
Workflow Scheduling to Minimize Data Movement
Using Multi-Constraint Graph Partitioning

Masahiro Tanaka∗‡ and Osamu Tatebe†∗‡
∗Center for Computational Sciences

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
†Faculty of Engineering, Information and Systems

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
‡Core Research for Evolutional Science and Technology

Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
Email: tanaka@hpcs.cs.tsukuba.ac.jp, tatebe@cs.tsukuba.ac.jp

Abstract—Among scheduling algorithms of scientific work-
flows, the graph partitioning is a technique to minimize data
transfer between nodes or clusters. However, when the graph
partitioning is simply applied to a complex workflow DAG,
tasks in each parallel phase are not always evenly assigned to
computation nodes since the graph partitioning algorithm is
not aware of edge directions that represent task dependencies.
Thus, we propose a new method of task assignment based on
Multi-Constraint Graph Partitioning. This method relates the
dimension of weight vectors to the rank of a task phase defined
by traversing the task graph. Our algorithm is implemented in
the Pwrake workflow system and evaluated the performance
of the Montage workflow using a computer cluster. The result
shows that the file size accessed from remote nodes is reduced
from 88% to 14% of the total file size accessed during the
workflow and that the elapsed time is reduced by 31%.

I. INTRODUCTION

In various science fields, such as astronomy, elementary
particle physics, and life science, the data volume is in-
creasing as the observation instruments evolve. Such data-
intensive science requires a high-performance system to
maximize I/O throughput in scientific workflow. One of im-
portant issues in workflow systems is workflow scheduling.
Workflow scheduling is the problem of deciding where to ex-
ecute a process [1], [2]. Many scheduling algorithms such as
Min-Min [3] and HEFT [4] have objectives to minimize the
completion time (makespan) of the workflow. The makespan
depends on computation costs and communication costs.

In this paper, we focus on workflow scheduling to min-
imize data movement during workflow execution using the
graph partitioning algorithm. Graphs are widely used to
represent the data dependencies in a computation. Recall
that a graph, G = (V,E), comprises of a set of vertices,
V = {v1, v2, ..., vn}, and a set of pairwise relationships
called edges E ⊂ V ×V . If (vi, vj) ∈ E, then vertices vi and
vj are neighbors. In general, a workflow can be represented
as a Directed Acyclic Graph (DAG) based on the dependen-
cies of the tasks constituting the workflow. For our purposes,
the vertices of a graph represent units of computation, and

the edges encode data dependencies. The graph partitioning
is used to determine the division of the computation and data
for an efficient parallel computation. Our objective is to dis-
tribute tasks evenly over n computation nodes consisting a
distributed system by partitioning the vertices into n subsets
while minimizing internode communication represented by
edges crossing between partitions. Our main contribution is
the application of the Multi-Constraint Graph Partitioning
(MCGP) [5] for scientific workflow system, including the
implementation of the workflow system and the evaluation
using a use case of the Montage astronomy workflow. Using
our workflow system with scheduling based on MCGP, we
show that our algorithm minimizes the communication cost
and effectively reduces the workflow execution time.

This paper is organized as follows. In Section II, we
discuss the scheduling problem and the data movement in
workflow. In Section III, we propose a workflow scheduling
to minimize data movement using MCGP. In Section IV,
the implementation of the proposed workflow scheduling is
described. In Section V, the performance of the workflow
accelerated by our method is evaluated. Section VII gives
conclusion and future work.

II. DATA MOVEMENT IN WORKFLOW

A. Scheduling Problem and Data Movement

We discuss data movement in an example workflow shown
in Figure 1. This workflow requires the four input files
stored at a storage node. The workflow consists of two
phases, Task A and Task B. In the Task A phase, each
task receives an input file. In the Task B phase, each
task receives inputs from two of Task A. All the tasks
are executed on a distributed system consisting of two
computation nodes. For the scheduling of this workflow, we
make the following two assumptions; Firstly, the distributed
system is homogeneous; two computation nodes have the
same performance. Secondly, all the tasks in each phase
require the same computation cost and all the data transfer in
each phase requires the same communication cost. Although

Figure 1. Task assignment and data movement

this system is homogeneous, we consider the HEFT schedul-
ing algorithm [4], as one of the well-studied DAG-based
scheduling algorithms. In the HEFT scheme, the first phase
is the calculation of an upward rank ranku. However, the
ranku of Task A1-A4 are the same since the computation
costs of Task A1-A4 are equal and those of Task B1-B3
are equal, respectively. In this case, one of Task A1-A4
are selected randomly. Assume that Task A1 is selected
first. The next phase is the selection of a computation node
where Task A1 is to be executed, based on the Earliest
Finished Time (EFT). However, EFT is the same regardless
of the node allocation if the input file sizes are all the
same. Then a computation node for Task A1 is selected
randomly. After that, the other node is selected for the
next-selected task. In conclusion, under the HEFT scheme,
Task A1-A2 are randomly assigned to computation nodes.
Therefore, the chances of task assignment are equal between
Figure 1 (a) and (b). Furthermore, the target function of the
HEFT algorithm, makespan, also results in the same values
for (a) and (b), as is shown in Figure 2.

