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Working with Multilabel Datasets in R:

The mldr Package
by Francisco Charte and David Charte

Abstract Most classification algorithms deal with datasets which have a set of input features, the
variables to be used as predictors, and only one output class, the variable to be predicted. However,
in late years many scenarios in which the classifier has to work with several outputs have come to
life. Automatic labeling of text documents, image annotation or protein classification are among
them. Multilabel datasets are the product of these new needs, and they have many specific traits.
The mldr package allows the user to load datasets of this kind, obtain their characteristics, produce
specialized plots, and manipulate them. The goal is to provide the exploratory tools needed to analyze
multilabel datasets, as well as the transformation and manipulation functions that will make possible
to apply binary and multiclass classification models to this data or the development of new multilabel
classifiers. Thanks to its integrated user interface, the exploratory functions will be available even to
non-specialized R users.

Introduction

Pattern classification is an important task nowadays and is in use everywhere, from our e-mail client,
which is able to separate spam from legit messages, to credit institutions, that rely on it to detect fraud
and grant or deny loans. All these cases operate with binary datasets, since a message is either spam
or legit, and multiclass datasets, the loan is safe, medium, risky or highly risky, for instance. In both
cases the user expects only one output.

The huge growth of the amount of information stored in late years on the web, such as blog posts,
pictures taken from cameras and phones, videos hosted on YouTube, and messages on social networks,
has led to more complex classification work. A blog post can be classified into several non-exclusive
categories, for instance news, economy and politics simultaneously. A picture can be assigned a set of
labels, such as landscape, sky and forest. A video can be labeled into several music genres at once, etc.
All of these are examples of problems in need of multilabel classification.

Binary and multiclass datasets can be managed in R by using data frames. Usually the last attribute
(column of the “data.frame”) is the output class, which might contain only TRUE/FALSE values or values
belonging to a finite set (a factor). Multilabel datasets (MLDs) can also be stored in an R “data.frame”,
but an additional structure to know which attributes are output labels is needed. Moreover, this kind
of datasets have many specific characteristics that do not exist in the traditional ones. The average
number of labels per instance, the imbalance ratio for each label, the number of labelsets (sets of labels
assigned to each row) and their frequencies, and the level of concurrence among imbalanced labels are
some of the traits that differentiate an MLD from the others.

Until now, most of the software to work with MLDs has been written in Java. The two best known
frameworks are MULAN (Tsoumakas et al., 2011) and MEKA (Read and Reutemann, 2012). Both
implementations rely on WEKA (Hall et al., 2009), which offers a large variety of binary and multiclass
classifiers, as well as functions needed to deal with ARFF (Attribute-Relation File Format) files. Most
of the existing MLDs are stored in ARFF format. MULAN and MEKA provide the specialized tools
needed to deal with multilabel ARFFs, and the infrastructure to build multilabel classifiers (MLCs).
Although R can access WEKA functionality through the RWeka (Hornik et al., 2009) package, handling
MLDs is far from an easy task in R. This has been the main motivation behind the development of the
mldr package. To the best of our knowledge, mldr is the first R package aimed to ease the work with
multilabel data.

The mldr package aims to provide the user with the functions needed to perform exploratory
analysis of MLDs, determining their main traits both statistically and visually. Moreover, it also brings
the proper tools to manipulate this kind of datasets, including the application of the most common
transformation methods, BR (Binary Relevance) and LP (Label Powerset), that will be described in the
following section. These would be the foundation for processing MLDs with traditional classifiers, as
well as for developing new multilabel algorithms.

The mldr package does not depend on the RWeka package, and it is not linked to MULAN nor
MEKA. It has been designed to allow reading both MULAN and MEKA MLDs, but without any
external dependencies. In fact, it would be possible to load MLDs stored in other file formats, as
well as creating them from scratch. When loaded, MLDs are wrapped in an S3 type object with class
“mldr”, which allows for the use of methods. The object will contain the data in the MLD and also
a large set of measures obtained from it. The functions provided by the package ease the access to
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Figure 1: Characterization measures taxonomy.

this information, produce some specific plots, and make possible the manipulation of its content. A
web-based graphical user interface, developed using the shiny (Chang et al., 2015) package, puts the
exploratory analysis tools of the mldr package at the fingertips of all users, even those who have little
experience using R.

In the following section the foundations related to MLDs and MLC will be briefly introduced. After
that, the structure of the mldr package, and the operations it provides will be explained. Finally, the
user interface provided by mldr to ease exploratory analysis tasks over MLDs will be shown. All code
displayed in this paper is available in a vignette, accessible by entering vignette("mldr",package =

"mldr").

