℵ

- P is the set of places in ℵ

- TC is the set of transitions in Ψ

- PC is the set of places in Ψ

Theorem 4.1.1 A WFCSnet ℵ f is sound if and only if:

1. ∀ Mk such that Mk ∈ | M(0) ∪ Mc(0) 〉, Mo ∈ | Mk 〉,

2. Ψ is a sound WFnet with Mc(0) = Mc(Pco) and Mc(0) > 0,

3. ℵ ∩ Ψ = {Pco × ti ∪ to × Pci} and

4. ∀ tk ∈ | ti 〉, to ∈ | tk 〉 or ∃ t j | t j = • • tk and to < | • tk 〉.

Proof 1. Since Ψ is a sound WFnet with Mc(0) = Mc(Pco) and Mc(0) > 0, and

ℵ ∩ Ψ = {Pco × ti ∪ to × Pci},
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2. therefore ∃ ε ∈ •ti.

3. Since ∀ tk ∈ | ti 〉, to ∈ | tk 〉 or ∃ t j | t j = • • tk and to < | • tk 〉,

4. therefore ε will not deviate to a non-sound path and will always be in a state that yields

Mo.

5. Since ∀ Mk such that Mk ∈ | M(0) ∪ Mc(0) 〉, Mo ∈ | Mk 〉,

6. therefore ∀ε ∈ M(0), ε will eventually be in Mo,

7. therefore if the conditions of Theorem 4.1.1 are satisfied, then ℵ f is a sound WFnet.

We now show the converse, namely that if the WFCSnet is sound, then these conditions are

satisfied:

Proof 1. Since ℵ f is sound,

2. therefore tokens will always reach place o.

3. Since all tokens will eventually be part of Mo,

4. therefore ∀ Mk such that Mk ∈ | M(0)∪Mc(0) 〉, Mo ∈ | Mk 〉, and ∃ ti|Pco = •ti

and

5. Pco is sufficiently marked.

6. Since Pco is sufficiently marked,

7. therefore Ψ is a sound WFnet and ∃to ∈ ℵ|to = •Pci.

8. therefore ℵ ∩ Ψ = {Pco × ti ∪ to × Pci}.
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9. Since to is always reachable from ti,

10. therefore tokens do not move through a route that does not lead to ti.

11. therefore ∀ tk ∈ | ti 〉, to ∈ | tk 〉 or ∃ t j | t j = • • tk and to < | • tk 〉.

Hence, ℵ f is sound when these necessary conditions are satisfied.

Figure 4.2 shows a case when condition 4 of the Theorem is violated. Note that the number

of activities allowed in the critical section is equal to M(Pco), which determines the bandwidth

of the critical section. To extend the Theorem to allow N tokens to coexist in the critical section,

Ψ is an N-bound WFnet. To allow a single activity at a time, Ψ must be safe.

Lemma 4.1.2 If a WFCSnet ℵ f is sound then its WFnet ℵ is sound and its control net Ψ is

also sound.

We do not need to demonstrate this Lemma as the proof is implicit in the Theorem.

Lemma 4.1.3 For a sound WFCSnet ℵ f , if the marking of ℵ is M(0) then the marking of Ψ is

Mc(0).

Proof 1. Since ℵ f is sound:

2. therefore ti will eventually be fired and will consume a token from Pco, and,

3. to ∈ | ti 〉 2.

4. Since to will eventually fire,

5. therefore a token ε will be produced in Pci.

2Theorem 4.1.1
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6. Since ℵ is sound, therefore o ∈ | to 〉.

7. Hence the marking of ℵ will eventually be in i and o only,

8. Since Ψ is sound,

9. therefore the marking of Ψ will be in Pco only.

10. therefore if M(ℵ) = M(0) then M(Ψ) = Mc(0).

4.2 Quasi-Liveness and CS-property

The following Theorem binds between the soundness, Quasi-liveness and the CS-property of a

WFCSnet:

Theorem 4.2.1 A WFCSnet is sound if and only if it is Quasi-Live and it satisfies the CS-

property.

We start with proving that if a WFCSnet, ℵ is sound, then it is Quasli-live and satisfies the

CS-property.

Proof 1. Since ℵ f is sound,

2. therefore ∀ Mk ∈ | Mi, Mo ∈ | Mk 〉,

3. therefore ∀ tk T, tk is firable in a finit time,

4. therefore ℵ f is quasi-live.

5. Since ℵ f is quasi-live,
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6. therefore ∀ • tk ∈ P, •tk is sufficiently marked,

7. therefore the CS-property is maintained.

Now we show the converse, namely, if the critical section workflow-net is quasi-live and

maintains the CS-property then it is sound.

Proof 1. Since CS-property is satisfied,

2. therefore ∀ • t ∈ T, • t is always sufficiently marked.

3. Since ℵ f is quasi-live,

4. therefore ∀ t ∈ T, T is firable given marking M,

5. therefore •o is firable,

6. therefore ∀ ε, ε will evenyually be in o,

7. therefore ℵ f is sound.

4.3 Separability and Serializability

Separability and serializability are two dynamic behavior properties in workflow-nets as stated

in definitions 3.4. Feedback affects such properties and therefore we investigate these features

in this Section.

We define the N-Separability for a WFCSnet as follows:

Definition 7 The degree of Separability is the maximum number of activities that can be exe-

cuted in a workflow while maintaining the property of separability.
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Definition 8 N-Separability is a behavioral property which states that the behavior of a workflow-

net with k tokens in the initial node can be seen as a combination of the behavior of N copies

of the net, each of them with an average of k
N tokens in the initial node, where N is the number

of control tokens in Pco.

Note that N-Separability is fully maintained if K ≤ N, where K is the number of activities

in the system and N is the number of control tokens in Pco.

Theorem 4.3.1 For a WFCSnet, ℵ f , if ℵ f is sound, then it also satisfies the properties of

Serialisability and N-Separability.

Proof 1. Since ℵ f is sound,

2. therefore ∃ Mk such that Mk ∈ | M(0) ∪ Mc(0) 〉 and Mo ∈ | Mk 〉,

3. therefore ∃ σ such that σ is a firing sequence, where M(0)
σ−→ Mo.

4. Since ℵ f is Quasi-live3, then ∃ {t1, t2, ..., tn} ∈ T , such that t1
σ1−−→ t2

σ2−−→ t3...
σn−1−−−→ tn,

where n is a finite integer number and σn−1 yields the system for marking Mo,

5. therefore σ1 → σ2 → ...→ σn−1 ≡ σ,

6. therefore ℵ is serializable.

