
Research Article

Workflow Scheduling Using Hybrid GA-PSO Algorithm in
Cloud Computing

Ahmad M. Manasrah 1 and Hanan Ba Ali2

1Network and Information Security Department, Yarmouk University, Irbid 21163, Jordan
2Computer Sciences Department, Yarmouk University, Irbid 21163, Jordan

Correspondence should be addressed to Ahmad M. Manasrah; ahmad.a@yu.edu.jo

Received 27 September 2017; Accepted 11 December 2017; Published 8 January 2018

Academic Editor: B. B. Gupta

Copyright © 2018 AhmadM. Manasrah and Hanan Ba Ali. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Cloud computing environment provides several on-demand services and resource sharing for clients. Business processes are
managed using the work�ow technology over the cloud, which represents one of the challenges in using the resources in an e	cient
manner due to the dependencies between the tasks. In this paper, a Hybrid GA-PSO algorithm is proposed to allocate tasks to
the resources e	ciently. �e Hybrid GA-PSO algorithm aims to reduce the makespan and the cost and balance the load of the
dependent tasks over the heterogonous resources in cloud computing environments. �e experiment results show that the GA-
PSO algorithm decreases the total execution time of the work�ow tasks, in comparison with GA, PSO, HSGA, WSGA, and MTCT
algorithms. Furthermore, it reduces the execution cost. In addition, it improves the load balancing of the work�ow application over
the available resources. Finally, the obtained results also proved that the proposed algorithm converges to optimal solutions faster
and with higher quality compared to other algorithms.

1. Introduction

�e needs for computing and huge storage resources are fast
growing. �erefore, cloud computing gets the attention due
to the high performance computing services and facilities
that are provided to the users as So
ware as a Service
(SaaS), Infrastructure as a Service (IaaS), and Platform as a
Service (PaaS) [1–3]. Various applications can be modeled
as work�ow applications of a set of tasks with dependencies
between them in the sense that before one task can execute,
dependant tasks have to complete their execution �rst.Work-
�ow applications are being used in a range of domains, such
as astrophysics, bioinformatics, and disaster modeling and
prediction. Moreover, complicated problems like complex
scienti�c applications are emerging recently through com-
bining various methods and techniques in a single solution.
For such a need, this type of applications has been executed
on supercomputers, clusters, and grids [4]. Fortunately, with
the advent of clouds, such work�ow applications are executed
in the cloud. �e work�ow applications are the mechanism

of a large-scale business process execution, consisting of a
set of events or tasks in which information is distributed
from one task to another based on some technical rules, to
achieve a general goal [5]. �e work�ow application tasks
are dependent on each other, where the output of some
tasks is the input to another. �erefore, the order of their
execution must be considered when assigning the tasks to
VM processors in a multiprocessor environment. Assigning
the dependent tasks to themost appropriate VMprocessors is
known to be an NP-complete problem as discussed by Verma
and Kaushal [6]. �e scheduling processes of the work�ow
applications are a multiobjective optimization problem (also
known as Pareto optimization), where users might wish to
minimize the money cost and the execution time for the
whole work�ow applicationwith e	cient load balancing over
the VMs in the cloud environment. �e optimal decision
for the multiobjective work�ow optimization is the trade-o�
between the three objectives; therefore, the objectives must
be rated based on their importance to the users to select the
best Pareto solutions because, for instance, minimizing the

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 1934784, 16 pages
https://doi.org/10.1155/2018/1934784

http://orcid.org/0000-0002-3452-5409
https://doi.org/10.1155/2018/1934784

2 Wireless Communications and Mobile Computing

overall cost may lead to maximizing the execution time and
the load over a speci�c VM [7, 8]. �e work�ow scheduling
problem is an inherited problem from the heterogeneous
computing environments, for which di�erent research e�orts
were made to address the scheduling problem [9–11]. How-
ever, heterogeneous computing environments are not easy to
set up, and their capability of giving more uniform perfor-
mance with less failure is quite limited in comparison to the
cloud environments [12, 13]. Moreover, the main objective
of the various previous e�orts in addressing the work�ow
scheduling problem in heterogeneous environments is to
only minimize the �nish time. �erefore, with the wide
adoption of the cloud environments and their services as
a pay-per-use model, there is a need to consider both the
total monetary cost and the execution makespan. As a result,
several metaheuristic algorithms were proposed to solve the
scheduling problem of the work�ow tasks and to get an
e	cient solution for tasks distribution over the di�erent VMs
in the cloud environment. For instance, Genetic Algorithm
(GA) [14], Ant Colony Optimization [15], Swarm Intelligence
[16], and Arti�cial Bee Colony (ABC) [17] are few examples
of the various proposed solutions of work�ow scheduling
problem that addresses the total monetary cost and the
execution makespan.

�e main objective of this paper is to propose an
algorithm that addresses the work�ow scheduling prob-
lem. �e proposed algorithm should also reduce the total
makespan execution time and balances the load over theVMs
with minimum total monetary cost. �erefore, this paper
proposes a Hybrid GA-PSO algorithm through combining
the strengths of both algorithms to address the work�ow
scheduling problem.�e e	ciency of the proposed algorithm
is evaluated against other algorithms to prove its e�ectiveness
in solving the work�ow scheduling problem in the cloud
environment.

�e remainder of the paper is organized as follows. �e
problem description and the state-of-the-art in work�ow
scheduling are described along with the challenges when
applying the existing common scheduling algorithms on IaaS
platforms which are also highlighted in Section 2. �is is
followed in Section 3 by the design of the work�ow schedul-
ing algorithm and de�nitions of the proposed algorithm.
Section 4 provides details of the performance evaluation of
the multiobjective scheduling problem in cloud along with
the experimental results and their discussion, and the paper
is concluded and the future work is summarized in Section 5.

2. Related Work

Work�ow scheduling problems are considered one of the
main challenges in cloud environments. Many heuristic
algorithms were proposed to solve the tasks scheduling
problem using di�erent strategies. However, the problem
becomes obvious when the tasks are dependent on each other
(i.e., work�ow application). �e dependent tasks require a
speci�c execution order due to the relationship between
them. �ere are two types of work�ow scheduling: the
best-e�ort work�ow scheduling and the quality of services
(QoS) constraint work�ow scheduling [5, 18]. However, the

best-e�ort work�ow scheduling focuses on reducing the
execution time of the whole work�ow tasks regardless of
other factors. Many types of research were based on the
best-e�ort work�ow scheduling to reduce the execution time,
such as Braun et al. [16] who use the min-min algorithm
for work�ow scheduling. �eir proposed approach executes
the small tasks �rst and delays the larger tasks for a longer
time. On the other hand, Mao et al. [19] use the max–min
algorithm for task scheduling to execute the large tasks �rst
and the small tasks are delayed for a longer time. In an
attempt to resolve the aforementioned issues, Kumar and
Verma [20] combined themin-min andmax–min algorithms
along with the Genetic Algorithm to improve the scheduling
ofmultiple jobs overmultiple virtualmachines e	ciently.�e
authors employ the min-min and the max–min algorithms
to generate the GA individual and to provide better initial
population rather than randomly chosen initial population.
�e achieved results were better than GA-based algorithms;
however, it requires a lot of computation steps that consume
time. �is makes it unsuitable for cloud computing pay-
per-use models. Guo et al. [21] proposed a Particle Swarm
Optimization (PSO) based algorithm for solving the task-
scheduling problem with an objective of reducing the total
execution and transfer time. �e optimization process is
based on a heuristic scheduling combined with the PSO, to
allocate the tasks to the di�erent available resources. �ey
practically proved that the PSO could run faster and give a
better solution than GA. However, the PSO algorithm might
get trapped in the a local optimal solution [22].

