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/,bat.Qce: A progr3lll' 5 wo.king set is the collect.
ion of _pages (or segments) recently referenced.
This concept has led to efficient methods for mea­
suring a program's intrinsic memory dcmund; it has
assisted In understanding progrnm behavior; and it
has been used as the basis of optimal multiprogram.
~ed ~ry management. This paper outlines the ar_
gument why it is unlikely that anyone Will find a
cheaper nonlookahead memory policy that delivers
significantly better perfo~ce.

This papl!X' is
the arguments

based on a Longer ~aper that
In greater detail LDENN78d).

presents

and CPU scheduling is essential.. the prevailing
view was that the successful multilevel feedback
queue of the Compatible Time Sharing System (CISS)
would be used to feed Jobs into the multiprogramming
mix, ~ere they would then neatly be managed by an
appropriutc page-turning algorithm.

By mid 1967 I saw a solution of Saltzer's Prob­
lem __ using a balance~policy scheduler with work.
ing aet memory management. (See DENN6ga,b.) But
by that tima the conventional optimism had changed
to CirQ,lDlSpoction; nO one wanted to risk. IllY uncon_
ventional proposal which, by the standards of the
day, was elaborate.

The Beginning

In the summer of 1965 Project MAC at ~aT ting_
led '.lith the cxcltament of ~JlJLTICS. The basic spe­
cifications were complete. Papers for a special
sessLon at the Fall Joint Computer Conference had
been ~itten. Having read all available literacure
ern "ene-level stores". On "page.-turning algorithms",
On "lI,1tornatic folding", <IIId on "overlays", and hiIV.
Lng Just. completed a master's thesis on the perfor_
~ee of drum memory systems. I was eage. to can.
tribute to the dosign of the multiprogramrned mem­
ory lllBOliger of HlILTICS.

The circumspection had several sources. Fine.
Jackson, and MtIssac had shaken the early enthusiasm
..nth a pessimistic study of virtual memory when
applied to existing progr~ [FlNE66]. Belady's
famous study of programs on the M44/44X. computer
shOlled no clear "witmer" =g the leading conten~

ders Eor page replacement policies [SELA66]. Sal_
t%er knew from prali~nary studies of MULTICS that
performance could collapse on attempted avercommtt_
IIlCnt of lIIJl.1n memory; he used the tcrm "thrashing"

Jerry Saltzer characterized the ultimate objee­
t~ve of a multiprogr~d memory manager as an ad_
~ptive control that would alloc'lte memory and sche­
dule the central protessor (Cpu) in order to maxi_
mize performance. The resulting systelll could have
a.knob by which the operator tould occasionally
tune it. (See Figure '1.) .

SuCh a delightfully simple problem statement!
Qf coUrse we had no idea how to do this. In 1965,
exper.tence with paging algorithms was almosc nil.
No one knew wbidb of the contenders _. first_in_
first-out (FIPO), randOlll, eldest unused (as LRU
was eben called), or the Ferranti Atlas Computer's
l>oap Detector __ was the best. No one knel.l how to
wage paging in 1I 1IIl1tiprogralmll!d memory. Few
yet suspected chat strong coupling between memory

(1) This work supported in part by NSF Grancs
GJ_41289 and ~ICS78_01n9 at Purdue University.

7!GU:::': 1. .\!Jstr::ct re:-reScnt::cion
of 3;::lt~errs ~robl~~.
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The memory policies of interest here have a
control parameter 0 ~ich is used to r::rade paging
load against resident set size. For the working_set
policy (but not necessarily for others) l~rger val_
ues of 0 usually produce larger mean reSident set
sizes in return for longer mean interfault tillles.
(See FRJ.lna.)

