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Matching highly skilled people to available positions is a
high-stakes task that requires careful consideration by experienced
resource managers. A wrong decision may result in significant
loss of value due to understaffing, underqualification or
overqualification of assigned personnel, and high turnover of poorly
matched workers. While the importance of quality matching is
clear, dealing with pools of hundreds of jobs and resources in a
dynamic market generates a significant amount of pressure to
make decisions rapidly. We present a novel solution designed to
bridge the gap between the need for high-quality matches and
the need for timeliness. By applying constraint programming, a
subfield of artificial intelligence, we are able to deal successfully
with the complex constraints encountered in the field and reach
near-optimal assignments that take into account all resources
and positions in the pool. The considerations include constraints
on job role, skill level, geographical location, language, potential
retraining, and many more. Constraints are applied at both the
individual and team levels. This paper introduces the technology
and then describes its use by IBM Global Services, where large
numbers of service and consulting employees are considered when
forming teams assigned to customer projects.

Introduction

Employees are the most important asset of any

technology-based company. This statement is not a mere

slogan, but a genuine business reality that requires careful

consideration at all management levels in the company.

While this reality has been recognized for a long time, only

recently have rigorous processes, backed by automation,

become central in reaching workforce-related decisions.

One of the main reasons for this is the fact that

professional workers, being humans, are complex entities.

They each have individual skills, interests, expectations,

and limitations. They may live in a particular area, have

family-related constraints, prefer working solo, or

function best as team players. They may be more or

less susceptible to pressure, easy or difficult to retrain,

and motivated by completely diverse factors. Most

significantly, it is perceived that human professionals

cannot possibly be described as a mere set of attributes, no

matter how large the set. For example, most resumes—

formal documents designed to best describe the aspects of

people relevant to their hiring—contain lengthy textual

descriptions rather than a structured list of attributes and

values. Summarized eloquently, it is often maintained that

‘‘people are not parts.’’

While it is true that people are not parts, the situation

still exists in which a large number of professionals must

be matched and assigned to a similarly large number of

demanding jobs. In fact, this problem lies at the heart of

the execution phase of the workforce management (WM)

cycle [1]. The problem applies to many different business

cases in the technology industry, including assigning

service professionals to short-term maintenance tasks [2],

team-building for contracted projects [3], maintaining

staff with multiple skills [4], and more.
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In all of these cases, the consequences of failing to find

the best assignments for the jobs are extremely severe.

Less-than-optimal assignments can be manifested in three

general forms: underqualified professionals assigned to

highly demanding jobs, overqualified professionals

assigned to less-demanding jobs, and a total number of

assignments smaller than the maximum achievable. An

underqualified assignment may result in the need to

reperform the job without compensation, costly onsite

training, customer dissatisfaction with the job, eventual

loss of this customer, and loss of referrals from the

customer. In addition, qualification may refer to various

attributes, not necessarily the professional level of the

worker. For example, an underqualification may be

a travel distance that is too long, with direct travel

costs being incurred by the provider. The costs of an

overqualified assignment may relate directly to the

unrecovered high salary of the professional or indirectly

to the loss of a more profitable job assignment for the

employee, employee dissatisfaction, and eventual

employee attrition. A less-than-optimal number

of assignments may result in loss of revenue from

unassigned jobs, increased costs from subcontracting

external providers for the unassigned jobs, and the

general dissatisfaction of the customers ordering the

unassigned jobs.

The usual way of solving the general assignment

problem presented above is to examine the full list of

jobs in some predefined order and for each job find a

corresponding shortlist of best-fitting candidates, then

assign one of those candidates to the job. (An equivalent

option is to look at the full list of professionals in

a predefined order, find a shortlist of best-fitting jobs

for each professional, and then assign the professional

to one of those jobs.) This procedure is simple and

can be accomplished by a human resource deployment

professional (RDP), because at any one time the actual

fitting procedure looks only at a single job and a shortlist

of professionals. As part of this procedure, the RDP

may use search tools to search for an employee with

characteristics required by the job, provided that relevant

data for all professionals is stored in some database.

However, the procedure has the following significant

drawbacks:

� It is tedious, repetitive, and time-consuming.
� Since the shortlist of matches is not prioritized within

itself, it requires further manual work to rank-order

the individuals in the shortlist and is thus likely to

result in a suboptimal choice, even for the single job

currently considered.
� The first job considered will likely be assigned the

best-found professional for the job (a greedy policy),

even though that professional may be better suited to

other jobs that have not yet been considered. This

may lead to fewer assignments to jobs because

the other jobs may not find another match, while

alternative professionals may exist for the current job.

It can also lead to possible overqualification of the

professional for the assigned job.

� Competition among jobs considered (or owned) by

different RDPs is even less likely to be resolved fairly,

because each RDP sees and applies only his or her

own criteria, and there is no mechanism for finding

a fair and optimal assignment among all RDPs.

� When the number of available jobs and professionals

is large, say a few dozen or more, it becomes

impossible to find the best matches manually. This

is true even when the matching criteria are stated

correctly and the RDPs are motivated to seek a

global best solution. The reason for this is that the

optimization problem is known mathematically

to be NP-hard, which means that beyond a certain

number of jobs, an exponentially large number of

comparisons between different candidates must be

done in order to reach the optimal assignment.

� Only the most simplistic types of matching rules, or

constraints, can be considered by human RDPs. One

example of a simple rule may be exact matches on

several searched attributes, such as skills, availability,

and pay rates. However, even a simple matching rule

that requires, e.g., a short travel distance between

work and the person’s location is difficult to enforce

manually, because this distance must be recalculated

for any job–candidate pair. Finding a good solution

that complies with rules that are inherently complex

(for example, team-building rules) is far beyond

the capacity of a human RDP.

� In searching for candidates who possess a number

of desired attributes, all attributes are viewed as

having the same importance. When some attributes

are of higher importance than others, finding the best

matches must be achieved manually by first searching

for candidates with the most important attribute,

then reducing the list to those also having the next

important attribute, and so on. In addition to the

slowness of this procedure, it will likely miss a

professional with many of the less-important required

attributes who lacks only one of the more-important

attributes.

Given the above drawbacks, the potential for large

amounts of data, and the need for a short response

time, an automatic procedure to optimize the set of

assignments could offer a significant benefit. However,

there are two major obstacles to using ordinary
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operations research (OR) optimization techniques, such

as those used in supply chain management. First, we must

accept that people are not parts. One cannot assume

that a person can be modeled as a mathematical set of

attributes. This implies that the engagement and business

rules related to people are bound to be much more

complex than ordinary rules observed in mainstream OR.

Second, there is no meaningful way to define a rigorous

mathematical cost function for the WM optimization

problem. For example, one cannot seriously quantify the

cost associated with a dissatisfied overqualified employee,

nor the cost of a person with imperfect foreign-language

skills working at an offshore location. Without a good

cost function, much of the substance of OR techniques—

primarily linear programming and its derivatives, and

metaheuristics—is lost.

In this paper we present a completely different

optimization approach to the identification and

assignment (ID&Assign) WM problem described above.