Di�erent types of research, based on the QoS constraint
for work�ow scheduling, were considered to reduce the
execution time under di�erent prede�ned constraints, such
as the following: user’s prede�ned budget constraints, user
prede�ned deadline constraints, or work�ow scheduling
considering the reliability, time, cost, load balance, and fault
recovery constraints. In this regard, Pandey et al. [23] pre-
sented a heuristic algorithm based on Particle Swarm Opti-
mization to solve the work�ow tasks scheduling over cloud
resources.�e conducted experiment shows that the compu-
tation cost using the PSO algorithm is three times better than
the “Best Resource Selection” (BRS) algorithm under user
prede�ned time constraints.However, the obtained result was
not completely accurate due to the fast convergence towards
the solution, which may cause PSO to get stuck in the local
optimal solutions, and even the results cannot re�ect the real
performance of PSO. Arabnejad and Barbosa [24] presented
a Heterogeneous Budget-Constrained Scheduling (HBCS)
algorithm. �e algorithm computes two possible schedules
for the DAG (Directed Acyclic Graph) of the work�ow. One
schedule produces the minimum execution time with the
maximum cost, while the other produces the minimum cost.
�e user, therefore, is able to decide which schedule to use
to execute his task before the required deadline and within
the cost range.�eHBCS algorithm reduces themakespan by
30% and the cost within the user’s speci�ed budget constraint.
Furthermore, it reduces the time complexity compared to
other budget-constrained algorithms.

Researchers such as Verma and Kaushal [6] realize that
the priority of the tasks determined their execution order.

Wireless Communications and Mobile Computing 3

Consequently, they presented a Bicriteria Priority Based Par-
ticle Swarm Optimization (BPSO) algorithm, to schedule the
work�ow tasks over the available cloud resources. �e BPSO
algorithm represents the trade-o� between the execution
time and the execution cost under the user’s prede�ned
budget and deadline constraints. �e proposed scheduling
algorithm signi�cantly reduces the execution cost and the
makespan through selecting the best-known scheduling solu-
tion from the heuristic solutions under the prede�ned dead-
line and budget constraints compared to BHEFT (Budget-
constrained Heterogeneous Earliest Finish Time) [31] and
PSO algorithms [22, 26]. However, the BPSO algorithm does
not consider the various loads of the available resources.
Consequently, Xu et al. [25] developed a multiobjective
heuristic algorithm based on the min-min algorithm. �e
proposed algorithm uses four real-world scienti�c work�ows
to evaluate its performance. �e conducted experiments
evaluate the performance of the makespan and the execution
cost with fault recovery procedure. �e heuristic algorithm,
based on themin-min algorithm, is considered a better choice
only when both the cost and the makespan are considered.

�e multiobjective optimization is a very promising
direction to tackle the problem of work�ow scheduling. In
this regard, Ge and Wei [27] used a Genetic Algorithm
to optimize the tasks scheduling in the job queue. �ey
used a centralized scheduler (i.e., master node) to distribute
the waiting tasks to the di�erent available resources (i.e.,
slave nodes) based on the resources status messages. �eir
results show that the proposed schedule was better than
the First-In-First-Out (FIFO) and the Delay scheduling that
distributes the load over all resources in the cloud. However,
the proposed algorithm requires a lot of processing time to
reach the optimal solution. Later, Fard et al. [28] suggested
a heuristic static multiobjective scheduling algorithm for
scienti�c work�ows in heterogeneous environments. �e
proposed algorithm adopted the strategy of maximizing and
minimizing the distance between the constraints for each of
the four objectives (i.e., makespan, economic cost, energy
consumption, and reliability). �e researchers analyzed and
categorized the di�erent objectives based on their impact on
the optimization process.�e results showed that most of the
generated solutions are within the prede�ned deadline and
budget constraints. However, the proposed algorithm is not
e	cient with a small number of tasks and processors. Wu
et al. [29], therefore, suggested a Revised Discrete Particle
Swarm Optimization (RDPSO) algorithm to schedule the
work�ow applications over the di�erent available resources.
�e experimentswere conducted over a set of work�ow appli-
cations with di�erent data communication and computation
costs.�e result showed that the proposed RDPSO algorithm
reduces the cost and yields better makespan compared to the
standard PSO and BRS (Best Resource Selection) algorithm.
However, the proposed algorithm is not e	cient with large
search space. Continuously, Chitra et al. [26] proposed a local
minima jump solution using PSO (i.e., JPSO) for work�ow
scheduling in the cloud to schedule the tasks and load balance
the work�ow applications, to reduce themakespan.�e JPSO
algorithm overcomes getting trapped in the local minimal
solution problem through making a jump in the �best value

to avoid the poor convergence of the �best values. �e results
show that the proposed algorithm is more e	cient compared
to the GA algorithm by 3.8% with a small number of tasks.
However, the GA algorithm shows the better result with a
large number of tasks.

Many researchers attempted to solve the multiobjective
optimization problem of the work�ow applications using
a di�erent number of objectives. In this paper, a Hybrid
GA-PSO algorithm is proposed to schedule the work�ow
tasks over the available resources. �e proposed algorithm
aims to achieve three objectives: reducing the makespan,
reducing the cost, and balancing the load of the work�ow
tasks on heterogeneous VMs in the selected cloud DC. In
summary, the GA-based algorithms provide better results
than other algorithms when the number of iterations is
large. However, increasing the number of iterations means
that the GA algorithm will consume more time to reach
the optimal solution. On the other hand, the PSO-based
algorithms provide better results than the other algorithms
and in less time. However, the results may not be accurate
due to the fast convergence of the PSO-based algorithms
to the solution, which may cause being stuck in the local
optimal solution. �erefore, the proposed Hybrid GA-PSO
algorithm is distinguished by the characteristics of the GA
and the PSO algorithms. �e Hybrid GA-PSO algorithm
is expected to work faster with di�erent sizes of work�ow
applications compared to other algorithms with the same
objectives.Moreover, theHybrid GA-PSO algorithmmay not
get trapped in the local optimal solution, because of the use
of the GA mutation operator that enhances the accuracy of
the solutions. Table 1 summarizes the review of the literature
works along with their pros and cons.

3. The Proposed Algorithm

Many researchers used random work�ows graph or real-
world work�ows graph to represent the work�ow applica-
tions using the Pegasus framework [7]. Pegasus framework
provides the DAG of di�erent real work�ow applications
and de�nes the number of the work�ow tasks, the sizes of
transmission data between the tasks, and the execution time
of each task. �ese work�ows will be used for measuring the
performance of the proposed Hybrid GA-PSO algorithms.
�ere are �ve real work�ow applications that are used in
the scienti�c domains, namely, Montage [32], CyberShake
[33], Epigenomics [34], LIGO Inspiral Analysis Work�ow
[35], and SIPHT [36], as portrayed in Figure 1. �e Montage
application created by NASA/IPAC closes together multiple
input images to form custom mosaics of the sky [32]. �e
CyberShake work�ow is used by the Southern California
Earthquake Center to distinguish earthquake threatening
a region [33]. �e Epigenomics work�ow created by the
USC Epigenome Center and the Pegasus framework is used
to automate the di�erent operations in genome sequence
processing [34]. LIGO’s Inspiral Analysis work�ow is used
to create and analyze gravitational waveforms from data
gathered during the coalescing of compact binary systems
[35].�e SIPHTwork�ow, from the bioinformatics project at
Harvard, is used to automate the search for small untranslated

4 Wireless Communications and Mobile Computing

Table 1: Literature review summary.

