
Hindawi Publishing Corporation
ISRN Soware Engineering
Volume 2013, Article ID 404525, 15 pages
http://dx.doi.org/10.1155/2013/404525

Review Article
�or��o� ���tem� �or �cience� �once�t� and Tool�

Domenico Talia

ICAR-CNR and University of Calabria, 87036 Rende, Italy

Correspondence should be addressed to Domenico Talia; talia@deis.unical.it

Received 3 December 2012; Accepted 23 December 2012

Academic Editors: J. Cao, B. C. Lai, and K. ramboulidis

Copyright © 2013 Domenico Talia. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

e wide availability of high-performance computing systems, Grids and Clouds, allowed scientists and engineers to implement
more and more complex applications to access and process large data repositories and run scienti�c experiments in silico on
distributed computing platforms. Most of these applications are designed as work�ows that include data analysis, scienti�c
computation methods, and complex simulation techniques. Scienti�c applications require tools and high-level mechanisms for
designing and executing complex work�ows. �or this reason, in the past years, many efforts have been devoted towards the
development of distributed work�ow management systems for scienti�c applications. is paper discusses basic concepts of
scienti�c work�ows and presents work�ow system tools and frameworks used today for the implementation of application in
science and engineering on high-performance computers and distributed systems. In particular, the paper reports on a selection
of work�ow systems largely used for solving scienti�c problems and discusses some open issues and research challenges in the
area.

1. Introduction

�ork�ows have emerged as an effective paradigm to address
the complexity of scienti�c and business applications. e
wide availability of high-performance computing systems,
Grids and Clouds, allowed scientists and engineers to imple-
ment more and more complex applications to access and
process large data repositories and run scienti�c experiments
in silico on distributed computing platforms. Most of these
applications are designed as work�ows that include data
analysis, scienti�c computation methods, and complex sim-
ulation techniques.

e design and execution of many scienti�c applica-
tions require tools and high-level mechanisms. Simple and
complex work�ows are oen used to reach this goal. �or
this reason, in the past years, many efforts have been
devoted towards the development of distributed work�ow
management systems for scienti�c applications. �ork�ows
provide a declarative way of specifying the high-level logic
of an application, hiding the low-level details that are not
fundamental for application design. ey are also able to
integrate existing soware routines, datasets, and services in

complex compositions that implement scienti�c discovery
processes.

In the most general terms, according to the �ork�ow
Management Coalition [1–3], a work�ow is �the automation
of a business process, in whole or part, during which docu-
ments, information or tasks are passed from one participant
to another for action, according to a set of procedural rules.”
e same de�nition can be used for scienti�c processes
composed of several processing steps that are connected
together to express data and/or control dependencies [4, 5].
e term process indicates a set of tasks linked together
with the goal of creating a product, calculating a result, or
providing a service. Hence, each task (or activity) represents a
piece of work that forms one logical step of the overall process
[6, 7].

A work�ow is a well-de�ned, and possibly repeatable,
pattern or systematic organization of activities designed
to achieve a certain transformation of data. �ork�ows,
as practiced in scienti�c computing, derive from several
signi�cant precedent programming models that are worth
noting because these have greatly in�uenced the way we
think about work�ows in scienti�c applications. �e can call



2 ISRN Soware Engineering

these the data�ow model in which data is streamed from
one actor to another. While the pure data�ow concept is
extremely elegant, it is very hard to put it in practice because
distributing control in a parallel or distributed system can
create applications that are not very fault tolerant.

Consequently,manywork�ow systems that use a data�ow
model for expressing the computation may have an implicit
centralized control program that sequences and schedules
each step. An important bene�t of work�ows is that, once
de�ned, they can be stored and retrieved for modi�cations
and�or reexecution: this allows users to de�ne typical patterns
and reuse them in different scenarios [8]. Figure 1 shows
an example of work�ow of a scienti�c experiment of the
Neptune projects led by University of Washington, which
includes control nodes (processes) and data nodes (data
value). is experiment involves collection of data by ocean
buoys (containing a temperature sensor and an ocean current
sensor), which is then processed by a scienti�c work�ow.e
scienti�c work�ow is composed of four steps to process the
data from the sensors and create visualization charts as output
[9].

e de�nition, creation, and execution of work�ows
are supported by a so-called work�ow management system
(WMS). A key function of a WMS during the work�ow
execution (or enactment) is coordinating the operations of
the individual activities that constitute the work�ow.

rough the integrated use of computer science methods
and technologies and scienti�c discovery processes, science
went to a new era where scienti�c science methods changed
signi�cantly by the use of computational methods and new
data analysis strategies that created the so-called e-science
paradigm, as discussed by Bell et al. [10]. For example,
the Pan-STARRS [11] astronomical survey uses Microso
Trident Scienti�c Work�ow Workbench work�ows to load
and validate telescope detections running at about 30 TB
per year. Similarly, the USC Epigenome Center is currently
using the Pegasus work�ow system to exploit the Illumina
Genetic Analyzer (GA) system to generate high-throughput
DNA sequence data (up to 8 billion nucleotides per week)
to map the epigenetic state of human cells on a genomewide
scale. In this scenario, scienti�c work�ows demonstrate their
effectiveness as an effective paradigm for programming at
high-level complex scienti�c applications that in general run
on supercomputers or on distributed computing infrastruc-
tures such as Grids, peer-to-peer systems, and Clouds [12–
14].

In this paper we discuss basic concepts of scienti�c
work�ows and present a selection of the most used scienti�c
work�ow systems such as Taverna, Pegasus, Triana, Askalon,
Kepler, GWES, and Karajan, which provide innovative tools
and frameworks for the implementation of application in
science and engineering. ese work�ow systems run on
parallel computers and distributed computing systems to get
high-performance and large data access that are needed in the
solution of complex scienti�c problems [15, 16]. Each one
of those work�ow management systems running in parallel
and distributed computing environments has interesting
features and represents a valid example of how work�ow-
based programming can be used in developing scienti�c

Contained inContained in

Ocean buoy

Data collection process

Temperature sensor Ocean current sensor

Scientific workflow

Hyper cube schema generator activity

3. NC file name

7. Variables

A process

A data value

Hyper cube generator activity

Invert data
Collapse X

Hyper cube to data table

Archive chart results
title

Chart data table Visualization chart

F 1: e scienti�c work�ow de�ned in the Neptune project.

applications.We also discuss some open research issues in the
area of scienti�cwork�ows that are investigated today and are
worthy of further studies by the computer science community
for providing novel solutions in the area.

e rest of the paper is organized as follows. Section 2
introduces the main programming issues in the area of scien-
ti�c work�ows. Section 3 presents a set of signi�cant work-
�ow management systems running on parallel�distributed
computing systems. Section 4 discusses a set of main issues
that are still open in the area of scienti�c work�ows and of
topics that must be investigated to �nd innovative solutions.
Section 5 concludes the paper.

A main issue in work�ow management systems is the
programming structures they provide to the developer
who needs to implement a scienti�c application. Moreover,



ISRN Soware Engineering 3

Input

Output

ProcProcProc

ProcProcProc

F 2: A simple DAG including data and control nodes.

whereas some systems provide a textual programming inter-
face, others are based on a visual programming interface.
ese two different interfaces imply different programming
approaches.

is section discusses the current programming approa-
ches used in scienti�c work�ow systems and compares them.
�en a scienti�c work�ow is programmed as a graph of
several data and processing nodes that include prede�ned
procedures programmed in a programming language such as
�ava, C��, and Perl. According to this approach, a scienti�c
work�ow is a methodology to compose prede�ned programs
that run single tasks, but that composed together represent a
complex application that generally needs large resources for
running and may take long running time to complete. For an
introductive reference, see [17], it gives a taxonomy of main
features of scienti�c work�ows. In fact, it is not rare to have
scienti�c work�ows, for example, in the astronomy domain
or in bioinformatics [18, 19], which take several days orweeks
to complete their execution.

Work�ow tasks can be composed together following a
number of different patterns, whose variety helps designers
addressing the needs of a wide range of application scenar-
ios [20]. A comprehensive collection of work�ow patterns,
focusing on the description of control �ow dependencies
among tasks, has been described in [20]. e most common
programming structure used in work�ow management sys-
tems is the directed acyclic graph (DAG) (see Figure 2) or its
extension that includes loops, that is the directed cyclic graph
(DCG).

