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WGRKING SETS TCDAY

(1)

Pater J. Denning

Compucer Sciences Department
Purdve University
West Lafayerce, IN 47907

Abstract: A program's working set is the collect-
ion of pages (or scpments) recently refercnced.
This concept has led Lo efficient methods for meoa-
suring a program's intrinsic memory demand; it has
assisted In understanding pregram behavior; and ic
has been used as the basis of optimal multiprogram-
ped momory mansgement. This paper outlines the ar-
gument why it i{s unlikely that anyone will find a
cheaper nonlockahead memory policy that delivers
significantly better performance., ’

This pap-er is based on a longer paper that presents
the arguments i{n greater detafl EDEN’N?BdJ.

The Beginnlng

In the summer of 1965 Project MAC at MIT ting-
led wich the excitement of MJLTICS. The basic spe-
cifications were complete. Papers for z special
aesslon at the Fall Joint Gomputer Conference had
been wricten. Having read all available literacure
qn "meslevel stores', on "page~turning algorithms"”,
on "mtomatic folding'', and on "overlays", and have
Ing just completed a mascer's thesis on the perfor-
gance of drum memory systems, I was eager Lo con-
tribute to the dosign of the mltiprogrammed mem-
oéry manager of MULTICS,

Jerry Saltzer characterlzed the ultimate objec-
tive of a multiprogrammed memory manager a3 an ad=
dptive ecmtyol that would allocate memory and sche-
dule che central processor (CPU) in order to maxi-
wmize performance. The resulting system could have
a knob by which the operator could occasionally
tune it. {See Figure 1,) )

Such a delightfully simple problem statemont|
Of coursa we had no idea how to do this. In 1965,
experience with paging algorithms was almosc nil.
Ne one knew which of the contenders -. first-in-
first-out (FIFO), random, eldest unused (as LRU
was then called), or the Ferranti Atlas Computer's
Loop Detector -- was the best. HNo one knew how to
manage paglng in a multiprogrammed memory. Few
yet suspected chat strong coupling betWeen memory

{1) This work supported in part by NSF Grancs
GJ-41289 and MCS578-01729 at Purdue University.
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and CPU scheduling is esscntial -~ the prevailing
view was that the successful mulrilevel feedback
queue of the Compatible Time Sharing System (CTSS)
Wwould be used to feed jobs into the multiprogramming
mix, where they would then neatly be managed by zn
appropriate page=turning algerithm.

By mid 1967 I saw a solution of Saltzer's Prob-
lem -~ using a balance.policy scheduler with worke
ing set memory management. (See DENN68a,b.) But
by that tima the conventional cptimism had changed
to ¢ircumspoction; no one Wanted to risk my uncom-
ventional proposal which, by the standards of the
day, was elaborate.

The circumspection had several sources, Fine,
Jackson, and HcIssac had shaken the early anthusiasm
with & pegsimistic study of virtual memory when
applied to existing programs [FINEG6]. Belady's
famous study of programs on the H&44/44X computer
shoved no clear "winner' among the leading contenw
ders for page replacement policies [BELA66]. 5al-
tzer knew Erom preliminary studies of MULTICS that
performance could collapse on attempted overcommit-
ment of maln memory; he used the term "thrashing"

TIGULZ 1., Absrraet re~cesentaticon
of Zzltzer's Jroblen.




to deacribe this unexpected behavior., Before they
vould risk building it, the designers of MILTICS
thus wanted hard evidence thac my propesal would
be a "winner’ and would not thrash.

But chete was scant hope thet I could collect
enough data and develop enough theory in time to
influence MJLTICS. Recording and analyzing prog-
ram address traces was tedious and expensive: the
Nscack algorithma {MATT70] for simplifying tha
data reducktions had not yet been discovered. Hore-
over, it was important to test programs developed
specifically for the virtual memory's environment:
Sayre and his colleagues had found that significant
differences in program behavior would resulc if
progrommers attampted even simple achemes to im-
prove "locnlicy:mESﬁ!R69]. Few such programs exisa
ted in 1967. Tescing programs designed when lecal-
ity does not matter can lead to unduly pessimisecic
conclusions - e.g., the Fine et al study [FINEG66].