Author Name of Algorithm Objective Advantages Limitation

Braun et al. [16] min-min algorithm Time 12% better than GA
Delayed large tasks for

long time

Kumar and Verma
[20]

Combination of min-min and
max–min strategies in Genetic

Algorithm
Time Faster than the GA Time consuming

Guo et al. [21]
Particle Swarm Optimization

(PSO) algorithm
Execution and
transfer time

Faster than the M-PSO and
L-PSO algorithms in a large

scale

Stuck in local optimal
solution

Pandey et al. [23]
Heuristic algorithm based on
particle swarm optimization

Time and cost
�ree times better cost

compared to BRS, good load
distribution over resources

Stuck in local optimal
solution

Arabnejad and
Barbosa [24]

Heterogeneous
Budget-Constrained Scheduling

(HBCS) algorithm

Execution time and
cost

Reduction of 30% in execution
time while

maintaining the same budget

Not considering the load
over resources

Verma and Kaushal
[6]

Bicriteria Priority Based Particle
Swarm

Optimization (BPSO) algorithm

Time and execution
cost

Decreasing the execution cost
compared to BHEFT and PSO

Not considering the load
over resources

Xu et al. [25]
Heuristic algorithm based on the

min-min algorithm

�e fault recovery, the
time, and the cost

Fault recovery has a signi�cant
impact on

the two performance criteria

Better choice only when
both cost and makespan

are considered

Chitra et al. [26] �e PSO algorithm
Load balance and the

makespan
Better than GA and PSO Time consuming

Ge and Wei [27] �e Genetic Algorithm
Load balance and

makespan
Better than FIFO

Time consuming to reach
to optimal solution

Fard et al. [28] �e heuristic algorithm

Makespan, economic
cost, energy

consumption, and
reliability

Improve all four objectives
Not e	cient with small
number of tasks and

processors

Wu et al. [29]
�e Revised Discrete Particle
Swarm Optimization (RDPSO)

algorithm

Makespan,
communication costs,
and computation

costs

Better than the standard PSO
and BRS (Best Resource
Selection) algorithm

Not e	cient with large
search space

�e proposed
algorithm

Genetic and particle swarm
optimization algorithm

Makespan,
communication costs,
load balance, and
execution and
transfer time

Faster convergence to the
solution in comparison with

other approaches

Supports one data center
without considering the

dynamic work�ow

RNAs (sRNAs) for bacterial replicons in the NCBI database
[36].

�e main steps of the GA-PSO algorithm are shown in
Figure 2.�eGA-PSO algorithm starts with generating a ran-
dom population and de�nes a speci�c number of iterations
as a parameter to the algorithm. �e population represents
several solutions to the work�ow tasks problem and each
solution is a distribution of the whole work�ow tasks over the
available VMs. �e initialized population is passed through
the GA algorithm with the �rst half of the de�ned iterations;
that is, if the number of the iterations is (�), then the GA
algorithm will be repeated (�/2) times. �e reason behind
using (�/2) iteration is to reduce the complexity of the
proposed algorithm, as the performance of the GA algorithm
depends mainly on the method used to encode solutions into
chromosomes and particles and what the �tness function
is measuring, as well as the size of the population, that is,

the number of iterations, as proved by Alajmi and Wright
[37]. �ese parameter values can be adjusted a
er evaluating
the algorithm’s performance on a few trial runs. �rough
experiments, the GA-PSO algorithm’s performance was the
best, when the de�ned number of iterations is divided equally
between the GA and PSO algorithms. �is also agrees with
the concept of the divide and conquer that divides one
problem into two subproblems to produce a complexity equal
to �(�) = 2��(�/2) + �(�), where �(�) is the divide and
conquer time. �e solution for such equation depends on
�(�) and the complexity is �(�(�)) if |�(�)| ≥ � (by master
theory). Moreover, it is also known that both the GA and
the PSO require many function evaluations because each
needs to evaluate the objective of every population member
in the current sample. �erefore, decreasing the population
size in a GA or PSO (i.e., decreasing the number of iterations)
is a common practice to avoid degrading the GA or PSO

Wireless Communications and Mobile Computing 5

(a) Montage (b) CyberShake (c) Epigenomics

(d) SIPHT (e) LIGO

Figure 1: Known scienti�c work�ows.

performance in terms of the accurate results and reduction
rate.

In the GA algorithm, the solutions are called chromo-
somes; the chromosomes are enhanced gradually at each
iteration through the GA operators (i.e., selection, crossover,
and mutation). �e resulting chromosomes are passed to the
PSO algorithm at the second half of the de�ned iterations.
In the PSO algorithm, the chromosomes are called particles;
the particles are enhanced gradually at each iteration through
the PSO algorithm. �e particle with the minimum �tness
value is selected to represent the solution of the work�ow task
problem.

3.1. Initializing Population. �e Hybrid GA-PSO algorithm
is initialized to a speci�c number of iterations. A solution
is initiated randomly at the �rst iteration. A
er the �rst
iteration, a sequence of new populations are created and
recursively enhanced using the previous solutions to form
a set of suggested solutions as illustrated in Figure 3. �e
population in the GA algorithm is called chromosome. �e
length of the chromosomes is equal to the number of the
work�ow tasks, and the genes of each chromosome represent

the di�erent VMs. �e randomly generated chromosomes
represent the input to the proposed GA-PSO algorithm.
�e GA algorithm represents the �rst part of the proposed
GA-PSO algorithm which will be used to generate di�erent
solutions to the work�ow scheduling problem.

3.2. Applying the GA Algorithm. At the �rst phase, the GA
is applied to the whole generated population for (�/2) of the
determined iterations, to generate the optimal solution from
existing solutions, which is required to solve the scheduling
problem. �e PSO is applied to the whole generated popu-
lation for the following (�/2) of the determined iterations,
which is generated by the GA algorithm. �e PSO algorithm
keeps in memory the best and the worst solutions, which
can be useful for the fast solution convergence when GA
generates bad solutions. �e solutions in GA that de�ne the
scheduling solution of our problem are represented by several
chromosomes with length equal to the number of the whole
work�ow tasks. Each chromosome consists of several genes
representing the hosts’ VMs. In each iteration, the GA passes
the chromosomes between three di�erent operators: the
selection, crossover, andmutation operator.�e �rst operator

6 Wireless Communications and Mobile Computing

Input: the chromosomes

Output: �tnesschromosome

Set the tournamentSize = �
For 	 = 0 to tournamentSize

id = Math.random()∗ chromosome.size() // select chromosome randomly

tournament[] = get chromosome (id)

End For

�tness← tournament.getFitnest() //return the �tness value in tournament group.

Algorithm 1: �e tournament selection method.

Initialize population

Selection

Crossover

Mutation

Apply GA over the population

Max. total

iteration/2??

Update velocity

Update position

Apply PSO over the GA generated population

Max total

iteration??

Return the best solution with min. �tness value

Yes

Yes

No

No

Calculate P＜？ＭＮ and g＜？ＭＮ position

Figure 2: �e �owchart of the GA-PSO algorithm [30].

of the GA algorithm is the selection operator that is used to
select di�erent solutions from the existing chromosomes and
used to build the next generation of the chromosomes for the
next iteration.

3.2.1. Selection Operator. In the GA algorithm, not all gen-
erated chromosomes are evolved through the GA operators
in each iteration. �erefore, the chromosomes are passed
through the tournament selection to select the best chromo-
some from a group of chromosomes. �e function selects
a random (id) a
er running several tournaments between
few chromosomes. �e selected ids represent the index of
the selected chromosome from a set of chromosomes. �e
best chromosome in the group is selected for crossover
operator based on its �tness value as shown in Figure 4 and
Algorithm 1.

3.2.2.�e Crossover Operator. �e crossover operator aims to
generate new chromosomes through changing the position of
the genes inside every two chromosomes. In the crossover,
a random number is selected in the range of the number
of the chromosome genes, to represent the division point
of each chromosome into two parts. �e crossover returns
an o�spring chromosome of two parts that contains both
chromosomes genes, that is, VMs. �e �rst group of VMs
takes the �rst chromosome until the index, which is deter-
mined by the random number. �e second chromosome has
the second group of the VMs starting from the index, which
is determined by the random number, until the end of the
chromosome. �e implementation of the crossover method
is illustrated in Algorithm 2.