However, the amount of data movement is different be-
tween Figure 1 (a) and (b). Data movement in Figure 1 (a)
is three times, while that in Figure 1 (b) is only once. This
example demonstrates that the node allocation in the former
phase of Task A has an impact on the communication costs
at the subsequent dependencies (e.g. A1,A2→B1).

B. Montage Workflow

Real scientific workflows are more complex than Figure 1.
In this study, we investigate the Montage workflow [6]. Mon-
tage is a collection of programs to combine multiple shots of
astronomical images and to generate a custom mosaic image.
Every task of Montage is an individual program written
in the C language. This design enables parallel execution

Figure 2. HEFT scheduling applied to Fig. 1.

Figure 3. DAG of the Montage Workflow

of independent tasks. The Montage workflow represented
as a DAG is shown in Figure 3. The Montage workflow
consists of eight phases according to kinds of tasks. For
example, the first phase is mProjectPP, a task to project an
image onto a target plane. The number of tasks in each
phase depends on the number of input files, which can
be more than ten thousand. Two of the parallel phases in
Figure 3 have a similar dependency pattern to Figure 1,
where one task receives multiple inputs from prior tasks.
One of these patterns is mProjectPP→mDiff, and the other
is mBackground→mAdd1 (the former mAdd). These phases
are combied through task dependencies and constitute a
single workflow DAG. In order to minimize data movement
in such a complex workflow, it is necessary to determine
which node to assign tasks, based on all the dependencies
of the DAG.

C. Standard Graph Partitioning

The graph partitioning is a possible algorithm to assign
tasks to computation nodes for the purpose to minimize
data movement in a complex workflow. It has been used for
dividing large data for simulation and data processing [7].

The graph partitioning is a problem, given a graph G =
(V, E), to partition V into n groups, V1, V2, ..., Vn, evenly
(i.e., |V1|, |V2|, ..., |Vn| are equal), so as to minimize the
number of edges whose endpoint vertices belong to different

Figure 4. The Standard Graph Partitioning: unbalanced tasks in each phase

Figure 5. The Balanced Graph Partitioning using the proposed method

subsets. It is known that the graph partitioning problem
is NP-complete. The graph partitioning problem can be
extended to a graph in which each vertex or edge has a
weight. If the vertices have weights, the sum of the vertex-
weights in each subset is equal. If the edges have weights,
the sum of the edge-weights whose endpoint vertices belong
to different subsets is minimized. We refer to this basic graph
partitioning problem as the standard graph partitioning.
The standard graph partitioning is applicable to undirected
graphs.

For workflow DAGs, the vertices and the edges represent
tasks and data dependencies, respectively. The purpose of
this study to minimize data movement is the same as the
purpose of the graph partitioning, i.e., to minimize the edge
cut. The standard graph partitioning is applied to a DAG of
the Montage workflow, and its result is shown in Figure 4.
The figure shows that the former tasks are assigned to
two groups on the right, and the final task are assigned
to a group on the left. This is because all the vertices
are evenly partitioned regardless of the task phases. The
standard graph partitioning algorithm does not reflect task
parallelism. Instead, Figure 5 shows an intended partition-
ing where vertices are balanced in each phase. Therefore,
the partitioning algorithm of workflow DAG requires the
condition of equipartition of tasks in each parallel phase as
well as the edge cut minimization.

III. WORKFLOW SCHEDULING USING MCGP

We propose that task assignment to computation nodes
is determined using the Multi-Constraint Graph Partitioning

Figure 6. Example of Multi-Constraint Graph Partitioning

(MCGP) [5]. The idea of the use of MCGP for partitioning
multi-phase tasks appeared in [8]. However, the application
of MCGP to workflow scheduling has not been reported.
The contribution of this paper is the implementation and
evaluation of MCGP for workflow scheduling on a real
workflow system.

A. Multi-Constraint Graph Partitioning

The MCGP algorithm has been studied and implemented
in the METIS library [5], [9]. Contrary to the standard
graph partitioning in which a vertex weight is a scalar
value, a vertex weight in MCGP is a vector consisting of
multiple values. The purpose of MCGP is to balance the
summation of weight values in each dimension, The example
of MCGP algorithm is shown in Figure 6. In this example,
two-dimensional weight vectors are given to the vertices of
the graph. Figure 6 (a) shows the partitioning with an edge-
cut cost of 4. However, the weight summations of the second
dimension are 26 and 14 in the upper and lower partition,
respectively. This case is unbalanced partitioning. On the
other hand, Figure 6 (b) shows the partitioning with a larger
edge-cut cost of 5 than Figure 6 (a). However, the weight
summations of both dimensions are balanced. The MCGP
algorithm aims at partitioning in Figure 6 (b), where all the
dimensions of weight vectors are balanced simultaneously.
One of the example applications of MCGP proposed in [5] is
to compute a partitioning of the mesh among the processors
such that both of the amount of computations and memory
are balanced simultaneously.