QUeueing network lllDdels estimate r::he system's
throughput. Xo. the number of jobe per second being
completed. The throughput is proportional to the
utilizar::ion of the CPU, UO' Figure 3 illustrates a
typic~l CPU utiUzllr::ion curve as a function of II,
the lIllltiprosraDllins level 01PL). fOJ: a fixed size
main memory c0lll'rising P p~ges. The curve rises

This parameter is easily detenuined from the~
time curve. which gives the mean virtual t.ime bet_
ween page faults (the reciprocal of the pilging rar::e)
as a function of the mean size of the resident set
(the pagea loaded in main lIlCmory); see Figure 2.
Lifetime curves for individual pJ:ograms under given
memory policies are easy to measure.

L(:d

incre~sir.[; C
(sec tl!::d

seccnd~I'"j I:nl!!:

=:e~n ::esldcnt Set ~iz!:

L(::)

;':e~n

Ti"''',,_
tween
FaSe
[';Julr::s

(Life_
ti;;:o)

lIO>fever convincing lOrY ilr8'llllCnts might have been,
there were many who believed r::har:: usage bits were
all the hardware suppoJ:r:: for memory management that
could be afforded. My proposal was. for the time,
out of the question.

to de9criba this un~ectBd bBhRvior. Before tbey
would risk buildIng It, the daaigners of MULTICS
thus Ila:&lted hard evidence t.har:: my proposal would
be II "\linner" and would not t.hrasb.

But r::hara 1Ia& scant hope that I could collect
enough data and develop enough theo't'}' in time to
influence MULTICS. Recording and analyzing prog_
ram addresa t.races ...as tedious and expensive: the
" s r::ad< algorithml" [HA1'!70) for simplifying the
data reductions h~d not yet bean discovered. Mor&­
over. it was important to test programs developed
specifically for the virt.usl memory's environment:
Sayre and his colleagues hed found that significant
differences in program hehavior would ~esult if
progrmrmers att.llIl:'eted even 9impla achemes to illlo­
prove "locality" lSAYR69). Fell such pJ:DgJ:ams e.ds_
ted in 1967. Testing programs designed when local_
ity does nor:: matteJ: can lead to unduly pessimistic
conclusions __ e.g., the Hne et al study [FINE66).

The working set is usually defined as a col lee­
tion of recently referenced pages of a progr~'s

virtual ~ddresa space. Because it is specified in
the program's Virtual time. the \lorking set prov_
ides an intrinsic measurement of the program's~
ory demnnd __ i.e., a roe~sur~nt that is unpertur_
bed by any other progrnm in the system or by the
measurement procedure itself. Data collected from
independent.measurements of progrilmB can be recom­
bined within a system model in ordeJ: to estimate
the overall performance of the system subjected to
a given program load. It ...as not until 1976 that
the collective results of many rosearchers cont~in_

ed the data (on progrllJll behavior fOJ: various mem.­
ory policies) and the theory (on combining these

·data wit.h queueing network models of systeQS) to
allo~ a convincing argument that the working set
principle is indeed a cost_effective busis for =­
aging multlprogrlllmled ll\l!IlIory to within ~ fe'" per
cent of optillllm throughput __ a solution of Salt_
zer's Problem.

FIC!!:!::. 2. "r::}l'ical lileti,::.c cur'Jc"
This papeJ: outlines the history of the working

set c.oncept and the lessons it has t~ught about
designing a dispatcher for a multiprogJ:ammed vir_
tu~l memory syst~. (See DENN78d for the details.)
The c:cnclusion is that the "'orking_set dispatcher
is the. Illost cost_effective dispatcher knolrn; it is
unlikely th~t someone will discover a nonlookuhead
memory policy "'hoae cost is significantly lower
and perfo~nce significantly better.

1.0

C?'J
Uti 1 i.
z~tic:, r~!li.";;

S;Jr::ur::_
tiOll

Basic Performance Measures

QUeueing network ~dels ~re widely used ~a an_
alyr::ic tools for obtaining accurate estimates of
util~ations and throughputs of multiple resource
coreputer systems [DENN78c]. One of the parameters
needed in a queueing network medel of a roultLpro­
gramndng syst~ is the pagLng rate [DEh~75. OENN78a).

,: C' '·1

7IC~·:~~. '~ru llt;li.::;:r::;on cur":c.
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P/xo page-seconds.