Nowever convincing my arguments might have been,
thera were many who believed thac usage bits were
all the hardware supperc Eor memory management that
could be afforded. My proposal wag, For the tims,
out of the question.

The working set is usually defined as a collec-
tion of reccently referenced pages of a program's
virtual address space. Because it 1a specified in
the program!s virtual time, the working set prov-
ides an intrinsic measurement of the program's mem-
ory demand -- L.eey 2 measurement that is unpertur-
bed by any other progrom in the system or by the
measurement procedure itself. Data collected from
tndependent measurements of programs can be Tecom-
bined within a system model in erder to estimate
the overall performance of the system subjected to
o glven program load. It was noet until 1976 that
the collective results of many rasearchers comtaine
ed the daca {on program behavior for various mem-
oty policies)} and the theory (on cowbining these
data with gueucing network wodels of systems) to
allew a convincing argument that the working set
principle is indeed a cost-effective basis for man.
aging multiprogrammed memory te within a few per
cent of optimum throughput -- a solution of Salt-
zer's Problem.

. This paper outlines the history of the working
set concept and the leasoms it has taught abour
designing a dispatcher for a multiprogrammed vir-
tual memory system. (See DENN78d for the details.)
The conclusion is that the working-set dispatcher
is the most cost-effective dispatcher known; it is
unlikely that someone will discover a nonlookahead
memory policy whose cost is significantly lower
and performance significantly better.

Baglic Performance Measures

(ueueing network models arec widely used as an-
alycic tools for obtalning accurate estimares of
utilizations and throughputs of multiple rescurce
comrputer systems [DENN?BCJ. Cne of the parameters
needed in 3 queuelng network madel of a multlipro-
gramming system s the paging rate [DEwN75, DENNTSa].

This parameter is easily determined from the life-
time curve, which gives the mean virtual time bet-
ween page faults (the reciprocal of the paging race)
as a function of the mean size of the resident set
(the pages loaded in main memory); see Figure 2.
Lifetime curves for individual programs under given
memory policies are casy Co measure.

The memory policies of interest here have a
control parameter © which is used to crade paging

load against resident set size. For the working-aset
poliey (but not necessarily for others) larger val-
uves of Q@ usvally produce larger mean resident set
sizes in return for longer mean Iincerfault times.
{See TRANTE,)

Queusing network models estimate che system's
throughput, X, the number of jobs per second being
completed. The throughpur is preportiocnal to the
utilizacion of the CPU, Ug. Figure 3 illustrates a
typical CPU ucilizacion curve as a functlion of N,
the multiprogramuming level (lPL), for a fixed size
maln memory comprising P pages. The curve rises
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toward CPFU saturaktion, but 1s cventually depressed
by saturation of the paging device. The paping de-
vice bound 15 given by the ratio L/S, where L 1is the
mean CPU exgeution time hetween page faults and 5 is
the mean page swap time. HNote that L is a decreas-
lrg funetion of U, because larger MPLs imply less
space for cach resident set; 5 is usually Independ-
ent of Ho In many cases the MPL Ny at which L=5 i3
Just slighetly larger than the optimum MPL, Mg, which
suggests that monitoring L could be a basis for a
load controller.

Choracteriscics of Cptimum MPL

The intuirtion of Flgure 3 -~ that the cptimum
HPL is characterized by the relation L = aS for some
congtmt 8 -- Ls crude. It Fails vhen the system 15
1/0 bound or when the maximum lifetime L does not
c¥ceed the page swap time S [DENN76]. The optimum
HPL 1s actually associated with running eack job at
1€s minirum space-time product, which is more diffi-
colt te ad'u'.eve than L = aS,

If the syatem's throughput s Xg jobs per sece-
ofid over an observatlon peried of T seconds, then
XpT Jobs are completed. IE the main memory has capa-
l:ir.:.r F pages, there are PT page-seconds of main mem-
ory space-time avallable, Therefere Lhe memory
space-time per job Ls

ST = PI/fXgT = PfXy page-geconds,

If follews that the optimum }MPL, Ng, maximizes thrnugh-
put and minimizes memory space-time per job.