B. Determining Task Phase

Before applying MCGP to a workflow DAG, we define
task phases in which tasks can be executed in parallel, based
on the dependency of the workflow. This is equivalent to
the procedure that the vertex V of the workflow DAG is
partitioned into subset P1, P2, ..., Pl. The determination of
the phase is as follows; The tasks with no precedent task are
defined as the first phase. This is expressed as P1 = {vk |
(vj , vk) /∈ E for ∀vj ∈ V }. The next tasks to the first phase

Figure 7. Weight Vector in Workflow DAG

are defined as the second-phase tasks. Thus, the i-th phase
Pi is defined by tracing task dependencies. If a task depends
on multiple tasks in different phases, its phase is defined as
the next of the maximum phase. This algorithm is expressed
as Pi = {vk | (vj , vk) ∈ E for ∃vj ∈ Pi−1 and @vj ∈
Pi′ for i′ ≥ i} for i ≥ 2. Figure 7 shows the task phases
defined for Montage workflow.

C. Weight Vector

After the task phase is determined, the weight vector wi

for the i-th phase is defined as follows. First, we define a
subset of task phases as Q = {Pi | |Pi| ≥ n}, here |Pi| is
the number of tasks in the i-th phase and n is the number of
partitions. Then, we count the order of Pi in Q and define
it as di. For example, if |P1| ≥ n, |P2| < n and |P3| ≥ n,
then Q = {P1, P3}, d1 = 1 and d3 = 2.

Now we can define the weight vectors wi. The length
of weight vectors is the number of the phases of Q, i.e.,
|Q| = max{di}. Then, for the i-th phases Pi ∈ Q, the di-th
dimension of wi is set to 1, all the other dimensions of wi

is set to 0. For the other phases Pi /∈ Q, the weight vectors
wi is set to zero vector. For example, again if |P1| ≥ n,
|P2| < n and |P3| ≥ n, the weight vectors are defined as
w1 = (1, 0, ...), w2 = (0, 0, ...) and w3 = (0, 1, ...). For the
Montage workflow, weight vectors are defined as shown in
Figure 7.

We here explain how this proposed method works for
equipartition in each phase. Consider a scalar-weighted
DAG; each vertex weight is substituted with the value at
the di-th dimensional of the weight vector. As a result,
the vertex weight is 1 for the i-th phase, 0 for the other
phases. If the standard graph partitioning is applied to this
scalar-weighted graph, equipartition of vertices is achieved
only for the i-th phase, and no constraint is imposed on
the partitioning of the other phases since their weight is
0. This discussion holds for all the phases assigned with

the dimensions of the weight vector. At the same time,
the objective of minimizing the edge-cut cost is applied
to the entire DAG. The MCGP algorithm thus achieves
equipartition for all the phases simultaneously as well as
minimizing the edge-cut cost. In the proposed method, the
dimension of the weight vector is not allocated in task phases
where the number of vertices is less than the number of
partitions, i.e., Pi with |Pi| < n. It means that, in these
phases, there is more than one partition to which no vertex
belongs. We allocate zero vector to the vertex weight of
these phases due to limitation of the METIS library, which
is used as a graph partitioning algorithm.

In the standard graph partitioning, the vertex-weight rep-
resents the computation cost and the edge-weight represents
the communication cost. This discussion still holds for the
MCGP. It is noted that the comparison of the weight value
makes sense only in one phase, and comparison of the
weight values between different phases does not makes
sense. In order to utilize the vertex-weight and/or edge-
weight for the graph partitioning of the workflow DAG,
the estimation of computation and communication cost is
required. However, such precise estimation is not always
possible. Therefore, in this paper, we assume that the com-
munication cost and the computation cost are almost equal
with each other. This assumption holds true in many cases of
scientific application, especially exploiting data-parallelism.

IV. WORKFLOW SYSTEM

For the implementation and evaluation of the workflow
scheduling proposed in the previous section, we use the
Pwrake parallel workflow system [10], the METIS graph-
partitioning library [11], and the Gfarm wide-area distributed
file system [12].

A. Pwrake Workflow System

In this study, we use Pwrake [10], [13] for the evaluation
of the proposed method. Pwrake is a workflow system
to execute process in parallel using distributed computers.
Pwrake is based on Rake, a build tool in written Ruby, a
similar to UNIX make. Since the Makefile syntax is powerful
also for defining scientific workflows, make-based workflow
systems such as GXP make [14] have been developed.
We employ Rake since it is more powerful and flexible
than make. Rake is a standard tool which is bundled in
Ruby version 1.9 or later. The syntax of Rakefile (the
script file of Rake tasks) is same as the Ruby language.
This feature is called an internal Domain Specific Language
(DSL), where a host language is directly used as a DSL.
The scripting power of Ruby enables the description of
complicated science workflows. Pwrake extends Rake with
the following features; the parallel execution with a thread
pool, the remote execution by SSH, and the utilization of
the Gfarm file system. However, Pwrake has evolved after
that. The syntax extension described in [10] is abandoned.

The current version of Pwrake is same as Rake and all
independent tasks can be executed in parallel. Pwrake has
been already used in Bioinfomatics [15] and Earth science
as well as Astronomy.