�f the many possible ways to distinguish work�ow
computations, one is to consider a simple complexity scale.
At the most basic level one can consider linear work�ows, in
which a sequence of tasks must be performed in a speci�ed
linear order. e �rst task transforms an initial data object
into new data object that is used as input in the next data-
transformation task.e execution of the entire chain of tasks
may take a fewminutes, or it may take days, depending on the

computational grain of each single task in the pipeline.When
the execution time is short, the most common work�ow
programming tool is a simple script written, for instance,
in Python or Perl or even Matlab. e case of longer
running work�ows oen requires more sophisticated tools or
programming languages.

At the next level of complexity, one can consider work-
�ows that can be represented by a DAG, where nodes of the
graph represent tasks to be performed and edges represent
dependencies between tasks. Two main types of dependen-
cies can be considered: data dependencies (where the output
of a task is used as input by the next tasks) and control
dependencies (where before to start one or a set of tasks
some tasks must be completed). is is harder to represent
with a scripting language without a substantial additional
framework behind it, but it is not at all difficult to represent
with a tool like Ant. It is the foundation of the Directed
Acyclic Graph Manager (DAGMan) [21], a meta-scheduler
of Condor [22], a specialized workload management system
developed by the University of Wisconsin, and the execution
engine of Pegasus. Applications that follow this pattern can be
characterized bywork�ows inwhich some tasks dependupon
the completion of several other tasks that may be executed
concurrently [11].

A directed acyclic graph (DAG) can be used to represent
a set of programs where the input, output, or execution
of one or more programs is dependent on one or more
other programs. According to this model, also in DAGMan
programs are nodes in the graph, the edges (arcs) identify
the program dependencies. For task execution, Condor �nds
computers for the execution of programs, but it does not
schedule programs based on dependencies [23]. DAGMan
submits tasks to Condor in an order represented by a
DAG and processes the task results. An input �le de�ned
prior to submission describes the work�ow as a DAG, and
Condor uses a description �le for each program in the
DAG. DAGMan is responsible for scheduling, recovery, and
reporting for the set of programs submitted to Condor.

e next level of work�ow complexity can be charac-
terized cyclic graphs, where cycles represent some form of
implicit or explicit loop or iteration control mechanisms.
In this case, the work�ow graph oen describes a network
of tasks where the nodes are either services or some form
of soware component instances or represent more abstract
control objects. e graph edges represent messages or data
streams or pipes that exchange work or information among
services and components.

e highest level of work�ow structure is one in which
a compact graph model is not appropriate. is is the case
when the graph is simply too large and complex to be
effectively designed as a graph. However, some tools allow
one to turn a graph into a new �rst-class component or
service, which can then be included as a node in another
graph (a work�ow of work�ows or hierarchical work�ow).
is technique allows graphs of arbitrary complexity to be
constructed. is nested work�ow approach requires the use
of more sophisticated tools both at the compositing stage
and at the execution stage. In particular, this approach makes
harder the task-to-resource mapping and the task scheduling



4 ISRN Soware Engineering

during the work�ow execution that typically is done on
large-scale distributed or parallel infrastructures such asHPC
systems or Cloud computing platforms [24].

In the case of work�ow enactment, two issues must be
also taken into account, efficiency and robustness. In terms
of efficiency, the critical issue is the ability to quickly bind
work�ow tasks to the appropriate computing resources. It
also heavily depends on the mechanisms used to assign data
to tasks, to move data between tasks that need them at
various stages of the enactment. For instance, considering a
service-oriented scenario, we cannot assume that web service
protocols like SOAP should be used in anything other than
task/service control and simple message delivery [25–29].
Complex ad/or data movement between components of the
work�ow must be either via an interaction with a data
movement service, or through specialized binary-level data
channel running directly between the tasks involved.

Robustness is another issue, making the reasonable
assumption that some parts of a work�ow may fail. It is
essential that exception handling includes mechanisms to
recover from failure as well as detecting it. Also failure is
something that can happen to a work�ow enactment engine.
A related issue is themonitoring of the work�ow. In addition,
in restarting a work�ow from a failure checkpoint, a usermay
wish to track progress of the enactment. In some cases the
work�ow is event driven and a log of the events that trigger
the work�ow processing can be analyzed to understand how
the work�ow is progressing. is is also an important aspect
of debugging a work�ow. A user may wish to execute the
work�ow step by step to understand potential errors in the
�ow logic.

�ools and programming interfaces for scienti�c work�ow
composition are important components of work�ow systems.
rough tools and interfaces, a developer can compose
her/his scienti�c work�ow and express details about data
sources, task dependencies, resource availability, and other
design or execution constraints. Most scienti�c work�ow
systems offers graphical interface that offers high-level mech-
anisms for composition, while a few systems exhibit tradition
text-based programming interfaces. Work�ow users exploit
the features of interfaces that scienti�c work�ows expose in
order to build their work�ow [30]. is stage corresponds to
the design stage of a work�ow. In general terms, two main
work�ow levels can be found on this regard, though there
are other approaches that even differentiate more abstraction
levels.

(i) ��str�ct ��rk���s. At this high level of abstraction
a work�ow contains just information about what has
to be done at each task along with information about
how tasks are interconnected. ere is no notion of
how input data is actually delivered or how tasks are
implemented.

(ii) ���crete ��rk���s. e mapping stage to a concrete
work�ow annotates each of the tasks with informa-
tion about the implementation and/or resources to
be used. Information about method invocation and
actual data exchange format is also de�ned.

In case a user is familiar with the technology and the
resources available, they can even specify concrete work�ows
directly. Once a work�ow speci�cation is produced, it is sent
to the work�ow engine for the execution phase. At this stage,
work�ow tasks aremapped also onto third-party, distributed,
and heterogeneous resources and the scienti�c computations
are accomplished [31, 32].

As mentioned above, Work�ow Management Systems are
soware environments providing tools to de�ne, compose,
map, and execute work�ows. ere are several WMSs on
the market, most of them targeted to a speci�c application
domain, such as in our case of scienti�cwork�ows [33–35]. In
this sectionwe focus on some signi�cantWMSs developed by
the research community, with the goal of identifying themost
important features and solutions that have been proposed for
work�ow management in the scienti�c domain [36–43].

Although a standard work�ow language like Business
Process Execution Language (BPEL) [44–47] has been
de�ned, scienti�c work�ow systems oen have developed
their own work�ow model for allowing users to represent
work�ows. Other than BPEL, other formalisms like �ML,
Petri nets [48, 49], and XML-based languages [50, 51] are
used to express work�ows. is feature makes difficult the
sharing of work�ow speci�cation and limits interoperability
among work�ow-based applications developed by using dif-
ferentwork�owmanagement systems.Nevertheless, there are
some historical reasons for that, as many scienti�c work�ow
systems and their work�ow models were developed before
BPEL existed [52].

is section presents a set of work�ow management
systems speci�cally designed for composing and running sci-
enti�c applications. As we will discuss, such systems are very
useful in solving complex scienti�c problems and offer real
solutions for improving the way in which scienti�c discovery
is done in all science domains, from physics, to bioinfor-
matics, engineering, and molecular biology. Solutions they
adopted are useful to be taken into account in new WMSs
and represent features that work�ow systems must include to
support users in scienti�c application development.

Existing work�ow models can be grouped roughly into
the following two main classes [53].

(i) Script-like systems, wherework�owdescriptions spec-
ify work�ows by means of a textual programming
language that can be described by a grammar in an
analogous way to traditional programming languages
like Perl, Ruby, or Java. ey oen have complex
semantics and an extensive syntax. ese types of
descriptions declare tasks and their parameters by a
textual speci�cation. �ypically data dependencies can
be established between them by annotations. ese
languages contain speci�c work�ow constructs, such
as sequence or loops, while do, or parallel constructs
in order to build up a work�ow. Examples of script
work�ow descriptions are �ridAnt [54] and Karajan
[55]. A commonly used script-based approach to



ISRN Soware Engineering 5

describe work�ows, mainly in the business work�ow
community, is BPEL and its recent version for Web
services that builds on IBM’s Web Service Flow
Language, WSFL.

(ii) Graphical-based systems, where work�ow models
specify the work�ow with only a few basic graphical
elements that correspond to the graph components
such as nodes and edges. Compared with script-
based descriptions, graphical-based systems are eas-
ier to use and more intuitive for the unskilled user
mainly because of their graphical representation:
nodes typically represent work�ow tasks whereas
communications (or data dependencies) between
different tasks are represented as links going from
one node to another. Work�ow systems that support
graph-based models oen incorporate graphical user
interfaces which allow users to model work�ows
by dragging and dropping graph elements. Purely
graph-based work�ow descriptions generally utilize
DAGs. As mentioned before, directed acyclic graph-
based languages offer a limited expressiveness, so that
they cannot represent complex work�ows (e.g., loops
cannot be expressed directly).