7. Since it is serializable and from Lemma 4.1.3, It is an N-Separable.

Lemma 4.3.2 A WFCSnet ℵ f with m critical sections Ψi is k-separable, where k is the mini-

mum initial marking of Ψi and Ψi ∈ Ψ and 1 ≤ i ≤ m.

3See Theorem 4.2.1



4.4. Conclusion 41

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

P5T4P4T3P1T2P2T1P1

Workflow net

1 token bandwidth2 tokens bandwidth

A B

Figure 4.3: Bandwith of critical sections. Critical section A has a bandwidth of two tokens.

Critical section B has a bandwidth of 1 token. The overall bandwidth of the workflow-net is

then 1-token.

Lemma 4.3.2 shows that the bandwisth of the whole controlled workflow-net is equal to the

minimum bandwidth of its critical sections as shown in figure 4.3.

4.4 Conclusion

In this Chapter a solution for introducing feedback and controlled loops into workflow-nets is

presented. A Theorem of soundness for the proposed WFCSnet is given. We also proposed

a Theorem for Quasi-Liveness and CS-property satisfaction. Serializability and separability

were investigated.



Chapter 5

Cooperation Algebra

This Chapter describes our cooperative algebra for solving workflow problems. We propose

operators that join a number of workflow-nets into a larger one. The algebra describes exactly

how we build incident matrices that describe the Workflow-net compositions.

5.1 Cooperation Algebra

In this Section we show how a logical description of a plan is converted into our chosen rep-

resentation of workflow-nets using the cooperative operator ⊗, as applied to create the incident

matrices corresponding to logical operators. These are the and (∧), the or (∨), the then (→)

’ and the critical section (den) operators1. In this Chapter, we also study commutativity, as-

sociativity, and distributivity properties of the operators in two aspects, logical and structural.

An operator can be logically associative but structurally non-associative. This applies to other

1The not operator or any higher level operator based on it (such as xor) are not used within this framework due

to their lack of meaning in the workflow.

42
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properties as will be seen later in this Chapter. An operator has a structural property if and

only if applying this property on the operands does not affect the incident matrix built with the

operator.

5.1.1 Predicates

In this framework, every predicate is transformed into a unit with a single input and a single

output place. For instance, given predicate A, its incidence matrix is formed as

IA =


1

−1

 . (5.1)

Initially, all predicates within the logical description of a cooperative plan are given incident

matrices. Given an incident matrix I, we adopt the following definitions:

p(I) ≡ number of rows in I, equivalent to the number of places,

t(I) ≡ number of columns in I, equivalent to the number of transitions,

po(I) ≡ row number of the output place in I and

pi(I) ≡ row number of the input place in I,

which are used in the construction of incident matrices, resulting from applying the cooperation

operator ⊗.

5.1.2 The ∧ Operator

The and operator ∧ joins the incident matrices of its predicates, yielding a new incident matrix

describing the workflow-net resulting from applying the operator. In other words, A ∧ B is
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equivalent to the following:

IA ∧ IB =


1

−1

 ∧


1

−1

 = IA∧B, (5.2)

where IA∧B is the incident matrix. It is the ∧ operator that gives rise to parallelism in the

resulting workflow-net. For example, A ∧ B signifies that A and B can be accomplished in

parallel, given that enough resources with the required task coverage are available.
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Figure 5.1: The application of AND operator to two workflow-nets.

With (i = 0 . . . p(IA) + p(IB) + 1, j = 0 . . . t(IA) + t(IB) + 1), the incident matrix IA∧B is
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constructed as:

IA∧B =



IA(i, j) if i < p(IA) and j < t(IA)

IB(i − p(IA), j − t(IA)) if p(IA) ≤ i < p(IA) + p(IB)

and t(IA) ≤ j < t(IA) + t(IB)

−1 if i = pi(IA) and j = t(IA) + t(IB)

1 if i = po(IA) and j = t(IA) + t(IB) + 1

−1 if i = pi(IB) and j = t(IA) + t(IB)

1 if i = po(IB) and j = t(IA) + t(IB) + 1

1 if i = p(IA) + p(IB) and j = t(IA) + t(IB)

−1 if i = p(IA) + p(IB) and j = t(IA) + t(IB) + 1

0 otherwise

(5.3)

For instance, with A and B as simple units, then

IA∧B =


1

−1

 ∧


1

−1

 =



1 0 −1 0

−1 0 0 1

0 1 −1 0

0 −1 0 1

0 0 1 0

0 0 0 −1



(5.4)

Lemma 5.1.1 If ∃ A, B and A and B are two sound workflow-nets then ∃ C such that C = A∧B

and C is a sound workflow-net.

We prove the previous Lemma as follows:

1. If the two workflow nets A and B are connected by a single input place pi and a transition
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ti, then ∀ s ∈ S where S is the set of input tokens, s will end up being moved to both i(A)

and i(B), where i is the input place of the workflow-net.

2. If A and B are sound workflow-nets, then ∀ s ∈ S , s will end up being in o(A) and o(B),

where o is the output place of the workflow-net.

3. o(A) and o(B) are the inputs to a transition to that is connected to the output place po,

then ∀ s ∈ S , s will end in po.

4. Therefore A ∧ B is a sound workflow-net.

Operator ∧ is logicallay and structuraly commutative, it is logically associative but struc-

turaly non-associative, and it is logically distributive but structurlly non-distributive.

5.1.3 The ∨ Operator

The or operator ∨, not unlike the ∧ operator, joins the incident matrices of two predicates to

form a new incident matrix describing the resulting workflow net. This operator allows one part

or another of the cooperative plan to be executed, depending on the results of prior execution.

A ∨ B is equivalent to the following:

IA ∨ IB =


1

−1

 ∨


1

−1

 = IA∨B (5.5)

With (i = 0 . . . p(IA) + p(IB) + 1, j = 0 . . . t(IA) + t(IB) + 3), the incident matrix IA∨B is
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constructed as:

IA∨B =



IA(i, j) if i < p(IA) and j < t(IA)

IB(i − p(IA), j − t(IA)) if p(IA) ≤ i < p(IA) + p(IB)

and t(IA) ≤ j < t(IA) + t(IB)

−1 if i = pi(IA) and j = t(IA) + t(IB)

1 if i = po(IA) and j = t(IA) + t(IB) + 2

−1 if i = pi(IB) and j = t(IA) + t(IB) + 1

1 if i = po(IB) and j = t(IA) + t(IB) + 3

1 if i = p(IA) + p(IB)

and j = t(IA) + t(IB) or j = t(IA)t(IB) + 1

−1 if i = p(IA) + p(IB) + 1 and j ≥ t(IA) + t(IB) + 2

0 otherwise

(5.6)
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Figure 5.2: The application of OR operator to two workflow-nets.
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For instance, with A and B as simple unit matrices, then

IA∨B =


1

−1

 ∨


1

−1

 =



1 0 −1 0 0 0

−1 0 0 0 1 0

0 1 0 −1 0 0

0 −1 0 0 0 1

0 0 1 1 0 0

0 0 0 0 0 0

0 0 0 0 −1 −1



(5.7)

Lemma 5.1.2 If ∃ A, B and A and B are two sound workflow-nets then ∃ C such that C = A∨B

and C is a sound workflow-net.

