
The University of Manchester Research

Workflow Variability for Autonomic IoT Systems

DOI:
10.1109/ICAC.2019.00014

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Arellanes Molina, D., & Lau, K-K. (2019). Workflow Variability for Autonomic IoT Systems. In 16th IEEE
International Conference on Autonomic Computing (2019 IEEE International Conference on Autonomic Computing
(ICAC)). https://doi.org/10.1109/ICAC.2019.00014

Published in:
16th IEEE International Conference on Autonomic Computing

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:27. Aug. 2022

https://doi.org/10.1109/ICAC.2019.00014
https://www.research.manchester.ac.uk/portal/en/publications/workflow-variability-for-autonomic-iot-systems(93fa950b-9b5d-47d4-87cc-64821e488bfe).html
/portal/kung-kiu.lau.html
https://www.research.manchester.ac.uk/portal/en/publications/workflow-variability-for-autonomic-iot-systems(93fa950b-9b5d-47d4-87cc-64821e488bfe).html
https://doi.org/10.1109/ICAC.2019.00014


Workflow Variability for Autonomic IoT Systems

Damian Arellanes and Kung-Kiu Lau

School of Computer Science

The University of Manchester

Manchester M13 9PL, United Kingdom

{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract—Autonomic IoT systems require variable behaviour
at runtime to adapt to different system contexts. Building suitable
models that span both design-time and runtime is thus essential
for such systems. However, existing approaches separate the
variability model from the behavioural model, leading to syn-
chronization issues such as the need for dynamic reconfiguration
and dependency management. Some approaches define a fixed
number of behaviour variants and are therefore unsuitable for
highly variable contexts. This paper extends the semantics of
the DX-MAN service model so as to combine variability with
behaviour. The model allows the design of composite services
that define an infinite number of workflow variants which can
be chosen at runtime without any reconfiguration mechanism.
We describe the autonomic capabilities of our model by using a
case study in the domain of smart homes.

Index Terms—Internet of Things, autonomic systems, DX-
MAN, exogenous connectors, algebraic service composition, work-
flow variability, models@runtime, smart home

I. INTRODUCTION

The Internet of Things is an emerging paradigm that

envisions the interconnection of everything through novel

distributed services which are combined into complex work-

flows using service composition mechanisms. Workflows

represent IoT systems composed of billions of services with

an overwhelming number of interactions. Thus, it becomes

infeasible to manually manage such systems as the scale and

complexity increases.

Autonomicity is a crucial desideratum for the management of

complex large-scale IoT systems operating in highly dynamic

environments. It is a property that allows adapting behaviour

at runtime to different contexts with minimal or no human

intervention. Autonomicity thus requires workflow variability

for the definition of alternative system behaviours.

Although relatively trivial in static IoT systems, changing

behaviour at runtime in highly variable environments is a

complex and challenging task. For that reason, variability-

based autonomicity has been an active research topic for

software engineering in the last decade [1], [2]. Although

there are many proposals for managing variability, they fail at

incorporating variability in behavioural elements (i.e., in the

solution space) while avoiding the cumbersome time-consuming

task of dynamic reconfiguration [1], [3].

This paper extends the semantics of the DX-MAN ser-

vice model [4], [5], [6] with autonomicity capabilities for

IoT systems. The semantics allows adapting workflows at

runtime to different contexts without requiring any dynamic

reconfiguration mechanism. Our contribution is thus two-fold:

(i) a model that combines variability with behaviour in the

solution space, while providing an infinite number of workflow

variants for composite IoT services; and (ii) an approach that

avoids dynamic reconfiguration (by using non-deployable and

executable only workflows).

The rest of the paper is structured as follows. Sect. II

describes the main constructs of the DX-MAN model. Sect. III

presents the mechanism to realize workflow variability. Sect.

IV describes the autonomicity dimension of the model. Sect.

V presents a case study to show autonomicity in a case study.

Sect. VI describes the related work. Finally, Sect. VII presents

the conclusions and the future work.

II. DX-MAN MODEL

DX-MAN is an algebraic model for IoT systems where

services and exogenous connectors are first-class entities. An

exogenous connector is a deployable entity that executes

multiple workflows with explicit control flow. A service S

is a stateless distributed software unit with a well defined

interface, which can be either atomic (A) or composite (C):

S := A|C (1)

A service defines a workflow space W which is a non-empty

(finite or infinite) set, where each w ∈ W is a workflow variant

that represents an alternative service behaviour. The workflow

space constitutes the service interface, and is semantically

equivalent to a service S:

S ≡ W = {w1, w2, . . .} (2)

A. Atomic Services

An atomic service A is a tuple 〈IC,O〉 consisting of an

invocation connector IC and a non-empty finite set O of j

primitive operations (Fig. 1). It is formed by connecting an

invocation connector with a computation unit.

Sa

w1
w2

wj

W
IC =

{

{
op2

op1

opj

w1 w2 wj

Atomic 
service

Computation
Unit

Operation

Invocation 
Connector

op1 op2 opj

Waa
a

Atomic
Workflow 
Space

Workflow Space

Fig. 1. A DX-MAN atomic service defines j workflows: |W | = j.

A computation unit is not allowed to call other computation

units, and is the place where j service operations are imple-

mented using well-known technologies such as REST. To satisfy



an external request, an invocation connector is responsible for

executing a workflow in W .

Fig. 1 shows that an atomic service Sa ∈ A defines an atomic

workflow space Wa s.t. |Wa| = j and each wi∈[1,j] ∈ Wa is

a workflow invoking an operation opi∈[1,j] ∈ O. The atomic

workflow space Wa is the interface of Sa.