3.1. Taverna. Taverna [56, 57] is an open-source Java-based
work�owmanagement system developed at the University of
Manchester. e primary goal of Taverna is supporting the
life sciences community (biology, chemistry, and medicine)
to design and execute scienti�c work�ows and support in
silico experimentation, where research is performed through
computer simulations with models closely re�ecting the real
world. Even though most Taverna applications lie in the
bioinformatics domain, it can be applied to a wide range
of �elds since it can invoke any web service by simply
providing the URL of its WSDL document. is feature is
very important in allowing users of Taverna to reuse code
(represented as a service) that is available on the internet.
erefore, the system is open to third-part legacy code by
providing interoperability with web services.

In addition to web services, Taverna supports the invoca-
tion of local Java services (Beanshell scripts), local Java API
(API Consumer), R scripts on an R server (Rshell scripts),
and imports data from a Cvs or Excel spreadsheet.

e Taverna suite includes the following four tools.

(i) Taverna Engine, used for enacting work�ows.
(ii) Taverna Workbench, a client application that enables

users to graphically create, edit, and runwork�ows on
a desktop computer (see Figure 3).

(iii) Taverna Server, which enables users to set up a
dedicated server for executing work�ows remotely.

(iv) A Command Line Tool, for a quick execution of
work�ows from a command prompt.

ese tools bring together a wide range of features that
make it easier to �nd, design, execute, and share complex
work�ows. Such features include

(i) pipelining and streaming of data;

F 3: A snapshot of the Taverna Workbench.

(ii) implicit iteration of service calls;
(iii) conditional calling of services;
(iv) customizable looping over a service;
(v) failover and retry of service calling;
(vi) parallel execution and con�gurable number of con-

current threads;
(vii) managing previous runs and work�ow results.

In addition, Taverna provides service discovery facilities and
integrated support for browsing curated service catalogues,
such as the BioCatalogues. Finally, even though Taverna
was originally designed for accessing web services and local
processes, it can also be used for accessing high-performance
computing infrastructures through the use of the TavernaPBS
plugin, developed at the University of Virginia, which allows
a user to de�ne work�ows running on a cluster that uses a
PBS queuing system.

3.2. Triana. Triana [58–60] is a Java-based scienti�c work-
�ow system, developed at the Cardiff University, which
combines a visual interface with data analysis tools. It can
connect heterogeneous tools (e.g., web services, Java units,
and J�TA services) in one work�ow. Triana uses its own
customwork�ow language, although it can use other external
work�ow language representations such as BPEL, which are
available through pluggable language readers and writers.
Triana comes with a wide variety of built-in tools for signal-
analysis, image manipulation, desktop publishing, and so
forth and has the ability for users to easily integrate their own
tools.

e Triana framework is based on a modularized archi-
tecture in which the GUI connects to a Triana engine, called
Triana Controlling Service (TCS), either locally or remotely.
A client may log into a TCS, remotely compose and run an
application, and then visualize the result locally. Application
can also be run in batch mode; in this case, a client may
periodically log back to check the status of the application.

e Triana GUI, see Figure 4, includes a collection of
toolboxes containing a set of Triana components, and a
workspace where the user can graphically de�ne the required
application behavior as a work�ow of components. Each



6 ISRN Soware Engineering

F 4: A snapshot of the Triana GUI used to compose a data
analysis work�ow.

F 5: e Pegasus scienti�c work�ow main menu.

component includes information about input and output
data type, and the system uses this information to perform
design-time type checking on requested connections in
order to ensure data compatibility between components.
Triana provides several work�ow patterns, including loops
and branches. Moreover, the work�ow components are late
bound to the services they represent, thus ensuring a highly
dynamic behavior.

Beyond the conventional operational usage, in which
applications are graphically composed from collections of
interacting units, other usages in Triana include using the
generalized writing and reading interfaces for integrating
third-party services and work�ow representations within the
GUI.

3.3. Pegasus. e Pegasus system [61], developed at the
University of Southern California, includes a set of technolo-
gies to execute work�ow-based applications in a number of
different environments, including desktops, clusters, Grids,
and Clouds. Pegasus has been used in several scienti�c areas
including bioinformatics, astronomy, earthquake science,
gravitational wave physics, and ocean science.

e Pegasus work�ow management system can manage
the execution of an application formalized as a work�ow
by mapping it onto available resources and executing the
work�ow tasks in the order of their dependencies (see
Figure 5). All the input data and computational resources

necessary for work�ow execution are automatically located
by the system. Pegasus also includes a sophisticated error
recovery system that tries to recover from failures by retrying
tasks or the entire work�ow, by remapping portions of the
work�ow, by providing work�ow-level checkpointing, and
by using alternative data sources, when possible. Finally, in
order for a work�ow to be reproduced, the system records
provenance information including the locations of data used
and produced, and which soware was used with which
parameters.

e Pegasus system includes the following three main
components.

(i) e Mapper, which builds an executable work�ow
based on an abstract work�ow provided by the user
or generated by the work�ow composition system.
To this end, this component �nds the appropriate
soware, data, and computational resources required
for work�ow execution.eMapper can also restruc-
ture the work�ow in order to optimize performance
and add transformations for data management or to
generate provenance information.

(ii) e Execution Engine, which executes in appropriate
order the tasks de�ned in the work�ow. is com-
ponent relies on the compute, storage, and network
resources de�ned in the executable work�ow to per-
form the necessary activities.

(iii) e Task Manager, which is in charge of managing
single work�ow tasks, by supervising their execution
on local or remote resources.

Recent research activities carried out on Pegasus investigated
the system implementation on Cloud platforms and how to
manage computational work�ows in the Cloud for develop-
ing scalable scienti�c applications [62–65].

3.4. Kepler. Kepler [66] is a Java-based open source soware
framework providing a graphical user interface and a run-
time engine that can executework�ows either fromwithin the
graphical interface or from a command line. It is developed
and maintained by a team consisting of several key institu-
tions at the University of California and has been used to
design and execute various work�ows in biology, ecology,
geology, chemistry, and astrophysics.

Kepler is based on the concept of directors, which dictate
the models of execution used within a work�ow. Single
work�ow steps are implemented as reusable actors that can
represent data sources, sinks, data transformers, analytical
steps, or arbitrary computational steps (see Figure 6). Each
actor can have one or more input and output ports, through
which streams of data tokens �ow, and may have parameters
to de�ne speci�c behavior. �nce de�ned, Kepler work�ows
can be exchanged using an XML-based formalism.

By default, Kepler actors run as local Java threads. How-
ever, the system also allows spawning distributed execution
threads through Web and Grid services. Moreover, Kepler
supports foreign language interfaces via the Java Native Inter-
face (JNI), which gives the user �exibility to reuse existing
analysis components and to target appropriate computational



ISRN Soware Engineering 7

F 6: Example of a scienti�c work�ow in Kepler [67].

tools. For example, Kepler includes a Matlab actor and a
Python actor.

e Web and Grid service actors allow users to utilize
distributed computational resources in a single work�ow.
e web service actor provides the user with an interface to
easily plug in and execute any WSDL-de�ned web service.
Kepler also includes a web service harvester for plugging in
a whole set of services found on a web page or in a UDDI
repository. A suite of data transformation actors (XSLT,
XQuery, Perl, etc.) allows to link semantically compatible but
syntactically incompatible web services together.

In addition to standard web services, Kepler also includes
specialized actors for executing jobs on a Grid. ey include
actors for certi�cate-based authentication (ProxyInit), sub-
mitting jobs to a Grid (GlobusJob), as well as for Grid-based
data transfer (GridFTP). Finally, Kepler includes actors for
database access and querying: DBConnect, which emits a
database connection token, to be used by any downstream
DBQuery actor that needs it.

3.5. Askalon. Askalon is an application development and
runtime environment, developed at the University of Inns-
bruck, which allows the execution of distributed work�ow
applications in service-oriented Grids [68]. Its SOA-based
runtime environment uses Globus Toolkit as Grid middle-
ware.

Work�ow applications in Askalon are described at a high
level of abstraction using a custom XML-based language
called Abstract Grid Work�ow Language (AGWL) [69].
AGWL allows users to concentrate on modeling scienti�c
applications without dealing with the complexity of the Grid
middleware or any speci�c implementation technology such
as Web and Grid services, Java classes, or soware compo-
nents. Activities in AGWL can be connected using a rich
set of control constructs, including sequences, conditional
branches, loops, and parallel sections.

e Askalon architecture (Figure 7) includes a wide set of
services.

(i) Resource broker, which provides for negotiation and
reservation of resources as required to execute a Grid
application.