If the system's throughput Is Xo jobs per sec­
ond over ~n obse~ation period of T seconds, then
XOT JObs arc completed. If the main memory has cap~
city P pages, there are PT page_seconds of main r.lCm­

orr space-time aVllilable. Therefore the me~ry
space_time per Job Is

toward CPU saturation, but is eventually depressed
by s.1t'uration of the paging device. The pOIsing de­
vice bound is given by the ratio LIs, where L is the
mellIl CPU execution time betlo'ecn page faults and S is
the mean page swap time. Note that L is a decreas_
irig fW1ction of I;. because larger HPLs imply less
space for each resident set; S is usually independ_
erit of tl. In many cases the NPL NI at which L::S is
Just slightly larger than the OptillllllIl :·IPL, NO. which
suggests that monitoring L could be II basis for a
IOlld controller.

Charaeteristics of Optimum MPL

The intuition of FIgure J ~_ that the optimum
~IPL is characterized by the relation L = as for some
constant a __ is crude. It fails when the systCQ is
1/0 bound or when the maximum lifetime L does not
exceed the page swap time S [DE~~76]. The optimum
MPL i5 actually associated with running each job at
its minil:Llm splice-time product, Io'hich is more diffi_
cult to achieve than L = as.

sr(x) E·x·(l + S'/L(x)).

To summarize: the objective of the IODd control_
ler 15 setting the ~ilIUm ~~L, M, near the turrent
optilllLllU. The opti1l1J1D MPL is achieved by minimizing
the spDce_tlme per program, which is strongly corre_
lated with the primary knee of the program's life­
time cu~e for the given ~ory policy.

w~ere E is the Job's execution time, S' is the mean
dblay per pllge fault (S' includes the queueing delay
and the page swop ti~ S), and L(x) is the program's
lifetime value. (This approximntion is nQt always
very accurate; it is neither consistently high nor
10.... and may be in error by as ~ch ,=,s 20'':; [GRAlI76].)
If 5' 1, large, sr(x) 15 minimized approximately when
the ratio x/Lex) is minimized, which occurs neDr
the primary knee of the Ufeti~ curve (Fig. 2).

To limit the sharp drop of CPU utilization un­
der Dn excossive NPL (thrashing), most operating
systems partirion the submitted Jobs inro the active
and in~ctive Jobs. Only the active jobs ~y h~
space in llIoilin memory and use the CPU or 1/0 devices.
(See Figure 4.) There is a TtlQXillUlIl limit, H, on the
size of the liPL. If the number of submitted jobs
at a given time does not exceed Ii, all are Dctive;
otherWise, the exeess are held, inDctive, in a me~

ory queue. The limiting effect of the memory queue
is sker.ched in Figure 5. (See COUR75.) Evidently,
i,I Ii t.ere set to 110. thrDshing could not occur and
die system Io'ould operate ot optilIUm throughput when_
ever a sufficient number of jobs is submitted. In
ptoctlce, the optimum load varios uith the workload;
hence :an adaptive control is needed to adjust N.
Setting Ii to the smallest possible value of NO is
usuDlly unsuitable~ the system Will be underloDded.

CPU
Utili_
~DtlCT.

,,,, , , ,

N'
subc.;it_
tee jobs



The tlorlcing Set Couo;ept

The term "Yorlc;ing set of information" origina.­
ted in the early i~lemcntations of ALGOL (cn. 1960)
~hcre it denoted the smallest set of instruction ~d

data words that should he in the main store in order
to keep the CPU efficieno;y atceptable. Successive
reflnaDBnts of this intuition hKYe helped us under_
stand hoW" to set il llli!mOry policy's o;ont:rol parame­
ter to achieve ~nimum spoce-time for eilch active
Job, the basis for optimal memory management.