Our approach is based on constraint programming (CP)

[5], a subdiscipline of artificial intelligence. We suggest

that using CP can bridge the gap between the fact that

people cannot be treated as pure mathematical objects

and the requirement for a mathematical procedure for

optimization. Indeed, one of the most compelling features

of CP is that rules are stated in a high-level language

derived from the domain of application, and not as a

mathematical formulation. Once the rules are stated,

there are rigorous mathematical algorithms that can

interpret the rules and optimize the solution according to

all rules defined. As we demonstrate, this approach

eliminates the drawbacks of manual handling that are

listed above. The only previous work we are aware of that

applied CP to the ID&Assign problem [6] considered only

the most simple matching rules; it was motivated by the

scheduling aspects when applied to a combination of full-

time and part-time employees. Our focus is on complex

rules and the large number of significantly different

individual professionals available for assignments. We

are also interested in the case in which people may be

assigned to highly specific jobs of relatively short duration

(a few weeks to a few months) and may need to move

from job to job quickly, without wasting time. The

technology presented here may not be as useful in a

context in which people are assigned to jobs only once or

infrequently.

The scope of this paper is the ID&Assign problem for

highly skilled employees. Early in the WM cycle, planning

and prediction of the expected future workforce is

performed. In that phase, the entities of interest are

aggregates of people and jobs, where the actual people

and jobs are not yet available or known. A well-defined

mathematical model can be built for the aggregates and

solved by traditional OR and supply chain techniques.

The IBM Resource Capacity Planning tool [7] does just

that. The scheduling problem of low-level employees

can also be solved in an aggregate fashion, because the

entire workforce can be partitioned into a small set of

homogeneous groups, and OR techniques may be readily

applied to take into account the simple scheduling

constraints of each employee in the group. A typical

example of such a case is call-center scheduling, and the

IBM SWOPS tool [8], based on linear programming, is

designed to meet that need.

The next section provides a more detailed summary

of existing work in workforce optimization. We then

provide a short overview of constraint programming—in

particular, its modeling and algorithmic aspects. We go

on to describe a basic constraint satisfaction problem

(CSP) model for the ID&Assign problem and delve

deeper into the details of workforce management rules.

We present use cases and results related to IBM service

organizations and then conclude the paper.

Survey of existing work
Workforce scheduling problems are traditionally

classified into three types: shift scheduling, days-off

scheduling, and tour scheduling. Shift (or time-of-day)

scheduling determines each employee’s work and break

hours per day. Days-off (or days-of-week) scheduling

determines each employee’s workdays and off-days per

week or on a multiple-week work cycle. Tour scheduling

combines the shift and days-off scheduling problems by

determining each employee’s daily work hours and

weekly workdays. An introduction to the problem,

classification of its types, and the difficulty in solving

it can be found in [9, 10]. More recent reviews can

be found in [11, 12].

In general, most WM solutions can be divided into two

approaches: using a generic method to solve the problem

or using some specific algorithm created for a particular

problem. We are interested primarily in the first

approach. The second approach is often used for

problems that have complex or unique features, such

as discontinuous objective functions [13] or others [14].

Traditional OR approaches are often used for WM

[15]. Linear and integer programming techniques [16, 17]

are examples of such approaches. Another approach to

solving WM problems is trying to find reductions of those

problems to other OR domains (e.g., routing) [18].

Significant work is also being done to apply modern

metaheuristics techniques to WM. Tabu search is often

used [19, 20]. Genetic programming is sometimes used

with special features of the WM problem structure to

efficiently solve problems that are computationally hard

[21–23]. An interesting variant of WM problems is known

as mobile workforce management [24]. To solve this

problem, a special multi-agent information system
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technology has been developed. Additional discussion of

metaheuristics and heuristics-oriented solutions for WM

appears in [25].

CP and constraint logic programming (CLP) have also

been used to solve WM problems. One case of a simple

real-life WM problem was noted by British Telecom [26].

This problem was later approached using simple CP [6]

and two local search methods [27]. Other uses of CP and

CLP for WM are presented in [28] and [29]. In all of these

cases, CP is used to solve traditional WM problems in

which the main difficulty is scheduling employees to shifts

under rules governing the work hours and workdays.

However, in these approaches, individual employees

are not well distinguished from one another and are

in general interchangeable with other employees. In

this paper we concentrate on the other extreme: Each

employee has unique attributes that are defined for

each individual. Similarly, each job has a unique set of

requirements. The objective is to fit as many employees to

as many jobs as possible while maintaining the best match

between the individual employees and the jobs to

which they are assigned. This ID&Assign problem is

significantly more difficult to automate. To the best of

our knowledge, it has not previously been studied

using traditional OR or CP techniques.

Constraint programming
CP deals with modeling and solving CSPs. A CSP is an

abstract problem that captures the relations between

some entities (variables) and the constraints that restrict

the values those entities can assume. For example, in an

exam-scheduling problem, the variables may be the time

and location of each exam in a given semester, and a

constraint may specify that no two four-hour exams may

be scheduled on consecutive days.

Mathematical formalism

Mathematically, a CSP P is a triplet (V, D, C) consisting

of a set of variables V, a corresponding set of domains D,

and a set of constraints C. A solution to a CSP is an

assignment of a value to each variable out of the domain

of the variable such that all constraints are satisfied. A

CSP is satisfiable if it has at least one solution and

unsatisfiable otherwise. In the exam-scheduling example,

assuming there are N exams, we would have 2N variables:

one date variable and one location variable for each

exam. The domain of the date variables may be the list of

days in the exam period, while the domain of the location

variables may be the list of rooms in the building.

Constraints may specify such things as blackout days

for any particular exam, requirements on room sizes,

and mutual requirements on neighboring exams.

Mathematically, constraints are known as relations.

A relation on a set of k variables is the list of all legal

combinations of k values, each taken from the domain of

the corresponding variables. For example, consider three

variables a, b, c, with domains f1, 2g, f1, 2, 3g, f1, 2, 3g,

respectively. A constraint requiring that the three

variables assume different values may be represented

by the mathematical relation

ð1; 2; 3Þ; ð1; 3; 2Þ; ð2; 1; 3Þ; ð2; 3; 1Þf g: ð1Þ

CSP modeling

CSP modeling is the process of translating a real-world

constraint problem into a CSP. It involves identifying the

variables in the problem, the variable domains (i.e., the

values each variable can have before considering conflicts

due to the constraints), and the constraints. There is

usually more than one way to choose the variables and

domains. For example, in the exam-scheduling problem,

we could have chosen the variables to be all combinations

of dates and locations. Under this choice, the domains of

all variables may be the names of the exams plus ‘‘null,’’

signifying that no exam is taking place at this particular

date and location.

Choosing an appropriate model is a crucial step in CP.

The most important aspect of choosing a model is to

make it simple. Variables should correspond to physical

entities that are easily identified in the real-world

problem. Auxiliary variables, sometimes added to make

the constraints appear simpler, should almost always be

avoided. Domains should be of the same type as in the

real-world problem. For example, if the possible colors of

a shoe in a shoe-manufacturing plant are white, black,

gray, yellow, and red, the domain of the variable shoe-

color should be fwhite, black, gray, yellow, redg and

not a numerical coding such as f0, 1, 2, 3, 4g. Finally,

the constraints should be specified in a language

understandable to the end user, which often excludes

sophisticated mathematical notations. Following these

guidelines allows simple maintenance of the model when

the problem evolves and when variables and constraints

are changed or added.