We prove the above Lemma as follows:

1. Since the two workflow nets A and B are connected by a single input place pi and two

transitions •i(A) and •i(B) then, ∀s ∈ S where S is the set of input tokens, s will be

moved to either i(A) or i(B), where i is the input place of the workflow-net.

2. If A and B are sound workflow-nets, then ∀s ∈ S , s will end up being in o(A) or o(B),

where o is the output place of the workflow-net.

3. If o(A) and o(B) are inputs to transitions •o(A) and •o(B) respectively that are both

connected to the output place po, then ∀s ∈ S , s will end up being in po.

4. Therefore A ∨ B is a sound workflow-net.

Operator ∨ is logicallay and structurally commutative, it is logically associative but struc-

turally non-associative, and it is logically distributive but structurally non-distributive.
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5.1.4 The→ Operator

The then operator → creates the sequential sections of cooperative plans between predicates.

For instance, the plan A → B ensures that A is performed before B. The→ operator joins the

incident matrices of its predicates, creating a new incident matrix describing the workflow-net

resulting from applying the operator. Hence A→ B is equivalent to the following:

IA → IB =


1

−1

→


1

−1

 = IA→B (5.8)

With (i = 0 . . . p(IA) + p(IB) − 1, j = 0 . . . t(IA) + t(IB)), the incident matrix IA→B is constructed

as:

IA→B =



IA(i, j) if i < p(IA) and j < t(IA)

IB(i − p(IA), j − t(IA)) if p(IA) ≤ i < p(IA) + p(IB)

and t(IA) ≤ j < t(IA) + t(IB)

1 if i = po(IA) and j = t(IA) + t(IB)

−1 if i = pi(IB) and j = t(IA) + t(IB)

0 otherwise

(5.9)

For instance, with A and B as simple unit matrices, then

IA→B =


1

−1

→


1

−1

 =



1 0 0

−1 0 1

0 1 −1

0 −1 0


(5.10)

is the incident matrix IA→B.

Lemma 5.1.3 If ∃ A, B and A and B are two sound workflow-nets then ∃C such that C = A→

B and C is a sound workflow-net.



50 Chapter 5. Cooperation Algebra

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

A Then B

A B

A B

Figure 5.3: The application of THEN operator to two workflow-nets.

We prove the above Lemma as follows:

1. Since A and B are sound workflow-nets, then tokens will reach the output place of A,

2. Since A and B are connected using a transition t with output place in A as an input of t

and the input place of B as an output place of t, then ∀s ∈ S , where S is the set of input

tokens, s will end up being in the output place of B.

3. Therefore A→ B is a sound workflow-net.

Operator → is logicallay and structurally non-commutative, it is logically and structurally

associative.

5.1.5 The den Operator

As seen before in Chapter 4, a critical section is a workflow-net or a sub-workflow-net that

cannot serve more than n activities at a time, where n is an integer number, 1 ≤ n ≤ k, and k

is the maximum allowed number of concurrent activities in the system. It is worth noting that
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the critical section is defined by two or more transitions. Given the logic A → B, applying a

critical section on these two predicate, dA→ Be1 is shown in Figure 5.4.
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Figure 5.4: Applying Critical sections on predicates: a): dA→ Be1 b): dA ∧ Be1 → C.

The den operator limits the flow of tokens in the workflow-net by the number specified by n

at any point in time. Having the logic A→ B with an incident matrix of

IA→B =



1 0 0

−1 0 1

0 1 −1

0 −1 0


(5.11)

, then dA → Ben defines A → B as a critical section with maximum capacity of n tokens. The

critical section binds the last transition and the first transition of the workflow-net. The incident
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matrix dA→ Ben is constructed as:

dA→ Ben =



IA→B if i < p(IA→B) and j < t(IA→B)

1 if i = p(IA→B) and j = t(IA→B)

−1 if i = p(IA→B) + 1 and j = t(IA→B)

−1 if i = p(IA→B) and j = t(IA→B) − 1

1 if i = p(IA→B) + 1 and j = 0

0 otherwise

(5.12)

The incident matrix for dA→ Ben is:

IdA→Ben =



1 0 0 0

−1 0 1 0

0 1 −1 0

0 −1 0 0

0 0 −1 1

1 0 0 −1



(5.13)

The proof of soundness of this operator is found in Chapter 4.

5.2 A Cooperative Algebra Example

To illustrate the technique of computing incident matrices, consider the following cooperative

plan:A ∧ B ∧ ((C ∨ D) → E). The incident matrix of this plan is obtained by first assigning

incident matrices to each of the predicates:

IA =


1

−1

 , IB =


1

−1

 , IC =


1

−1

 , ID =


1

−1

 and IE =


1

−1

 .
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Using standard precedence for logical operators, the suite of computations is as follows:

IA∧B =



1 0 −1 0

−1 0 0 1

0 1 −1 0

0 −1 0 1

0 0 1 0

0 0 0 −1



, IC∨D =



1 0 −1 0 0 0

−1 0 0 0 1 0

0 1 0 −1 0 0

0 −1 0 0 0 1

0 0 1 1 0 0

0 0 0 0 −1 −1



,

I(C∨D)→E =



1 0 −1 0 0 0 0 0

−1 0 0 0 1 0 0 0

0 1 0 −1 0 0 0 0

0 −1 0 0 0 1 0 0

0 0 1 1 0 0 0 0

0 0 0 0 −1 −1 0 1

0 0 0 0 0 0 1 −1

0 0 0 0 0 0 −1 0



and
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IA∧B∧((C∨D)→E) =



1 0 −1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 −1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 −1 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1 −1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1



.

The way these incident matrices are manipulated to produce a workflow-net corresponding

to a cooperative plan (using the ⊗ operator) is elaborated in the description of the algorithm

which follows in the next Chapter.