In 1966 I suggested that a working set could
be measured by sampling (and resetting) haTUW"are
usage bits of pages every 0 virtual time units
[DENN66]. The resident set at II portitulal:' (vir_
tual) time would be the most recent sampled working
set p Ius .:my pages added by page faul ts. In cose
_of interruption, the resident set would be swapped
out in toto and reloaded as a unit prior to resump~

tion of the program. Sudh a policy has been impl~

lOBnted on a CP~67 systCltl [RODR7J] and on the Edin_
burgh ~~lti Access System (E~~) [.iD~175] where it
pet"forme.d ...ell.

In 1967 I suggested the moving window yorking
set as an abstraction of tbe sampling process. The
~ing set ri(t,C) is the set of pages (01:' segments)
referau;ed in the virtual timc interval [t_,*l.t].
looking backw'ard from (virtual) time t [DENN68a].
For t an integer multiple of C, this ...orking set is
the s mill!. as the sampled ...orking set. Under rhe 'lar_
king set memory policy (WS) a program's resident-set
at time t is just W(t,O).

In 1972 ~wrris reported the construction of
hardware fol:' thn MANIAC II c~uter to implement the
moving windOW working set [~IORR72]. This hardware
reQuires a ticer register and indentific~tion regis_
ter for each p~ge frame of main melllOry. A page
frume's ti~r is enilblcd only when the running Job's
index~number, stored in a CPU register. matches the
identification register. This scheme ensures that
the measurement is tOlken in the Job's virtual time..
Expired ticers IIlIlrk pages ....hich have left the work­
ing Set. ~rorr1s reported that this hardware. cost
less than $20 per page fr3IDl! in 1971.

4

Q.l
s(C) • :L roCk) [-= resident set she.]

1...=0

Then (s(O), l/m(C» is a point an the lifetime ~~.

of the WS policy for the llICasured pr0l;ralll.

In 1975, Slut~ and I generalized the working set
concept by introducing a "retention cost" function
that measures the (accu~lating) cost of nont"cfercnce
fol:' a page (or segment) kept resident; this cost is
reset to 0 Just after a I:'eference. The "lJenerali~ed

workins set" (GIIS) contains all p~ges (or sCpnts)
...hose retention cosc at til'lC t .does not exceed O.
Special cases of the GI,S (for proper choices of the
rll-tantion COSt) are the "stack illcorithms" for pas­
ing in fixed resident_set size [:rATT70, COFF7J], the
mQVin~ WindOW" working set. and the optimol policy
VIoJIN LPRIE76]. Any lllCIllOt""J policy whose resident sets
satisfy an inclusion property under increasing values
of the control parameter (0) is an LnstilDce of the
GIIS. lIll instilDces of the BIIS have a si~le proce_
dure for cillculatins points on the lifeti~ curvc __
sir.:li.lar to the one noted above but with hOd repla­
ced by the frequency distribution of retention cost~.

(See DENN7Sa,b for the. details.)

The moving window working set was first envis_
oged as a model of prosr~ behavior __ i.e., as ~
abstract description of the mechanisms by which pro­
gtarns de=d r.Jain II\ClIIOty space and create page s....np_
ping [DENU68a]. However, the working set lIlCasure.
llICnt procedure does not depend on assumntions ilbout
the interreference distribution h(k). for this
reason. working sets are regarded as models of a
larse class of rnc.mory policies; progr~~ models are
treated 05 a sepa>ate issue. Program behavior
IIIOdels ure discussed in DENN75, OENN78a,d.

Disnatchers fot" Hultipror.raun:e.d CQt:l[Iuter Systems

The purpose of the disp~tcher is to control the
scheduling of johs ~d allocation of moin memory so
that the througbl!ut foJ:' eoch Job_cl.nss (INS "per~

formano;e group" LDUZE78]) is r.IilXir.LIm. The dispatcher
contains three components, the scheduler, the memory
policy, ond the load controller.