Constraint languages

The constraints in the CSP model should be specified in

a way that is close to the physical reality. Specifying the

mathematical relation of the constraint is almost always

out of the question because the intuition behind the

constraint is usually lost this way and because the relation

may become very large (i.e., a very large number of legal

combinations). The more common way to represent

constraints is to use some constraint language. A

constraint language may be generic, such as Numerica

[30] and the Optimization Programming Language [31],

or designed for a specific problem domain. Generic

constraint languages usually support arithmetic and logic
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operators and comparators, so two constraints in the

shoe-plant model may be written as

ðshoe-color ¼ redÞ implies ðlace-color ¼ red

or lace-color ¼ whiteÞ

and

number-of -boxes � ðnumber-of -shoes

þ number-of -sandalsÞ=2 :

Here, shoe-color, lace-color, number-of-boxes, number-

of-shoes, and number-of-sandals are all names of

variables; red and white are domain values; and the

reserved symbols (,), implies, or, ¼, �, /, and þ are all

part of the generic constraint language.

In addition to simple expressions, constraint languages

contain operators (or global constraints), which are

known to be useful in many constraint problems. The

best known example of a global constraint is all-different,

which specifies that all variables in a given set must

assume different values. By using all-different, the

numerical constraint represented by Equation (1) may

be specified simply as

all-differentða; b; cÞ: ð2Þ

For any expression or global constraint, a constraint

propagator must be implemented. A propagator is an

algorithm that accepts n domains, where n is the number

of variables affected by the constraint, and outputs

the same domains after all unsupported values are

removed. A value of a domain is unsupported if it cannot

be extended into a legal combination of the constraint by

using any choice of n � 1 values, one from each of the

other domains. For example, consider the constraint

a þ b ¼ c, where a, b, c are variables with domains

f1, 2, 4g, f3, 5, 8g, and f0, 3, 6, 9g, respectively. When

a propagator for this constraint accepts these domains as

input, it returns as output the new domains: f1, 4g, f5, 8g,

and f6, 9g, respectively. If all values of an input domain

are unsupported, the propagator returns an empty set for

all domains.

Algorithms

Maintain-arc-consistency (MAC) algorithms [32] accept

a CSP in which constraints are represented by their

propagators, and they output a solution to the CSP,

a proof that the CSP is unsatisfiable, or a timeout. They

do so by interleaving two types of steps: First, they

iteratively call each of the propagators to reduce the

domains of variables accepted by the propagator until no

domains can be further reduced; second, they instantiate

a variable with a value from the reduced domain of the

variable, as in a regular search. The propagation step may

greatly prune the underlying search tree, thus making the

problem tractable. In general, global constraints have a

greater pruning ability than an equivalent set of simple-

expression constraints.

Sometimes a specific problem calls for special

constraints that are not defined in a general-purpose

constraint language. In this case, the user must provide a

new propagator corresponding to this constraint. Once

the propagator is available, it can be used by the MAC

algorithm in conjunction with all other constraints. This

expandability of the constraint language allows both

simpler modeling of the problem at hand and better

pruning of the search tree, hence shorter runtimes of the

algorithm. In the next section, we discuss a new global

constraint that is extremely useful in the ID&Assign

problem.

When the best propagation algorithm for a constraint

either is intractable or has a weak pruning ability, MAC

algorithms become inefficient. In these cases, stochastic

local search [33] is often used. Stochastic local search is

also used for flexibility, i.e., to repair a solution obtained

by MAC when the problem is slightly perturbed and

when the solution of the perturbed problem is required

to be close enough to the original solution [34]. This is

usually the case with the ID&Assign problem, since a

small number of people or jobs are likely to leave or

change after the problem has been solved, and we do

not want to reshuffle the assignments of all other

professionals when this happens.

Soft CSP

Pure CSP deals with finding a satisfying solution to the

problem, i.e., an assignment to all variables out of the

variable domains such that all constraints are satisfied.

However, most real-world problems require an optimal

solution, not just any solution. There are many ways to

expand the CSP definition to incorporate optimality into

the problem [35]. One of the most appealing is the soft

CSP framework. A soft CSP is the list (V, D, C, C1, C2,

C3, � � �, CN) where (V, D, C) is a regular CSP. The

constraints in C are called hard constraints, and Ci

represents sets of prioritized, or soft, constraints. Roughly

speaking, a solution to the soft CSP is an assignment

to the variables out of the domains such that 1) all

constraints in C are satisfied, 2) as many constraints as

possible are satisfied in each Ci, and 3) when conflicts

between constraints occur, the constraint with the highest

priority in the set of conflicting constraints (i.e., the one

belonging to Ci with the smallest i) is satisfied [36].

This scheme allows us to specify the optimization

criteria in a natural way, as a set of prioritization rules,

rather than defining a rigid mathematical cost function

that attempts to associate a well-defined numerical cost

with the much laxer notion of business preferences.
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Applications

Since its inception, CP has been used to solve many real-

world problems. This section includes a brief summary of

the most important applications. Reviews of practical

applications of CP can be found in [37, 38]. Interactive

graphics was one of the earliest applications to apply

computers to constraint problems. Sketchpad [39] and the

follow-on ThingLab [40] were interactive graphics

applications that allowed the user to draw and

manipulate constrained geometric objects. These systems

contributed to the development of local propagation

methods and constraint compiling. The scene-labeling

problem [41] is probably the first CSP that was formalized

as such. The goal was to recognize the objects in a three-

dimensional scene by interpreting lines in the two-

dimensional drawings.

Assignment and allocation problems were the first type

of industrial application solved with constraint tools [37].

Typical examples are counter allocation for departure

halls [42] and berth allocation to ships in a harbor [43].

Typical scheduling problems solved by constraint tools

are petroleum-well activity scheduling [44], forest

treatment scheduling [45], production scheduling in the

plastics industry [37], and production planning of military

and business jets [46]. Network management and

configuration problems include planning and

configuration of telecommunication or electric power

networks [47] and optimal placement of base stations

in wireless indoor telecommunication networks [48].

Database applications use related CP ideas [49, 50],

and CP methods are employed in relation to program

testing [51–53]. Hardware verification is a large modern

application field of CP. A full-fledged industrial

application based entirely on CP is presented in [54].

There have been many works aimed at reducing

problems from other domains of knowledge to the CP

framework in order to utilize existing powerful CP

algorithms. The two broadest cases are the reformulation

of optimization problems [35, 55] and satisfiability

problems [56] as CSPs.

CSP model for the ID&Assign problem
We model the most basic ID&Assign problem as a soft

CSP.

Variables: The set of variables V corresponds to the set

of job positions. For each job, there is a variable in V.

Domains: The domain of each variable in V is the set

of professionals who can perform the job. This set of

professionals is found by iterating over all professionals,

checking each individual to see whether he or she can

perform the job according to the specifications of the job

and the credentials of the professional. For example, if

the only requirement specified by some job is for the

professional to be a Cþþ or a Java** programmer, the

domain of the variable corresponding to this job will

include all professionals skilled in either Cþþ or Java.

Constraints: The only hard constraint in our basic

model is a some-different constraint applied to all

variables. The some-different constraint is discussed

below. It is used to ensure that the same professional is

not assigned to two jobs taking place at the same time.

Soft constraints: Any preference defined in the problem

is modeled as a set of soft constraints on any of the

variables. For example, if a job requires either a Cþþ or a

Java programmer but prefers a Cþþ programmer, a soft

constraint with priority 1 is added, and its propagator

removes all professionals without Cþþ skills from the

input domain. This way, if a Cþþ programmer is

available, he or she will be matched by the constraint.