. i approximation for the space-time of a job
whose mean resident set size Is x pages 1s

ST(x) = E-x-(1+ 5'/L(x)),

wﬁerc E i3 the Job's execution time, 5' is the mean
délay per page fault (ST includes che queueing delay
and the page swop time S), and L(x) is the program's
H{Fetime value, {This approwimation ig net always
very accurate; it is neither consistently high nox
low ard may be in errar by as much as 20% [GRA]i?&] )
IE St i3 large, ST(x) L3 minimized approximately when
the racto x/L(x) is minimized, which occurs near

the primacy knee of che !.iEetimc curve (Fig. 2).

To limit the sharp drop of CPU utilization une
dér an excassive MPL {thrashing), most operating
systems partition the submitted jobs inte the active
and inactive Jobs. Only the active jobs may hold
sﬁace in main memory and use the CRJ or I1/0 devicesa,
(Sce Figure 4.) There {s o maxioum limit, M, om the
size of the MPL. 1f the number of submitted johs
at a given time does nok exceed M, all are active;
otherwise, the excess are held, inactive, in a merm-
o‘ry quene, The limlting cffect of the memory queue
14 sketched in Figure 5, {See COUR7S,)} Evidently,
:I.E H 'Bere set to tg, thrashing could net cccur and
the system would operate at optimm chroughput when-
ever a sufficient number of jobs ia submitted. In
practfca, the optimum load varies with the workload;
hénce an adaptive control is needed to adjusc M.
SBtrting Y to the smallest possible value of Np is
usually unsuitable: the system will be underleoaded.
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To summarize: the objective of the lead control-
ler is serting the maximum MPL, M, near the current
optimum, The optimum MPL is achieved by minimizing
the space-time per program, which is strongly corre-
lated with the primary knee of the program’s iifca
time curve for the given memory palicy.



The Working Set Comcept

The term "working set of informacion" origina-
ted in the early igplementacions of ALGOL (ca. 1960)
where Lt denoted the smallest set of instruction and
data words that should be in the main stoere in order
to keep the CPU efficliency acceptable. BSuccessive
refinevents of this intuitien have helped us under-
stand how to set a memory policy's comtrel parame-
- ter to achleve minimum space-time for each active
Job,y the basis for optimal memery munagement.

In 1966 I suggested that a working set could
be measured by sampling (and resetting) hardwara
ysage bits of pages every O virtual time units
[DEMN66]. The resident set at o particular {(vir
tual} cime would be the most recent sampled working
set plus any pages added by page faults. In case
-of interruption, the resident set would be swapped
out in toto and reloaded as a umit prior to resump-
tion of the program. Such a policy has been imple-
mented on a CP-67 system [RODR73] and on the Edin-
burgh Multi Access System (EMAS) [ADAM?S] where it
performed well,

In 1967 I suggested the moving window working
sot as an abstraction of the sampling pracess. The
working set W(t,0) 1s the set of pages (or segments)
refermecad in the virtual time incerval [t-o41,t],
looking backward from (virtual) time t [DEHN6Ba].
For t an integer milciple of Q, this working sec 1s
the same as the sampled working set. Under the HWor-
king set memory policy (WS) a program's residenc set
at tioe £ L5 just W(c,d).

In 1972 Morxlg reported the construction of
hardwars For the HAMIAC IT computer t¢ implement the
moving window working set [MoRR72]. This hardware
reguires a timer register and indentification vegis-
ter for each page frame of main memory. A page
frame's tirer is cnabled only when the running Job's
index~number, stored in a CPU register, matches the
identification veglster. This scheme ensures that
the measurement 1s taken in the Job's virtual cima.
Expired timers marlk pages which have laft the work-
ing set. Morris reported that this hardware cost
less than 520 per page frame in 1971.

Kotlce chat the page refarenced at time k is
absent from the working set, thereby causing a page
Fault, if and only 1f the time since the prior refer-
ence to that page exceeds the window size Q. This
property has been exploited to define a highly effi-
clent pracedure which, in ome pass over a progran's
address trace, measures Cthe mean resident set size
s(0) and the missing page rate m{@). A cable 15
kept of the time of most recert reference to each
page; on 2 new reference te that page the incervai,
say k, since prior reference is calculated before
the table is updated Eor that page; then a councer
c(k} is incremented. After all the program's refer-
ences are cbserved, the counters are normalized,
thereby defining the interceference Ercquency distri-
bution h{k). Then, as shown in COFF 73, DENNEBb,

DEIN7 2, EAST77, or SLUZ74,

m(Q) = :E: h(lk) [missing page ra:c]
0

Cal
s(0) = > m(k) [mean residenc sec size)
=0

Then {s{@), 1/m{0)) 1s a point on the lifetime curve
of the WS policy for the measured program.