B. Algebraic Composition

Our notion of algebraic service composition is inspired by

algebra where functions are hierarchically composed into a

new function of the same type. The resulting function can be

further composed with other functions, yielding a more complex

one. Algebraic service composition is then the operation by

which a composition connector composes k services into a

more complex service. The result is a (hierarchical) composite

service whose interface is constructed from the sub-service

interfaces. Formally, a composite service is a tuple 〈CC,W〉
consisting of:

• a composition connector CC that invokes multiple work-

flows defined by the composite service, and

• a non-empty finite W set which is a family of non-empty

(finite of infinite) sets of sub-workflow spaces s.t. each

Wi ∈ W, i = 1, . . . , k is a workflow space of either an

atomic sub-service or a composite sub-service.

A composite service is a variation point which defines a

new non-empty (finite or infinite) workflow space W using

the sub-workflow spaces W via algebraic references (Fig. 2).

W serves as the composite service interface, and is available

to more complex composites.

Composition
Connector

Composite
Service

Algebraic
Reference

Invocation 
Connector

Atomic 
service

Computation
Unit

Composite
Workflow
Space

Atomic
Workflow 
Space

Operation

WwaICwa =

{

wclothes
wdishes

{

washClothes
washDishes

Oven

WovICov =
{wcook{

cookMeals

Offers Offers

Wwa

Wov

Smart
Home PARhome Offers

Wrobot

WashingServ

Whome

WrtICrt =

{

wright
wleft

{

right

left

FrontWheel

WwhICwh =
{wgo{

go

Spin
Composite

Offers Offers

Offers
Wspin

Wrt

Wwh
Wspin

Available

Vacuum
Robot SEQrobot Offers

Wrobot

RotatingServ

Available (W     ) home

(W     ) robot

Fig. 2. Algebraic Composition for a Smart Home.

Fig. 2 depicts a two-level DX-MAN composition for a smart

home with four atomic services (i.e., WashingServ, Oven, Ro-

tatingServ and FrontWheel) and three composite services (i.e.,

SpinComposite, VacuumRobot and SmartHome). The services

are described in Sect. III. For the sake of clarity, we omit the

internal structure of SpinComposite, but we show its interface:

the composite workflow space Wspin. The interfaces of Wash-

ingServ, Oven, RotatingServ and FrontWheel are the atomic

workflow spaces Wwa = {wclothes, wdishes}, Wov = {wcook},

Wrt = {wright, wleft} and Wwh = {wgo}, respectively. The

services RotatingServ, FrontWheel and SpinComposite are

composed into VacuumRobot (using the composition connector

SEQrobot, see Fig. 3). Thus, the interfaces Wrt, Wwh and

Wspin are available in VacuumRobot which, in turn, defines the

composite workflow space Wrobot. Then, WashingServ, Oven

and VacuumRobot are composed into the top-level composite

SmartHome (using the composition connector PARhome, see

Fig. 6). So, SmartHome has available the interfaces Wwa, Wov

and Wrobot, and yields the composite workflow space Whome.

C. Workflow Selection

A composition connector CC is a variability operator that

defines the alternative behaviours of a composite service. It is

a function that defines a workflow space W , given a family of

sub-workflow spaces W:

CC : W 7→ W (3)

A composition connector has access to atomic sub-workflow

spaces, but not to composite sub-workflow spaces. This is

because a composite sub-service is a black box whose behaviour

is unknown. Hence, a composition connector operates on n

elements to define sequential, branching or parallel workflows

for a composite c ∈ C. The total number of elements n is the

sum of the cardinality of atomic sub-workflow spaces and the

number of composite sub-services:

n =

|Wc|
∑

i=1

{

|W i
c | sic ∈ A

1 sic ∈ C
(4)

where Wc ∈ W is the set of sub-workflow spaces of the

composite c, n ≥ |Wc| and W i
c ∈ Wc is the workflow space

of a sub-service Si
c.

At design-time, an abstract workflow tree is automatically

created for a composite service, as a result of composition. It

represents the hierarchical control flow structure of a composite

service, where n leaves are atomic workflows, composite

workflow spaces or any combination thereof (e.g., Fig. 3).

The leaves are also referred to as the elements of a workflow

tree. The edges represent customizable control flow parameters

(e.g., execution order or conditions) which are determined

by the composition connector being used. In our current

implementation, abstract workflow trees are JSON objects.

A concrete workflow tree enables the selection of a workflow

variant at runtime. It particularly sets specific values for the

customizable control flow parameters of an abstract workflow

tree, in order to select the elements (i.e., atomic workflows

or composite workflow spaces) to include in a workflow out

of n possibilities (e.g., Fig. 4). In our current implementation,

concrete workflow trees are also JSON objects.

III. COMPOSITION CONNECTORS AS VARIABILITY

OPERATORS

This section describes some of the composition connectors

currently supported by DX-MAN, namely sequencer, paral-

lelizer and exclusive selector. Although the inclusive selector is

also supported, we do not describe it due to space constraints.



A. Sequencer

A sequencer connector SEQ uses the Kleene star operation

to allow the repetition of n elements, resulting in infinite

sequences. It then defines an infinite workflow space for

a composite service s.t. each wi ∈ W, i = 1, . . . ,∞ is a

sequential workflow. A sequencer is a function defined as:

SEQ : W 7→ W (5)

where |W | = ∞.