However, if no Cþþ programmer is available, the

constraint will eventually drop out of the model (because

it is only a soft constraint and cannot be satisfied), and

a non-Cþþ programmer may be assigned to the job.

More complex is the case of a continuous preference.

For example, suppose there is a preference that the

professional live as close as possible to the job location.

In this case, the following set of soft constraints, with

their listed priorities and legal domain values, is added

to the model:

Priority 1: Person closest to the job location.

Priority 2: Two people closest to the job location.

. . .

Priority n � 1: n� 1 people closest to the job location.

In the case in which there are two (or more) preference

criteria (e.g., prefer both a Cþþ programmer and a

professional living nearby), the problem should specify

which criterion is more important. The corresponding

soft constraints are then given the appropriate priority

number.

The some-different constraint

The all-different constraint is a fundamental primitive in

CSP [57]. This constraint is defined over a subset of the

variables and requires that they are assigned different

values. Many classical CSPs are modeled using this

constraint, the n-queen problem1 being the canonical

example, along with air traffic management [58, 59],

rostering problems [60], and many more. The semantics

of a single all-different constraint over n variables may be

preserved by replacing it with n(n� 1)/2 binary not-equal

constraints. However, in the context of MAC algorithms,

the single all-different constraint is vastly more powerful

in pruning the search space, leading to a great reduction

1The n-queen problem is to find a configuration of n chess queens on an n3 n board

so that no queen attacks any other queen; all-different constraints enforce that no

two queens are on the same row, column, and diagonal.

Y. NAVEH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

268



in the number of backtracks, and hence reaching the

solution more rapidly.

For our ID&Assign problem, all-different is too

restrictive. In fact, we would like only some of the pairs of

variables to be assigned different values. For example,

suppose our list of job positions specifies that different

jobs start and end at different times or require only

partial availability of a worker. In these cases, the same

worker may be assigned, in general, to multiple jobs, thus

violating all-different on the full set of variables.

Within the framework of our basic model, one way to

model this type of behavior is to add a binary not-equal

constraint for any two jobs that overlap in their time of

execution (assuming for simplicity that all jobs require

full-time workers). However, this model suffers from the

same disadvantages of modeling an all-different problem

by multiple not-equal constraints. Partitioning the jobs

according to their periods of execution and adding an

all-different constraint for each partition does not help

because job B may overlap with both jobs A and C, even

though jobs A and C may not overlap and can therefore

be assigned the same professional. All of this calls for a

generalization of all-different.

We recently defined a new type of global constraint

that we call some-different [61]. This constraint was

designed to address the above modeling problem, but in

actuality its scope is wider and it is relevant to many other

real-world problems. The some-different constraint is

defined over a set of variables X¼ x1 � � � xn with domains

D ¼ D1 � � � Dn, respectively, and an underlying graph

G ¼ (X, E). That is, the nodes of the graphs are the set

of variables, and the edges are given explicitly. The legal

combinations allowed by the constraint are all values

out of the domains so that no two values of variables

connected by an edge are equal:

some-differentðX; D; GÞ ¼ ½ða
1
; � � � ; a

n
Þ: a

i
2 D

i
; a

i
6¼ a

j

for all ði; jÞ 2 EðGÞ�: ð3Þ

The all-different constraint is the special case of some-

different in the case in which G is a clique2.

For all-different, there exists a polynomial propagation

algorithm [62]. Its runtime is O(mn1/2), where n is the

number of variables and m the sum of all domain sizes.

Unfortunately, there is little hope of finding a similar

polynomial algorithm for some-different, since it contains

the NP-hard problem of graph three-colorability as a

special case. Nevertheless, we designed special heuristics

into the some-different propagator. This allowed us to

show that for all real ID&Assign problems we worked on,

the some-different propagator was not only tractable but

extremely fast.

In [61], a detailed theoretical analysis of the some-

different propagator was performed. The results can be

summarized thus: We introduced an exact propagation

algorithm for hyper-arc consistency of the some-different

constraint. The algorithm has time complexity of O(n3bn),

with b ’ 3.5, and depends on the domain sizes only for

unavoidable deletion operations. We implemented the

algorithm (with multiple additional heuristics) and tested

it on two kinds of data: our real-life WM instances and

synthetic data generated through a random graph model.

In both cases the implementation performed very well,

much better than expected from the theoretical bounds.

Specifically, the implementation propagated instances

that included 250 to 300 variables in less than a second.

The results of [61] that are relevant to this paper

are summarized in Figures 1(a)–1(c), which show the

potential efficiency of using some-different compared with

using the equivalent model composed of a multitude of

binary not-equal constraints. Figure 1(a) shows the

runtime of the some-different propagator on WM data

instances as a function of the some-different graph size.

Some of the instances shown were satisfiable, while others

were unsatisfiable. Figure 1(b) shows the runtime of the

CSP solver on the some-different model, and Figure 1(c)

shows the speedup factor relative to an equivalent model

composed of not-equal constraints on WM data instances.

The rising curve in Figure 1(b) is composed of satisfiable

instances, while the flat curve is composed of unsatisfiable

ones. Figure 1(c) shows that most instances are solved

much more rapidly using the some-different propagator.

However, some instances are up to a factor of 2.5 slower

with this model. Experiments were performed on a

Linux** machine running an Intel Pentium** 4 at

3.6 GHz. A more detailed discussion of Figures 1(a)–1(c)

can be found in [61].

Beyond the basic model

The basic model includes only two types of constraints.

One type is constraints on the match quality of a specific

professional to a given job. These are soft constraints,

because the hard constraints the professional must match

are taken into account implicitly by having the domain of

each job include only the legally matched professionals.

The other type is the some-different constraint, which

ensures that a professional is not simultaneously assigned

to two jobs.

The basic model is at the heart of all ID&Assign

problems with which we have dealt. However, in almost

all cases, there are additional, more-complex constraints

that are part of the model and coexist with the basic

constraints mentioned above. These additional

constraints reflect the set of business rules that govern
2A clique is a set of nodes in a graph such that there exists an edge between any two

nodes in the set.
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the assignments, as discussed below in the section on

workforce matching rules. The simplest example:

A team-forming rule which specifies that two specific

persons (Dave and Mary) cannot work on the same team

may be modeled as a constraint of the form at-most-

one(Dave, Mary) and applied to all variables forming a

single team. Similarly, all of the different rules discussed

in the section on workforce matching rules may be

modeled as constraints (either hard or soft) and applied

to the variables relevant to those rules.

Unsatisfiable problems

In general, a CSP may be unsatisfiable: i.e., two or more

constraints conflict. In many cases, a CSP solver can

identify that the problem is unsatisfiable. In this case it

reports ‘‘unsatisfiable’’ and stops. In fact, most complex

instances of the ID&Assign problem are bound to be

unsatisfiable. There are two explanations for this. First,

many conflicting rules can come from the various levels

and organizations in the business. Second, even without

any conflict in rules, for many job positions a single

professional who matches the requirements may not be

found. This means that the domain is left empty, and

technically this implies the unsatisfiability of the CSP.