3.2.3. �e Mutation Operator. �e mutation operator aims
to make unusual modi�cations in the new chromosomes
that are generated from the previous crossover operator
with better �tness value than the existing chromosomes. �e
mutation operator operates over the returned chromosome
from the selection method, and the occurrence of the muta-
tion is based on the mutation rate variable. �e mutation
process starts with a number that is randomly generated to
be less than or equal to the mutation rate. Two genes, that
is, VMs, are selected randomly from the same chromosome
and checked to be di�erent. If they are the same, their places
are swapped to generate new chromosome, which represents
a di�erent distribution of the tasks over the available VMs.
�e generated chromosome is then passed to the next stage of
the algorithm. �e implementation of the mutation method
is illustrated in Algorithm 3.

Wireless Communications and Mobile Computing 7

n0 n1 n2 n3 n4 n5 n6 n7

n0 n1 n2 n3 n4 n5 n6 n7

n0 n1 n2 n3 n4 n5 n6 n7

n0 n1 n2 n3 n4 n5 n6 n7

６－3 ６－2 ６－1 ６－2 ６－4 ６－5 ６－3 ６－2

６－1 ６－5 ６－2 ６－3 ６－2 ６－1 ６－5 ６－3

６－1 ６－5 ６－2 ６－2 ６－4 ６－1 ６－5 ６－2

６－3 ６－2 ６－1 ６－3 ６－2 ６－5 ６－3 ６－3

Figure 3: An example of a randomly initiated population.

Chromosomes set

Return chromosome �tness value

Next chromosome

makespan(ni, ＰＧjk) = +Ｇ；Ｒ Ｇ；Ｅ？ＭＪ；Ｈ(np, ＰＧql) +
＞；Ｎ；p

Ｈ？ＮＱＣ＞ＮＢqj

ＱＩＬＥＦＩ；＞i

６－）０３jk

ProcessinＡＭＪ？？＞(ni, ＰＧjk) =
ＱＩＬＥＦＩ；＞i

６－）０３jk

f = (1 Ｇ；Ｅ？ＭＪ；Ｈ + 2 ＝ＩＭt + 3 ＜；Ｆ；Ｈ＝？)

cost(ni, ＰＧjk) = ∑
i∈N

ＱＩＬＥＦＩ；＞i

６－）０３jk

· e1

Figure 4: �e schema of the �ttest value.

Input: two chromosomes
Output: o�spring chromosome
� = (Math.random() ∗ chromosome.length)

For 	 = 0, = 0 to �
o�spring chromosome[] = chromosome1[]

End For
For 	 = � to chromosome.length

o�spring chromosome[] = chromosome2[�]
End For

Algorithm 2: �e crossover method.

3.3. Applying the PSO Algorithm. �e solutions that are
returned from the GA algorithm are fed into the PSO
algorithm with the rest of the determined iterations, to �nd
the optimal solution from the GA generated solutions. In
the PSO algorithm, the solutions are called particles, the
individuals of each particle represent the VMs of the DC, and
the index of each VM represents a work�ow task. �e PSO
algorithm consists of three stages as follows.

3.3.1. Evolve (gbest) and (pbest) of the Particles. In each
iteration, a new generation of the particles is produced based

8 Wireless Communications and Mobile Computing

Input: o�spring chromosome //returned from crossover operator
Output: Newchromosome
SetmutationRate = 0.5

If (Math.random() ≤mutationRate)
�1= Rand [0, 1]∗ o�spring chromosome.length // select a random number �1
�2= Rand [0, 1]∗ o�spring chromosome.length // select a random number �2

If o�spring chromosome [�1] !=o�spring chromosome[�2]
Swap (o�spring chromosome [�1], o�spring chromosome[�2])

End If
End If

Algorithm 3: �e mutation method.

Input: particles
Output: (gbest) and (pbest) vlues
Set pbest = null; gbest= null; �=0; //� is the index of the particles.
While not Reach max particles.size do

If pbest[�] == null ‖ pbest[�].getFitness() > particles[�].getFitness()
pbest[�] =particles[�];

End If
If g

best
== null ‖ p

best
[�].getFitness() < g

best
.getFitness()

gbest = particle(pbest[�]);
� = � + 1;

End If
Repeat // until the last particle

Algorithm 4: Evolve (g
best
)and (p

best
) values.

on their velocity and position in the previous iteration. �e
changes in the velocity and position of the particles are based
on the values of (�best) and (�best) which are evolved in each
iteration. �e implementation of evolving (�best) and (�best)
values of the particles is illustrated in Algorithm 4.

�e progress of the particles in the PSO algorithm is
based on the values of (gbest) and (pbest) that keep changing
with each iteration. At the �rst iteration, pbest[�] is equal
to the solutions that are generated from the GA algorithm,
where � is to distinguish each solution from the other. �e
(gbest) is equal to the solution with the smallest �tness value.
Furthermore, at each iteration, the comparison between
the previously generated particles and the newly generated
particles is taking place based on the �tness value.�eparticle
with the best �tness value is stored in (p

best
). �e (gbest)

store the best particle from the whole generation of the
particles at each iteration by comparing their �tness value
and the one with the best value in (Pbest). At each iteration,
the comparison process ensures that all particles are moving
towards the best solution, to reach the optimal solution.

3.3.2. Update the Velocity and Position Matrix. A
er gen-
erating the initial particles velocity and position values
randomly and calculating both (p

best
) and (gbest), the velocity

of each particle, in each iteration, is updated accordingly.�e
implementation of the update process of the velocity matrix
is illustrated in Algorithm 5.

�e process of updating the velocity of the particles
aims to generate a new generation from the di�erent VMs
locations that have better �tness value than the previous one.
Each individual in the particles is compared with its (p

best
)

value, which was generated at the previous iteration. �e
velocity value for each individual is decreased when both
individuals in (p

best
) and the particle are equal; otherwise,

the velocity value is increased. Similarly, a comparison of
each individual in the particles and their (gbest) values, from
the previous iteration, is taking place. �e velocity value
for each individual is decreased when both individuals in
(gbest) and the particle are equal; otherwise, the velocity
value is increased. Accordingly, the position of the VMs of
each particle is changed based on the updated values of the
velocity.�e implementation of the update position matrix is
illustrated in Algorithm 6.

Two VMs that have the maximum velocity values are
swapped within each particle of all particles within the
produced population. �e termination criteria of the GA-
PSO algorithm are represented by reaching the maximum
number of iterations. When the termination criteria are
satis�ed, the solution that has the smallest �tness valuewithin
the population, which was generated at the last iteration,
is presented as the scheduling solution of the work�ow
application. Otherwise, the (gbest) and (pbest) values evolve
repeatedly until the termination condition is achieved. �e
complete GA-PSO algorithm is illustrated in Algorithm 7.

Wireless Communications and Mobile Computing 9

Input: velocity values
Output: updated velocity values
Set � = 0; �1 = 1; �2 = 1.1; �1, �2 = rand[0, 1]; //� is the index of the particles individuals

While not reach max particles.length do
If Particle[�] == pbest[�]

velocity[�] −= �1 ∗ �1; //�1, �2 are random numbers
Else
velocity[�] += �1 ∗ �1; //�1, �2 are acceleration coe	cient

End If
If Particle[�] == gbest[�]
velocity[�] −= �2 ∗ �2;
Else
velocity[�]+= �2 ∗ �2;

End If
� = � +1;

Repeat //until the last particle

Algorithm 5: Update the velocity matrix.

Input: updated velocity values
Output: updated particles position
Set = 0; // is the index of the particle individuals
While not reach max particles.size () do

Maxvelocity1 ← get max1(Particle�, velocity values)
Maxvelocity2 ← get max2(Particle�, velocity values)
Swap(Particle�[Maxvelocity1],Particle�[Maxvelocity2])
 = + 1;

Repeat //until the last particle

Algorithm 6: Update the position matrix.