In 1975, Slutz and I generalized the working set
concept by introducing a "retention cest!" funcrion
that measures che (accurulating) cost of nonreference
Eor a page {or segment) kept resident; this cost is
reset to O just afcer a reference, The "generalized
working set” (GWS) contains all pages (or segmencs)
vhose retenkion cost at time t.does not exceed O,
Special cases of the GWS (for proper choices of the
retention cost) are che "stack algerithms' for pag-
ing in fixed resident-set size [HAIT?O, COFF73], the
moving window working set, and the optimal policy
VMIH EPRIET&]. Any memory policy whose resident sets
satisfy an inclusion preperty under increasing values
of the control parameter (@) i3 an Instance of the
GWS. ALl instances of the BWS have 2 simple proce-
dure for calculating points on the lifetime curve --
sinilar £o cthe one nocted above bur with h{k) repla-
ced by the frequency distribution of retencion coests.
{See DENN7S8a,b for the details.)

The moving window working set was first envise
aged as a model of program behavior -- i.¢., as an
abatract description of the mechanisms by which pro-

fams demand nmain memory space and create page swap-
ping [DENNG6Ba]. llowever, the working set measures
ment procedure does not depend on assumncions about
the interreference distribution h{k). For this
reason, working sets are regarded as models of a
large class of memory policles; program models are
treated as a separate f{ssue. Program behavior
models are discussed in DENN?5, DENN78a,d.

Dispatchera for Multinropramrad Cemputer Systems

The purpose of the dispaccher 1s to control the -
scheduling ef jebs and allocation of main memory sco
that the throughput for_eanch job-claas (VS "pers
formmce group” EBUZE?&]) is maxirmum, The dispaceher
contains three components, the scheduler, the memory
policy, and the lead controller,

The scheduler determines the compositcion of the
active set of jobs., It does this by activacing jobs
(meving them from the memory queue into the accive
set -- see Figure &) and setting a limit on the rime
a Job may stay active. Normally the next job to be
activated 1s che ¢ne with highest priority among
those waiting.

The memory policy determines a resident set for
each active job. Two broad classes of memory poli-
cies are In uvae. The global pelicies partition the
memory ameng the active preograms by observing the
aggregated behavier of them all; the local pelicies
determine a separate resident set for each program
by cobserving that program in itcs owm virtuval time
independently of che other programs, More detalls
about memory policies will be given in the next
sectien. liocice that a local poliey will necessarily
maintain a peel of avallable page frames -- L.e.,
these not used by any activae jobls rasident sct.



The lond contrxaller sets the limit ¥ on che
mltiprogramming level (MPL); idaally, M should be
the optimum Hg (see Figure 4). There are two kinds
of load-controeller corresponding Lo the two kinds of
memory policy, The glebal-feedback concroller em-
ploys some aggregated measura of the swapping demand
to ad juat M; two successful methods ara EDENN?G]:

=5 control, Allow MY to rlze as high as demand
warrants so long ac the obsarved mean CPU time

botween page faults in the system {L) is never

smaller than the mear page swap tima (5},

504 control. Allow M to rise as high as demand
warrants 3o long as the observed utilizacion of
the paging devica does not exceed 507%.

. The motivacion for the I=5 centrol was discussed in
connection with Figure 3, The motivation for the
0% control is that 50% utilization corresponds to
mean queue length of 1 paging request, the ondet of
thrashing [DENN?&]. The second type of controller,
the 1ocal.féedback contreller, cperates according to
the size of the pool of available page frames. The
Highest priority job in the memory queue is activa-
ted as soon as the pool i3 sufficient to contain the
Jjob's working set,

Merery Policies

- The purpose of this section ia to describe four
comon memory policles -- two of the global type and
two of the local type.