Of course, any real ID&Assign application cannot just

report ‘‘unsatisfiable.’’ The user obviously prefers to see a

partial assignment to the set of jobs as opposed to no

assignments at all. We enhanced the original CSP model

so that it is always satisfiable. In addition to the regular

professionals, we define fictitious professionals who are

initially part of the domain of all variables. We also add

soft constraints favoring actual professionals over the

fictitious ones. There are no explicit constraints acting

on the fictitious values. Implicitly, the soft constraints

favoring actual professionals may be seen as acting on

the fictitious professionals and removing them from the

domain. However, all other matching constraints do not

remove any fictitious person from any domain. Under

this model, because of the soft constraints, a real

professional is chosen whenever possible, but a fictitious

professional is chosen when all real persons have been

removed by the regular constraints. Because the CSP

solver treats both real and fictitious professionals as legal

domain values, it does not report ‘‘unsatisfiable’’ when

the domain of a variable is left with only a fictitious

person and continues to solve the problem. After the

solver returns with a solution, a simple procedure

removes all fictitious persons and reports to the user only

the assignments of actual professionals.3

Workforce matching rules

This section presents the plethora of workforce matching

rules that are at the basis of the ID&Assign problem.

These rules can be classified according to several

characteristics:

� Rigidity—Are the rules mandatory or merely nice to

have?

� Scope—Do they apply to single individuals or to

whole teams?

Figure 1

Using some-different compared with using the equivalent model 

composed of a multitude of binary not-equal constraints: (a) 

Runtime of the some-different propagator on workforce manage-

ment data instances as a function of the some-different graph 

size; (b) runtime of the CSP solver on the some-different model; 

(c) speedup factor relative to an equivalent model composed of 

not-equal constraints on workforce management data instances. 

From Figures 1 and 2 of [61], © 2006 Springer Science and 

Business Media, reproduced with permission.
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3Another way to solve the ‘‘unsatisfiable’’ problem is to run the solver a few times,

each time removing all jobs whose domain became empty in the previous run until the

problem becomes satisfiable. This procedure is likely to result in fewer matches than

by using our fictitious persons scheme, because when the search is backtracked, jobs

that were removed in the previous iteration are no longer available to be filled.
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� Level of definition—Are they derived from corporate

strategy or from an RDP’s decision?

� Complexity—Are they a simple matching of attributes

or do they represent a complex process?

� Explicitness—Are they defined explicitly by the user

or are they expected to be taken into account

implicitly?

Below we follow this classification and demonstrate it

with concrete examples. We also discuss the impact of the

various types of rules on the CSP model.

Rigidity of rules

Rules can be mandatory. For example, a job may require

a person with project management skills. However, rules

can also be nonmandatory, or nice to have. For example,

a job may have preference for a person with project

management skills, but will settle for one without such

skills if all mandatory rules are satisfied.

All mandatory rules are of the same importance, and

all should be satisfied equally. Nonmandatory rules

can be defined in a ladder of importance. For example,

it may be more important to live close to the place of

employment than to have experience in programming (or

vice versa). Whoever sets the nonmandatory rules should

also specify this ladder of importance between them.

Deciding on the relative importance of rules is a rather

intuitive task. This amounts to prioritization, which is

what people naturally do when they have to decide

informally among a few imperfect options. Once the

prioritization is known, the optimality of a solution can

be crudely defined as the solution that best satisfies the

prioritization scheme.

In contrast, other optimization schemes do not allow

the user to define the relative importance of rules but

require a numeric cost defined for any complete

assignment of professionals to all jobs. In many cases, it is

quite unnatural to quantify a violation of a rule with a

specific numeric cost. In the example given above, it

is unreasonable to assume that the user can actually

quantify the cost of living far away from the job, because,

in addition to the dollar cost of travel, the cost includes

such factors as the dissatisfaction of the worker and the

reduced likelihood of his or her working extra hours.

The natural scheme of specifying mandatory rules and

a prioritized list of nonmandatory rules fits nicely with

the formalism of soft CSP. Mandatory rules are mapped

to hard constraints, while the list of nonmandatory rules,

together with the prioritization of each such rule, is

mapped to the Borning hierarchy [36] of prioritized soft

constraints. This way, no cost function has to be defined.

Indeed, once we have a soft-CSP model of the problem, it

is up to the soft-CSP solver to produce an optimized

solution.

Scope of rules

Rules may apply to individuals or to teams. For example,

a skills rule may state that a particular job requires a

person with medical qualifications. However, it may also

state that for a given set of n jobs, at least two persons

filling the jobs should have medical qualifications, but

it need not specify which two.

Rules applied to sets of jobs may be used to form teams

or to find a suitable professional to fill a vacant position

in an already existing team. As with rules on individual

matches, team-matching rules can be either mandatory or

nonmandatory. For example, a nonmandatory rule may

be applied to a previously successful team to keep the

team together in the next assignment. However, if

the team as a whole cannot fit any of the new job

opportunities, this nice-to-have rule may be violated,

and the team can be spread to different projects.

As a CSP, rules on matching individuals may be

modeled as unary constraints on the jobs to which the

rule applies, whereas rules on matching teams to projects

can be modeled as k-ary constraints on the jobs

comprising the project, with k � n, where n is the number

of individual jobs in the project.

Definition level of rules

Rules can be defined at the lowest RDP level. For

example, an RDP who owns a particular job position

may impose rules derived directly from the specifications

of the job. The rules discussed above are all examples of

such rules (special requirements for skills or experience,

live near the job location, form a winning team by

combining certain individuals, and so on).

However, rules can also be imposed by higher authority

levels in the organization. For example, an organization

within the corporation may impose a reservation rule

stating that no more than 90 percent of top professionals

should be assigned at any given time. This implies the

constant availability of ten percent of the leading

professionals in case an emergency request from a

must-fill job arrives.

An example of a corporate-level team-building rule

may be that it is forbidden for spouses to be assigned to

the same team. Note that both of our examples of rules

defined at the higher level are in conflict with the low-level

RDP rules. In fact, the RDP would prefer to use the top

professional from the reserve if he or she fits the job

requirements and would also want to assign both spouses

if they are the best match for the team. This illustrates a

common phenomenon in which organization-level, or

strategic, rules often violate the decisions made by

RDPs—hence the importance of specifying those rules.

Without them, it is likely that low-level decisions would

violate many of the standards of the corporation and its

vision and strategy. Needless to say, the potential conflict
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among rules at different levels is bound to generate some

level of friction among the various position holders.

Therefore, in addition to implementing robust practices

to ensure enforcement of the higher-level rules, it is

absolutely necessary to create a rewarding system for

RDPs that renders it in their own best interest to abide by

all levels of rules.

CSP modeling lends itself naturally to rules originating

from different levels or different organizations. The CSP

model is declarative, with constraints being added to the

model while the solution algorithm remains the same.

Therefore, it allows the seamless addition of constraints

from different sources. In fact, the different organizations

need not even know of the participation of all other

organizations in building the CSP model. Constraints

can be added in any order without affecting the solution

process as long as they are all added before the solver is

called to solve the model. Finally, within the soft-CSP

framework, it is easy to enforce the overriding of rules by

some level over another. This can be done by allocating

different ranges of priorities to soft constraints entered by

different organization levels. By applying a set of different

prioritization levels, we can define a complete hierarchy

of overriding rules that mirror the complete hierarchical

structure of the organization.

Complexity of rules

Rules can be as simple as matching a single attribute of a

job to a corresponding attribute of a professional. For

example, a rule for a job requiring a person with a pay

scale lower than an annual salary of $90K can be

implemented by comparing the max-pay-level attribute

of the job with the pay-level attribute of the person.