1) Example: Consider a vacuum robot that cleans a room

in a smart home using a composite service VacuumRobot. It

relies on two atomic services and one composite service to

navigate efficiently, as shown by Fig. 3. The atomic service

RotatingServ provides two operations for turning the robot to

the left and right, respectively. The atomic service FrontWheel

offers the operation go to move the robot one unit forward.

There is also a SpinComposite service that enables the robot to

spin 360◦, in order to clean the dirtiest areas of the room. For

clarity, we do not show the internal structure of SpinComposite.

Atomic 
service

Computation
Unit

Composite
Service

Algebraic
Reference

Invocation 
Connector

Atomic
Workflow
Space

Operation

Composite
Workflow 
Space

Sequencer
Connector

WrtICrt =

{

wright
wleft

{

right

left

FrontWheel

WwhICwh =
{wgo{

go

Spin
Composite

Offers Offers

Offers

Wspin

Wrt

Wwh
Wspin

Available

Vacuum
Robot SEQrobot Offers

Wrobot

RotatingServ

wrobot1 wrobot4wrobot3wrobot2 wrobot5

Wrobot

Wspin

Wspin

Wspin

C
o
m

p
o
s
it

e
 s

e
rv

ic
e

W
o
rk
flo

w
 S

p
a
c
e

wright

wgo

wleft

wright wleft

wleft

wgo wleft wleft

wgo

A
b
s
tr

a
c
t 

W
o
rk
flo

w
T
re

e

wright wleft wgo
[orderList] [orderList] [orderList] [orderList]

Wspin

SEQrobot

(W     ) robot

Fig. 3. A sequencer defines ∞ workflows for a composite service: |W | = ∞.
In this example, there are ∞ sequential workflows for Vacuum Robot.

The sequencer connector SEQrobot composes the services

RotatingService, FrontWheel and SpinComposite into Vacuum-

Robot, resulting in the infinite workflow space Wrobot. Fig.

3 illustrates a few workflow variants for VacuumRobot. For

instance, the variant wrobot4 indicates that the atomic workflow

wleft is executed before the composite workflow space Wspin

which, in turn, is executed before the atomic workflow wgo.

Note that Wspin cannot be accessed by the VacuumRobot since

the SpinComposite sub-service is a black box entity which can

take any possible behaviour. Instead, only atomic workflow

spaces (i.e., Wrt and Wwh) can be accessed.

2) Workflow Selection: An abstract workflow tree of a

sequencer requires the specification of the execution order

for n elements. An execution order is a non-negative integer

that reflects the position of an element in a workflow. As a

sequencer allows repetition, an element requires an order list

[order1, order2, . . .], as shown by Figs. 4 and 5. Elements with

no order lists are not included in a workflow and, to ensure

consistent sequences, an order cannot appear in multiple lists.

Fig. 4 shows an example of a concrete workflow tree for

choosing the sequential workflow wrobot3 for the composite

VacuumRobot. The element wright is left out as it does not

have any order list. Fig. 5 illustrates another example for

the selection of the sequential workflow wrobot1 which now

excludes the composite workflow space Wspin.

=
[1,3]

wright wleft wgo Wspin

SEQrobot

[0] [2]

wleft

wleft

wgo [0]

[1]

[2]

[3]

Wspin

Fig. 4. Concrete workflow tree for choosing the sequential workflow wrobot3

for the V acuumRobot composite.

=
SEQrobot

wright wleft wgo
[2] [1][0]

[0]

[1]

[2]

wright

wgo

wleft
Wspin

Fig. 5. Concrete workflow tree for choosing the sequential workflow wrobot1

for the V acuumRobot composite.

B. Parallelizer

A parallelizer connector PAR allows the execution of

multiple elements in parallel. As it supports element repetition,

it defines ∞ parallel workflows for a composite service s.t. each

wi ∈ W, i = 1, . . . ,∞ is a workflow executing all the elements

in parallel. Formally, a parallelizer is a function defined as:

PAR : W 7→ W (6)

where |W | = ∞.

1) Example: Consider the composition depicted in Fig. 6

where SmartHome is the top-level composite which is able to do

the chores for a user. The atomic service WashingServ provides

the operations washClothes and washDishes for washing clothes

and washing dishes, respectively. The atomic service Oven

offers the operation cookMeals for cooking breakfast, lunch and

dinner in a specific day. The composite service VacuumRobot,

previously presented in Fig. 3, is also available for the smart

home. For clarity concerns, we omit the internal structure of

VacuumRobot and we only show the respective interface.

A parallelizer connector PARhome composes WashingServ,

Oven and VacuumRobot into SmartHome, resulting in the



workflow space Whome of infinite parallel workflows. Some

workflow variants are displayed in Fig. 6. For instance, the

variant whome2 executes the atomic workflows wclothes and

wcook in parallel. whome4 is another variant that leverages the

support for repetition so as to execute the atomic workflow

wcook in three different tasks. This is useful for cooking three

meals for three different people simultaneously.

A
b
s
tr

a
c
t 

W
o
rk
flo

w
T
re

e

wclothes wdishes wcook Wrobot

PARhome

|tasks#| |tasks#| |tasks#| |tasks#|

Whome

Algebraic
Reference

Atomic 
service
Computation
Unit

Composite
Service
Invocation 
Connector

Atomic
Workflow 
Space

Operation

Composite
Workflow 
Space

Parallelizer

W
o
rk
flo

w
 S

p
a
c
e

whome1

wclothes wdishes wcook Wrobot

ff ff

ff

ff
v
ic

e

=wclothes wdishes wcook Wrobot

PARhome

|1| |1| |3|

wcook wclothes w

Fig. 7. Concrete workflow tree for choosing the parallel workflow whome5

for the SmartHome composite.