The Ruby language has a feature that the behavior of
existing classes can be modified dynamically. Utilizing this
feature, we add a proposed scheduling method using MCGP
to Pwrake.

B. METIS Graph Partitioning Library

As an implementation of MCGP, we employ the
METIS library version 5.0pre2. In order to use the
APIs of METIS from Ruby, we develop a Ruby
wrapper over the METIS APIs. The MCGP APIs
of METIS are METIS_mCPartGraphRecursive and
METIS_mCPartGraphKway. However, these APIs does
not receive a parameter of partition weight, which is required
for applying this function to un-uniform machine environ-
ment. Therefore, METIS_mCPartGraphRecursive2
provided in ParMETIS is modified for METIS ver.5.0pre2,
and used for the evaluation of this study.

C. Gfarm Distributed File System

The Pwrake system assumes the use of the Gfarm wide-
area distributed file system [12]. The Gfarm file system
utilizes local storage of distributed computation nodes. This
design has an advantage in data locality. The Gfarm also
brings benefits to distributed workflow execution in the
following ways. The Gfarm provides the gfarm2fs command
which mounts the Gfarm file system on a local file system.
This feature enables an application program to access a
Gfarm file in the same way as a normal file without any
modification of the program. The Gfarm also provides a
global directory tree for distributed storage. Files can be
accessed from application programs without specifying data
transfer explicitly. These features enable users to write
workflow in a same way to execute on a local file system.

The Gfarm system has mechanisms to exploit data local-
ity. When writing a file on the Gfarm file system, the same
storage node is selected if possible. However, file systems do
not manage task execution, but workflow systems do. The
previous works on Pwrake [10] achieved an implementation
of locality-aware task assignment which is based on the
locality of an input file. It is noted that this assignment is
not based on a workflow DAG in contrast to this work.
The assignment for each task is determined immediately
before the task execution. In the next section, this immediate
locality scheme is compared with the proposed method of
this paper.

V. EVALUATION

In this section, the proposed method is evaluated for the
Montage workflow using a cluster system.

Table I
DESCRIPTION OF INPUT DATA

Each image file
File size 2.1 MB or 1.7 MB

Pixel 512 × (1024 or 830)
Image area 8.5′ × (17.1′ or 13.8′)

Overall data set
of files 609

Total data size 1270 MB
Final image area 250′ × 250′

Table II
SYSTEM USED FOR MEASUREMENT

Cluster InTrigger Kobe site
CPU Xeon E5410 (2.33GHz)

Main Memory(GB) 16
of used nodes 8
of used cores 32

A. Experiment

As input data to the Montage workflow for this evalua-
tion, a subset of 2MASS[16] image data is used. Table I
shows the details of the image data set. The environment
used for the performance evaluation is the Kobe site of
InTrigger platform [17]. Table II shows the details of the
used platform. The Gfarm file system is used for all of
the measurement. The metadata server of Gfarm is installed
in the Kobe site. In this evaluation, eight nodes are used
for workflow execution. Therefore, the workflow DAG is
partitioned into eight groups. As an initial condition, all the
input files are stored in storage of a single node.

We investigate the following three kinds of task assign-
ment scheme:

1) Round-robin: No data locality is considered.
2) Immediate: The locality is probed from the location

of an input file immediate before task execution. This
is studied in the previous work [10] (Section IV-C).

3) MCGP: The method proposed in this paper.
In addition, we investigate different two patterns of the
Montage workflow which produce the same result image.
The difference is in the mAdd1 phase. In this phase, the
target region is divided into n×m subregions or tiles. Then
input images that overlap one of tiles are combined into
a subimage by the mAdd program. The tile size can be
specified as a parameter of a workflow. In this study, we
investigate two patterns; 4 × 4 tiles and 8 × 4 tiles. Since
the workflow is executed on eight nodes, the number of the
tile regions assigned to each node is 2 and 4, respectively.

B. Task Assignment and Image Position

Before evaluating the workflow performance, we inves-
tigate how the proposed method assigns workflow tasks to
computation nodes. Figure 8 shows the positions of input
images in the celestial coordinate. In these figures, colors
and numbers denote allocated nodes where the mProjectPP

(a) MCGP: 4×4 tiles in mAdd phase

 39

 39.5

 40

 40.5

 41

 41.5

 42

 42.5

 43

 43.5

 8 9 10 11 12 13

D
e
c
lin

a
ti
o
n
 (

d
e
g
re

e
)

Right Ascension (degree)