However, rules can also be quite complex and

sometimes require access to databases or elaborate

calculations. Note that this complexity can arise even

with rules defined on individual jobs. The complexity

we are addressing here is different from the implicit

complexity of rules defined on more than one job. We

illustrate this with two examples of complex rules.

The first example is the rule which states that the

professional must reside within a specific distance from

the place of employment. While easy to state, this rule is

difficult to enforce automatically, for two reasons. First,

in order to enforce this rule, the locations of the job and

the professional must be known. However, it is sometimes

difficult to obtain trusted information about this location.

In many cases, zip codes, longitude and latitude data, or

other well-defined location definers are not available as

part of the person or job descriptors. In these cases, the

location entry may be entered as street address, city,

county, state, and country. Since the number of cities is

huge and since many cities (especially in non-English-

speaking countries, and assuming that data is entered

in English characters) have alternative spellings, it is

possible that the same location may be spelled differently

for the job and the professional. A naive application will

then recognize the two locations as different. A more

reasonable application will invest in complex text analysis

as part of the matching algorithm. A second problem is

that even if two locations are recognized correctly, it is

not clear how to calculate the distance between them.

Here again, the problem may be solved by increasing the

complexity of deciding whether the rule is violated, e.g.,

by looking at huge interlocation-distance databases.

Another approach, which requires less computer space

but provides only an approximate result, is to calculate

the distance. Given the name of the location, we can

determine the longitude and latitude information by

searching existing databases. The shortest distance

between any two locations can then be calculated

according to the formula

Distance ¼ R acos½sinH
1
sinH

2

þ cosH
1
cosH

2
cosðu

1
� u

2
Þ�;

where H1 and H2 are the latitudes of the first and second

locations, respectively, and u1 and u2 are the longitudes

of those locations.

In practice, we multiply this number by a factor of 1.3

(found empirically for suburban areas) to estimate the

actual road distance. The rule must be made even more

complex if the area contains water barriers, such as rivers

or lakes.4

The second example is a rule stating that the skills

required by the job must be ‘‘close enough’’ to skills

attained by the professional. Here the problem is in the

definition of ‘‘close enough.’’ How can one obtain a

clear definition of the proximity between any two sets of

skills? In our initial model, we required that the job role

and skill set of an individual be an exact match to the

job requirements. As the model matured, our users

asked if we could incorporate the raising of personal

skill levels or retraining as matching factors. We

implemented a rule stating that skills required by the

job must be ‘‘close enough,’’ which was defined by our

human resources (HR) subject-matter experts. Figure 2

shows one approach to this problem. In this example,

our HR partners defined the distance between any two

job roles by the number of additional skills one would

have to acquire in order to raise one’s skill level from

one of the job roles to the other, and by color, which

specifies more crudely whether the transition is easy

(green), medium (yellow), or hard (orange). Our HR

partners continue to refine this distance matrix to

4Although there are popular Internet-based applications in various countries that

offer travel directions and distance calculators, there are a number of obstacles to

solving this problem on the basis of such applications. However, it is a good direction

for further exploration.
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consider factors such as the cost of the course work

and the time required to complete the course. The

availability of this table permits rules to be defined that

relate to the fitness of the professional with respect to

the required job role. For example, it is now simple to

include individual preferences for career paths as an

additional matching factor.

Before building a CSP model, one must define and

implement the types of constraints required by that

model. A constraint is implemented by implementing its

propagator, which can be very simple or very complex.

Indeed, in the case of the complex rules defined above,

the propagator may become quite complex in itself,

performing such activities as analyzing text, accessing

databases, and using expert knowledge. However, the

complexity is localized in a single function in the model.

This ensures the simplicity of the design and the ease of

CSP model maintenance, even when the underlying logic

is complex.

Explicit and implicit rules

The rules discussed above were defined explicitly by a

person or persons whose responsibility is to find a good

assignment under the various conditions and regulations

in the company. However, there are other types of rules

that are not stated explicitly by anyone but should still be

enforced.

One such rule is the requirement that the same

professional not be assigned to two jobs that overlap in

time and that together require more total time than the

professional has available. This rule is mandatory. An

example of a nonmandatory implicit rule is that as many

job positions as possible will be assigned a professional.

Such rules can easily be enforced within the CSP

framework by having the application builder incorporate

constraints into the CSP model. These implicit

constraints are not seen by the application users who

define the explicit rules and run the solver to find the

assignments. However, since these constraints are part of

Figure 2

Provisional distance to upgrade skills between any two job roles.
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the CSP model, they are enforced by the solver just like

any other constraint.

Use by IBM service organizations

Workforce matching tool

In 2005, we began implementing the concepts and

methods discussed here in the Workforce Matching Tool

(WMT) designed to solve the ID&Assign problem. The

tool is based on the IBM state-of-the-art constraint solver

[54]. We applied this tool to a series of assignment

problems encountered by IBM service organizations.

These organizations employ more than 100,000 highly

skilled professionals. The professionals are typically

assigned to jobs at customer locations and engage in

either information technology (IT) infrastructure work or

business consulting. A typical work assignment can last

from a few weeks to a few years. Teams of professionals

are commonly formed to address project needs. Many of

the examples of rules and constraints discussed above

were specified by actual users and were required in order

to resolve some real-world scenarios.

ID&Assign problem at IBM

Since the implementation of the WMT, we have

conducted many pilot projects, experiments, and actual

work with the various service organizations. Each such

experience was unique with respect to the type of data we

received and the set of rules and prioritization schemes

defined by the users. However, some common attributes

were the same in almost all of the experiments.

The common job attributes included in the open seats

table are unique-identifier, required job role, required

skill set, lowest pay rate, highest pay rate, start date, end

date, location (city, state, country), indication for the

possibility of working remotely, and contact e-mail.

The common attributes included in the professionals

table are unique identifier, name, primary job role,

secondary job roles, skill set, availability date, pay rate,

location (city, state, country), and contact e-mail.

Table 1(a) shows the definition of rules; here

mandatory rules are defined and parameters for those

rules are set. For example, rule number 10 states that a

person can still be considered for a job even if he or she is

not available to start working until up to 14 days after the

job has started. In Table 1(b), the prioritization scheme

is set; it shows that the first priority is to find the

professional who is least late to the job, the second

priority is to have the professional’s band (or pay rate)

be within the job specification range [note that a slack

of 1 in band is allowed by rule number 9 in Table 1(a)],

and so on. (We use the term slack to indicate the

allowed discrepancy from an exact match between the

professional and the job specification.) Users can change

the values of rules and add or remove prioritization

criteria before pushing ‘‘save and execute’’ to run the tool.

Results

The matching tool can work in two modes: prioritized

matching or assignment. In prioritized matching mode,

the output of the tool is a list of possible matches for any

job, prioritized according to the prioritization scheme

defined by the user. An example of the output of this

mode is shown in Figure 3(a). For any job, a list of

matching professionals is given in column J; the list

may be empty if no professional matches the job.

This list is prioritized so that in a typical use, an RDP

seeking to fill a job would start by considering the first

professional in the list for the job, then the second, and so

forth. A similar output is created for all professionals,

except that in the results column, all jobs matching

the professional are listed in order of priorities.

Technically, the lists are generated by reaching arc

consistency over all explicit mandatory constraints

Table 1 Definitions of (a) rules and (b) priorities for the

Workforce Matching Tool. Table inputs are provided by a special-

purpose graphical user interface.