=wclothes wdishes wcook Wrobot

PARhome

|1| |1|

wclothes

Fig. 8. Concrete workflow tree for choosing the parallel workflow whome3

for the SmartHome composite.

Each workflow wi ∈ W, i = 1, . . . , (2n − 1) contains at least

one element out of n possibilities, and chooses a single element

to be executed. An exclusive selector is a function defined as:

XSEL : W 7→ W (7)

where |W | = 2n − 1.

1) Example: Consider a speaker controlled by a composite

service Player for playing audio in a room. It has an atomic

service Music that provides two operations for playing Jazz

and playing pop music, respectively. There is also an atomic

service News for reading the most recent news, and a composite

service WeatherReport for listening to the weather forecast.

For clarity, we omit the internal structure of WeatherReport.

Fig. 9 shows that the exclusive selector XSELplay composes

the services Music, News and WeatherReport into Player. The

composition process results in the workflow space Wplay of

24 − 1 = 15 exclusive branching workflows, as there are four

elements available: the atomic workflows wjazz , wpop and

wnews, and the composite workflow space Wweather. Fig. 9

illustrates some workflow variants for the composite Player.

For instance, the workflow wplay15 may execute wjazz , wpop

or Wweather. Another variant is wplay6 which chooses to play

either jazz or pop.

2) Workflow Selection: The abstract workflow tree of an

exclusive selector chooses the elements to include in a workflow

out of n possibilities. To do so, a binary tag must be specified

for each element, so elements tagged with One are included,

whilst elements tagged with Zero are not included. A single

condition must be specified for the entire branch because an

exclusive selector applies 1 condition to multiple elements,

thereby choosing only one element at a time. Thus, the

maximum number of possible executions is the same number

of elements included in the workflow, plus an empty execution.

The empty execution means that no element is executed

when the condition holds false at runtime. In our current

implementation, we use Java interfaces for defining conditions.

Fig. 10 shows a concrete workflow tree for choosing the

variant wplay15 which excludes the atomic workflow wnews.

It applies a single condition to wjazz , wpop and Wweather for



Algebraic
Reference

Atomic 
service

Computation
Unit

Composite
Service

Invocation 
Connector

Atomic
Workflow 
Space

Operation

Composite
Workflow 
Space

WmuICmu =

{

wjazz,
wpop

{

playJazz
playPop

News

WneICne =

readNews

WeatherReport

Offers Offers

Offers

Wmu

Wne

Available

Player

XSELplay Offers

Music

C
o
m

p
o
s
it

e
 s

e
rv

ic
e

Wplay

Wweather

A
b
s
tr

a
c
t 

W
o
rk
flo

w
T
re

e

wplay1

wplay5

wplay2

wplay6

Wplay

W
o
rk
flo

w
 S

p
a
c
e

wnews wpop wnews

wnews wjazz wpop wjazz wpop

wpop wnews wpop

wplay3 wplay4

wplay15

{wnews{

Exclusive
Selector

Wweather

Wweather

Wweather

Wweather

Wweather

wjazz wpop wnews

XSELplay

Wweather

condition

~0/1~ ~0/1~ ~0/1~ ~0/1~

(W    ) play

Fig. 9.
service:
branching

ff



As every composite service is managed by a different MAPE-

K loop, any composite at any level in the hierarchy is able to

change its behaviour at runtime independently. This inevitably

requires ensuring consistency for the current workflow execu-

tion. Fortunately, dynamic workflow deployment is not required

since DX-MAN workflows are executable only. Whenever a

new workflow is required, the effector kills the thread of the

current workflow execution, thereby instantly stopping the sub-

workflows being executed by the managed composite. A new

thread is then created for the execution of the new workflow.

Workflow selection may potentially happen simultaneously at

multiple levels in the hierarchy. So, continuously changing sub-

workflows leads to an emergent behaviour of the whole system.

MAPE-K loops are continuously operating, even though control

flow has not yet reached the managed composition connector.

However, they can only change the composite service behaviour,

by executing a concrete workflow tree, when control flow has

passed through or is blocked in the managed connector.

A running IoT system is practically a complex workflow

consisting of sub-workflows s.t. each sub-workflow represents

a composite service behaviour. This is precisely due to the

hierarchical structure of a DX-MAN composition. By contrast,

MAPE-K loops are not structured hierarchically as they

never interact. Instead, they only select a workflow for the

managed composite service (at any level in the hierarchy)

and they execute new workflows (when control is blocked in

the managed composition connector) or replace an existing

workflow with a “better one” (when control has already passed

through).

V. CASE STUDY: SMART HOME

This section presents a case study in the domain of end-user

smart homes where the external context (e.g., user presence)

is always changing and users are always willing a quick

workflow selection. So, existing approaches for variability-

based autonomicity (see Sec. VI) are not suitable for smart

homes. This is because those approaches require time for

changing behaviour due to dynamic reconfiguration and/or

provide a limited number of variants which may not be suitable

for some contexts. We leverage the capabilities of DX-MAN

to avoid dynamic reconfiguration and provide a wide range of

workflow variants. The DX-MAN composition for our case

study is basically the composite service SmartHome described

in Sect. II and depicted in Fig. 2. Although we endow every

composite service with its own MAPE-K loop, this section just

focuses on the autonomicity of VacuumRobot and SmartHome.

A. Autonomic Vacuum Robot Composite

The goal of the VacuumRobot composite (Fig. 3) is to clean

a room as efficiently as possible by continuously changing

the robot trajectory. As it operates on a dynamic environment

where people is always moving, the robot changes trajectory

whenever an obstacle is detected. For that, a MAPE-K loop

chooses the most efficient trajectory (i.e., the best sequential

workflow) that cleans every accessible areas of the room while

avoiding collisions.