7

7

7

7

7 7

7

3

3

3

2
3

3

3
2

7

7
77

7

77

4 4
5

5
4 4

2

2

2 2

2

2

2

6

66

6

6

6 6

6

33 2

3

5

5

5

5

7

7

7 7

6

66

1

0
1

0 1

1

2
3 2

3

3

3

3
3

3 3

3

6

6

7

7

6

6

4

4 4

4

4

4

4

7
6

7

7

7

6
4

66
6

5

5

5

5

5

5

5 5 22

2

2

2

1

2

2

1

7

7
7

7
7

7

7

7
7

4

7

4

4
44

4

77
7

7

7

7

5

5
5

5

5

5

5

0

0

0

00
0

0

7

7

6
66

6

6

2 2

3

3

3

7

5
5

5

5
5

7

3
3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

4
4

4
4

4

4

5

6

5
5

5

5 6

1
1

2

1

1

2 1

6

6

6

6

66

0

0

0

0 0

0 0

3 3

0

3

3

0

6 6

6

66

6

6

6

6

4
44

4

4

0

7

0

7
7

3

6

6 6

6

7

6

2

3 3

3

0

0

1

0
0

0

0

0

3

3

7

4 2

1

2
2

2

2

2

2
2 2

22

2

2

5
6

6

5
5

6

5

5

3

1 1
1

4

4

4

4

4

6
6

4

4

2
2

6

5

0

0

0

0
0

0

4

1
1

1

4

1

1

1

1

1 1

1

1
1

1

1
1

1

1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

3

3

3

3

6

3

7

4
44

44

6

6

6

2

2
2

11

11
1
11

5

5

5

5

4

5

5

5

5

5

5

5

5
4

5
4

3

3

3
3

4

4
4

4

4

6 6

6
6

6

6

0 1
10

0

0

3

3

3

3

3
3

2
2

2

25

5

5

5
5

5 4

4

4

7

7

0

0

4

4

7
7

7

6

6
6

0
0

0

0

0

0

1

1
1

1

7
7 7

7

3

3

1
1

1

1

1

1

2

2

2

2

2

4

4
4

4

1

0 1
1

1

4

3

0

0
0

0

0
0

4

4

4

4

7

7

4
4

4

4

6

6

00

7

7
7

7

7 1
1

4

0

7

0

0

5

5

5

0

0

1

2

0

5

56
6

5

5

2

2

2

4

7

4

3

7

0

2

2

7
7 0

0

2

7

7

1
1

5

5

5

5

4

6

0

4

3

3
4

3

3

3

5
5

1

1

1

1

2
2

2
2

2

2

3

3

6

5

5 5

7
7

0

0

0 0
0

5

4

0

00

0

2

6

5

5

2

6

1

5

5

1

1

2

0 1

6

4

6

7

1
0

2

(b) MCGP: 8×4 tiles in mAdd phase

 39

 39.5

 40

 40.5

 41

 41.5

 42

 42.5

 43

 43.5

 8 9 10 11 12 13

D
e
c
lin

a
ti
o
n
 (

d
e
g
re

e
)

Right Ascension (degree)

0

0

0

0

7 0

0

2

2

2

2
2

2

2
2

7

7
77

7

77

5 5
5

5
5 5

2

2

3 3

2

3

2

4

44

4

4

4 4

4

21 2

2

5

5

5

5

0

0

7 0

4

44

1

1
1

1 1

1

2
2 2

1

1

1

1
1

1 1

1

4

4

7

7

4

4

6

6 6

6

6

6

6

7
7

7

7

7

7
7

44
4

5

5

5

5

5

5

5 5 22

2

3

3

3

2

3

3

7

0
7

7
7

7

7

7
7

7

7

7

7
67

7

77
7

7

7

7

5

5
5

5

5

5

5

1

0

1

10
1

0

7

7

4
44

4

4

2 2

3

2

3

7

5
5

5

5
5

7

0
3

0

0

0

0

0
3

0

0

0

0

0

0
6

0

6
7

6
6

6

6

4

4

5
5

5

4 4

3
3

3

3

3

3 3

4

4

4

4

44

1

1

1

1 1

1 1

3 3

3

3

0

0

4 4

4

44

4

4

4

4

6
66

6

6

0

0

0

0
0

3

4

4 4

4

7

4

2

3 3

3

1

1

1

1
1

1

1

1

2

2

7

6 2

3

2
2

3

2

3

2
2 2

22

2

2

5
5

4

5
5

4

5

5

0

3 3
3

6

6

6

6

6

4
4

6

6

2
2

4

7

0

0

0

0
0

0

6

3
3

3

7

1

1

1

3

1 3

3

1
3

1

3
1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

1

6

1

1

7

1

0

6
66

66

4

4

4

2

2
2

31

11
3
33

5

5

5

5

5

5

5

5

5

5

7

7

5
7

5
7

1

6

6
1

6

6
6

6

6

4 4

4
4

4

4

1 1
11

1

1

0

0

0

6

6
6

2
2

2

25

5

5

5
5

5 6

6

6

0

0

0

0

6

6

7
7

7

4

4
4

1
1

1

3

0

1

3

3
3

3

7
7 7

7

0

0

3
3

3

3

3

3

2

2

2

2

3

6

6
6

6

1

1 1
1

1

6

0

0

0
0

0

0
0

6

6

6

6

7

7

6
6

6

6

4

4

10

7

7
7

7

7 1
1

6

0

0

1

1

5

5

4

1

1

3

2

1

4

54
4

5

5

2

2

2

6

7

6

1

7

0

2

2

0
0 0

0

2

7

7

3
3

5

5

5

5

7

4

0

6

6

6
6

6

6

6

5
5

3

3

3

3

2
2

2
2

2

2

6

0

4

5

5 5

7
7

0

1

0 0
0

5

6

0

00

0

2

4

5

5

2

4

3

5

5

3

3

2

0 3

4

6

4

7

3
0

2

(c) Assignment other than MCGP

 39

 39.5

 40

 40.5

 41

 41.5

 42

 42.5

 43

 43.5

 8 9 10 11 12 13

D
e
c
lin

a
ti
o
n
 (

d
e
g
re

e
)