Notice that the page referenced at time t is
absent froe the ...orking set, thereby causing a page
fault, if and only if the time since the prior refer_
ence to that page exceeds the windO" size C. This
property has been exploited to define 0 highly effi~

cient procedure which, in one pass ovec a program's
address trace, measures the mean resident set size
s(O) ~d the missing page rilte mea). A table is
kept of the ti~ of 1Il0st recent reference to each
page: on a ncw reference to that page the interval,
say k, since prior reference 1s calculated befol:'e
the table is updated for thaI: page; then a counter
c(k) is incremented. After all the program's refer_
ences are observed, the counters a>e normali~ed,

thereby defining the interrcfet"ence frequencl distri_
bution h(k). Then, as shown in COFF73, DENn 8b,
"'ii'E'ii'N"i1, EAST77, or SLUZ74,

m(C) ~ h(k)
k>O

[missing page rate]

The scheduler determines the corr,position of the.
active set of Jobs. It does this by actiViiting Jobs
(!:lOVing them frOM the memory queue into the activc
set __ see Figure 4) and setting a limit on the time
a Job may stoy .nctive. No~lly the next Job to be
activated is the one Il'ith highest priority =ng
~.hose waiting.

Th~ ~ory policy determines a resident set for
each active Job. fwo broad classes of IIlCmory poli_
cies are in usc. The globol policies partition the
memory among the active programs by observing the
aggregated behavior of them all; the .local policies
determine 0 separate resident sat for eatil progl:'~~

by observing that pJ:'ogram in its own virtual time
independently of the other proGr~. ~ore det.nils
about memory policies will be given in the next
section. !,otice thot a loco! policy "'ill necessarily
maintain a pool of ~ailoble p.nse frames __ I.e.,
those. not used by any active Job's resident set.
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The available evidence thu~ suggests that CLOCK
and LRU cannot perform as well as WS. This
is becauSe. these. global policies cannot ensure that
the block of memory allocated to a particular pro­
gram minimizes that program's space-time [DENN7S].
The main aetraction of CLOCK is its simple imple.
mentationj but this may not be justified owing to
its poorer perfo~ce.

Graham' 5 experim:mtal study showed that WS and
PFF are general comparable in performance and
considerably better than LRlJ [G~76, GRAH77]. WS
has a slight tendency co produce 10<ler space-time
minima than PFF, but the differences are ~thin

l~h. However, PFF may display anomalies for ce~_

tain programs __ i.e.., the lifetime or mean resi_
dent set size (or both) may decrease for increas_
ing ° [CRAH76, FRAN7S]. This is impossible With
WS. Moreove.r, the PIT perforruance is t::llc:h rr.ore
sensitive to the proper chOice. of parameter than
is I,TS performance [CRAlI76, CUP1'78].

where pet) is the page referenced at time t (and
found missing from the resident set). The idea is
to use the interfault interval as a working_set
<lindow. The parameter ° acts as a threshold to
guard againsc underestim<Jting the working sec in
case of a short interfault interval: if the inter_
val is tOO short, the resident set is augmented
by adding the faulting page pet). The usage bits,
which are reset at each page fault, are used to
dete~ne the resident set if the timer reveals
that the interfault interval excQeds the threshold.
Note that 1/0 can be interprcted as the maximum
tolerable frequency of page faults.

The WS policy is an example of a local policy.
In 1972. Chu and Opderbeck proposed another, the
page fault freqnency (PFF) policy, which was to be
an easily_implemented aLeernative to ~S [CWU12].
PFF is designed to rely only On hardware usage bits
and an interval timer. and it is invoked only at
page fault times; thus it is easily incorporated
into an existing operating system built on conven_
tional hardware. Let t' and e (t > t') denote
two successive (virtuai) times at which a page fauit
occurs in a given program; let R(t.O) denote the PFF
resident set just after tilllC t, given that the con_
trol parameter of PFF has value 0. Then

t_t' > °
othe.rwise{

Wet, t_t').

R(t' ,0) + pet)
R(t,O)

~other global policy is LRU (least recently
used). All the resident pages of all active jobs
ate Ordered as an LRU ·stack by decreasing recency of
u~e. At"a page fault time, the re.!!idcnt page far_
thest down the stock is chosen for replacement. Tho
CDC STAR-IOO c~uter uses this scheme.