The MAPE-K is equipped with three range sensors that

perceive the external environment of the vacuum robot. The

infrared proximity sensor is used for detecting obstacles while

the robot moves around. A cliff sensor is important to avoid

driving over cliffs (e.g., stairwells or ledges) and a dirt sensor

detects the dirtiness level on the current position of the robot.

The MAPE-K knowledge contains information about the

surrounding map, in addition to the abstract workflow selection

tree of VacuumRobot. The map contains information about

obstacles and dirtiness levels in the room which are updated

by the monitor to improve future navigation, and is queried

when a new trajectory is required. We assume that the dirtiness

levels are determined by any existing approach (e.g., Poisson

processes [8]). We also assume that the map is bidimensional

where each position is a disk shape fitting the robot size, as

shown in [9]. In particular, a disk can be either an obstacle or

a free space with a (high or normal) dirtiness level.

[1,4]
wright wleft wgo Wspin

SEQrobot

[0,2,5] [3]

wleft

wgo

wgo

Wspin

wgo

Context Concrete Workflow Tree

[2,4]
wright wleft wgo Wspin

SEQrobot

[1,3,5]

wgo

wleft

wright

wleft

Behaviour

wgo

wgo

[0]

Sequencer
Connector

Free Space 
(with Avg. 
Dirtiness)

Obstacle
Free Space
(with High
Dirtiness)

Vacuum 
Robot(Going 
Down)

wleft



shows two possible behaviours for the VacuumRobot composite

in two different contexts. Due to space constraints, the contexts

are fragments of the map presented in [9].

B. Autonomic Manager for the Smart Home Composite

The SmartHome composite does chores in parallel for a

user, while minimizing energy consumption and maximizing

tidiness. Its behaviour changes once a day and depends on

user preferences, changes in the external environment, and non-

functional properties of SmartHome elements. Table I shows

the annotated non-functional properties for wclothes, wdishes,

wcook and Wrobot. The userPresence property takes a binary

value to indicate whether the element should be executed when

the user is at home (i.e., One) or away (i.e., Zero). The energy

property defines the average discrete amount of energy (in Watts

per hour) required for the execution of an element. The tidiness

property determines the discrete level of tidiness resulting from

the execution of a specific element. The sum of all tidiness

values must be equal to One. It is also important to note that

the non-functional properties we assume can be much more

complex in other case studies.

Element UserPresence(u) Energy(e) Tidiness(t)

wclothes 0 500.0 0.25

wdishes 0 350.0 0.25

wcook 1 1300.0 0.10

Wrobot 0 150.0 0.40

TABLE I
NON-FUNCTIONAL PROPERTIES FOR THE ELEMENTS OF SmartHome.

The userPresence values depend on user-defined rules which

indicate to hoover and wash when the user is away, in order

to avoid accidents and noise disturbances. Thus, only wcook

has a userpresence of 1.

A workflow variant wi ∈ Whome includes v elements s.t.

v ≤ n, and its properties are computed using Equations 8,

9 and 10. The userPresence u(wi) is an average s.t. each

ux
i , x = 1, . . . , v is the userPresence value of an element

x of wi. The energy consumption e(wi) is a sum s.t. each

exi , x = 1, . . . , v is the energy consumption of an element

x of wi. Similarly, the level of tidiness t(wi) is a sum s.t.

each txi , x = 1, . . . , v is the tidiness value of an element x of

wi. Thus, the workflow variant wi with all the elements of

SmartHome (i.e., v = n), provides the highest tidiness and the

highest energy consumption.

u(wi) =

v
∑

x=1
ux
i

v
(8)

e(wi) =

v
∑

x=1

exi (9)

t(wi) =

v
∑

x=1

txi (10)

The external context φ changes daily and is modeled by

setting the user presence u(φ), the current energy cost c(φ)

(in dollars per Watt-hour) and a threshold τ(φ) which defines

the maximum amount (in dollars) the user is willing to spend

for energy (in a given day). We particularly define utility

functions to express the quantitative level of satisfaction of

workflow variants for the current context [11]. Overall, the

objective is to minimize energy cost and maximize tidiness.

The utility functions range from [0,1] where 0 reflects the

worst satisfability and 1 means the opposite.

Equation 11 is the utility function f1 that computes the

suitability of a workflow variant wi ∈ Whome for the user

presence. Equation 11 describes a piecewise utility function f2
that determines how well wi minimizes energy costs. Finally,

Equation 13 is the utility function f3 that computes the

contribution to tidiness of wi.

f1(wi, φ) = 1− | u(φ)− u(wi) | (11)

f2(wi, φ) =

{

1− e(wi)·c(φ)
τ(φ) e(wi) · c(φ) < τ(φ)

0 e(wi) · c(φ) ≥ τ(φ)

(12)

f3(wi) = t(wi) (13)

Equation 14 computes the overall utility U(wi, φ) of a

workflow variant wi ∈ Whome for the current context φ.

The weights ω1, ω2 and ω3 define the preference of taking

into account user presence, the priority of considering the

energy cost and the preference of having a tidy environment,

respectively. They are continuous values in the range [0, 1] s.t. a

higher value indicates a higher preference. For our experiments,

ω1 = ω2 = ω3 = 1.