Right Ascension (degree)

4

0

1

0

6 3

22

0

7

5

7

5

3

2

2

3

4

1

1

3

0

6

7

4

7

5

5

6

6 41

1
1

2

5

6

2

3

7

0

5

5

7

5

2

7

3

4

1

3

6

3
4

2

6

0

0

7

0

1

6

4

4

1

4

6

1

7

2

5

2

3

2

7

0 5

5

1

2

6

7

1

3

6

3

3

6

0

4

0
4

0

5

4

7

5

4
6

7

1

0

1

5
2

2

0

4

4

2

3 7

1

5

2

7

1

6

0

6

5

3
3

3

6

4

0

7

5

1

4

6

7

1

0

5

2

2

0

2

4

3

4

7

1

5

0 7

2

6

1

5

0

6

3

6

3

4

7

5

1

6
4

7

1

5

0

2

2

0

2

4

6

7

3

6 3

4

5

1

0

3

2

1

5

6

0

4

6

5

4

7
1

7

7

1

5

0

2

60

2

2

4

1

3

7
6

6

5

4

3

1

0

2

3

1
5

4

6

0

4

5

7

7

2

7

1

5

0 60

2

2

4

1

7

3

6

6

1

4

3

0

3

2

1

4

5

5

6

0

3

4

5

7

7

7

1

6

2

5

0

0

2

4

1

0

3

3

7

6

1

2

4

6

3

5

2

4

1

6

4

5

0

3

5

5

7

7

1

7

6

2

0

0

4

3

2
4

1

2

0

0

7

6

1

3

4

6

7

2

3

5

4

6

1

3

5

5

5

7

4

7
2

6

7

0

0

4

3

2

4

3

2

0

0

1

1

5

6

2

7

6

5

4

1

1

36
3

5

0

7

5

6

4

3
7

1

2

7
0

4 2

0

5

4

3

2

0

5

6

1

2

3

7
6

4

1

1

7

6

3

5

0

5

7

6

4

4

3

7

1

2

0

6

0

4

2

3

5

3

3

2

6

0

7

5

1

1

2

4

7

4

1

6

1

5

0

5

7

6

3

7

4

2

4

1

0

6

3

0

2

6

5

3

3

0

2 7

1

5

4

27

6

4

6

1

5

0

1

7

5

6

7

3

4

2

4

0

1

3

0

6

6

7

2

3

5

3

7

0

2

1

5

4

2

4

6

7

5

1

0

7

1

5

2

6

7

3

4

4

1

0

3

5

3

0

6

2

7 2 5

3

4

0
1

2

4

2

6

7

5

3

1

5

0

1

7

5

6

0

7 3

6

4

0

4

3

1

7

3

7

2

2

5
4

0

1

4

2

5

2

6

3

1

5

0
7

1

5

6

7

3

0

4

6

0

3

1

3

7

4

6

7

2

2

4

4

5

0

1

2

6

1

0

5

2

6

3

5

0

3

1

0

7

5

7

2

3

3

7

4

1

7

6

4

4

1

5

62

0

4

5

3

2

Figure 8. Image Position in Celestial Coordinate

task reads the corresponding image file. The black lattice
grid indicates the tiles at the mAdd1 phase. Figure 8 (a)
and (b) show the result of the proposed method using
MCGP. Among these figures, Figure 8 (a) shows the good
accordance of node allocation with tile regions. This means
that the graph partitioning of DAG corresponds to grouping
in the spatial coordinate. It is noted that this node allocation
is produced from only the workflow DAG. The proposed
method does not require any spatial information.

On the other hand, the partition of Figure 8 (b) (8×4 tiles)
does not always correspond to tile regions. In this figure,
data locality in the mAdd1 phase seems to be inferior to
partition according to the tile grid. The effect of this partition
on workflow performance is evaluated in the following
subsections.

For comparison, Figure 8 (c) shows the result of task
assignment other than MCGP. Both the scheduling schemes
of 1) Round-robin and 2) Immediate result in a random
task assignment as shown in Figure 8 (c). In the Immediate
scheme, tasks in the first phase are randomly assigned due
to the initial condition in which all the input files are stored
in a single node.