Chapter 6

Workflow-net Based Cooperation

In order to design a framework that is capable of supporting cooperation among a set of agents,

the tasks to be performed by the system must be taken into consideration. The diversity of

task types and constraints yield different designs. An example of this is agent polymorphism,

which exists when two or more agents with different capabilities are able to complete the same

task. A group of agents is said to be homogeneous if the capabilities of the individual agents

are identical and heterogeneous otherwise. Heterogeneity introduces complexity because task

allocation becomes more involved and agents need to model other individuals in the group.

6.1 Contribution

We aim to define a cooperative framework for robotic agents with the use of workflow-nets as

defined by Aalst [56, 54]. Our main contribution consist of the application of workflow-nets

to problems of cooperation among robotic agents. In this context, we define a cooperation

operator (Section 6.5) which is used to compose agent capabilities expressed as workflow-nets

55
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into a cooperative, composed workflow-net. We demonstrate that this cooperation operator

preserves the property of soundness, and that the framework is scalable to any number of

agents with any number of capabilities. We also propose an algorithm which finds the minimal

cost of the agent cooperation (Section 6.6).

We use workflow constructs to perform workflow-net compositions that are similar to those

of Aalst [1, 55]. Our proposed cooperation operator results in performing common place and

transition compositions.

We are interested in cooperating agents sharing their capabilities in the aim of achieving

a cooperative plan. In that sense, unlike web service composition approaches [62, 33], we

assume that compatibility is assured in the context of agents sharing their capabilities. In web

service composition, the issue is one of composed and compatible service at design time while

our approach for cooperating agents must determine the optimal fashion in which to share

capabilities for the execution of a cooperative plan at a minimal cost.

Finally, Aalst states that for a composed workflow to be sound, every sub-workflow must

end with a token in its output place [55]. Kindler argues that sub-workflows for which it is

known that no token will reach their output places should not have undue influence on the

soundness of the composed workflow [33]. In our framework, the composed, cooperative

workflow is sound as per Aalst’s criterion.

6.2 Preliminaries

We hypothesize that there is a set Λ = {λ1, λ2, . . . , λm} of primitive capabilities that cannot be

fragmented into simpler capabilities and that the set of non-primitive action types ε ⊂ Λ. Any
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action α from a robot at a given time is constructed from a list of primitive action types.

If a robot ri from the set of cooperating robots R = {r1, r2, . . . , rn} has plan d j from the set of

plans D = {d1, d2, . . . , dk}, then the robot can perform its plan on its own if and only if it meets

the time constraints (if any), and the following equation holds:

∀α ∈ d j : α ∈ ω(ri), (6.1)

where α is an action, and

ω(ri) = {WFnet1,WFnet2, . . . ,WFnetl} (6.2)

is the action capability set of robot ri, where WFneti are workflow-nets, and d j = αo(∪αk)∗,

where αo , ∅ is a starting action and (αk)∗ is a set of following actions (which might be the

empty set ∅).

Two robots ri and rk can cooperate to perform a desired plan d j if they satisfy the task

coverage property as follows:

∀α ∈ d j : α ∈ ω(ri) ∪ ω(rk). (6.3)

Robot rk is a candidate for cooperation with robot ri if and only if

∀α ∈ ∆ j : ∆ j = d j − ω(ri) , α ∈ ω(rk), (6.4)

where ∆ j is the difference between the capabilities required to achieve plan d j and the capabil-

ities of robot ri.

In our proposed framework, we use workflow-nets to model robots involved in cooperation

and derive benefits from their structural and behavioral characteristics to build a protocol for

cooperation. Conditions for an action to be taken are given by the input places to a transition
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and the results of performing the action are given by the output places from that same transition.

Activities, which can be thought of as sets of actions performed by robots, are represented as

tokens in workflow-nets.

6.3 Choice Dependency and Unit Similarity

We address the notions of choice-dependency and unit similarity as they are crucial concepts

that affect the design of our framework. For instance, if two or more units among a set of

workflow-nets are deemed similar, then they can be interchanged in order to accomplish the

same task or part thereof. It is thus imperative to identify similar units in order to exploit

parallelism and minimize the costs of cooperation.

Choice dependency occurs when two or more units share one or more input places. In such

cases, soundness may not be ensured, as one or more of the choice-dependent units may not

result in the presence of a token in the output place of the composed, cooperative workflow-net.

We define choice-dependency formally and, by design ensure that our framework avoids

these problems by enforcing that the output place of the cooperative framework is reachable

by all units. Additionally, we provide a technique to identify similar units in what follows1.

Given a group of robots, their behavioral characteristics must be taken into consideration

if the cooperation is to be successful. With that intent in mind, we divide a Petri-net into units

νi, where 1 ≤ i ≤ k and k is the number of units composing the Petri-net. A unit is a transition

comprised of sets of input and output places which model an action, the conditions that must be

satisfied prior to its execution, and the results of achieving the action, respectively. We proceed

1We inductively define units with the initial set of agent capabilities Λ as a basis.
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T

P1a

2a

P4a

P3a

P2a

T1a

T3a

5aP
P

P1b

P2b P5b

P3b

P4b

T2b

T1b

T3b

6b

Figure 6.1: The notion of choice dependency: Although T1a = T1b and ‖ • T1a‖ = ‖ • T1b, u1 cannot

replace u3, since two transitions leave from P12.

with the mathematical definition of a unit:

Definition A unit is a tuple:

ui = (•Ti,Ti,Ti•), (6.5)

where Ti is a transition, •Ti the set of input places to Ti, and Ti• the set of output places to Ti.

The notion of choice dependence among units is relevant as it directly affects levels of

cooperation. Units u1 and u2 are said to be choice-dependent if and only if their transitions

share one or more input places. For instance, if unit u1 and u2 are choice-dependent, but unit

u3 is choice-independent, then unit u1 cannot replace unit u3 in its actions (and vice-versa), as

depicted in Figure 6.1.

Definition A unit u is choice-independent if and only if the following condition holds:

•Ti ∩ • (T − Ti) = ∅, (6.6)

where T is the set of transitions in a Petri-net, and Ti ∈ T .
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If the unit is choice-dependent, then the set of choice-dependency is defined as:

{T j | T j ∈ {T − Ti} and • Ti ∩ •T j , ∅} (6.7)

and can be determined by satisfying the following condition:

W+(P j,Ti) −W+(P j,Tk) = 0 (6.8)

∀m
j=1 P j ∈ •Ti ∩ •Tk and ∀m

k=1 Tk ∈ T,

where m is the number of places P j ∈ •Ti, k the number of transitions Tk ∈ T , and W− the input

incident matrix of the Petri-net.