U(wi, φ) =
ω1 · f1(wi, φ) + ω2 · f2(wi, φ) + ω3 · f3(wi)

ω1 + ω2 + ω3
(14)

The behaviour of the SmartHome composite is controlled by

a MAPE-K loop which has three sensors collecting information

from the external context φ, namely user presence, current

energy costs (from the energy supplier) and a threshold value

(continuously changed by the user). In addition to the abstract

workflow tree of SmartHome, the knowledge base includes the

aforementioned utility functions, as well as context values and

selected workflows from previous days. It also contains the

values of the non-functional properties presented in Table I.

The monitor is executed once a day, and builds a relationship

between context properties and sensor values. Some examples

of context models are presented in Table II. The analyzer

receives a context model as an event, and triggers an Event-

Condition-Action (ECA) rule. The rule decides a new plan is

required if the current context values are different from the

previous day; otherwise, it executes the plan from the previous

day and no planning phase is performed.

As the size of Whome is infinite (Fig. 6), evaluating all

workflow variants is infeasible. For that reason, we propose

a planner using a metaheuristic approach which finds the

most suitable workflow for a specific context. For clarity, we

reduce the space search by omitting element repetition for every

wi ∈ Whome. So, elements of selected workflow variants have



Day ( ) UserPresence(u ) EnergyCost(e ) Threshold(τ )

0 0.00014 0.2

1 0.00007 0.6

1 0.00012 0.3

0 0.00013 0.5

ϕ ϕ
1

2

3

4

ϕϕ

TABLE II
POSSIBLE CONTEXT MODELS.

only one task. As SmartHome has four elements (i.e., wclothes,

wdishes, wcook and Wrobot), there would be 24 − 1 = 15
workflow variants in Whome. Although |Whome| is relatively

small, we use a genetic algorithm to show what a planner

would do for larger workflow spaces.

A chromosome represents a workflow variant with four

boolean genes.1 Fig. 14 shows that the order of genes is manda-

tory as each gene represents an element of the SmartHome

composite, where a gene Zero means that the element is

not selected, whilst a gene One entails that the element has

one task. For instance, the chromosome 0101 represents a

workflow variant for executing wdishes and Wrobot in parallel.

A population is thus a set of workflow variants representing

possible solutions for the current context φ. Each variant is

evaluated by the utility function presented in Equation 14.

wclothes wdishes wcook Wrobot

PARhome

|1|

0 1 0 1

|1|

Day ( ) Concrete Workflow Tree

1

2

ϕ Chromosome Behaviour

1 1 1 1

wdishes

A. Solution Space Variability

The solution space captures variability at the

composition constructs of either component models or

languages. In particular, components models define

points using parametric variability or enumerative

ity. Approaches using parametric variability [14], [

manually define a fixed number of behaviour variants

implementation-level during design-time. Hence, there

one workflow with multiple branching structures. Furthermore,

dynamic reconfiguration is needed to change the composition

structure at runtime.

Only FX-MAN [17] enumerates all possible variants

solution space at design-time. However, it does not

service composition, requires variation generators on

compositions, and does not addresses variability of control

(i.e., workflow variability) and workflow selection at

Approaches extending Process Modeling Languages

the definition of control flow constructs (e.g., acti

gateways) as variation points whose variants are realized

model transformations [2]. Most of the approaches [



architecture matches the selected features. So, SPL naturally

lacks mechanisms for changing behaviour at runtime.

Dynamic Software Product Lines (DSPL) [27] change

behaviour at runtime whenever the context changes, by using

models@runtime [28] to causally connect a variability model

(typically a feature model [29] or an orthogonal variability

model [30]) with a behavioural model (typically architectural

units). To change behaviour, they bind variation points at

runtime by selecting (i.e., activating or deactivating) features

that best adapt to the current context. Thus, a set of features

represents a behaviour variant, which is transformed into a

software architecture using a transformation mechanism [29],

[31]. Undoubtedly, such a mechanism increases the overhead

for changing behaviour at runtime. Furthermore, DSPL requires

dynamic reconfiguration of the running composition, as they

also separate variability from behaviour.

Dynamic reconfiguration includes code substitution (e.g.,

parametrization or pre-processor directives) [32], [33], dy-

namic aspect weaving [34], [29], [35], [36], [1], [36], en-

abling/disabling services and connectors [37], [3], and compo-

nent substitution [38], [39].

C. Discussion

Parametric variability is only suitable when all variants can

be defined and implemented in advance. However, IoT systems

require plenty of different alternative behaviours for adapting

to the ever changing context, even though they operate under

closed environments. For that reason, parametric variability is

inconvenient for highly dynamic IoT environments.

Remarkably, DX-MAN does not require the manual defi-

nition of alternative behaviours since an infinite number of

workflow variants simultaneously exist at the conceptual level

of a composite service. As it is infeasible to implement

and deploy infinite workflow variants, workflows are non-

deployable and executable only. Exogenous connectors are

the actual deployable entities (cf., [4]) which coordinate the

execution of multiple workflow variants. Thus, our approach

does not operate on a single flat workflow, but on a multi-level

composite where there is a workflow space (with multiple

workflows) at every level of the hierarchy.

Constraints are important to filter out the workflows that

a designer considers invalid under a closed environment.

Hence, DX-MAN supports the definition of constraints in

a similar fashion to feature models, with the difference that

constraints are directly applicable to system’s behaviour. DX-

MAN currently supports topological sorting (for sequencers)

and logical constraints (for parallelizers). We do not explain

them due to space constraints.