Input: work�ow�{�, �} and set of resources {VM1,VM2,VM3, . . . ,VM�}
Output: gbest // the best solution to allocate� over VM�

For 	 = 0 to �
population← randomize() // initialize population, � is the population size

End For
While not Reach �/2 do // � is number of iterations

While not Reach max � do
chromosom� ← tournament(population) //selection operator

chromosome� ← tournament(population)
o�spring chromosome� ← crossover(chromosome�, chromosome�)
Newchromosome� ← mutation(o�spring chromosome�)
Repeat

Repeat
Set Newchromosome� as particle� // is the index of the particles
Initialize particles position and velocity randomly
Calculate the (g

best
) and (p

best
) values

While not Reach � do
velocity matrix← update(particle� velocity)
position matrix← update(particle� position)
Repeat

Algorithm 7: �e proposed algorithm.

10 Wireless Communications and Mobile Computing

�e algorithm is bounded by the GA operations (i.e.,
mutation, crossover, and selection). However, calculating the
complexity of the GA or PSO algorithms is unlikely to be use-
ful and worse probably deceptive. Moreover, because of the
complexity (i.e., NP-complete) of the work�ow scheduling
problem, it is very challenging to develop an optimized work-
�ow scheduling algorithm for work�ow tasks distribution to
the available resources within a reasonable overhead, that is,
CPU time. However, since the main goal of the proposed
scheduling algorithm is to optimize the overall cost (i.e., may
not be optimal), it is, therefore, a practical trade-o� between
the overhead of the task-scheduling algorithm and the opti-
mization on the running cost of the data center. �erefore,
as will be demonstrated in our simulation experiments, we
will evaluate the time complexity bymeasuring and averaging
the runtime with a di�erent number of tasks, as discussed in
Section 4.2.

4. Performance Evaluation

For the purpose of evaluating the proposed algorithm, the
proposed GA-PSO algorithm was implemented using the
Work�owSim [38]. �e Work�owSim extends the existing
CloudSim simulator [39] by providing a higher layer of
work�ow management, through providing a suitable envi-
ronment for applying di�erent scheduling algorithms. Fur-
thermore, to evaluate the performance of the proposed GA-
PSO algorithm, the obtained results of the proposed GA-PSO
algorithmhave been comparedwith existingwork scheduling
algorithms, such as GA proposed in [27] and PSO proposed
in [21]. In addition, the performance of the proposed GA-
PSO algorithm was also compared with other related works,
as discussed in Section 4.3.

4.1. Environment Setup. To evaluate the impact of the pro-
posed algorithm on the work�ow scheduling problem in
comparison with other algorithms, we ran extensive exper-
iments on real work�ow applications using the simulation
parameters in Table 2.

�ese parameters were used to identify the characteristics
of the VMs and the work�ow applications in the exper-
iments. A real work�ow application—Montage work�ows
application—was created with di�erent numbers of tasks
to evaluate three objectives: (1) reducing the makespan of
the application, (2) optimizing the processing cost, and (3)
balancing the load on the di�erent resources with respect
to the di�erent heterogeneous resources characteristics. �e
parameters de�ned in Table 3 were used throughout the GA-
PSO evaluation experiments.

�e algorithm starts with 100 random solutions, called
population. �e single point crossover method was chosen
in the GA phase (Section 3.2). �e mutation operator rate
was de�ned as 0.05 in the mutation stage. In the PSO
algorithm phase (Section 3.3), the acceleration coe	cients
(�1) and (�2), as well as the randomnumberwhich is used in
the update velocity and position equation, were also de�ned,
as in Table 3. Furthermore, the degree of importance of each
objective in the �tness function was de�ned as “�1, �2 = 0.4
and �3 = 0.2” for the makespan, execution cost, and the load

Table 2: Simulation parameters.

Parameter Value

Number of tasks in application 25–1000

�e number of VMs 16

MIPS 250–1500

RAM 256–1024 (MB)

BW 250–1500 (mbps)

Processor speed 10,000

Number of processors 4

VM policy TIME SHARED

Table 3: GA-PSO algorithm parameters.

Parameter Value

Population size 100

Mutation rate 0.05

Crossover Single point

Number of iterations 100

Number of executions 500

C1 1

C2 1.1

r1, r2 [0, 1]
�
1
, �

2
0.4

�
3

0.2

balance rate, respectively. �eMontage work�ow application
is used in the evaluation with a di�erent number of tasks
(25–1000), to enlarge the size of the work�ow and evaluate
the algorithm under these di�erent cases. �e number of
iterations for the GA-PSO algorithm was de�ned to 100 iter-
ations to reach the optimal solution. �e experiments were
repeated 500 times, and the average results were compared
with other algorithms. Four experiments were conducted
based on the characteristic of the VMs, as in Table 2. �e
size of the work�ow will be changed to examine the ability of
the proposed algorithm in reducing the makespan, execution
cost, and load balance for the small and large size work�ow
applications. For this purpose, four test scenarios using
Montage work�ow application with a di�erent number of
tasks and di�erent number of edges and data sizes were used.
�e characteristics of the Montage work�ow application that
were used in the experiments are summarized in Table 4.

4.2. Performance Analysis. All the four scenarios were exe-
cuted to evaluate the reduction in the makespan, the execu-
tion cost, and the load balance using the proposed GA-PSO
algorithm in comparison with the GA and PSO algorithms.
�e results of the executed experiments for the four scenarios
are reported in Table 5.

For each scenario, the number of tasks in the Mon-
tage work�ow was increased. Scenario One, for instance,
represents a small search space that makes the process
of reaching the optimal solution fast and straightforward

Wireless Communications and Mobile Computing 11

Table 4: �e characteristics of the Montage work�ows.

Scenarios
Number of

tasks
Number of

edges
Average data size

(MB)

Scenario One 25 95 3.43

Scenario Two 50 206 3.36

Scenario �ree 100 433 3.23

Scenario Four 1000 4485 3.21

Table 5: �e result of the executed experiments.

Algorithm
Makespan

(sec)
Execution cost

($)
Load balance

(rate)

Scenario One

GA-PSO 95.09 16.85 9.76

GA 197.65 52.68 52.58

PSO 101.21 18.16 21.33

Scenario Two

GA-PSO 116.01 49.89 13.81

GA 250.89 86.34 61.93

PSO 155.31 62.86 18.23

Scenario �ree

GA-PSO 233.78 127.74 33.03

GA 345.72 137.09 49.2

PSO 253.44 133.55 41.82

Scenario Four

GA-PSO 1585.6 1021.42 73.83

GA 2402.28 1529.23 134.67

PSO 1802.31 1200.41 90.15

(i.e., the simplest case). On the other hand, Scenario Four
represents a large number of tasks in theMontagework�ow to
expand the search space (i.e., the worst case).�e large search
space makes the process of �nding the optimal solution a
challenging task for the optimization algorithm. �e results
in Table 5 show minor di�erences in the makespan, the
execution cost, and the load balance between the GA and
PSO algorithms with Scenario One. However, there is a slight
improvement for the GA-PSO algorithm compared with GA
and PSO algorithms. On the other hand, the results show
signi�cant di�erences for the GA-PSO algorithm compared
with the GA algorithm with Scenario Two and �ree. �ese
signi�cant di�erences could be due to the unnecessary
diversity caused by an inappropriate mutation rate. �ere is
also a slight di�erence in the result between the GA-PSO and
the PSO algorithmwith Scenarios Two and�ree aswell.�is
slight di�erence is due to the fact that the GA-PSO algorithm
depends mainly on the PSO algorithm in converging the
solutions towards the optimal solution. In Scenario Four,
the large number of tasks expands the search space to
represent theworst case scenario.�eGA-PSO algorithm still
achieves a better result compared to the GA algorithm. �is
result is due to the fast solution convergence that avoids the
unnecessary diversity of the solutions. In addition, GA-PSO

Table 6: Average results in makespan, execution cost, and load
balance for the di�erent algorithms.