Two units are identical if and only if they satisfy similarities in transition, pre-condition and

post-condition. A transition similarity is defined by the action it belongs to. Two transitions T1

and T2 are similar if and only if T1 ∈ λ implies that T2 ∈ λ, where λ is an action belonging to

Λ. Pre-condition similarities are determined by satisfying

Γ(T1) − Γ(T2) = 0 (6.9)

and post-conditions similarities, by satisfying

Π(T1) − Π(T2) = 0 (6.10)

where Γ(Ti) and Π(Ti) are column vectors representing the input and output places to and from

transition Ti, respectively.

Definition A unit u1 is similar to unit u2 (denoted u1 ≡ u2) if and only if ∃ T1 ∈ u1 and ∃ T2 ∈

u2 | Λ(T1) = Λ(T2) and • T1 = •T2.

Definition A unit u1 is identical to unit u2 (denoted u1 = u2) if and only if ∃ T1 ∈ u1 and ∃ T2 ∈

u2 | Λ(T1) = Λ(T2) and • T1 = •T2 and T1• = T2•.
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Figure 6.2: Two different Petri-nets illustrating the concept of similarity: T1a and T1b perform the same

task but are not similar because T1a is choice-dependent while T1b is not.

An example of similar units from two different Petri-nets is given in Figure 6.2. While

the concept of units is a step forward in defining cooperative processing, it is not practical,

as most units in realistic situations are choice-dependent. Consequently, two or more choice-

dependent units may find themselves exchanging actions (or tokens) more often than necessary.

Hence, the success of cooperative choice-dependent units is not guaranteed. However, if there

is a possibility to view the group of interdependent units as one composition, the process of

cooperation becomes feasible and the success of the cooperative process is then guaranteed.

Toward this end, we proceed with the definition of compositions of units within Perti nets:

Definition A composition C is a set of joined units in a topology:

C = {U, P, F}, (6.11)

where U is a set of units, P a set of places, and F ⊆ U × P ∪ P × U. Figure 6.3 illustrates

similar compositions from two Petri-nets.
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Figure 6.3: Similar compositions in different Petri-nets. A composition is is a set of units in a Petri-net.

In this example, while the two Petri-nets are different, there are inner compositions that are similar.

Definition A composition C1 ⊂ C2 if and only if ∀ ui ∈ C1 ∃ u j ∈ C2 | ui ≡ u j.

Definition A composition C1 is similar to C2 if and only if ∀ ui ∈ C1 ∃ u j ∈ C2 | ui ≡ u j and

∀ u j ∈ C2 ∃ ui ∈ C1 | u j ≡ ui.

Definition A composition C1 is identical to C2 if and only if ∀ ui ∈ C1 ∃ u j ∈ C2 | ui = u j and

∀ u j ∈ C2 ∃ ui ∈ C1 | u j = ui.

In other words, the preceding definitions extend the properties (similarity and equality) of units

to compositions, among other things.

6.4 Redirecting Activities to Similar Units

One of the merits of this technique resides in its ability to use similar compositions in Petri-nets

to perform one or more actions from the task under consideration in such a way as to allow

its deadline to be met. Consider the example in Figure 6.4 and assume that there is a token
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T1
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Figure 6.4: Two cooperating Petri-nets. Transitions T2 and T4 are similar. Places P1 and P6 are

routing places that must remain empty for the execution of the routing. In this example T1 fires and

moves the token to be executed by T4 instead of T2. After execution, the token is rerouted back to its

parent workflow.

that is going to miss its deadline in place P2. If P1 is empty, then transition T1 is enabled and

executed. As a result, the token under consideration is consumed from place P2 and regenerated

in P4. When T4 executes, then the token in P4 is processed and appears in P3. Following this

sequence, T3 executes, moves the token to P3. The purpose of transitions T1 and T3 is to ensure

that the migrating token goes to the desired route and returns, as opposed to being consumed

by an undesired transition.

6.4.1 Examples of Cooperation

Suppose we have a workflow such as that of Figure 6.5 and two robots ri and r j. We assume

that every transition in the workflow is in set ω(ri). In the case where ω(r j) = ω(ri) − α, where

α is an action to reach a stack of objects, ri is clearly unable to perform the plan on its own
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Move toward home Reach object stackGrip objectMove toward object Put object on stack

See an object

P3 P4

P2

P

P P6

P7

1

5

Figure 6.5: A simple WFnet model for a robot activity which consists of 6 transitions, each representing

a predefined action. Usually, models for robot activities are complex; this example shows how actions

are mapped into transitions.

and must ask for the cooperation of r j to complete its mission, as depicted in Figure 6.6. If

the function of both ri and r j is to grab objects from a loading zone and put them as stacks in

another location, then r j is able to achieve the required task on its own, whereas robot ri is only

able to get objects from the loading zone to a location near a stack. If the two robots cooperate,

then whenever robot ri grabs an object and transfers it to the home zone, it hands it to robot r j

if it is available, and r j can put it on the top of a stack. If r j is not available, then ri waits until

r j becomes available. This cooperative protocol, as exemplified in Figure 6.6, shows that when

robot ri hands the object over to r j, the token that represents the object is then given as the input

node of the workflow representing r j, so as to respect the requirement that any workflow has a

single input entry point.
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See an object

P1

See an object

Robot ri

Robot rj

Move toward homeGrip objectMove toward object

P3 P4

P2

Ask for cooperation

P1

P5

P6

Move toward object

Grip object Move toward home Reach object stack

Put object
on stack

Accept cooperation

to rj

Hand object

Normal route
preventer

P6

P7

P5P4P3
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Figure 6.6: A cooperative solution for robots ri and r j to collect objects and put them on a stack in a

home zone. Robot ri cannot complete its mission unless it cooperates with r j. If robot ri already has an

object and is waiting in the home zone, then it hands the object directly to r j through the execution of

transition TR. Following this, R j puts the object on the stack. PR is a routing place which when empty

allows the input token to go directly to the Reach Object Stack transition. The arc ending with a black

circle is an inhibitor. The dashed lines are the communication and interaction protocol between the

robots
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6.4.2 Correctness of Framework

In order to show that the proposed framework is correct, we need to demonstrate that it yields

the desired goals for cooperation. As previously stated, the provability problem from linear

logic is a reachability problem in Petri-nets. Since we assume that agent capabilities can be

expressed with workflow-nets (WFnet), then reachability for these workflow-nets is assured

[54, 2]. However, we must guarantee that the proposed framework has the property of sound-

ness [35, 50], as workflow-nets representing capabilities are assembled to form a cooperation

plan, which is also a workflow-net. Hence, there is a need to demonstrate that the way by

which the plan is constructed preserves soundness. The cooperative plan is the output of the

cooperative framework.