Models@runtime separate variability and behaviour to

allow an independent reasoning of these concerns. However,

as scale increases and dependencies become overwhelming,

the relationship between features and architectural artefacts

becomes unmanageable. Hence, models@runtime face several

problems when coping with dependencies. Moreover, the

separation between variability and behavior requires dynamic

reconfiguration to maintain a causal relationship between both

dimensions. Dynamic reconfiguration is undesirable for highly

dynamic IoT environments, since it takes time to decide the

actions to be done, performing those actions, ensuring state

consistency, checking safeness and redeploying the running

composition. Remarkably, DX-MAN does not require any

means to connect variability with behaviour as those dimensions

are mixed in the definition of composite services, thereby

avoiding the need of dynamic reconfiguration.

We previously presented a preliminary version of DX-

MAN (cf. [5]). In this paper we described new semantics

for supporting variability using workflow spaces. We also

presented detailed examples to explain autonomicity, and a new

composition connector called exclusive selector. Furthermore,

we extended DX-MAN with capabilities for changing behaviour

at runtime using MAPE-K loops.

A MAPE-K loop controls the behaviour of a composite

service and is defined according to the expected goal of the

managed composite. We particularly focus on the executor

component which do not perform dynamic reconfiguration, but

only execute a concrete workflow tree (i.e., a workflow variant)

for adapting to different contexts.

Although our examples show autonomicity only in the

context of IoT, DX-MAN can be used for other domains such

as robotics, unmanned space or e-commerce. It is important

to mention that we emphasize on the semantics of our

model, rather than focusing on a particular implementation.

Nevertheless, an implementation of DX-MAN is available at

https://gitlab.cs.man.ac.uk/mbaxrda2/dxman.

VII. CONCLUSIONS AND FUTURE WORK

This paper extended the semantics of the DX-MAN model

by mixing variability with behaviour in composite services. In

particular, composition connectors are variability operators that

define composite workflow spaces containing an infinite number

of workflow variants which represent alternative composite

service behaviours. Thus, composite services define an infinite

number of Turing machines at once in the design phase.

A MAPE-K manages a composite service behaviour and

selects the workflow variant that best adapts to the current

context. As workflows are non-deployable and executable

only, the executor changes a composite service behaviour

by executing the selected variant instead of dynamically

reconfiguring the whole workflow. The variant is a concrete

workflow tree built at runtime from an abstract workflow tree

(defined at design-time). Composition connectors are the actual

deployable entities which coordinate the execution of multiple

workflows, thereby reusing the same deployment configuration

for multiple executions.

We demonstrated the autonomic capabilities of DX-MAN

using a case study in the domain of smart homes. Our results

indicate that DX-MAN is a promising model for autonomic

IoT systems. Nevertheless, there are some open issues.

DX-MAN currently enables control flow variability, making

it suitable for actuating operations that do not require any

data, e.g., switching the lights on. We plan to investigate novel



ways of incorporating data flow variability by leveraging the

separation of autonomicity, control, data and computation.

DX-MAN is suitable for closed environments only where

the designer understands the context in which the system

is deployed. We are currently investigating novel ways to

dynamically evolve a DX-MAN composition, so as to enable

the emergence of new workflow spaces at runtime. Evolution

is indeed another important characteristic of autonomic IoT

systems, in addition to workflow variability.

REFERENCES

[1] G. H. Alférez and V. Pelechano, “Achieving autonomic Web service com-
positions with models at runtime,” Computers & Electrical Engineering,
vol. 63, pp. 332–352, Oct. 2017.

[2] M. L. Rosa et al., “Business Process Variability Modeling: A Survey,”
ACM Comput. Surv., vol. 50, no. 1, pp. 2:1–2:45, Mar. 2017.

[3] H. Gomaa and M. Hussein, “Dynamic Software Reconfiguration in
Software Product Families,” in Software Product-Family Engineering, ser.
Lecture Notes in Computer Science, F. J. van der Linden, Ed. Springer
Berlin Heidelberg, 2004, pp. 435–444.

[4] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in IEEE SOCA, 2017, pp. 125–132.

[5] D. Arellanes and K.-K. Lau, “Algebraic Service Composition for User-
Centric IoT Applications,” in ICIOT 2018, ser. Lect. Notes Comp. Sci.
Springer Int. Pub., 2018, pp. 56–69.

[6] D. Arellanes and K.-K. Lau, “D-XMAN: A Platform For Total Compo-
sitionality in Service-Oriented Architectures,” in IEEE SC2, 2017, pp.
283–286.

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[8] J. Hess et al., “Poisson-driven dirt maps for efficient robot cleaning,” in
2013 IEEE International Conference on Robotics and Automation, May
2013, pp. 2245–2250.

[9] M. A. Yakoubi and M. T. Laskri, “The path planning of cleaner robot
for coverage region using Genetic Algorithms,” Journal of Innovation in

Digital Ecosystems, vol. 3, no. 1, pp. 37–43, Jun. 2016.

[10] B. Dugarjav et al., “Scan matching online cell decomposition for coverage
path planning in an unknown environment,” Int. J. Precis. Eng. Manuf.,
vol. 14, no. 9, pp. 1551–1558, Sep. 2013.

[11] K. Kakousis et al., “Optimizing the Utility Function-Based Self-adaptive
Behavior of Context-Aware Systems Using User Feedback,” in On the

Move to Meaningful Internet Systems: OTM 2008, ser. Lecture Notes
in Computer Science, R. Meersman and Z. Tari, Eds. Springer Berlin
Heidelberg, 2008, pp. 657–674.

[12] R. R. Filho and B. Porter, “Defining Emergent Software Using Continuous
Self-Assembly, Perception, and Learning,” ACM Trans. Auton. Adapt.

Syst., vol. 12, no. 3, pp. 16:1–16:25, Sep. 2017.