Methods
Avg.

makespan
Avg.

execution cost
Avg.

load balance

Hybrid GA-PSO 507.62 303.975 32.6075

GA 799.135 451.335 74.595

PSO 578.0675 353.745 42.8825

0

500

1000

1500

2000

2500

25 50 100 1000
M

ak
es

p
an

 (
se

c)

Number of tasks

Hybrid GA-PSO

GA

PSO

Figure 5: Comparison of the average makespan over di�erent
number tasks.

algorithm showed a signi�cant enhancement compared to
the PSO algorithm, because the PSO algorithm normally gets
trapped in the local optimal solution. �e above experiment
was repeated several times, and the average results in terms
of makespan, execution cost, and the load balance for the
proposed GA-PSO, GA, and PSO algorithms with the four
scenarios were calculated and consolidated in Table 6. �e
results in Table 6 also demonstrate the proposed algorithm
ability in resolving the work�ow task-scheduling problem in
comparison with the GA and the PSO algorithms.

When comparing the improvement in the makespan
using the proposed GA-PSO algorithm with the GA and
PSO algorithm, one can notice that the GA-PSO algorithm
achieves a signi�cant enhancement of 16% better than theGA
algorithmand 4%better than the PSOalgorithmas illustrated
in Figure 5. �is is because the proposed GA-PSO algorithm
always chooses the most appropriate VMs to execute the
tasks without focusing only on fast VMs, which actually
may overload one VM over the other and slow down the
overall execution of the work�ow application (i.e., increase
the execution time).

In terms of execution cost, Figure 6 shows that the
proposed GA-PSO algorithm is 13% better than the GA
algorithm and 4% better than the PSO algorithm.

�e improved result of the proposed GA-PSO algorithm
is because the proposed algorithm chooses VMs to achieve a
minimumexecution cost to execute the selected tasks. Finally,

12 Wireless Communications and Mobile Computing

Table 7: �e running time of the executed algorithms in seconds.

Method/number of Tasks 25 tasks 50 tasks 100 tasks 1000 tasks 2000 tasks 3000 tasks

GA 0.869465 0.888796 1.093582 21.321738 23.4338 28.28996

PSO 0.761534 0.871797 1.037802 18.515041 18.65318 23.99583

Hybrid GA-PSO 0.764333 0.873796 1.025266 17.576722 18.00189 22.44825

0

200

400

600

800

1000

1200

1400

1600

25 50 100 1000

C
o

st
 (

$)

Number of tasks

Hybrid GA-PSO

GA

PSO

Figure 6: Comparison of the average execution cost over di�erent
number tasks.

0

20

40

60

80

100

120

140

160

25 50 100 1000

L
o

ad
 b

al
an

ce
 r

at
e

Number of tasks

Hybrid GA-PSO

GA

PSO

Figure 7: Comparison of the average load balancing rate over
di�erent number of tasks.

the proposed GA-PSO algorithm balances the load over the
resources compared with GA and PSO algorithms as shown
in Figure 7.

�e average result of the load balancing obtained by the
proposed GA-PSO algorithm is better than the GA algorithm
by 28%, and the load balance was reduced by 4% compared
to the PSO algorithm. �is result is because the proposed
GA-PSO algorithm converges to the solutions in a better

way using the GA algorithm with avoiding the unnecessary
diversity that may degrade the quality of the algorithm.

Finally, the CPU time is de�ned as the average running
time of the proposed GA-PSO algorithm in comparison with
the GA and the PSO algorithms running on hardware of the
characteristics de�ned in Table 2. �e result of the average
running time for each algorithm using a di�erent number of
tasks is consolidated in Table 7. It can be noticed that the GA
algorithm consumes more CPU time compared to the other
algorithms. When the work�ow size increases, the CPU time
of the GA and PSO is also increased. For instance, with 3000
tasks, theGA took about 28.3 seconds and the PSO consumed
23.9 seconds while the proposed algorithm only took 22.4
seconds to reach the �nal solution.

�e increase in the CPU time is actually because of
the (gbest) and (pbest) update process. �e update process
calculates the �tness value for every particle with calculating
the makespan and the cost at the same time. �is is true
because the proposedGA-PSO algorithmbuilds the solutions
task by task, and hence the CPU time increases as the
work�ow size increases.

4.3. Comparison of Related Approaches. For the comparison
purposes, three algorithms were evaluated for work�ow
tasks scheduling, namely, HSGA algorithm proposed in [40],
WSGA algorithm proposed in [41], and MTCT algorithm
proposed in [25] with the proposed GA-PSO algorithm.
�e comparison was carried out over two objectives: the
makespan and the execution cost. �e reason behind the
selected objectives is thatWSGA andMTCT algorithms opti-
mize only the makespan and the execution cost, while HSGA
optimizes only the load balancing and the makespan. �e
algorithms were implemented according to their description
in the literature. �e results show that the proposed GA-
PSO algorithm converges to the optimal solution faster than
the other algorithms and with higher quality in terms of
load balancing as discussed in Section 4.2. All performance
analyses were carried out over a work�ow with di�erent
numbers of tasks, 25, 50, and 100 along with speci�c param-
eters, as de�ned in Table 8. �e size of tasks, price, and
the speed of resources are generated randomly to simulate a
heterogeneous environment.

�e work�ow application was evaluated with a di�erent
number of tasks, to illustrate the impact of the proposed
GA-PSO on the makespan and the load balancing rate in
comparison with the HSGA algorithm. Table 9 and Figure 8
illustrate the average results of the experiment.

�e result illustrated in Figure 8 shows that the proposed
GA-PSOalgorithm is able to solve thework�owproblemwith
better makespan and load balancing than the HSGA by 11%

Wireless Communications and Mobile Computing 13

Table 8: GA-PSO versus HSGA simulation parameters.

Parameter Value

Number of tasks in application 20–100

Task lengths 12–72 (×105MI)

Number of resources 30

Resource speeds 500–1000 (MIPS)

Bandwidth between resources 10–100 (mbps)

Table 9: GA-PSO versus HSGA experiment results.

Methods Avg. makespan Avg. load balance

GA-PSO 28191.96 2.23

HSGA 35000 2.63

0

10000

20000

30000

40000

Makespan (Avg) Load balance
rate (Avg)

HSGA

Hybrid GA-PSO

Expon. (Hybrid GA-PSO)

Figure 8: GA-PSO versus HSGA analysis of results.

and 9%, respectively. �e improvement of the proposed GA-
PSO algorithm is due to the fast convergence to the solution,
as an advantage of employing the PSO algorithm, which
avoids the unnecessary diversity that may occur in the HSGA
algorithm and leads to reaching the best solution. Similarly,
we compared the proposed GA-PSO algorithm with WSGA
algorithm based on the simulation parameters in Table 10.

�edi�erent values of thework�ow size and the resources
con�gurations illustrate the impact of the proposed GA-
PSO and the WSGA algorithms on the makespan and the
execution cost. �e average results of the experiment are
shown in Table 11 and Figure 9.

�e proposed GA-PSO algorithm obtained a solution for
the work�ow problem by 5% better value for the makespan
and 9% better value for the execution cost in comparison
with WSGA. It is worth mentioning that both the proposed
GA-PSO and the WSGA algorithms are based on GA tech-
nique. However, the proposed GA-PSO algorithm uses the
PSO algorithm to avoid the unnecessary diversity in the

Table 10: GA-PSO versus WSGA simulation parameters.

Parameter Value

Population size 20

Selection method Roulette wheel

Crossover method Single point crossover

Mutation rate 0.1

�e number of resources 3–14

Number of tasks in application 50–100

Number of iterations 200

Table 11: GA-PSO versus WSGA experiment results.