C. Data Movement

The data size of files accessed for read during workflow
execution is counted for each scheduling scheme. In every
case, the total size of all data access is about 24 GB. The
ratios of remote access during the workflow execution are
plotted in Figure 9. In the case of 4 × 4 tiles, the ratios
of remote access are 1) Round-robin: 87.9%, 2) Immediate:
47.4% and 3) MCGP: 14.0%. The result demonstrates that
the data movement between nodes is dramatically reduced
by the proposed method using MCGP. The Immediate
scheme is worse than the MCGP because the initial node
allocation pattern is like Figure 8 (c). In the case of 8 × 4
tiles, the remote access ratio of 3) MCGP is 15.4%. This
is slightly larger from the 4 × 4 tile case, but still much
smaller than the other scheme. From the data position
shown in Figure 8 (b), the result of MCGP for 8 × 4 tiles
seems not to be the best allocation. However, in view of
data movement, the proposed method using the MCGP is
enough for workflow scheduling. The result shows that the
proposal method is effective for reducing the amount of data
movement during workflow execution.

D. Workflow Execution Time

The elapsed time of the workflow is measured for each
scheduling scheme, and the result is shown in Figure 10. The
measurement is performed three times and average values
are indicated. In the case of 3) MCGP, the elapsed time
includes the graph partitioning time which is about 0.03 sec,
small enough compared with the whole workflow.

In the case of 4 × 4 tiles, 3) MCGP scheme reduces the
elapsed time by 31% (53 sec) from 1) Round-robin scheme

Figure 9. Ratio of Remote Data Access

Figure 10. Elapsed Time of Workflow

and by 22% (34 sec) from 2) Immediate scheme. This result
shows that the proposed method is effective to reduce the
execution time of a workflow. The reduction ratio in elapsed
time (31%) is smaller than that in remote access (74%)
since the elapsed time includes time for read, write and
compute, and the reduction of remote access affects only
time for read. The small increase in elapsed time from 4×4
tiles to 8 × 4 tiles in the MCGP scheme is due to inferior
partitioning, while it shows that both the cases of the MCGP
are still effective for reducing elapsed time. It is noted that
the reduction of 53 sec is achieved by paying the time
for graph partitioning of 0.03 sec. From these results, the
proposed method using the MCGP is powerful to improve
the performance of workflow execution.

VI. RELATED WORK

The idea using MCGP for partitioning multi-phase tasks
was appeared in [8]. However, the application of MCGP

to workflow scheduling has not been reported after that.
The contribution of this paper is the implementation and
evaluation of MCGP for workflow scheduling on a real
workflow system. The use of the graph partitioning for the
workflow DAG was proposed in the papers [18], [19], [20].
However, these papers did not propose the use of MCGP.
The papers [21], [22] proposed the use of graph partitioning
for partition the resources of a distributed system, but not the
workflow DAG. In the study [23], the workflow clustering
was applied to the Pegasus workflow system. They divided
parallel tasks to generate abstraction workflows. The work-
flow clustering based on the spatial information of data was
studied in [24] for a workflow of astronomical data analysis.
However, such a method forces users to handle spatial
information from data to give it to the workflow system. In
contrast, our proposed method using MCGP requires only
the workflow DAG. Given the workflow DAG, the workflow
system automatically perform task scheduling to minimize
the communication cost during workflow execution.

VII. CONCLUSION AND FUTURE FORK

Data-intensive science requires high-performance work-
flow systems where data-aware task scheduling is an impor-
tant issue. We proposed a method applying Multi-Constraint
Graph Partitioning (MCGP) to the workflow DAG, aiming at
task assignment that minimizes data movement between pro-
cessors and reduces workflow execution time. This method
was implemented in the Pwrake workflow system with the
Gfarm distributed file system. The proposed method was
evaluated using the Montage astronomy workflow. As a
result, the proposed method reduced the remote file access
from 88% to 14% of total file access in data size and
decreased workflow execution time by 31% (53 sec) in com-
parison to locality-unaware task assignment. This reduction
was achieved by paying the graph partitioning time of only
0.03 sec. Our proposed method bases on only the workflow
DAG and no other information such as data positions. This
method is widely applicable to other scientific workflows.

Future work includes (1) the evaluation of workflows in
which file sizes and computation costs are uneven, (2) the
algorithm to define the order of task execution in each task
phase (this is not defined in this study), (3) the multi-level
partitioning for a platform where processors are connected
by networks with different throughput, (e.g., a cluster of
clusters), and (4) the application for heterogeneous clusters.

ACKNOWLEDGMENT

This work is supported by JST CREST research area,
“Development of System Software Technologies for Post-
Peta Scale High Performance Computing,” and the MEXT
Promotion of Research for Next Generation IT Infrastructure
“Resources Linkage for e-Science (RENKEI).”

REFERENCES

[1] T. L. Casavant, Jon, and G. Kuhl, “A taxonomy of scheduling
in general-purpose distributed computing systems,” IEEE
Transactions on Software Engineering, vol. 14, pp. 141–154,
1988.

[2] J. Yu and R. Buyya, “A taxonomy of scientific workflow
systems for grid computing,” SIGMOD Record, vol. 34, no. 3,
p. 45, 2005.

[3] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Mah-
eswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao,
D. Hensgen, and R. F. Freund, “A comparison of eleven
static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems,” Journal
of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810
– 837, 2001.

[4] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 13, pp. 260–274, 2002.

[5] G. Karypis and V. Kumar, “Multilevel algorithms for multi-
constraint graph partitioning,” in Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), ser.
Supercomputing ’98. Washington, DC, USA: IEEE Com-
puter Society, 1998, pp. 1–13.