One of the moat commom global policies is called
the CLOCK algorithm. On a page fault, a polnter is
cycled through the page frames of main memory, skip-
ping frames vhose usage bit i3 set (and resetting them)
and selecting for replacement the Eirst page whoae
ugage bit is not set. (The term "CLOCK" comez from
the image of the peinter as the hand of a clock on
whose circumference are the page Erames.) This al-
gorithm 13 a variant of FIFO {first in Firsc out);
it vas under consideration for MULTICS in 1967
[ﬁENN&&b], and it 13 used in at least one version of
CP-67 (now VH/370) [BARD75]. (See also EAST76,)

Another global policy is LRU {least recently
used). All the Tesident pages of all active jobs
ate ordered as an LI stack by decreasing recency of
ude. Ar'a page Fault time, the resident page far-
thest down the stack is chosen for replacement., Tha
CDC STAR-10C computer uses this schema.

There 18, unfortunately, Little published per-
Eqrmancé data on CLOCK and glebal LRU obtained from
teal systems in operation. Bard reported some data
on CLOCK in a CP-67 [BARD75] but did not compare with
other policies. An eerly study in MILTICS suggeated
that CLOCK might be somewhat better than global LRU
[¢orB69]. From Belady's data on single programs,
one may deduce that CLOCK and LRY give similar per-
formance [(BELA66]. From Graham's data on single
programs, one may deduce that LRU is significantly
worsa than W5 [GRAU76]. Experience with a CP-67
[RoDR73] and che EMAS [ADAMTS, POT177) suggests Fur-
ther than replacing a global pelicy with a WS policy
can lmprove performance significantly.

1 e

The available evidence thus suggests thac GLOCK
and LRV cannct perform as well as W5. This
iz because these global policles cannat ensure that
the block of memery allocated te a particular pro-
gram minimizes that program!s space-time [DEBN75],
The main attraction of CLOCK is its simple imple.
mentation; but thi{s may not be justified owing ro
its poorer performance.

The WS policy is an example of a local policy,
In 1972, Chu and Opderbeck proposed another, the
page fault Erequency (PFF) policy, which was to be
an easily-implemented alternative to WS [cwyu72].
FFF is designed to tely only on hardware usage bits
and an interval timer, and it is ifnvoked enly at
page Faulet clmes; thus it is easily incorporated
into an existing cperating system built on convena
tional hardware, Let t' and ¢t (c > t') denote
two successive {virtual) times at which a page Ffault
occurs In a glven program; let R(t,0) denote the PFF
resident ser just after cime t, given thac the con-
trol parameter of PFT has value @. Then

Wit, t-g'), t-t' > 0
R(t,0} =
R(E',Q) + p(t) otherwise

where p{t) is the page referenced act time t (and
found missing from the resident set). The idea is
to use the interfault interval as a working-set
window. The paramster O acts as a threshold to
guard against underestimacing che working sec in
case of a short interfault Lnterval: if the inter-
val is coo short, che resident sec is augmentad

by adding cthe faulting page p{t). The usage bita,
Wwhich are reset at each page fault, are used to
determine the resident set 1F the timer reveals
that the interfault interval excaeds the threshold.
Note that L/0 con be interpreted as the maximum
tolerable frequency of page Faulcs.

Graham's experimental study showad that WS and
PFF are general comparable in performance and
considerably better than LAU [GRaM76, GRAH7?]. WS
has a slight tendency co produce lower space-time
minima than PFF, but the differences are within
10%. However, PFF may display anomalies for cer-
tain programs -- i.e., the lifetime or mean resi-
dent set size (or both} may decrease for increas-
ing O [GRaN76, FRAN7S], This is impossible with
WS. Woreover, the PFFT performance Ls much more
sensitive co the proper cholce of parameter than
is WS performance [GRAL76, cuPr78].

Controllability of Memory Policies

Since global memory pellcies meke no distinctions
ampng programs, their load controls (e.g., the
"I=5 concrol" or the "50% centrol™) have no dynami-
cally adjustable parameters; but these controls
cannot ensure that each active program is alleca-
Led a space-time minimizing resident set. Local
menory pelicles, such as WS and PFF, offer a mich
finer Level of control and are capable of mich
better performance than global policies, However,
these policlies also present the problem of selec-
ting & proper value of the control parameter 3,
for cach acrive program. The question of sensi-




tivity to the contrel parameter secting is of cen-
tral importance.