Consider a cooperative framework among robots:

Θ =< Λ,R,Ω(R),D, S , ξ >, (6.12)

where Λ is the set of primitive action types, R the set of cooperating robots,

Ω(R) = {ω(r1), ω(r2), . . . , ω(rn)} (6.13)

the set of all robot capabilities, and D the set of plans to be performed by the set of robots. The

set of all similarities between robot capabilities is defined as:

S = {S 1, S 2, . . . , S n(n−1)}, (6.14)

where

S k =WFneti ∩ WFnet j, (6.15)

∀ WFneti ∈ ω(ri) and ∀ WFnet j ∈ ω(r j). ξ = {ξ1, ξ2, . . . , ξz} is the set of workflows that bind

two or more different workflows from two or more robots.
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A framework is sound if any valid input plan can be carried out successfully, under the

hypothesis that the set of robot capabilities satisfies the task coverage requirement. For mathe-

matical convenience, we add a single input place pi and a single output place po.

Theorem 6.4.1 A cooperation framework Θ is sound if and only if the following conditions

are satisfied:

1. ∀ WFnet ∈ Ω(R), WFnet is sound,

2. ∀ λ ∈ Λ, λ ∈ Ω(R),

3. ∀ d ∈ D, ∃ WFneti
⊗WFnet j

| d is executable and

4. ∀ ξk ∈ ξ, ξk is a sound workflow-net

where WFneti
and WFnet j

are workflow-nets representing capabilities from agents i and j, and

⊗ is the cooperation operator, as described in Section 6.5.

6.4.3 Demonstration

1. Since Θ is sound, then o ∈ | i 〉 and ∀ d ∈ D, d will eventually reach o, regardless

of the WFnet it goes through. Hence, we have ∀WFnet ∈ Ω(R), WFnet is a sound

workflow-net.

2. Since o ∈ | i 〉, d = {αo ∪ (α∗i )}, and that d will eventually execute (resulting as a token in

o), we thus have ∀ λ ∈ α, λ ∈ ω(R), and consequently ∀ d ∈ D, ∃ WFneti
⊗WFnet j

| d

is executable.

3. The definition of soundness ∀ M ∈ | i 〉, o ∈ | M 〉 implies ∀ ξi ∈ ξ, ξi is a sound

workflow-net.
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Therefore, for sound Θ, the four necessary conditions are satisfied. We now show the converse,

namely that if the four conditions are satisfied, the framework is sound:

1. Since ∀WFnet ∈ Θ(R), WFnet is a sound workflow-net, we have ∀ ξi ∈ ξ, ξi is a sound

workflow-net.

2. We have o ∈ | i 〉 and, since ∀ λ ∈ α, λ ∈ Θ(R), we obtain ∀ d ∈ D, ∃WFneti
⊗WFnet j

| d

is executable and we conclude that Θ is sound.

6.5 The Cooperative Operator

The cooperative operator embodies the cooperation framework, as it joins (or composes) two

cooperative frameworks into one. This joint framework must be sound for it to represent a

valid cooperation framework. In light of this, the cooperative operator ⊗must satisfy a number

of conditions. For instance, if WFnetk
=WFneti

⊗WFnet j
, then the following properties must

apply:

1. WFneti
and WFnet j

are sound

2. WFnetk
is a workflow-net with two special places ik and ok

3. ∀ ζ ∈WFneti
⊗WFnet j

, ζ is sound

4. •ik = ∅, ok• = ∅
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6.6 Description of Algorithm

In this Section we describe the complete algorithm used to derive a cooperative workflow net

from a plan expressed with the notation used in Section 5.1.

It is of note to consider that this algorithm generates a cooperative, composed workflow

which contains all the possible cooperative scenarios. Consequently, the algorithm implements

a back-tracking scheme allowing it to determine the minimal cost cooperative path from the

workflow-net.

We begin by first defining the concepts and data structures used in the algorithm.

6.6.1 Definitions

1. Stages constitute the representation we use to express the order of computation of a plan,

based on standard operator precedence.

2. Plan stages G = {g1, g2, . . . , gn}, where n is the number of stages and stage i, denoted as

gi, is a set of predicates which belongs to plan P.

3. A stage assignment A is a two-dimensional array with its number of rows equal to the

number of stages n. Each row has a number of tuples (columns) equal to the assignment

of this stage. Example: A(0) is the assignment of the first stage and is of the form

(r1, Pr(2)), (r2, Pr(1)), . . . , (rm, Pr(k)), where m is the number of agent assignments in this

stage and k is the last assigned predicate. A(0, 1) is the second assignment of the first

stage which is (r2, Pr(1)) in this example. This tuple signifies that agent r2 is dedicated

to execute predicate Pr(1).
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4. A two-dimensional matrix M with number of rows equal to number of robots involved in

the current stage, and number of columns equal to the number of predicates in the plan.

Essentially, M(i, j) is the cost to execute predicate Pr( j) with agent ri.

5. M(i) (the ith row of M) is a vector representing the costs of the capabilities of agent ri to

execute the plan predicates.

6. MT (i) (the ith column of M) is a vector representing the costs of predicates when executed

by different agents.

7. A predicate Pr(i) is affected by the then operator if and only if there is a rule in the plan

that is in the form of (Pr(k)({∧| ∨ | →}Pr( j))∗ → Pr(i). We denote an operator Pr(i)

affected by a then operator using the symbol Pr(i)→, and Pr(i)9 if it is not. A predicate

that is affected by the → operator has its execution delayed by predicates prior to the

operator in the plan. If Pr(i)→ Pr( j) then Pr(i) is denoted as Pr(i)←.

8. |S t(i)| is the cardinality of S t(i).

9. AgentIndex is a temporary agent index value in A.

10. (AgentIndex, ∗) ∈ A(i) represents all tuples in stage i ∈ A that has an agent with an index

of AgentIndex.