(ii) Resource monitoring, which supports the monitor-
ing of Grid resources by integrating existing Grid

resource monitoring tools with new techniques (e.g.,
rule-based monitoring).

(iii) Information service, a general-purpose service for
the discovery, organization, and maintenance of
resource- and application-speci�c data.

(iv) Work�o� e�ecutor, which supports dynamic deploy-
ment, coordinated activation, and fault-tolerant com-
pletion of activities onto remote Grid nodes.

(v) Metascheduler, which performs amapping of individ-
ual or multiple work�ow applications onto the Grid.

(vi) Performance prediction, a service for the estimation
of the execution time of atomic activities and data
transfers, as well as of Grid resource availability.

(vii) Performance analysis, a service that uni�es the perfor-
mance monitoring, instrumentation, and analysis for
Grid applications and supports the interpretation of
performance bottlenecks.

3.6. Weka4WS. Work�ows are widely used in data mining
systems to manage data and execution �ows associated to
complex applications [70]. Weka, one of the most used open-
source data mining systems, includes the KnowledgeFlow
tool that provides a drag-and-drop interface to compose and
execute data mining work�ows. Unfortunately, the Weka
KnowledgeFlow allows users to execute a whole work�ow
only on a single computer. On the other hand, most data
mining work�ows include several independent branches that
could be run in parallel on a set of distributed machines to
reduce the overall execution time.eGrid Lab of University
of Calabria implemented distributed work�ow composition
and execution in Weka4WS, a framework that extends Weka
and its KnowledgeFlow environment to exploit distributed
resources available in a Grid using web service technologies
[71].

As shown in Figure 8, a work�ow in Weka4WS is built
through a GUI that offers an easy interface to select data,
tasks, and links to connect them [72].us, a work�ow can be
composed by selecting components from a tool bar, placing
them on a layout canvas and connecting them together: each
component of the work�ow is demanded to carry out a
speci�c step of the data mining process. A user operates on
the KnowledgeFlow GUI to build a data mining work�ow,
typically composed by multiple data mining tasks: the local
tasks are executed by invoking the local Weka library, while
the remote ones are performed through a client module
which acts as intermediary between the GUI and the remote
web services. Each task is carried out in a thread of its own
thus allowing running multiple tasks in parallel.

Weka4WS uses a service-oriented approach in which
all the Weka data mining algorithms are wrapped as web
services and deployed onGrid nodes. Users can compose and
invoke those services in a transparent way by de�ning data
mining work�ows as in the original Weka KnowledgeFlow.
is approach allows de�ning task-parallel, distributed data
mining applications in an easy and effective way [73].

Task parallelism is a form of parallelism that runs mul-
tiple independent tasks in parallel on different processors,



8 ISRN Soware Engineering

(UML) Application composition (AGWL)

Execution
control

Metascheduling
Performance Performance

prediction analysis

Resource Resource
broker monitoring

monitoring

Information
service

Web services

Grid infrastructure

Job
submission

File
transfer

Discovery
Security

F 7: e general architecture of the Askalon system.

F 8: A work�ow implementing distributed data mining
application in Weka4WS.

available on a single parallel machine or on a set of machines
connected through a network like the Grid. Another form of
parallelism that can be effectively exploited in data mining
work�ows is data parallelism, a large data set is split into
smaller chunks, each chunk is processed in parallel, and the
results of each processing are then combined to produce a
single result. Both parallelism forms aim to achieve execution
time speedup, and a better utilization of the computing
resources, but while task parallelism focuses on runningmul-
tiple tasks in parallel so that the execution time corresponds
to the slowest task, data parallelism focuses on reducing the
execution time of a single task by splitting it into subtasks,
each one operating on a subset of the original data.

e data-parallel approach is widely employed in dis-
tributed datamining as it allows to process very large datasets
that could not be analyzed on a single machine due to

memory limitations and/or computing time constraints. An
example of data-parallel application is distributed classi�-
cation: the dataset is partitioned into different subsets that
are analyzed in parallel by multiple instances of a given
classi�cation algorithm� the resulting �base classi�ers� are
then used to obtain a global model through various selection
and combining techniques. Weka4WS through the Knowl-
edgeFlow programming interface supports implementation
of work�ows that use data parallelism and task parallelism.

3.7. GWES. e General Work�ow Execution Service
(GWES) [74� (formerly the GridWork�ow Execution
Service) is a work�ow system that implements a multilevel
abstraction and semantic-based solution to facilitate the de-
coupling between tasks and resources or services. With the
implementation of a plugin concept for arbitrary work�ow
activities, it has now a broader area of application, not
limited to the orchestration of Grid and web services. e
GWES coordinates the composition and execution process
of work�ows in arbitrary distributed systems, such as S�A,
Cluster, Grid, or Cloud environments.

e GWES processes work�ows that are described using
the Grid Work�ow �escription Language (GWork�ow�L),
which is based on the formalism of high-level Petri nets
(HLPNs) [75�. In the work�ow speci�cations, transitions
representing tasks and tokens in the nets represent data
�owing through the work�ow.Hierarchical Petri nets are also
exploited to model hierarchical work�ow speci�cations and
to support the multilevel abstraction. An abstract task on top
of the hierarchy can be mapped dynamically at runtime by
re�ning the work�ow structure.

Figure 9 shows how GWES operates in the automatic
mapping of dynamic work�ows to determine the appropriate
and available resources. �ser requests are �rst mapped to



ISRN Soware Engineering 9

“I want
this data”

User request

Abstract workflow

Service candidates

Service instances

Grid resources

User request

F 9: Abstract layers in the GWES work�ow re�nement
process.

abstract work�ows (yellow). Each activity will be initially
assigned with the help of the resource matcher service
candidates (blue) that provide the appropriate functionality.
A scheduler selects one of the candidates (green) and carries
out the activity to the appropriate resources. In accordance
with the �etri net re�nement paradigm, places and transitions
within the net can be re�ned with additional �etri nets,
thereby facilitating the modeling of large real-world systems.

�owever, the Gwork�owDL does not support the inher-
ent modeling of the dynamic re�nement process itself and,
consequently, the work�ow structure is modi�ed dynami-
cally by the work�ow engine.

is requires to the user a deep knowledge of the work-
�ow engine functionality. For instance, there is no simple
construct in the GWork�owDL. Additionally, GWES also
supports exception handling in the hierarchical scienti�c
work�ows thereby the work�ow engine can modify part
of the work�ow structure upon a failure, providing great
levels of dynamism and �exibility. Nevertheless, GWES does
not support a clear separation of exception handling from
the application data and control �ow, apart from simple
rescheduling techniques and checkpoint/restart functionali-
ties.

3.8. DVega. DVega [76, 77] is a scienti�c work�ow engine
that adapts itself to the changing availability of resources,
minimizing the human intervention.DVega utilizes reference
nets [78], a speci�c class of �etri nets, for composing
work�ow tasks in a hierarchical way and the Linda [79]
communication paradigm for isolating work�ow tasks from
resources.

Work�ow tasks in DVega interact with resources
by exchanging messages: in particular work�ow tasks
send/receive messages to/from Linda and the existing
forwarder-receiver components in DVega are responsible
for taking the messages from Linda and sending them to
the resources and vice versa. DVega’s architecture, shown

Workflow engine

Renew’s composition tool

Workflow space Conversation space

Renew’s reference net interpreter

RLinda

Renew
Wf

repository
Checkpointing

database

Forwarders/receivers

Middleware

Resources

F 10: Components of the DVega architecture.

in Figure 10, is completely built upon service-oriented
principles and by means of a tuple space shields work�ows
from the heterogeneity of the middleware.

One of the aspects of the architecture that is worth
highlighting is the mapping between tasks and resources.
A work�ow task receives its inputs, generates a tuple with
them, andwrites it into the tuple-space (Linda). Aer that, the
work�ow task is suspended until the expected result is back:
once the tuple is in Linda, the corresponding proxy takes the
tuple, transforms it into the suitable format, and forwards it to
the destination resource.When the result arrives to the proxy,
it is transformed into a message and written into the tuple
space. en, the work�ow tasks withdraw the expected tuple
containing the result. e main advantage of this approach
is that a work�ow task will have only to indicate the type of
interaction required, without explicitly sending a message to
a speci�c proxy. In consequence, proxies can be added and
modi�ed at runtime, without having to stop the execution,
and can be shared by work�ow tasks.