At one extreme, We can design the policy so that
each program is assigned a value of O that minimizes
its resident set®s space-time product -- but this
may be at the cost of a high overhead in the mechan-
ism that monitors each program and assigns the pro-
per @. At the other extreme, we can desaign the
policy to use one glebal © Eor all programs, thereby
eliminating the overhead of Qedetection -- but this
may be at the cost of operacing some programs far
from their space-time minima and, hence at the risk
of thrashing.

Graham performaed some experiments with a sample
of 8 programs. These experiments aimed to determine
the sensircivity of WS agnd PFF te the control para-
meter [GRAH77]. Two gquestions were asked:

1. For the glven sample and a given value of p,
what {5 2 minfmal sec of O-values 5o that each
program's space-time is within p% of minimum
for at least one of these Cuvalues? {(The size
of this minimal set represents the least num-
ber of choices that a Dadetactor must make for
a glven program to achieve system throughput
no worse than p¥% from optimum.)

2, If one best global G-value 15 used for all pro.
grams in the sample, what is the largesc differ-
ence from minicum space-time that must be tol-
erated?

Graham found these sizes of the minimal sets of
Q-values:
P

10, 5%

WS 1 2
(8 programs in
PEF 3 4 the sample.}

He also found these as the maxioum tolerances thatc
must be tolerated when one Q-value {5 used:

minimin
WS 107
PFF 5

The comclusion from this study is thac, for the
given sample of programs, the WS policy could be run
with a single, global Q@-value (@ = 73,000 references)
and would deliver throughput no worse than 10% from
optimum, For comparable performance, FFF would need
a dynazic O-detector capable of distinguishing among
3 candidate values of O. The performance of FIF 1s
therefore much more sensitive to O than is the per-
formance of WS. (A similar conglusicn has been
reached by Gupta and Franklin [GUPT78].)

Assuming chat similar characteristics are re-
producible for other typlcal workloads, it appears
that the P=detector neaded to run FFF with perfor-
mance gimilar to a single-@ WS mekes a multiprograme
med PFF at least as expensive to implement as a mule
tiprogramned W5. It also appears that a preperly

tuned Y5 or FFF policy will perform significently
becter than eirher CLOCK or global LRU.

A Final question is: Do there existc memory poli-
cles that perform significancly becter than properly
tuned WS or PFF without costing significantly more?
No one has found such a policy. If one compares the
behavior of WS and the optimal policy, VMIN, ome
finds chat a) H5 and YMIN produce the same page fault
sequence for given ©, and b) the Lower VMIN residenc
set size L5 caused by VMIN's abilicy te anticipate
the end of a current program phase and remove unnee-
ded pages from residence. 4 careful analysis of
theee faets, which Ls beyond the scope of chis paper,
leads to the coenclusion thae no one is likely to find
a nonlockahead memory policy signlficantly better
than WS. (See DENN7Ba,d.)

Lonclusion

The working set dispatcher is the solution of
Saltzer's Problem.

This conclusion is not speculation. Experimenca
uicth real programs have revealed that the working set
policy s the most likely, among {(monlockahead) poli-
cles, to generate minimum space-time for any glven
program; and thac one properly chosen control para-
meter value 1s sufficient to cawse any program's
working-set spacestime Lo be within 10% of the mini-
mm possible space-cime for that program. Working
set dispatchers automatically control the level of
oultiprograming while maintaining near-minimum
space~time For cach program. Working ser detecting
hardware can be bullk cheaply. ’

Working set dispatchers have been bullt in real
operating systems where they have been cost-effective
even without much hardware gupport. Rodriguez-Rosell
reported a successful implementation for a CP-67
system [ropr73]. Porier reports that in EMAS a
working set dispaccher increased the time che mach-
ine spent In user state by 10%, decreased supervisor )
overhead, and Inereased the utlllzation of the swap- i
ping channel [POTI?7].

Hon-working-set dispatchers require additional
mechanism, either for selecting a memory policy
parvameter suitable for each program, or Eor a
global-feedback load control. It Is a false eccono-.
my to limir the hardware suppert for mamory manages
ment to usage bits mnd interval timers, for the sav-
ings in hardware are cancelled by performance losaes
(relative to the working set digpatcher) or by addi-
tional mechanism elsewkere In the operating system. |
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