(a) Matching rules

Index Name Value

1 Match on primary and secondary skill sets Yes

2 Match on location Yes

3 Consider part-time jobs No

4 Consider part-time employees No

5 Minimum duration of job (in days) 30

6 Match on required languages No

7 Maximum travel distance (in kilometers) 50

8 Maximum upskilling allowed 10

9 Maximum slack in band 1

10 Maximum absolute slack in late arrival

(in days)

14

11 Maximum relative slack in late arrival

(percentage)

10

12 Late arrival determined by larger or

smaller between absolute and relative

forms

larger

(b) Priorities

Index Category

1 Late arrival

2 Band in range

3 Criticality

4 Lowest band
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defined by the user and then ordering the lists by

considering all prioritization criteria defined by the user.

This approach ensures that only legal matches are listed

(otherwise, arc consistency is violated on some explicit

constraint) and that all such matches appear (because

no domain reduction was performed beyond arc

consistency). Implicit constraints, such as some-different

on all overlapping jobs, are not considered in this model

because they do not enforce user-defined rules, but rather

consistency of the full problem.

In assignment mode we go one step further and let the

automation perform the actual assignments for the jobs.

An example of the output of this mode is shown in

Figure 3(b). For any job, at most one matching

professional is listed in column J. In contrast to the

prioritized matching case, a professional is never assigned

here to two jobs that overlap in time (assuming that all

jobs are full-time). Technically, the list of assignments is

just the solution of the soft CSP outlined in the constraint

programming section above, which takes into account

the user-defined rules, the prioritization scheme, and

Figure 3

Results for (a) prioritized matches; (b) assignments to jobs.

(a)

(b)
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the implicit built-in constraints. This ensures that the

assignments in Figure 3(b) are near-optimal in the sense

that the largest number of possible assignments is met

and the prioritization scheme is respected.

To provide concrete numbers, we report on a single use

case performed on a large set of service organizations that

can share professionals among them. Altogether, the

problem specified 24,480 professionals to be matched to

703 jobs under the set of rules specified in Table 1. The

results obtained showed that 218 jobs had at least one

matching professional, and 574 professionals were found

to match at least one job. Globally consistent assignments

were found between 176 jobs and professionals. This

number is high because the original 706 jobs came from

a source of jobs with particularly high demands. The

runtime to solve both prioritized matching and complete

assignment modes was 146 seconds on a Linux machine

running an Intel Pentium 4 processor at 3.6 GHz. Much

of this time is spent on input and output analysis,

including loading of databases. The runtime to solve

the CSP by itself was less than a second, which implies

the possibility of a real-time mode of operation.

To demonstrate the power of CP for this problem, we

also analyzed the case in which jobs are considered one at

a time, according to some predefined random order. For

each job considered, the best-matching professional is

found and assigned to the job. Once a professional is

assigned, he or she is no longer available to be assigned to

another job that overlaps in time with the first, even if this

professional is more suited for the second job. This

process of sequential assignment simulates the actual

process often deployed by RDPs when they find

assignments for jobs. With this process, and considering

the full data (24,480 professionals, 703 jobs), only 152

jobs were assigned. This is a reduction of 13 percent in

the number of assignments compared with the 176

assignments obtained by CP.

Feedback from RDPs within the service organizations

with which we worked gave us additional insight. First,

our match quality can be only as good as the data we

obtain. Sometimes the data was inaccurate or incomplete.

In such cases, the matching results were not of great

value, since the RDP may have had to check three or four

names listed before finding a professional that truly

matched.

Second, many of the rules should be defined by the

lowest-level person performing the match, i.e., the RDP.

The reason is that different RDPs have different ways of

looking at the data and therefore require different types

of rules. For example, some RDPs prefer that slack in the

availability of the professional be defined in absolute

numbers of days, while others prefer to express this value

in terms relative to the duration of the work—hence

the two types of rules (9 and 10) seen in Table 1.

Third, there was some uncertainty about the type

of output that is preferred: prioritized matches or

assignments. RDPs usually first preferred the prioritized

match format because they felt they had more control

over the actual choices performed. However, after

becoming familiar with the tool, some reported that

the assignments format was preferable because it made

their decision process simpler. Supporting this was the

fact that the number of false positives (i.e., suggestions

for assignments that were found to be wrong after

considering data not available to the tool) on the full

assignments reported was small enough to be tolerable,

especially in the cases in which the quality of data was

good.

Finally, after gaining some experience with the

tool, the RDPs recognized how they can work with

the tool in a robust interactive way by disabling,

enabling, and changing rules. This allowed for

overrides and exceptions to rigid rules, which

inevitably occur in this domain.

Summary and conclusions
This paper discusses a CP approach to the ID&Assign

problem of workforce management. This problem has

severe consequences if it is not solved properly, and it is

expected to be even more crucial as the IT industry shifts

toward services and as business requirements become

increasingly demanding.

For various reasons, CP is found to be highly

appropriate for modeling and solving this problem. First,

the rules of the ID&Assign problems are complex and are

changing over short time scales. This implies frequent

maintenance of the model, which in turn requires

modeling that is close to the problem domain and not

stated in mathematical form. CP provides exactly this

type of modeling construct. Second, CP, through the

notion of soft constraints, permits optimization of a

solution even without defining a rigid mathematical cost

function. Third, since powerful pruning algorithms and

search heuristics exist, in most cases runtime remains well

below the worst case of this NP-hard problem.

To provide the best assignments, input data must be

accurate and well defined. This statement is true of any

automated process, not just those that are CP-based.

Hence, data architects should make every effort to have

data provided in a trusted-source manner and not as free

text. For example, architects should always choose the

use of pull-down menus with enumerated options over

free-text description fields. It is also important to specify

geographical locations in terms of zip codes or work-

location codes, rather than city or street names, which

are bound to have multiple spellings and are natural

inhibitors of automation (e.g., entering ‘‘Northern

Georgia’’ for a city name). Once all data comes from
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trusted sources, it is best to have as many data fields

as possible: the more the better. In contrast to human

agents, the automatic process is never overwhelmed by a

large number of fields, and adding more fields can only

make the definition of rules and prioritization closer to

what the user has in mind.

Finally, resumes should become much more structured

documents, possibly created by resume-building tools

with predefined options and pull-down menus as trusted

sources. We are beginning to see this trend, and it should

be highly encouraged. While this structuring may reduce

the personal touch somewhat, enabling automated

identification and assignment may greatly increase the

quality of the jobs found for the resume writer, and it can

speed up the process of finding jobs for them. Eventually,

professionals should understand that it is in their own

best interest to have at least one version of their resume

written in a precise machine-readable manner.
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Göteborg University, Göteborg, Sweden, 2004.

12. A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, ‘‘Staff
Scheduling and Rostering: A Review of Applications,
Methods, and Models,’’ Euro. J. Oper. Res. 153, No. 1, 3–27
(2004).

13. E. K. Burke and E. Soubeiga, ‘‘A Real-World Workforce
Scheduling Problem in the Hospitality Industry: Theoretical
Models and Algorithmic Methods’’ see http://
webhost.ua.ac.be/eume/workshops/reallife/burke.pdf.

14. T. H. Hultberg and D. M. Cardoso, ‘‘The Teacher Assignment
Problem: A Special Case of the Fixed Charge Transportation
Problem,’’ Euro. J. Oper. Res. 101, No. 3, 463–473 (1997).