3.9. Karajan. e Java CoG Kit Karajan system allows users
to compose work�ows through an �ML scripting language as
well as with an equivalent more user-friendly language called
K [54, 55]. �oth languages support hierarchical work�ow
descriptions based on DAGs and have the ability to use
sequential and parallel control structures such as if, while,
and parallel in order to easily express concurrency. Moreover,
the Karajan work�ow framework can support hierarchical
work�ows based on DAGs including the sequential control
structures and parallel constructs, and it can make use
of underlying Grid tools such as Globus GRAM [80] for
distributed/parallel execution of work�ows.

e architecture of the Java CoG Kit Karajan framework,
shown in Figure 11, contains the work�ow engine that
interacts with high-level components, namely, a visualization
component that provides a visual representation of the
work�ow structure and allows monitoring of the execution,



10 ISRN Soware Engineering

a checkpointing subsystem that allows the checkpointing of
the current state of the work�ow, and a work�ow service
that allows the execution of work�ows on behalf of a user. A
number of convenience libraries enables the work�ow engine
to access speci�c functionalities.

Work�ow speci�cations can be visualized in the system.
e analysis of dynamism support in Karajan reveals that
work�ows can actually be modi�ed during runtime through
two mechanisms. e �rst one is through the de�nition of
elements that can be stored in a work�ow repository that
gets called during runtime. e second one is through the
speci�cation of schedulers that support the dynamic associa-
tion of resources to tasks.e execution of the work�ows can
either be conducted through the instantiation of a work�ow
on the user client or can be executed on behalf of the user
on a service. Besides, the execution engine of the system also
features work�ow checkpointing and rollback.

3.10. DIS3GNO. An important bene�t of work�ows is that,
once de�ned, they can be stored and retrieved for modi�ca-
tions and/or reexecution. is feature allows users to de�ne
typical data mining patterns and reuse them in different
contexts. We worked in this direction by de�ning a service-
oriented work�ow formalism and a visual soware environ-
ment, named DIS3GNO, to design and execute distributed
data mining tasks over the Knowledge Grid [81], a service-
oriented framework for distributed data mining on the Grid.

In DIS3GNO a work�ow is represented as a directed
acyclic graph whose nodes represent resources and whose
edges represent the dependencies among the resources [82,
83]. In supporting user to develop applications, DIS3GNO is
the user interface for the following twomainKnowledgeGrid
functionalities.

(i) Metadata management: DIS3GNO provides an inter-
face to publish and search metadata about data and
tools.

(ii) Design and Execution management: DIS3GNO pro-
vides an environment to program and execute dis-
tributed data mining applications as service-oriented
work�ows, through the interactionwith the execution
management service of the Knowledge Grid.

eDIS3GNOGUI, depicted in Figure 12, has been designed
to re�ect this twofold functionality. In particular, it provides
a panel (on the le) devoted to search resource metadata and
a panel (on the right) to compose and execute data mining
work�ows. In the top-le corner of the window there is a
menu used for opening, saving, and creating new work�ows,
viewing and modifying some program settings, and viewing
the previously computed results present in the local �le
system. Under the menu bar there is a toolbar containing
some buttons for the execution control (starting/stopping the
execution and resetting the nodes statuses) and other for the
work�ow editing (creation of nodes representing datasets,
tools or viewers, creation of edges, selection of multiple
nodes, and deletion of nodes or edges).

Starting from the data mining work�ow designed by
a user, DIS3GNO generates an XML representation of

the corresponding data mining application referred to as
conceptual model. DIS3GNO passes the conceptual model
to a given execution plan manager, which is in charge of
transforming it into an abstract execution plan for subsequent
processing by the resource allocation and execution service.
is service receives the abstract execution plan and creates
a concrete execution plan. To accomplish this task, it needs
to evaluate and resolve a set of resources and services and
choose those matching the requirements speci�ed by the
abstract execution plan. As soon as the resource allocation
and execution service has built the concrete execution plan,
it is in charge of coordinating its execution by invoking
the coordinated execution of services corresponding to the
nodes of the concrete execution plan. e status of the
computation is noti�ed to the execution planmanager, which
in turn forwards the noti�cations to theDIS3GNO system for
visualization.

In this way, DIS3GNO operates as an intermediary
between the user and the Knowledge Grid, a service-
oriented system for high-performance distributed KDD. All
the Knowledge Grid services for metadata and execution
management are accessed transparently by DIS3GNO, thus
allowing the domain experts to compose and run complex
data intensive work�ows without worrying about the under-
lying infrastructure details.

4. Discussion and Research Issues

As we discussed through the previous sections, work�ows
enable scientists to develop complex simulations and to run
faceted applications that are composed of a collection of
soware components, data sources, web services, and legacy
code. In the same cases, such components are designed,
developed, and run in collaborative environments.

On large-scale computing infrastructures used today
for running large scienti�c applications, work�ow systems
provide an abstract representation of concurrent tasks and a
distributed virtualmachine to execute applications composed
of many activities.

To address the big challenges in science and engineer-
ing, work�ow programming formalisms including adequate
abstractions for data representation and concurrent process-
ing orchestration are needed. Besides the amount of data
accessed and analyzed by the work�ow tasks, the output
data produced by each work�ow node or stage needs to be
stored and annotated with provenance and other metadata
to interpret them in the future or reuse them in further
executions or new work�ows [84–87].

From the WMSs presented in the previous section, we
have seen that typically work�ow design and execution steps
in a distributed scenario are complex and involve multiple
stages that are part of the work�ow lifecycle. ey include

(i) textual or graphical composition,
(ii) mapping of the abstract work�ow description onto

the available resources,
(iii) scheduling [88], monitoring, and debugging of the

subsequent execution.



ISRN Soware Engineering 11

Viewer/monitor Checkpointing subsystem Service

Karajan workflow engine

XML

HTML

syntax

syntax

Workflow
language

specification

K
Core Task Java Forms

library library library library library

Java swing
Java CoG kit
abstractions

Java libraries

F 11: e soware architecture of the �ara�an work�ow management system.

Data-driven applications are more and more developed in
science to exploit the large amount of digital data today avail-
able [89, 90]. Adequate work�ow composition mechanisms
then are needed to support the complex work�ow man-
agement process that includes work�ow creation, work�ow
reuse, and modi�cations made to the work�ow over time.

To address the main research issues and advance the
current work�ow management systems used for developing
scienti�c applications, several issues are still open and several
topics must be investigated to �nd innovative solutions [91].
Here we give a partial list that could be used as the basis of
a research agenda towards the design of the next-generation
scienti�c work�ow systems. For each item of this list we
introduce the basic aspects and sketch the road towards
further investigations.

(i) �daptive Work�ow ��ecution Models. As the computing
platforms become more and more dynamic and are based
on virtualization, WMSs need to embody techniques for
dynamically adapting the execution of work�ows on such
elastic infrastructures to bene�c from their dynamic nature.

(ii) �ig�-�evel �ools and �anguages �or Work�ow �omposi-
tion. Whereas in the area of programming languages high-
level constructs have been designed and implemented, oen
the basic building blocks of work�ows are simple and regular.
is scenario demands for further investigation towards
higher and complex abstract structures to be included in
work�ow programming tools.

(iii) Scienti�c Work�ow �nteropera�ility and �penness. Inter-
operability is a main issue in large-scale experiments where
many resources, data, and computing platforms are used.
WMSs oen are based on proprietary data and ad hoc
formats. For this reason the combined use of different

systems is inhibited; therefore standard formats and models
are needed to support interoperability and ease cooperation
among research teams using different tools.

(iv) Big Data Management and Knowledge Discovery Work-
�ows. Some systems discussed in Section 3 are mainly
devoted to support the implementation of work�ows for data
analysis and knowledge discovery. e large availability of
massive and distributed data sources requires the develop-
ment of tools and applications for data analysis and to extract
useful knowledge hidden in it. In this area, current work
[81, 92] shows that work�ows are effective, but more research
activities are needed to develop higher-level tools and scalable
systems.

(v) �nternet-Wide Distri�uted Work�ow ��ecution. Typically
WMSs run on parallel computers and on single site dis-
tributed systems. Recently, by the use of Grids and P2P
systems, multisite work�ows have been developed and have
been executed on a geographical scale.is approachmust be
extended by at the Internet scale to solve bigger problems and
involve several research teams and labs.

(vi) Service-�riented Work�ows on �loud �n�rastructures. As
discussed in [92], the service-oriented paradigm will allow
large-scale distributed work�ows to be run on heteroge-
neous platforms and the integration of work�ow elements
developed by using different programming languages. Web
and Cloud services are a paradigm that can help to handle
also work�ow interoperability, so this research issue needs a
deeper investigation.