[6] Montage, http://montage.ipac.caltech.edu/.

[7] K. Schloegel, G. Karypis, and V. Kumar, “Sourcebook of
parallel computing,” J. Dongarra, I. Foster, G. Fox, W. Gropp,
K. Kennedy, L. Torczon, and A. White, Eds. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2003, ch.
Graph partitioning for high-performance scientific simula-
tions, pp. 491–541.

[8] B. Hendrickson and T. G. Kolda, “Graph partitioning models
for parallel computing,” Parallel Computing, vol. 26, no. 12,
pp. 1519 – 1534, 2000, graph Partitioning and Parallel Com-
puting.

[9] K. Schloegel, G. Karypis, and V. Kumar, “Parallel multilevel
algorithms for multi-constraint graph partitioning,” in Euro-
Par 2000 Parallel Processing. Springer, 2000, pp. 296–310.

[10] M. Tanaka and O. Tatebe, “Pwrake: A Parallel and Dis-
tributed Flexible Workflow Management Tool for Wide-area
Data Intensive Computing,” in Proceedings of the 19th ACM
International Symposium on High Performance Distributed
Computing, ser. HPDC ’10. New York, NY, USA: ACM,
2010, pp. 356–359.

[11] METIS, http://www.cs.umn.edu/˜metis.

[12] O. Tatebe, K. Hiraga, and N. Soda, “Gfarm Grid File System,”
New Generation Computing, vol. 28, no. 3, pp. 257–275,
2004.

[13] M. Tanaka, “Pwrake,” http://masa16.github.com/pwrake.

[14] K. Taura, T. Matsuzaki, M. Miwa, Y. Kamoshida,
D. Yokoyama, N. Dun, T. Shibata, C. S. Jun, and J. Tsujii,
“Design and Implementation of GXP Make – A Workflow
System Based on Make,” eScience, IEEE International Con-
ference on, vol. 0, pp. 214–221, 2010.

[15] H. Mishima, K. Sasaki, M. Tanaka, O. Tatebe, and K.-i.
Yoshiura, “Agile parallel bioinformatics workflow manage-
ment using pwrake,” BMC Research Notes, vol. 4, no. 1, p.
331, 2011.

[16] M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg,
S. Schneider, J. M. Carpenter, C. Beichman, R. Capps,
T. Chester, J. Elias, J. Huchra, J. Liebert, C. Lonsdale, D. G.
Monet, S. Price, P. Seitzer, T. Jarrett, J. D. Kirkpatrick, J. E.
Gizis, E. Howard, T. Evans, J. Fowler, L. Fullmer, R. Hurt,
R. Light, E. L. Kopan, K. A. Marsh, H. L. McCallon, R. Tam,
S. Van Dyk, and S. Wheelock, “The Two Micron All Sky
Survey (2MASS),” Astronomical Journal, vol. 131, pp. 1163–
1183, Feb. 2006.

[17] H. Saito, Y. Kamoshida, S. Sawai, K. Hironaka, K. Takahashi,
T. Sekiya, N. Dun, T. Shibata, D. Yokoyama, and K. Taura,
“InTrigger: A Multi-Site Distributed Computing Environment
Supporting Flexible Configuration Changes,” IPSJ SIG Tech-
nical Report 2007-HPC-111, vol. 2007, no. 80, pp. 237–242,
2007.

[18] F. Dong and S. Akl, “Two-phase computation and data
scheduling algorithms for workflows in the grid,” in Parallel
Processing, 2007. ICPP 2007. International Conference on.
IEEE, 2007, pp. 66–66.

[19] S. Kalayci, G. Dasgupta, L. Fong, O. Ezenwoye, and S. Sad-
jadi, “Distributed and adaptive execution of condor dagman
workflows.”

[20] O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, and
D. Epema, “Performance analysis of dynamic workflow
scheduling in multicluster grids,” in Proceedings of the 19th
ACM International Symposium on High Performance Dis-
tributed Computing. ACM, 2010, pp. 49–60.

[21] S. Kumar, S. Das, and R. Biswas, “Graph partitioning for
parallel applications in heterogeneous grid environments,” in
Parallel and Distributed Processing Symposium., Proceedings
International, IPDPS 2002, Abstracts and CD-ROM. IEEE,
2002, pp. 66–72.

[22] C. Lin, C. Shih, and C. Hsu, “Adaptive dynamic scheduling
algorithms for mapping ongoing m-tasks to pr 2 grid,” Journal
of information science and engineering, vol. 26, pp. 2107–
2125, 2010.

[23] E. Deelman, J. Blythe, A. Gil, C. Kesselman, G. Mehta,
S. Patil, M. hui Su, K. Vahi, and M. Livny, “Pegasus: Mapping
scientific workflows onto the grid,” 2004, pp. 11–20.

[24] L. Meyer, J. Annis, M. Wilde, M. Mattoso, and I. Foster,
“Planning spatial workflows to optimize grid performance,”
in SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing. New York, NY, USA: ACM, 2006, pp.
786–790.