15. S. E. Bechtold, M. J. Brusco, and M. Showalter, ‘‘A
Comparative Evaluation of Labor Tour Scheduling
Methods,’’ Decision Sci. 22, No. 4, 683–699 (1991).

16. H. K. Alfares, ‘‘Optimum Workforce Scheduling Under the
(14, 21) Days-Off Timetable,’’ J. Appl. Math. & Decision Sci. 6,
No. 3, 191–199 (2002).

17. A. Billionnet, ‘‘Integer Programming to Schedule a
Hierarchical Workforce with Variable Demands,’’ Euro. J.
Oper. Res. 114, No. 1, 105–114 (1999).

18. J. C. Beck, P. Prosser, and E. Selensky, ‘‘Vehicle Routing and
Job Shop Scheduling: What’s the Difference?,’’ Proceedings
of the 13th International Conference on Automated Planning
and Scheduling, Trenton, Italy, 2003; see http://
tidel.mie.utoronto.ca/pubs/icaps03.pdf.

19. B. Cao and G. Uebe, ‘‘Solving Transportation Problems with
Nonlinear Side Constraints with Tabu Search,’’ Computers &
Oper. Res. 22, No. 6, 593–603 (1995).

20. M. Sun, J. E. Aronson, P. G. McKeown, and D. Drinka,
‘‘A Tabu Search Heuristic Procedure for the Fixed Charge
Transportation Problem,’’ Euro. J. Oper. Res. 106, No. 2,
441–456 (1998).

21. U. Aickelin and K. A. Dowsland, ‘‘Exploiting Problem
Structure in a Genetic Algorithm Approach to a Nurse
Rostering Problem,’’ J. Scheduling 3, No. 3, 139–153 (2000).

22. F. F. Easton and N. Mansour, ‘‘A Distributed Genetic
Algorithm for Employee Staffing and Scheduling Problems,’’
Proceedings of the 5th International Conference on Genetic
Algorithms, Urbana-Champaign, IL, 1993, pp. 360–367.

23. A. Wren and D. O. Wren, ‘‘A Genetic Algorithm for Public
Transport Driver Scheduling,’’ Computers & Oper. Res. 22,
No. 1, 101–110 (1995).

24. D. K. W. Chiu, S. C. Cheung, and H.-F. Leung, ‘‘A Multi-
Agent Infrastructure for Mobile Workforce Management in a
Service Oriented Enterprise,’’ Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, Big
Island, HI, 2005, p. 85.3.

25. P. Cowling, G. Kendall, and E. Soubeiga, ‘‘A Parameter-Free
Hyperheuristic for Scheduling a Sales Summit,’’ Proceedings
of the 4th Metaheuristics International Conference, Porto,
Portugal, 2001, pp. 127–131.

26. D. Munaf and B. Tester, ‘‘And/Or Parallel Programming in
Practice,’’ Technical Report WP12:1203, British Telecom
Research Laboratory, Project 1251, London, U.K., 1993.

27. E. Tsang and C. Voudouris, ‘‘Fast Local Search and Guided
Local Search and Their Application to British Telecom’s
Workforce Scheduling Problem,’’ Oper. Res. Lett. 20, No. 3,
119–127 (1997).

28. F. Kokkoras and S. Gregory, ‘‘D-WMS: Distributed
Workforce Management Using CLP,’’ Proceedings of the
4th International Conference on the Practical Application of
Constraint Technology, London, U.K., 1998, pp. 129–146.

29. A. Meisels and N. Lusternik, ‘‘Experiments on Networks of
Employee Timetabling Problems,’’ Proceedings of the 2nd

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 Y. NAVEH ET AL.

277



International Conference on the Practice and Theory of
Automated Timetabling, selected papers, Toronto, Canada,
1997, pp. 130–141.

30. P. Van Hentenryck, L. Michel, and Y. Deville, Numerica:
A Modeling Language for Global Optimization, MIT Press,
Cambridge, MA, 1997.

31. P. Van Hentenryck, The OPL Optimization Programming
Language, MIT Press, Cambridge, MA, 1999.

32. A. Mackworth, ‘‘Consistency in Networks of Relations,’’
Artif. Intell. 8, No. 1, 99–118 (1977).
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62. J.-C. Régin, ‘‘A Filtering Algorithm for Constraints of
Difference in CSPs,’’ Proceedings of the 12th National
Conference on Artificial Intelligence, Seattle, WA, 1994,
pp. 362–367.

Received September 21, 2006; accepted for publication

Y. NAVEH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

278

December 15, 2006; Internet publication May 11, 2007



Yehuda Naveh IBM Haifa Research Laboratory, Haifa
University Campus, Haifa 31905, Israel (naveh@il.ibm.com). Dr.
Naveh received a B.S. degree in physics and mathematics, an M.S.
degree in experimental physics, and a Ph.D. degree in theoretical
physics, all from the Hebrew University of Jerusalem, Israel. He
joined IBM Research in 2000 after working for four years as a
research associate at Stony Brook University in New York. His
current research interests include the theory and practice of
constraint programming and the theory and practice of workforce
optimization.

Yossi Richter IBM Haifa Research Laboratory, Haifa
University Campus, Haifa 31905, Israel (richter@il.ibm.com). Dr.
Richter received a B.A. degree in computer science and economics,
and M.S. and Ph.D. degrees in computer science specializing in
algorithms, all from Tel Aviv University, Israel. Since 2005, he
has been a Research Staff Member at the IBM Haifa Research
Laboratory, working on the theory and practice of constraint
programming.

Yaniv Altshuler IBM Haifa Research Laboratory, Haifa
University Campus, Haifa 31905, Israel (yanival@il.ibm.com).
Mr. Altshuler received a B.A. degree in computer science from
the Israeli Institute of Technology (IIT), the Technion, under the
framework of the Chais Family Foundation Technion Excellence
Program. He is currently a Ph.D. candidate in the computer science
department of IIT, where he specializes in multiagent systems
in dynamic environments and swarm intelligence. In 2004 Mr.
Altshuler joined the IBM Research Division, where he works
on constraint satisfaction and optimization problems.

Donna L. Gresh IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (gresh@us.ibm.com). Dr. Gresh received her B.S. degree in
engineering in 1983 from Swarthmore College and her M.S. and
Ph.D. degrees in electrical engineering in 1985 and 1990 from
Stanford University, where she studied the rings of Uranus using
data from the spacecraft Voyager. She joined the IBM Thomas J.
Watson Research Laboratory as a Research Staff Member in
1990 and spent twelve years conducting research in scientific
and information visualization. Since 1992, Dr. Gresh has been a
member of the Mathematical Sciences Department, with research
interests in the area of workforce optimization.

Daniel P. Connors IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (dconnors@us.ibm.com). Dr. Connors received his B.S.E.
degree in electrical engineering from the University of Michigan in
1982, and his M.S. and Ph.D. degrees in electrical engineering from
the University of Illinois in 1984 and 1988, respectively. Since 1988,
he has been a Research Staff Member at the IBM Thomas J.
Watson Research Center. Dr. Connors has worked on modeling,
simulating, and designing business processes and developing
decision support tools for manufacturing and supply chain
logistics. He is a member of the Mathematical Sciences Department
at the Research Center, where he is currently working on
developing business processes and workforce management
optimization tools.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 Y. NAVEH ET AL.

279