(vii)Work�ows �omposition and ��ecution in ��ascale �om-
puting Systems. Exascale computing systems in the next
years will become the most interesting scalable platforms



12 ISRN Soware Engineering

F 12: A screenshot of the DIS3GNO GUI composing a data
analysis work�ow.

where to run a huge amount of concurrent tasks; therefore
models, techniques, and mechanisms for efficient execution
of work�ows on this massive parallel systems are vital.

(viii) �ault-Tolerance and �eco�ery Strategies for Scienti�c
Work�ows. Only a few of the scienti�c WMSs used today
provide explicit mechanisms to handle with hardware and/or
soware failures. However, fault tolerance is important when
large-scale or long-lived work�ow-based applications are
run on distributed platforms. To address those issues both
implicit and explicit fault tolerance and recoverymechanisms
must be embodied in future WMSs to reduce the impact of
faults and to avoid reexecution of not completed work�ows
due to faults.

(xi) Work�ow Pro�enance and Annotation Mechanisms and
Systems. Data provenance in work�ows is captured as a set
of dependencies between data elements [93, 94]. It may
be used for interpreting data and providing reproducible
results, but also for troubleshooting and optimizing work�ow
efficiency. Research issues to be investigating in this area are
related to efficient techniques to manage provenance data, to
visualize and mine those data and improve provenance data
interoperability.

5. Conclusions

Work�ow systems support research and scienti�c processes
by providing a paradigm that may encompass all the steps of
discovery based on the execution of complex algorithms and
the access and analysis of scienti�c data. For instance, in data-
driven discovery processes, knowledge discovery tasks can
produce results that can con�rm real experiments or provide
insights that cannot be achieved in laboratories.

Computational science today requires high-performance
infrastructures that can be exploited by running on them
complexwork�ows that integrate programs,methods, agents,
and services coming from different organizations or sites. In
such a way, algorithms, data, services, and other soware
components are orchestrated in a single virtual framework
that speci�es the execution sequence and the more appropri-
ate scheduling of this collection of resources [95, 96].

Today the availability of huge amounts of digital data,
oen referred to as Big Data, originated a sort of data-
centric science that is based on the intelligent analysis of large
data repositories to extract the rules hidden in the raw data
coming for laboratory experiments of physical phenomena
[92, 97]. Work�ows may help researchers in these discovery
tasks by coding in a computational graph an entire scienti�c
practice or methodology that is too complex or impossible to
implement in a laboratory.

Moreover, many scienti�c work�ows have to operate
over heterogeneous infrastructure with possibility of failures,
therefore dealing with such failures in a more coherent way,
so that a similar set of techniques can be applied across
work�ow engines, is another important challenge to be
addressed and solved [98–102].

To summarize the paper contribution, basic concepts of
scienti�c work�ows and work�ow system tools and frame-
works used today for the implementation of application in
science and engineering have been introduced and discussed.
Finally, the paper reported on a selection of work�ow systems
largely used for solving scienti�c problems and discussed
open issues and research challenges in the area.

References

[1] Work�ow Management Coalition, Terminology and Glossary,
Document Number WFMC- TC-1011, Issue 3.0, 1999.

[2] D. Hollingsworth, Work�ow Management Coalition Speci�ca-
tion��eWork�ow �eference Model, Document Number TC00-
1003, v. 1.1, 1995.

[3] S. Jablonski and C. Bussler, Work�ow Management� Modeling
Concepts, Architecture and Implementation, omson Interna-
tional Computer Press, 1996.

[4] P. Grefen and R. N. Remmerts De Vries, “A reference architec-
ture for work�ow management systems,” Data and Knowledge
Engineering, vol. 27, no. 1, pp. 31–57, 1998.

[5] L. Liu, C. Pu, and D. D. Ruiz, “A systematic approach to �ex-
ible speci�cation, composition, and restructuring of work�ow
activities,” Journal of Database Management, vol. 15, no. 1, pp.
1–40, 2004.

[6] C. Lin and S. Lu, “Architectures of work�ow management
systems: a survey,” Tech. Rep. TR-SWR-01-2008, 2008.

[7] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview
of work�ow management: from process modeling to work�ow
automation infrastructure,” Distributed and Parallel Databases,
vol. 3, no. 2, pp. 119–153, 1995.

[8] S. Bowers, B. Ludaescher, A. Ngu, and T. Critchlow, “Enabling
scienti�c work�ow reuse through structured composition of
data�ow and control-�ow,” in Proceedings of the 22nd Interna-
tional Conference on Data EngineeringWorkshops (ICDEW ’06),
2006.

[9] S. S. Sahoo and A. Sheth, “Provenir ontology: towards a frame-
work for eScience provenance management,” in Proceedings of
the Microso eScience Workshop, Pittsburgh, Pa, USA, October
2009.

[10] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,” Science,
vol. 323, no. 5919, pp. 1297–1298, 2009.

[11] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Work�ows
and e-Science: an overview of work�ow system features and



ISRN Soware Engineering 13

capabilities,” Future Generation Computer Systems, vol. 25, no.
5, pp. 528–540, 2009.

[12] M. Sonntag, D. Karastoyanova, and E. Deelman, “Bridging
the gap between business and scienti�c work�ows: humans
in the loop of scienti�c work�ows,” in Proceedings of the 6th
IEEE International Conference on e-Science (eScience ’10), pp.
206–213, December 2010.

[13] J. Yu and R. Buyya, “A taxonomy of scienti�c work�ow systems
for grid computing,” SIGMOD Record, vol. 34, no. 3, pp. 44–49,
2005.

[14] E. Al-Shakarchi, P. Cozza, A. Harrison et al., “Distributing
work�ows over a ubi�uitous P2P network,” Scienti�c Program-
ming, vol. 15, no. 4, pp. 269–281, 2007.

[15] K. Ostrowski, K. Birman, and D. Dolev, “Extensible architec-
ture for high-performance, scalable, reliable publish-subscribe
eventing and noti�cation,” International Journal ofWeb Services
Research, vol. 4, no. 4, pp. 18–58, 2007.

[16] A. Lathers, M. H. Su, A. Kulungowski et al., “Enabling parallel
scienti�c applications with work�ow tools,” in Proceedings of
the Challenges of Large Applications in Distributed Environments
(CLADE ’06), pp. 55–60, June 2006.

[17] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields,
Work�ows for e-Science� Scienti�cWork�ows for Grids, Springer,
London, UK, 2007.

[18] M.Mirto,M. Passante, andG. Aloisio, “e ProGenGrid virtual
laboratory for bioinformatics,” in Proceedings of the IEEE 25th
International Symposium on Computer-Based Medical Systems
(CBMS ’12), 2012.

[19] M. Cannataro, A. Guzzo, C. Comito, and P. Veltri, “Ontology-
based design of bioinformatics work�ows on PROTEUS,” Jour-
nal of Digital Information Management, vol. 2, no. 1, pp. 87–92,
2004.

[20] W.M. P. Van der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski,
and A. P. Barros, “Work�ow patterns,” Distributed and Parallel
Databases, vol. 14, no. 1, pp. 5–51, 2003.

[21] Condor Team, DAGMan: A Directed Acyclic Graph Manager,
July 2005, http://research.cs.wisc.edu/htcondor/dagman/.

[22] M. Litzkow, M. Livny, and M. Mutka, “Condor—a hunter
of idle workstations,” in Proceedings of the 8th International
Conference on Distributed Computing Systems, pp. 104–111,
IEEE Computer Society, New York, NY, USA, 1988.

[23] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger,
“Work�owmanagement in Condor,” inWork�ows for e-Science,
pp. 357–375, Springer, New York, NY, USA, 2007.

[24] M. Mirto, M. Passante, and G. Aloisio, “A grid meta scheduler
for a distributed interoperable work�ow management system,”
in Proceedings of the IEEE 23rd International Symposium on
Computer-Based Medical Systems (CBMS ’10), pp. 138–143,
IEEE Computer Society, Washington, DC, USA, 2010.

[25] L. Zhang, J. Zhang, and H. Cai, Services Computing, Springer,
2007.

[26] T. Erl, Service-Oriented Architecture Concepts, Technology and
Design, Pearson Education, 2005.

[27] M. Vouk and M. Singh, “�uality of service and scienti�c
work�ows,” in Proceedings of theWorking Conference on Quality
of Numerical Soware, pp. 77–89, 1996.

[28] A. Arsanjani, L. J. Zhang, M. Ellis, A. Allam, and K.
Channabasavaiah, “S3: a service-oriented reference architec-
ture,” IT Professional, vol. 9, no. 3, pp. 10–17, 2007.