6.6.2 Complete Algorithm

INPUT: A plan P = {Pi((∧|∨| →)P j)∗}where Pi and P j are predicates, and a group of agents

R = {r1, r2, . . . , rn}, each with a set of capabilities described as in (6.2)
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OUTPUT: A cooperative framework Θ as described in (6.12)

for all ri, r j ∈ R do

Calculate similarity S (ri, r j).

end for

Test task coverage according to (6.3), end if not satisfied.

i = 1

for all predicate Pr( j) and Pr(i)9 do

gi = gi ∪ Pr( j)

end for

Label: 1

Build matrix M for stage gi

for k = 1 to |gi| do

Label: 2

AgentIndex = index of min{MT (k)}, where min{MT (k)} , ∞

if (AgentIndex, ∗) ∈ A(i) then

MT (AgentIndex, index of min{MT (k)}) = ∞

Goto Label 2

else if AgentIndex = ∅ then

Backtrack to k − 1

Choose the next least cost

else
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A(i) = A(i) ∪ (AgentIndex, index of min{MT (k)})

end if

end for

i = i + 1

if ∃ Pr( j), Pr(k) | Pr( j)→ and Pr(k)→ and Pr(k) ∈ gi−1 then

gi = gi ∪ Pr( j)

Goto Label 1

end if

if ∃ ru ∈ R | (u, ∗) < A and ∃ rk | (k,C) ∈ A and S (ru, rk) = C then

A(index(k)) = A(index(k)∪ (ru,C), where C is the set of capabilities of rk in stage index(k)

and S is the set of similarities found with Definitions (6.3) and (6.3).

end if

for all Pr j ∈ gi do

Create a unit U j as per Definition (6.5)

end for

for all Up,Uq | (Prp {∧| ∨ | →}Prq) ∩ P , ∅ do

Compute Θ = Θ ⊗ (Up ⊗ Uq) as defined in Section 5.1

end for

Output Θ
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6.7 Framework Scalability

Scalability refers to the efficiency with which the system operates when the number of agents

increases. Scalability is an important issue and constitutes a measure of the quality of the

design of the multi-agent system. Our approach guarantees scalability as we demonstrate using

mathematical induction (See Section 6.8 for a formal demonstration).

To prove our claim, we use the operator ⊗ presented earlier, which represents the coopera-

tion framework. The operator ⊗ joins two cooperative frameworks, yielding a third framework

as a result. The joined platforms must be sound, as shown in the proposed Theorem, to yield a

valid, sound cooperative framework. The operator is initially applied on two robots as a base

case, since a single robot may be thought of as a cooperative framework onto itself:

Θ =< Λ,R,Ω(R),D, ∅, ∅ >, (6.16)

where S and ξ are both ∅. Since the cooperative framework contains a single robot, the simi-

larity set S is ∅ and the set of workflows that bind two or more different workflows from two

or more robots ξ is also ∅.

While the framework is shown to be scalable, it is not guaranteed to yield the best perfor-

mance in the case of n heterogeneous robots, where n > 2, since the selection of a cooperation

robot pair among a set of candidate robots highly affects future plans. However, an optimal

solution is obtained in the precise case when plans remain static during their execution since

a linear programming technique is applied with respect to the costs of the transitions in the

workflow-net.
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6.8 Proof of Scalability

We prove the scalability of the platform using mathematical induction as follows:

1. Base case: Given two robots r1, r2 and a plan D such that ∀ λ ∈ D, λ ∈ ω(r1)∪ω(r2) and

∀ WFi
net ∈

⋃2
i=1 ω(ri),WFi

net is a sound WFnet, ∃ Θ such that Θ = r1 ⊗ r2 and Θ is a

sound cooperation framework. The proof of this base step is the same proof as above.

2. Inductive hypothesis: Given k robots and a plan D such that ∀ λ ∈ D, λ ∈ ⋃k
i=1 ω(ri) and

∀ WFi
net ∈

⋃k
i=1 ω(ri),WFi

net is a sound WFnet, ∃ Θk such that Θk = ((...((r1 ⊗ r2) ⊗

r3)... ⊗ rk−1) ⊗ rk) and Θk is a sound cooperation platform.

3. Inductive step: Given k + 1 robots and a plan D such that ∀ λ ∈ D, λ ∈ ⋃k+1
i=1 ω(ri) and

∀WFi
net ∈

⋃k+1
i=1 ω(ri),WFi

net is a sound WFnet. It is required to prove that ∃ Θk+1 such

that Θk+1 = (((...((r1 ⊗ r2) ⊗ r3) . . . ⊗ rk−1) ⊗ rk) ⊗ rk+1) and Θk+1 is a sound cooperation

framework.

Since ∀ λ ∈ D, D ∈ ⋃k+1
i=1 ω(ri), then λ ∈ ω(Θk ⊗ ri+1). Therefore

λ ∈ ω(Θk+1). (6.17)

Since ∀ WFk
net ∈ Θk,WFk

net is a sound WFnet and WFk+1
net ∈ rk+1 is also a sound WFnet, and

from the definition of operator ⊗, then ∀ ζ ∈ Θk+1, ζ is sound. The cooperative framework Θk+1

satisfies the conditions of the Theorem and hence it is sound.

From the last proof we obtain the following Lemma:

Lemma 6.8.1 Given n robots and an executable plan D such that ∀ ε ∈ D, ε ∈ ⋃n
i=1 ω(ri) and

∀ WFi
net ∈

⋃n
i=1 ω(ri),WFi

net is a sound WFnet, ∃ Θn such that Θn = r1 ⊗ r2 ⊗ r3... ⊗ rn−1 ⊗ rn

and Θn is a sound cooperation platform.
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6.9 Experimental Simulations

We built a simulator for the cooperation framework, in which the algorithm described in Sec-

tion 6.6 is implemented. Our goal is to empirically demonstrate that our definition of coopera-

tion is correct and that plans can be adequately established.

6.9.1 Experimental Set-Up

The input to the simulator consists of a plan in the form of a linear logic expression with

operators as described in Section 5.1. Other input parameters consist of a set of agents, each

with a set of capabilities, expressed as workflow-nets. Each capability corresponds to one

action defined in the plan, along with the cost associated with performing that action. Actions

that are not part of an agent’s set of capabilities have their cost set to infinity. The simulator

assigns costs in the following manner: first a uniformly distributed random variable is used to

determine the initial set of capabilities for each agent. When an agent is assigned a capability,

the cost for its execution is randomly determined with a normally distributed variable.

Once the agent capabilities are set, the simulation evaluates the task coverage. If the gen-

erated agent capabilities are insufficient to provide a complete task coverage, the simulator

terminates. Otherwise, the cooperative plan is constructed (using the algorithm in Section 6.6)

and executed. The execution time is computed simply as the total execution cost in the coop-

erative workflow-net.
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6.10 Limitations

Our proposed framework for cooperation has a number of limitations, which we proceed to

describe.