The load cont~oller sets the limit M on the
rnultiprogramndnS level (~WL); idoally, M should be
the optimum ~O (see Figure 4). There are two kinds
of load-cOntroller corresponding to the t~o kinds of
memory policy. The global_feedback cOntroller ~
ploys some oggregoted measure of the 5wa~pln& d~d

to adjust Hi two successful methods arB lD£NN76]:

MClI:Ory Polich.!!

The pu~ose of this section is to describe four
common me~ory policie.!! __ two of the global type and
t ....o of the local tyPe.

One of the ~o.!!t common global policies is called
the CLOCK algorithm. On a page fault, a pointer is
cycled through rhe page frames of main memory. skip_
ping frame! whose usage bit is set (and resetting the~)

a~d selecting for replacement the first page whose
ullage bit is not set. (the tetlll "CLOCK" comes from
t~e il1llge of the pointer as the hand of a clock on
whose circumference ara the page frames.) This al_
Sbrithm is a variant of FIFO (first in first out),
it was under consideration for MULTICS in 1967
[DE!'IN68b), and it 1.9 used in at least one version of
CP_67 (1'10<1 VM/J70) [BARD75]. (See also EAST76.)

The motivation for the 1;=15 control was discussed in
canneCl:lon <11th Figure 3. The motivat.ion for the
5~ control is that 50? utilization corresponds to
mean queue length of 1 p<lging request, the onsct of
thrashing [OENN76). The second tyPe of controller,
t:,he. IDCB1~feedb:lI:k controller, operates according to
the. size of the pool of available page frames. The
Highest priority job in the memory queue. is activa­
t"ed a.!! soon as the pool is sufficient to contain tha
job's working set.

50'/. control. Allow H to rise as high 05 demand
wurrnnts 50 long as the observed utilization of
the paging device does not exceed 507••

1;=S control. AllIN Ii to riae as high as demand
warrants 50 long as the observed lIIl!an CPU time
between page faults In tbe system (L) is never
~11er thnn the mean poge swap tima (5).

There is. unfortunately, little published per_
formance data on CLOCK and global LRU obtained from
r~al systems in operotion. Bard reporced some data
on CLOCK in a CP_67 [BARD7S] but did not compare 41th
o~her policies. An urly stl,ldy in MllLTICS suggested
that CLOCK might be some~hat better than global LRU
[~ORB69]. From Beiady's data on single pr08r~,
on·e may deduce that CLOCK and LRlJ give similar per_
fottDaT\.ce [BELA66]. From Graham's data on single
pt"ograns, one may deduce that LRU is significantly
worse. th,m WS [CRA1l76]. El<per1ence OIith a CP_67
[ROD~7J] and the E~~ [AD~~75, POTl77] suggests fur_
tner eban replacing a global policy OIith a WS policy
can improve performance significantly.

1 ' •.

Controllability of M~ory Policies

Since giobal memory policies make no distinccions
among programs, their load controls (e.g., the
"[;:$ control" or the "S0'4 control") have no dynami_
cally adjustable par~acersj but these controls
cannot ensure that esch accive program is alloca­
ted a space-time minimizing resident set. Local
me.mory policies, such as WS and PfF, offer a much
finer level of control and ara capable of much
better performance. than global policies, However,
these policies also present the problem of selec­
ting a proper value of the control p~r~meter 0,
for each active program. The question of sensi_
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tivity to the cgntrol parameter setting is of cen_
traL ~ortante.

tuned WS or PFF policy will perform significantly
better than either CLOCK or global LRU.

At one extreme, we can design the policy ao chat
liach program is assigned a value of 0 that minimi~e5

its resident sec's apace_time product -_ bu.t this
may beat the cost of a bigh ove>;head in the alechan_
ism that monitors each program and assigns the pro.
per O. At the othel:' extreme, ....e Carl design the
policy to use one gLohal 0 for all programs. thereby
eliminating the overhead of Q.detection __ but this
may be at the cost of operating same programs far
frOlll their space-ti_ minima and, hence at the risk
of thrashing.