[29] C. Lin, S. Lu, Z. Lai et al., “Service-oriented architecture
for VIEW: a visual scienti�c work�ow management system,”

in Proceedings of IEEE International Conference on Services
Computing (SCC ’08), pp. 335–342, 2008.

[30] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim,
“Wings for Pegasus: creating large scale scienti�c applications
using semantic representations of computational work�ows,”
in Proceedings of the 19th Innovative Applications of Arti�cial
Intelligence Conference (IAAI ’07), 2007.

[31] G. Juve and E. Deelman, “Resource provisioning options for
large-scale scienti�c work�ows,” in Proceedings of the 3rd
International Workshop on Scienti�c Work�ows and Business
Work�ow Standards in e-Science, Indianapolis, Ind, USA, 2008.

[32] A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou et al.,
“Developing scienti�c work�ows from heterogeneous services,”
SIGMOD Record, vol. 35, no. 2, pp. 19–25, 2006.

[33] J. A. Miller, D. Palaniswami, A. P. Sheth, K. J. Kochut, and H.
Singh, “WebWork: METEOR2�s web-based work�ow manage-
ment system,” Journal of Intelligent Information Systems, vol. 10,
no. 2, pp. 185–213, 1998.

[34] G. Alonso, R. Günthör, M. Kamath, D. Agrawal, A. Abbadi, and
C. Mohan, “Exotica/FMDC: a work�ow management system
for mobile and disconnected clients,” Distributed and Parallel
Databases, vol. 4, no. 3, pp. 229–247, 1996.

[35] F. Leymann and D. Roller, “Business process management
with FlowMark,” in Proceedings of the IEEE Computer Society
International Conference (COMPCON ’94), pp. 230–234, 1994.

[36] B. Lud�scher, I. Altintas, C. Berkley et al., “Scienti�c work�ow
management and theKepler system,”Concurrency Computation
Practice and Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[37] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, “VisTrails: visualization meets data management,”
in Proceedings of the ACM International Conference onManage-
ment of Data (SIGMOD ’06), pp. 745–747, June 2006.

[38] Y. Zhao, M. Hategan, B. Clifford et al., “Swi: fast, reliable,
loosely coupled parallel computation,” inProceedings of Interna-
tionalWorkshop on Scienti�cWork�ows (SWF ’07), pp. 199–206,
July 2007.

[39] S. Majithia, M. Shields, I. Taylor, and I. Wang, “Triana: a
graphical web service composition and execution toolkit,” in
Proceedings of IEEE International Conference on Web Services
(ICWS ’04), pp. 514–521, July 2004.

[40] A. Chebotko, C. Lin, �. Fei et al., “VIEW: a visual scienti�c
work�ow management system,” in Proceedings of International
Workshop on Scienti�c Work�ows (SWF ’07), pp. 207–208, July
2007.

[41] P. Kacsuk and G. Sipos, “Multi-Grid, multi-user work�ows in
the P-GRADE Grid portal,” Journal of Grid Computing, vol. 3,
no. 3-4, pp. 221–238, 2005.

[42] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and
H. Vo, “Managing the evolution of data�ows with visTrails,” in
Proceedings of IEEE Workshop on Work�ow and Data Flow for
Scienti�c Applications, SciFlow, 2006.

[43] T. Glatard, G. Sipos, J. Montagnat, Z. Farkas, and P. Kacsuk,
“Work�ow-level parametric study support by MOTEUR and
the P-GRADE portal,” inWork�ows for e-Science, pp. 279–299,
Springer, New York, NY, USA, 2007.

[44] Web Services Business Process Execution Language,
Version 2.0, Primer, May 2007, https://www.oasis-open.org/
committees/download.php/23964/wsbpel-v2.0-primer.htm.

[45] T. Fletcher, C. Ltd, P. Furniss, A. Green, and R. Haugen, “BPEL
and Business Transaction Management: Choreology Submis-
sion to OASIS WS-BPELTechnical Committee,” Published on
Web.



14 ISRN Soware Engineering

[46] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L.
Price, “Grid service orchestration using the Business Process
Execution Language (BPEL),” Journal of Grid Computing, vol.
3, no. 3-4, pp. 283–304, 2005.

[47] M. B. Juric, Business Process Execution Language for Web
Services BPEL and BPEL4WS, Packt Publishing, 2nd edition,
2006.

[48] M. Alt, A. Hoheisel, H.-W. Pohl, and S. Gorlatch, “A grid
work�ow language using high-level petri nets,” in Proceedings
of the 6th International Conference on Parallel Processing and
AppliedMathematics (PPAM ’05), R.Wyrzykowski, J. Dongarra,
N. Meyer, and J. Wasniewski, Eds., vol. 3911 of Lecture Notes in
Computer Science, pp. 715–722, Springer, New York, NY, USA,
2006.

[49] Z. Guan, F. Hern, and P. Bangalore, Grid-�ow: a grid-enabled
scienti�c work�ow system with a petri net-based interface �Ph�D�
thesis], University of Alabama at Birmingham, 2006.

[50] M. Atay, A. Chebotko, D. Liu, S. Lu, and F. Fotouhi, “Efficient
schema-based XML-to-Relational data mapping,” Information
Systems, vol. 32, no. 3, pp. 458–476, 2007.

[51] A. Chebotko, M. Atay, S. Lu, and F. Fotouhi, “XML subtree
reconstruction from relational storage of XML documents,”
Data and Knowledge Engineering, vol. 62, no. 2, pp. 199–218,
2007.

[52] T. Andrews, F. Curbera, H. Dholakia et al., “Business process
execution language for web services,” version 1.1, 2003.

[53] F. Neubauer, A. Hoheisel, and J. Geiler, “Work�ow-based Grid
applications,” Future Generation Computer Systems, vol. 22, no.
1-2, pp. 6–15, 2006.

[54] G. von Laszewski and M. Hategan, “Java CoG Kit Kara-
�an�Gridant work�ow guide,” Tech. Rep., Argonne National
Laboratory, Argonne, Ill, USA, 2005.

[55] G. von Laszewski, M. Hategan, and D. Kodeboyina, “Java CoG
kit work�ow,” inWork�ows for e-Science, pp. 143–166, Springer,
New York, 2007.

[56] T. Oinn, M. Addis, J. Ferris et al., “Taverna: a tool for
the composition and enactment of bioinformatics work�ows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[57] T. Oinn, M. Greenwood, M. Addis et al., “Taverna: lessons
in creating a work�ow environment for the life sciences,”
Concurrency Computation Practice and Experience, vol. 18, no.
10, pp. 1067–1100, 2006.

[58] I. Taylor,M. Shields, I.Wang, andO. Rana, “Triana, applications
within Grid computing and peer to peer environments,” Journal
of Grid Computing, vol. 1, pp. 199–217, 2004.

[59] I. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual grid
work�ow in Triana,” Journal of Grid Computing, vol. 3, no. 3-
4, pp. 153–169, 2005.

[60] I. Taylor, E. Al-Shakarchi, and S. D. Beck, “Distributed audio
retrieval using Triana, DART,” in Proceedings of the Interna-
tional Computer Music Conference (ICMC ’06), pp. 716–722,
New Orleans, Lo, USA, November 2006.

[61] E. Deelman, G. Singh, M. H. Su et al., “Pegasus: a framework
for mapping complex scienti�c work�ows onto distributed
systems,” Scienti�c Programming, vol. 13, no. 3, pp. 219–237,
2005.

[62] A. Nagavaram, G. Agrawal, M. Freitas, G. Mehta, R. Mayani,
and E. Deelman, “A cloud-based dynamic work�ow for mass
spectrometry data analysis,” in Proceedings of the 7th IEEE
International Conference on e-Science (e-Science ’11), December
2011.

[63] J. S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman,
“Experiences using cloud computing for a scienti�c work�ow
application,” in Proceedings of the 2nd International Workshop
on Scienti�c Cloud Computing (ScienceCloud ’11), pp. 15–24,
June 2011.

[64] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-
and deadline-constrained provisioning for scienti�c work�ow
wnsembles in IaaS clouds,” in Proceedings of the 24th IEEE/ACM
International Conference on Supercomputing (SC ’12), 2012.

[65] G. Juve, E. Deelman, B. Berriman, B. P. Berman, and P. Maech-
ling, “An evaluation of the cost and performance of scienti�c
work�ows on Amazon EC2,” Journal of Grid Computing, vol.
10, no. 1, pp. 5–21, 2012.

[66] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S.
Mock, “Kepler: an extensible system for design and execution
of scienti�c work�ows,” in Proceedings of the 16th International
Conference on Scienti�c and Statistical Database Management
(SSDBM ’04), pp. 423–424, IEEE Computer Society, New York,
NY, USA, 2004.