1. The input plan must be expressed with linear logic. Cooperative situations that cannot

be expressed as such, cannot be dealt with.

2. The framework implicitly assumes that agent capabilities are sufficient to provide task

coverage. In cases where agent capabilities do not provide an adequate task coverage,

the cooperative plan will not terminate.

3. The framework poses the hypothesis that every agent action will be successful. In prac-

tice, when this is not the case, no mechanism is provided to remedy the situation and the

cooperative plan may fail.

4. Any change in agent status cannot be considered while the cooperative plan is being de-

termined. For instance, such changes may be modifications to agent capabilities. When

capabilities change, the algorithm (from Section 6.6) must be executed again.

We present the results of 2 experiments to demonstrate our algorithm. The 1st experiment

was designed to demonstrate the way by which the framework exploits parallelism in plan

execution. The plan to execute is expressed as

((((A ∨ E)→ (B ∨C))→ D) ∧ (G → F)) (6.18)

where each predicate represents a unique robot capability. For this plan, 7 different capabili-

ties corresponding to the predicates A, B,C,D, E, F, and G are required for its execution. We
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Figure 6.7: Plan execution times versus probabilistic agent task coverage for a group of 50 robots.

used 50 agents in 100 simulations, where we controlled the probability of an agent to pos-

sess each capability. For instance, for a task coverage probability of 50%, each one of the 50

agents would have a 50% chance of possessing each of the 7 capabilities. This experiment

was performed for task coverage probabilities from 1 to 100%. As expected, with a 100% task

coverage probability, each agent possesses all the 7 capabilities, resulting in full parallelism of

execution, while respecting the flow constraints of the plan. The time units are expressed in

terms of transition costs in the workflow nets. Note that these could express other measures.

Figure 6.8 shows plan execution times for this set of simulations. As expected, times for low
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task coverage probabilities are high and sometimes infinite in cases when the probabilistic at-

tribution of agent capabilities is insufficient to complete the plan. It is also observed that, as

the probabilistic task coverage increases for each agent, the execution time decreases in what

seems to be a negative exponential function. This is in part due to the logical structure of the

plan, expressed with (6.18), which allows for parallelism. Conversely, execution times for a

plan such as

A→ B→ C → D→ E (6.19)

would turn out as constant, or infinite, when the sum of probabilistic task coverages of agents

is insufficient.

Our 2nd of experiment explores the effects of varying the numbers of agents on plan ex-

ecution times. As expected, execution times are shortened by increasing numbers of agents.

Figure 6.9 a) depicts this situation, where a growing number of agents significantly reduces

execution times. Figure 6.9 b), showing the results where the probabilistic task coverages are

insufficient to complete the plan, and Figure 6.9 c), showing the converse, demonstrate that in

the particular case of this plan, extended agent capabilities reduce execution times more drasti-

cally than the number of robots. In this particular case, the framework favors agents with better

task coverage than number of robots for plan execution time reduction.
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Figure 6.8: Plan execution times versus probabilistic agent task coverage for a group of 50 robots.
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Figure 6.9: a) (left): Plan execution times versus number of agents and probabilistic task coverage. b)

(center): Insufficient task coverage cases. c) (right): Sufficient task coverage cases.
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Conclusion

Workflow-net (which is an extention of Petri-nets) is one of the modelling techniques that

describes distributed and parallel systems. Petri-nets have very powerful mathemnatical prop-

erties that helps not only the modelling of the system, but also the analysis of its static and run

time behavior. Petri-nets in general and workflow-nets in particular are very good candidates to

solve such problems. Workflow-nets (when properly designed) guarantee the soundness of the

systems it models. In this Thesis, several frameworks are proposed for task syncronization and

cooperation among a set of agents. In Chapter 4, the concept of the workflow critical section

is presented. A critical section is a set of connected transitions that have an upper limit on the

number of activities they can serve at any given time. A framework has been proposed to satisfy

such a limitation and give feedback, whenever an activity passes through this critical section.

In general, feedback in workflow-nets has not been advised as it threatens the soundness of the

workflow-net. The proposed framework satisfies the soundness constraint if the workflow-net

design follows the conditions proposed in Theorem 4.1.1. The soundness of the WFCSnet also

depends on the Quasi-Livness and the CS-property of the workflow-net. Quasi-Liveness means

81
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that for any transition t in the workflow-net, t is firable in a finite time. Control Siphon property

(CS-property) states that for every siphon s in the workflow-net, s remains sufficiently marked

to guarantee the reachability of all transitions in the workflow-net. Theorem 4.2.1 states that

Quasi-Liveness and CS-property are necessary conditions for the soundness of the WFCSnet.

Separability and Serializability are also studied for WFCSnet. Separability is the capability

of tracing the execution of n activities in a workflow-net as the trace of each activity within

a number of WFCSnet. This property ensures that the behavior of the workflow-net due to

the current activity does not impact the behavior of the same workflow-net for the next ac-

tivity. Serializability is the capability to see the trace of several activities being processed at

the same time, as if would be a set of traces of activities that have been processed in a serial

manner. Theorem 4.3.1 shows the relationship between the soundness of the WFCSnet and its

serializability and separability.

Chapter 5 presented the algebraic operators that allow a given plan to be converted into a

workflow-net. The logic has operators (and, or, then). Transformation functions are proposed

that convert logical expressions into workflow-nets.

Chapter 6 demonstrated the proposed cooperative framework. The definition of cooperation

was stated and the foundation on how to choose cooperative partners was proposed. The main

foundation we wished to satisfy was task coverage. Task coverage is a concept that determines

whether the task is achievable or not using the set of available agents. Workflow-net constructs

are proposed in terms of units and composites. A unit is an atomic unit of a workflow-net

that can be involved in cooperative behaviour. A composite is a non-empty set of units con-

nected together. Formal methods were proposed to determine similar and identical units and

composites.
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We also showed how workflow-nets could be connected together to build a cooperative

plan to execute certain common tasks among agents. Theorem 6.4.1 proposed a cooperative

framework that guaranteed the soundness of the cooperative plan execution. Simulation ex-

periements showed that the times for low task coverage probabilities are high and sometimes

infinite in cases where the probabilistic agent capabilities is insufficient to complete the plan.

It was observed that, as the probabilistic task coverage increased for each agent, the execution

time decreased, as expected. This is in part due to the logical structure of the plan, which

allows for parallelism. Our second set of experiments explores the effects of varying numbers

of agents on plan execution times. As expected, execution times were shortened by increasing

the number of agents.
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