Graham performed some experiments with a sample
of 8 programs. These experiments aimed to determine
the sensitivity of VS and PFF to the control para­
meter [G~}JI77]. Two questions \.I'cre asked:

A final question is: Do !::here exist memory poli.
cies that perform significantly better than properly
tuned ws or PFF ~thout costing significantly more?
No one has found such a policy. If one compares the
behnvior of WS and the optimal policy, ~N, one
finds that a) WS and VMIN produce the same page fault
sequence for given 0, and b) the lower Vll1N resident
set size is caused by Vll1N's abilil::y to anticipate
the end of a current program. phase and remove unnee_
ded pages from ~esidence. A careful anulyais of
these facts, which is beyond the scope of this paper,
leads to the conclusion thac nO one is likely to find
a nonlookahead memory policy significantly better
than liS. (See DENN78a,d.)

Conclusion
1. For the given sample and a given value of p,

what is a minimal set of O-values 50 that ea~

p~og~amls space-time is within p% of minimum
fo~ at least one of these O-values? (Tho size
of this minimal set represents the least nu~
ber of choices that a o-detector must make for
a given program to achieve system throughput
no worse than p% from optimum.)

2. If one best global o-value is used for all pro.
grams in the sample, what is the largest differ.
mce from minilll.lm space_time that must be tol.
erated?

Graham found these sizes of the minimal sets of
O.values:

The votking set dispatcher is the solution of
Saltzer's Problem.

This conclusion is not speculution. ExperilllCnl::s
with real programs have revealed that the vorking set
policy 15 the lllOst likely, among (nonlookahelld) poli_
cies, to generate minilP.lm space-time for any given
program; and that one p~operly ebosen l::ontrol para­
meter value is sufficient to cause any program's
working_set space-time to be within 1~~ of the mini_
mum possible space-l::ime for that program. Uorking
set dispatebers aut~tically control tho level of
1l1.l1tiprogrmlllIling 'lhile maintaining near_minill:LLm
space-time for each program. Working set detecting
hardware can be built cheaply.

He also found these as the maximum tolerances that
must be tolerated when one O.value is used:

Working set dispatchers have been bullt in real
operating ~yst~ vhere they have been cost.effective
even ~thout IlIJch hard....are support. Rodriguez_Rosell
reported a succe,sful implementation for a cp_67
system [RODR73]. Potier reports that in E~~ a
vorking set dispatcher increased the time l::he mach.
ine spent in user state by 1~~. decreased supervisor
overhead, and inc~eased the utilizatiOn of the s....ap_
ping channel [POTI7'].

Hr!. 5%

1 2

3 4
"' (8 progrl1lllS in

PFF the sample.)

"'
PFF

The conclusion from this study is that, for the
glven sample of progr~, the WS policy could be run
'..:ith a single, global .Q..value (0 <:J 73,000 references)
and vCI.Ild deliver throughput no worse than 10'/. from
optimum. For comparable performance. PFF would need
a dyn;cf,c o-detector cllpable of distinguishing among
3 candidate values of 0. The performance of PfF is
therefore much more sensitive to .Q than is the pe~_

formance of WS. (A similar conelusion has bean
reached by Gupta =d Franklin [GUPT78].)

Assuming l::hat similar characteristics are re­
producible for o!::her typical vorkloads, it appears
that the o-detector needed to run PFF ~th perfo~_

mance similar to a single-Q WS makes a multiprogr~

mad PFF at least as expensive to lmplement as a mul.
tiprogr~dWS. It also appea~s that a prope~ly

Non_working_set dispatehe~s require additional
mechanism, either for selel::ting a memory policy
par~ter suitable for each program, or for a
global_feedbaCk load control. It is a false econo­
my to limit the hardware support for memory manage­
ment to usage bits and interval timers, for the suv_
ings in hardware are cancelled by perfo~ce losses
(relative to the working set dispatcher) or by addi_
tional mechaniSm elsewhere in the operating system.
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