[67] J. H. Porter, P. C. Hanson, and C.-C. Lin, “Staying a�oat in the
sensor data deluge,” Trends in Ecology and Evolution, vol. 27, no.
2, pp. 121–129, 2012.

[68] T. Fahringer, R. Prodan, R. Duan et al., “ASKALON: a grid
application development and computing environment,” in Pro-
ceedings of the 6th IEEE/ACM International Workshop on Grid
Computing, pp. 122–131, November 2005.

[69] T. Fahringer, �. Jun, and S. Hainzer, “Speci�cation of Grid
work�ow applications with AGWL: an abstract Grid work�ow
language,” in Proceedings of IEEE International Symposium on
Cluster Computing and the Grid (CCGrid ’05), pp. 676–685,May
2005.

[70] A. Congiusta, G. Greco, A. Guzzo et al., “A data mining-based
framework for grid work�ow management,” in Proceedings of
the 5th International Conference on Quality Soware (QSIC ’05),
pp. 349–356, IEEE Computer Society Press, September 2005.

[71] D. Talia, P. Trun�o, and O. Verta, “Weka4WS: a WSRF-
enabled Weka toolkit for distributed data mining on Grids,”
in Proceedings of the 9th European Conference on Principles
and Practice of Knowledge Discovery in Databases, pp. 309–320,
Porto, Portugal, 2005.

[72] M. Lackovic, D. Talia, and P. Trun�o, “A framework for com-
posing knowledge discovery work�ows in grids,” in Founda-
tions of Computational Intelligence, A. Abraham, A. Hassanien,
A. Carvalho, and V. Snášel, Eds., vol. 6 of Data Mining eo-
retical Foundations and Applications, Studies in Computational
Intelligence, pp. 345–369, Springer, 2009.

[73] D. Talia, P. Trun�o, and O. Verta, “�e Weka4WS framework
for distributed data mining in service-oriented Grids,” Concur-
rency Computation Practice and Experience, vol. 20, no. 16, pp.
1933–1951, 2008.

[74] A. Hoheisel, “User tools and languages for graph-based Grid
work�ows,” Concurrency Computation Practice and Experience,
vol. 18, no. 10, pp. 1101–1113, 2006.

[75] K. Jensen and G. Rozenberg, High-Level Petri Nets: eory and
Application, Springer, London, UK, 1991.

[76] R. Tolosana-Calasanz, J. A. Banares, O. F. Rana, P. Á lvarez,
J. Ezpeleta, and A. Hoheisel, “Adaptive exception handling for
scienti�c work�ows,” Concurrency Computation Practice and
Experience, vol. 22, no. 5, pp. 617–642, 2010.

[77] R. Tolosana-Calasanz, J. A. Bañares, P. Álvarez, J. Ezpeleta,
and O. Rana, “An uncoordinated asynchronous checkpointing



ISRN Soware Engineering 15

model for hierarchical scienti�c work�ows,” Journal of Com-
puter and System Sciences, vol. 76, no. 6, pp. 403–415, 2010.

[78] R. Valk, “Petri nets as token objects: an introduction to
elementary object nets,” in Proceedings of the 19th International
Conference on Application and eory of Petri Nets (ICATPN
’98), J. Desel and M. Silva, Eds., vol. 1420 of Lecture Notes in
Computer Science, pp. 1–25, Springer, Lisbon, Portugal, June
1998.

[79] D. Gelernter, “Generative communication in Linda,” ACM
Transactions on Programming Languages and Systems, vol. 7, no.
1, pp. 80–112, 1985.

[80] M. Feller, I. Foster, and S. Martin, “GT4 GRAM: a functionality
and performance study,” in Proceedings of the TERAGRID
Conference, Madison, Wis, USA, 2007.

[81] D. Talia and P. Trun�o, “How distributed data mining tasks can
thrive as knowledge services,”Communications of the ACM, vol.
53, no. 7, pp. 132–137, 2010.

[82] E. Cesario, M. Lackovic, D. Talia, and P. Trun�o, “Pro-
gramming knowledgediscovery work�ows in service-oriented
distributed systems,” Concurrency and Computation: Practice
and Experience. In press.

[83] E. Cesario, M. Lackovic, D. Talia, and P. Trun�o, “Service-
oriented data analysis in distributed computing systems,” in
High Performance Computing: From Grids and Clouds to Exas-
cale, I. Foster,W. Gentzsch, L. Grandinetti, and G. Joubert, Eds.,
pp. 225–245, IOS Press, Lansdale, Pa, USA, 2011.

[84] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing
and �uerying scienti�c work�ow provenance metadata using
an RDBMS,” in Proceedings of the 3rd IEEE International
Conference on E-Science and Grid Computing, pp. 611–618,
December 2007.

[85] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance col-
lection support in the kepler scienti�c work�ow system,” in
Proceedings of the International Provenance and Annotation
Workshop (IPAW ’06), pp. 118–132, 2006.

[86] E. Deelman and A. Chervenak, “Data management challenges
of data-intensive scienti�c work�ows,” in Proceedings of the 8th
IEEE International Symposium on Cluster Computing and the
Grid (CCGRID ’08), pp. 687–692, May 2008.

[87] Open Provenance Model, 2009, http://twiki.ipaw.info/bin/
view/OPM/WebHome.

[88] J. Yu and R. Buyya, “Scheduling scienti�c work�ow applications
with deadline and budget constraints using genetic algorithms,”
Scienti�c Programming, vol. 14, no. 3-4, pp. 217–230, 2006.

[89] C. Anderson, “e end of theory: the data deluge makes the
scienti�c method obsolete,”Wired, vol. 16, no. 7, 2008.

[90] G. Erbach, “Data-centric view in e-Science information sys-
tems,” Data Science Journal, vol. 5, pp. 219–222, 2006.

[91] Y. Gil, E. Deelman, M. Ellisman et al., “Examining the chal-
lenges of scienti�c work�ows,” Computer, vol. 40, no. 12, pp.
24–32, 2007.

[92] D. Talia and P. Trun�o, Service-Oriented Distributed Knowledge
Discovery, CRC Press, Boca Raton, Fla, USA, 2012.

[93] R. Bose and J. Frew, “Lineage retrieval for scienti�c datapro-
cessing: a survey,” ACM Computing Surveys, vol. 37, no. 1, pp.
1–28, 2005.

[94] L. Moreau, Concurrency and Computation: Practice and Experi-
ence, Special Issue on the First Provenance Challenge, 2008.

[95] C. Lin, S. Lu, X. Fei et al., “A reference architecture for Scienti�c
work�ow management systems and the VIEW SOA solution,”
IEEE Transactions on Services Computing, vol. 2, no. 1, pp.
79–92, 2009.

[96] Y. Han, A. Sheth, and C. Bussler, “A taxonomy of adaptive
work�ow management,” in Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW ’98), Seattle,
Wash, USA, 1998.

[97] T. Hey, S. Tansley, and K. Tolle, e Fourth Paradigm: Data-
Intensive Scienti�c Discovery, Microso Research, Redmond,
Wash, USA, 2009.

[98] M. Lackovic, D. Talia, R. Tolosana-Calasanz, J. A. Bañares, and
O. F. Rana, “A taxonomy for the analysis of scienti�c work-
�ow faults,” in Proceedings of the 2nd International Workshop
on Work�ow Management in Service and Cloud Computing
(WMSC ’10), in conjunction with (CSE ’10), pp. 398–403,
December 2010.

[99] L. Ramakrishnan, D. Nurmi, A. Mandal et al., “VGrADS:
enabling e-Science work�ows on grids and clouds with fault
tolerance,” in Proceedings of the ACM/IEEE International Con-
ference on High Performance Computing and Communication
(SC ’09), November 2009.

[100] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, and
F. Silva, “Failure analysis of distributed scienti�c work�ows
executing in the cloud,” in Proceedings of the 8th International
Conference on Network and Service Management (CNSM ’12),
2012.

[101] M. Kamath and K. Ramamritham, “Failure handling and
coordinated execution of concurrent work�ows,” in Proceedings
of the 14th International Conference on Data Engineering (ICDE
’98), pp. 334–341, IEEE Computer Society Washington, Febru-
ary 1998.

[102] R. Tolosana-Calasanz, M. Lackovic, O. Rana, J. Banares, and
D. Talia, “Characterizing �uality of resilience in scienti�c
work�ows,” in Proceedings of the 6th Workshop on Work�ows in
Support of Large-Scale Science, pp. 117–126, ACM, New York,
NY, USA, November 2011.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