Methods Avg. makespan Avg. execution cost

Hybrid GA-PSO 84.875 5.195

WSGA 93 7.695

0

10

20

30

40

50

60

70

80

90

100

Makespan (Avg) Execution cost (Avg)

Hybrid GA-PSO

WSGA
Expon. (Hybrid GA-PSO)

Figure 9: GA-PSO versus HSGA analysis of results.

solution and enhances the obtained solutions, which might
be scattered due to GA technique. Finally, the proposed GA-
PSO algorithmwas also comparedwith theMTCTalgorithm,
based on the simulation parameters in Table 12.

For the evaluation purposes, four di�erent types of
work�ow applications were used to show the impact on
the makespan and the execution cost of the proposed GA-
PSO and the MTCT algorithm. �e details of the work�ow
applications are illustrated in Table 13.

�e makespan and the execution cost results, of the
proposed GA-PSO and the MTCT algorithms, with the four
types of work�ow applications, are summarized in Table 14
and Figure 10.

�e obtained results of the GA-PSO and the MTCT
algorithms show that the GA-PSO algorithms enhance the
makespan by 11% with 15% less in execution cost, in com-
parison with the MTCT algorithm, using the Montage work-
�ow, whereas the proposed GA-PSO algorithm achieved an

14 Wireless Communications and Mobile Computing

Table 12: GA-PSO versus MTCT simulation parameters.

Parameter Value

�e number of resources 20

Resource speeds 500–1000 (MIPS)

Bandwidth between resources 20 (mbps)

Table 13: Work�ows details.

Work�ow
�e number of tasks in di�erent work�ow sizes

Small Medium Large XLarge

Montage 25 50 100 1000

CyberShake 30 50 100 1000

Epigenomics 24 46 100 1000

LIGO 30 50 100 977

Table 14: GA-PSO versus MTCT experiment results.

Methods
�e makespan

(sec)
�e execution cost

($)

Montage

Hybrid GA-PSO 1.12 1.04

MTCT 1.4 1.4075

CyberShake

Hybrid GA-PSO 0.9875 1.12

MTCT 1.365 1.3725

Epigenomics

Hybrid GA-PSO 1.23 1.112

MTCT 1.3525 1.36

LIGO

Hybrid GA-PSO 1.1075 1.132

MTCT 1.4975 1.4225

4

6

8

10

12

14

16

4

6

8

10

12

14

16

18

Montage CyberShake Epigenomics LIGO

E
xe

cu
ti

o
n

 c
o

st
 p

er
ce

n
ta

ge

M
ak

es
p

an
 p

er
ce

n
ta

ge

Makespan
Execution cost

Figure 10: GA-PSO versus MTCT analysis of results.

improvement by 17% in terms ofmakespan and 11% less in the
execution cost, compared with the MTCT algorithm, using

the CyberShake work�ow. Furthermore, the proposed GA-
PSO algorithm schedules the Epigenomics work�ow with
5% better makespan and 9% less execution cost than the
MTCT algorithm. Finally, the results of themakespan and the
execution cost of the LIGO work�ow were better by 15% and
11% compared with the MTCT algorithm, respectively.

�e results and the enhancements that were obtained by
the proposed GA-PSO algorithm are because the proposed
algorithm always selects the best solution for distributing
the work�ow tasks over the most suitable VMs regardless
of the number of the work�ow tasks. �e proposed GA-
PSO algorithm combines the suitable diversity and the fast
convergence to optimal solutions, to �nd the optimal solution
faster than any other algorithm.

5. Conclusion and Future Work

In this paper, a GA-PSO algorithm was proposed and
implemented using theWork�owSim simulator, for work�ow
task scheduling in cloud environments. �e performance
of the proposed algorithm was also compared with some
known algorithms such as GA, PSO, HSGA, WSGA, and
MTCT. �e purpose of the proposed algorithm is to ensure
a fair distribution of the workload among the available VMs,
considering the order of the execution of the work�ow tasks
to reduce the makespan and the processing cost of the
work�owapplications in cloud computing environments.�e
GA-PSO algorithm selects the VMs to execute the work�ow
tasks in the minimum time based on the execution speed
of the VMs and the size of the work�ow tasks. �e design
of the GA-PSO algorithm tends to allow executing the tasks
over the VMs with a balanced load distribution over the
fast and slow VMs, without overloading some VMs over the
others. �is technique reduces the makespan through a fair
utilization of the slow VMs instead of overloading the fast
VMs and slowing down the overall execution of the tasks.
�e GA-PSO algorithm yields an optimal solution of the
work�ow task scheduling in terms of makespan compared
with GA, PSO, HSGA, and WSGA algorithms by 16%, 4%,
11%, and 5%, respectively. In addition, the enhancements in
the makespan using the Montage, CyberShake, Epigenomics,
and LIGO work�ow were averaged as 11%, 17%, 5%, and 15%,
respectively, in comparison to MTCT algorithm. Moreover,
the results prove that the GA-PSO algorithm minimizes
the total execution cost of the work�ow tasks compared
to GA, PSO, and WSGA algorithms by 13%, 4%, and 9%,
respectively. �e GA-PSO algorithm also enhances the exe-
cution cost in comparison to MTCT algorithm using the
Montage, CyberShake, Epigenomics, and LIGO work�ow
which are averaged at 15%, 11%, 9%, and 11%, respectively.
�e signi�cance of the results, from the GA-PSO algorithm,
are a�ected by the appropriate selection of the VM with a
balance between cost and time through the �tness function
of the GA-PSO algorithm. �is goal was achieved by using
the same weights for both the makespan and the execution
cost in the �tness function.�e proposed GA-PSO algorithm
improves the load balancing of the work�ow applications
over the available resources, in contrast with GA, PSO, and
HSGA algorithms, by allocating the tasks based on the VMs

Wireless Communications and Mobile Computing 15

ability and the task sizes. �e enhancements of the load
balance in comparison with GA, PSO, and HSGA algorithms
are averaged at 28%, 4%, and 9%, respectively. �e design of
the GA-PSO algorithm uses the standard deviation to select
the best solution that keeps the variance of the distributed
load, over the VMs, as low as possible taking into account
the size of the tasks and the speed of each VM during the
distribution of the tasks.

In the future, the work can be extended to more than one
data center in a heterogeneous environment. Furthermore,
the distribution of the work�ow application can be extended
into two levels: when work�ow tasks reach the service broker
and when the work�ow tasks are distributed to the available
VMs of each DC based on the size of the tasks and the speed
of each VM. �e justi�cation can be veri�ed over real-time
cloud environment. In addition, the work can be improved
through using dynamic work�ow that allows more �exibility
for the users to change the characteristics of the work�ow
tasks during the runtime.

Conflicts of Interest

�e authors declare that there are no con�icts of interest
regarding the publication of this article.

References

[1] A. H. Aljammal, A. M. Manasrah, A. E. Abdallah, and N. M.
Tahat, “A new architecture of cloud computing to enhance the
load balancingg,” International Journal of Business Information
Systems, vol. 25, no. 3, pp. 393–405, 2007.

[2] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, “L-
EncDB: A lightweight framework for privacy-preserving data
queries in cloud computing,” Knowledge-Based Systems, vol. 79,
pp. 18–26, 2015.

[3] A. M. Manasrah, T. Smadi, and A. ALmomani, “A Variable
Service Broker Routing Policy for data center selection in
cloud analyst,” Journal of King Saud University - Computer and
Information Sciences, vol. 29, no. 3, pp. 365–377, 2017.

[4] B. B. Gupta and T. Akhtar, “A survey on smart power grid:
frameworks, tools, security issues, and solutions,” Annales des
Télécommunications, vol. 72, no. 9-10, pp. 517–549, 2017.

[5] J. Yu, R. Buyya, and K. Ramamohanarao, “Work�ow scheduling
algorithms for grid computing,” inMetaheuristics for scheduling
in distributed computing environments, pp. 173–214, Springer,
2008.

[6] A. Verma and S. Kaushal, “Cost-Time E	cient Scheduling
Plan for Executing Work�ows in the Cloud,” Journal of Grid
Computing, vol. 13, no. 4, pp. 495–506, 2015.