[13] E. Bruneton et al., “The FRACTAL component model and its support
in Java,” Software: Practice and Experience, vol. 36, no. 11-12, pp.
1257–1284, 2006.

[14] A. Haber et al., “Hierarchical Variability Modeling for Software Archi-
tectures,” in 2011 15th International Software Product Line Conference,
Aug. 2011, pp. 150–159.

[15] R. v. Ommering et al., “The Koala component model for consumer
electronics software,” Computer, vol. 33, no. 3, pp. 78–85, Mar. 2000.

[16] E. M. Dashofy et al., “A Comprehensive Approach for the Development
of Modular Software Architecture Description Languages,” ACM Trans.

Softw. Eng. Methodol., vol. 14, no. 2, pp. 199–245, Apr. 2005.

[17] C. Qian and K. Lau, “Enumerative Variability in Software Product
Families,” in 2017 International Conference on Computational Science

and Computational Intelligence (CSCI), Dec. 2017, pp. 957–962.

[18] M. La Rosa et al., “Configurable multi-perspective business process
models,” Information Systems, vol. 36, no. 2, pp. 313–340, Apr. 2011.

[19] I. Reinhartz-Berger et al., “Extending the Adaptability of Reference
Models,” IEEE Transactions on Systems, Man, and Cybernetics - Part

A: Systems and Humans, vol. 40, no. 5, pp. 1045–1056, Sep. 2010.

[20] A. Hallerbach et al., “Capturing Variability in Business Process Models:
The Provop Approach,” J. Softw. Maint. Evol., vol. 22, no. 6-7, pp.
519–546, Oct. 2010.

[21] K. Czarnecki and M. Antkiewicz, “Mapping Features to Models: A
Template Approach Based on Superimposed Variants,” in Generative

Programming and Component Engineering, ser. Lecture Notes in
Computer Science, R. Glück and M. Lowry, Eds. Springer Berlin
Heidelberg, 2005, pp. 422–437.

[22] F. Gottschalk et al., “Configurable workflow models,” Int. J. Coop. Info.

Syst., vol. 17, no. 02, pp. 177–221, Jun. 2008.
[23] A. Kumar and W. Yao, “Design and management of flexible process

variants using templates and rules,” Computers in Industry, vol. 63, no. 2,
pp. 112–130, Feb. 2012.

[24] R. Cognini et al., “Business process flexibility - a systematic literature
review with a software systems perspective,” Inf Syst Front, vol. 20,
no. 2, pp. 343–371, Apr. 2018.

[25] M. Koning et al., “VxBPEL: Supporting variability for Web services
in BPEL,” Information and Software Technology, vol. 51, no. 2, pp.
258–269, Feb. 2009.

[26] K. C. Kang and a. P. Donohoe, “Feature-oriented product line engineering,”
IEEE Software, vol. 19, no. 4, pp. 58–65, Jul. 2002.

[27] S. Hallsteinsen et al., “Dynamic Software Product Lines,” Computer,
vol. 41, no. 4, pp. 93–95, Apr. 2008.

[28] G. Blair et al., “Models@ run.time,” Computer, vol. 42, no. 10, pp.
22–27, Oct. 2009.

[29] B. Morin et al., “Models@ Run.time to Support Dynamic Adaptation,”
Computer, vol. 42, no. 10, pp. 44–51, Oct. 2009.

[30] N. Bencomo et al., “Genie: Supporting the Model Driven Development
of Reflective, Component-based Adaptive Systems,” in Proceedings of

the 30th International Conference on Software Engineering, ser. ICSE
’08. New York, NY, USA: ACM, 2008, pp. 811–814, event-place:
Leipzig, Germany.

[31] I. Schaefer et al., “Delta-Oriented Programming of Software Product
Lines,” in Software Product Lines: Going Beyond, ser. Lecture Notes in
Computer Science, J. Bosch and J. Lee, Eds. Springer Berlin Heidelberg,
2010, pp. 77–91.

[32] B. Morin et al., “Taming Dynamically Adaptive Systems using models
and aspects,” in 2009 IEEE 31st International Conference on Software

Engineering, May 2009, pp. 122–132.
[33] C. Parra et al., “Context Awareness for Dynamic Service-oriented Product

Lines,” in Proceedings of the 13th International Software Product Line

Conference, ser. SPLC ’09. Pittsburgh, PA, USA: Carnegie Mellon
University, 2009, pp. 131–140, event-place: San Francisco, California,
USA.

[34] G. H. Alférez et al., “Dynamic adaptation of service compositions with
variability models,” Journal of Systems and Software, vol. 91, pp. 24–47,
May 2014.

[35] L. Baresi et al., “Service-Oriented Dynamic Software Product Lines,”
Computer, vol. 45, no. 10, pp. 42–48, Oct. 2012.

[36] F. Fleurey et al., “A Generic Approach for Automatic Model Composi-
tion,” in Models in Software Engineering, ser. Lecture Notes in Computer
Science, H. Giese, Ed. Springer Berlin Heidelberg, 2008, pp. 7–15.

[37] C. Cetina et al., “Autonomic Computing through Reuse of Variability
Models at Runtime: The Case of Smart Homes,” Computer, vol. 42,
no. 10, pp. 37–43, Oct. 2009.

[38] J. Floch et al., “Using architecture models for runtime adaptability,” IEEE

Software, vol. 23, no. 2, pp. 62–70, Mar. 2006.
[39] J. White et al., “Creating self-healing service compositions with feature

models and microrebooting,” International Journal of Business Process

Integration and Management, vol. 4, no. 1, p. 35, 2009.