[7] H. Ji, W. Bao, and X. Zhu, “Adaptive work�ow scheduling
for diverse objectives in cloud environments,” Transactions
on Emerging Telecommunications Technologies, vol. 28, no. 2,
Article ID e2941, 2017.

[8] A. M. Manasrah, “Dynamic weighted VM load balancing
for cloud-analyst,” International Journal of Information and
Computer Security, vol. 9, no. 1-2, pp. 5–19, 2017.

[9] W.-N. Chen and J. Zhang, “An ant colony optimization
approach to a grid work�ow scheduling problem with various
QoS requirements,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 39, no. 1, pp.
29–43, 2009.

[10] A. K. M. K. A. Talukder, M. Kirley, and R. Buyya, “Multiobjec-
tive di�erential evolution for scheduling work�ow applications
on global Grids,” Concurrency and Computation: Practice and
Experience, vol. 21, no. 13, pp. 1742–1756, 2009.

[11] M. Wieczorek, A. Hoheisel, and R. Prodan, “Towards a general
model of the multi-criteria work�ow scheduling on the grid,”
Future Generation Computer Systems, vol. 25, no. 3, pp. 237–256,
2009.

[12] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen,
“Privacy-preserving outsourced classi�cation in cloud comput-
ing,” Cluster Computing, pp. 1–10, 2017.

[13] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure
integration of IoT and Cloud Computing,” Future Generation
Computer Systems, vol. 78, pp. 964–975, 2018.

[14] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A
genetic algorithm (GA) based load balancing strategy for cloud
computing,” Procedia Technology, vol. 10, pp. 340–347, 2013.

[15] Z. Zhang and X. Zhang, “A load balancing mechanism based
on ant colony and complex network theory in open cloud
computing federation,” in Proceedings of the 2nd International
Conference on Industrial Mechatronics and Automation (ICIMA
’10), vol. 2, pp. 240–243, May 2010.

[16] T. D. Braun, H. J. Siegel, N. Beck et al., “A comparison of
eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems,” Journal of
Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–837,
2001.

[17] M. Rana, S. Bilgaiyan, and U. Kar, “A study on load balancing in
cloud computing environment using evolutionary and swarm
based algorithms,” in Proceedings of the 2014 International
Conference on Control, Instrumentation, Communication and
Computational Technologies, ICCICCT 2014, pp. 245–250, India,
July 2014.

[18] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-
objective work�ow scheduling in cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 5, pp. 1344–1357,
2016.

[19] Y. Mao, X. Chen, and X. Li, “Max–Min task scheduling algo-
rithm for load balance in cloud computing,” in Proceedings of
International Conference on Computer Science and Information
Technology, S. Patnaik and X. Li, Eds., vol. 225, pp. 457–465,
Springer, New Delhi, India, 2014.

[20] P. Kumar and A. Verma, “Scheduling using improved genetic
algorithm in cloud computing for independent tasks,” in Pro-
ceedings of the 2012 International Conference on Advances in
Computing, Communications and Informatics, ICACCI 2012, pp.
137–142, India, August 2012.

[21] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling
optimization in cloud computing based on heuristic algorithm,”
Journal of Networks, vol. 7, no. 3, pp. 547–553, 2012.

[22] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang, “A task schedul-
ing algorithm based on PSO for grid computing,” International
Journal of Computational Intelligence Research, vol. 4, no. 1, pp.
37–43, 2008.

[23] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle
swarm optimization-based heuristic for scheduling work�ow
applications in cloud computing environments,” in Proceedings
of the 24th IEEE International Conference on Advanced Infor-
mation Networking and Applications, AINA2010, pp. 400–407,
Australia, April 2010.

16 Wireless Communications and Mobile Computing

[24] H. Arabnejad and J. G. Barbosa, “A Budget Constrained
Scheduling Algorithm for Work�ow Applications,” Journal of
Grid Computing, vol. 12, no. 4, pp. 665–679, 2014.

[25] H. Xu, B. Yang, W. Qi, and E. Ahene, “A multi-objective opti-
mization approach to work�ow scheduling in clouds consider-
ing fault recovery,” KSII Transactions on Internet & Information
Systems, vol. 10, no. 3, 2016.

[26] S. Chitra, B. Madhusudhanan, G. R. Sakthidharan, and P.
Saravanan, “Local minima jump PSO for work�ow scheduling
in cloud computing environments,” Lecture Notes in Electrical
Engineering, vol. 279, pp. 1225–1234, 2014.

[27] Y. Ge and G. Wei, “GA-based task scheduler for the cloud com-
puting systems,” in Proceedings of the International Conference
on Web Information Systems and Mining (WISM ’10), vol. 2, pp.
181–186, IEEE, October 2010.

[28] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer,
“Amulti-objective approach for work�ow scheduling in hetero-
geneous environments,” in Proceedings of the 12th IEEE/ACM
International SymposiumonCluster, Cloud andGridComputing,
CCGrid 2012, pp. 300–309, Canada, May 2012.

[29] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented
hierarchical scheduling strategy in cloud work�ow systems,”
�e Journal of Supercomputing, vol. 63, no. 1, pp. 256–293, 2013.

[30] H. Ba ali, Work	ow Load Balancing and Scheduling using
Genetic Algorith (GA) and Particle Swarm Optimization (PSO)
in Cloud Computing, Yarmouk University, Irbid, Jordan, 2017.

[31] W. Zheng and R. Sakellariou, “Budget-Deadline Constrained
Work�ow Planning for Admission Control,” Journal of Grid
Computing, vol. 11, no. 4, pp. 633–651, 2013.

[32] J. C. Jacob, D. S. Katz, T. Prince et al., �e Montage Architec-
ture for Grid-Enabled Science Processing of Large, Distributed
Datasets, Jet Propulsion Laboratory, National Aeronautics and
Space Administration, Pasadena, Clif, USA, 2004.

[33] H. Magistrale, S. Day, R. W. Clayton, and R. Graves, “�e
SCEC southern California reference three-dimensional seismic
velocity model version 2,” Bulletin of the Seismological Society of
America, vol. 90, no. 6, pp. S65–S76, 2000.

[34] E. Deelman, K. Vahi, G. Juve et al., “Pegasus, a work�ow
management system for science automation,” Future Generation
Computer Systems, vol. 46, pp. 17–35, 2015.

[35] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J.
McNabb, “A case study on the use of work�ow technologies
for scienti�c analysis: Gravitational wave data analysis,” in
Work	ows for e-Science, pp. 39–59, Springer, 2007.

[36] J. Livny, H. Teonadi, M. Livny, and M. K. Waldor, “High-
throughput, kingdom-wide prediction and annotation of bac-
terial non-coding RNAs,” PLoS ONE, vol. 3, no. 9, Article ID
e3197, 2008.

[37] A. Alajmi and J. Wright, “Selecting the most e	cient genetic
algorithm sets in solving unconstrained building optimization
problem,” International Journal of Sustainable Built Environ-
ment, vol. 3, no. 1, pp. 18–26, 2014.

[38] W. Chen and E. Deelman, “Work�owSim: A toolkit for sim-
ulating scienti�c work�ows in distributed environments,” in
Proceedings of the 2012 IEEE 8th International Conference on E-
Science, e-Science 2012, USA, October 2012.

[39] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. de Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” So�ware: Practice and Experience, vol.
41, no. 1, pp. 23–50, 2011.

[40] A. Ghorbannia Delavar and Y. Aryan, “HSGA: A hybrid
heuristic algorithm for work�ow scheduling in cloud systems,”
Cluster Computing, vol. 17, no. 1, pp. 129–137, 2014.

[41] D.G.AmalarethinamandT. L. A. Beena, “Work�owScheduling
for Public Cloud Using Genetic Algorithm (WSGA),” IOSR
Journals (IOSR Journal of Computer Engineering), vol. 1, no. 18,
pp. 23–27, 2016.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