Working with multilabel datasets

MLDs are generated from text documents (Klimt and Yang, 2004), sets of images (Duygulu et al., 2002),
music collections, and protein attributes (Diplaris et al., 2005), among other sources. For each sample
a set of features (input attributes) is collected, and a set of labels (the output labelset) is assigned.
Usually there are several hundreds or even thousands of attributes, and it is not rare that a MLD has
more labels than features. Some MLDs have only a few labels per instance, while others have dozens
of them. In some MLDs the number of label combinations (labelsets) is quite short, whereas in others it
can be very large. Most MLDs are imbalanced, which means that some labels are very frequent while
others are scarcely represented. The labels in an MLD can be correlated or not. Moreover, frequent
labels and rare labels can appear together in the same instances.

As can be seen, a lot of different scenarios can be found depending on the MLD characteristics.
This is the reason why several specific measures have been designed to assess MLD traits (Tsoumakas
et al., 2010), since they can have a serious impact on the MLC’s performance. The following two
subsections introduce several of these measures and some of the approaches pursued to face multilabel
classification.

Multilabel dataset traits

The most common characterization measures for MLDs can be grouped into four categories, as
depicted in Figure 1.

The most basic information that can be obtained from an MLD is the number of instances, attributes
and labels. For any MLD containing |D| instances, any instance Di, i ∈ {1.. |D|} will be the union of a
set of attributes and a set of labels (Xi, Yi), Xi ∈ X1 × X2 × · · · × X f , Yi ⊆ L, where f is the number of
input features and X j is the space of possible values for the j-th attribute, j ∈ {1.. f }. L being the full
set of labels used in D, Yi could be any subset of items in L. Therefore, theoretically the number of

potential labelsets could be 2|L|. In practice this number tends to be limited by |D|.

Each instance Di has an associated labelset, whose length (number of active labels) can be in the
range {0..|L|}. The average number of active labels per instance is the most basic measure of any MLD,
usually known as Card (standing for cardinality). It is calculated as shown in Equation 1. Dividing this
measure by the number of labels in L, as shown in Equation 2, results in a dimension-less measure,
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known as Dens (standing for label density).

Card (D) =
1

|D|

|D|

∑
i=1

|Yi| , (1)

Dens (D) =
1

|D|

|D|

∑
i=1

|Yi|

|L|
. (2)

Most multilabel datasets are imbalanced, meaning that some of the labels are very frequent whereas
others are quite rare. The level of imbalance of a label can be measured by the imbalance ratio, IRLbl,
defined in Equation 3. To know how much imbalance there is in D, the MeanIR measure (Charte et al.,
2015) is calculated as the mean imbalance ratio among all labels, as shown in Equation 4. In order to
know the significance of this last measure, the standard CV (Coefficient of Variation, Equation 5) can
be used.
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√

√
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. (5)

The number of different labelsets, as well as the amount of them being unique labelsets (i.e.,
appearing only once in D), give us an idea on how sparsely the labels are distributed. The labelsets by
themselves indicate how the labels in L are related. A very frequent labelset implies that the labels in
it tend to appear jointly in D. The SCUMBLE measure, introduced in Charte et al. (2014) and shown in
Equation 7, is used to assess the concurrence level among frequent and infrequent labels.

SCUMBLEins (i) = 1 −
1

IRLbli

(

|L|

∏
l=1

IRLblil

)(1/|L|)

, (6)

SCUMBLE (D) =
1

|D|

|D|

∑
i=1

SCUMBLEins (i) . (7)

Besides the aforementioned insights, there are some other interesting traits that can be indirectly
obtained from the previous measures, such as the ratio between input features and output labels, the
maximum IRLbl, or the coefficient of variation in the imbalance of levels, among others.

Although the raw numbers given by these calculations describe the nature of any multilabel dataset
to a good level, in general a visualization of its characteristics is desirable to ease its interpretation by
researchers.

The information obtained from the previous measures depicts the characteristics of the dataset.
These insights, along with other factors such as the loss function used by the classifier, help in choosing
the most proper algorithm to learn from it and, in the future, make predictions on new data. Traditional
classification models, such as trees and support vector machines, are designed to give only one output
as result. Multilabel classification can mainly be faced through two different approaches discussed in
the following.

Multilabel classification

• Algorithm adaptation: The goal is to modify existing algorithms taking into account the mul-
tilabel nature of the samples, for instance hosting more than one class in the leaves of a tree
instead of only one.

• Problem transformation: This approach transforms the original data to make it suitable to
traditional classification algorithms, then combines the obtained predictions to build the labelsets
given as output result.

Although several transformation methods have been defined in the specialized literature, there
are two among them that stand out because they are the foundation for many others:
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• Binary Relevance (BR): Introduced by Godbole and Sarawagi (2004) as an adaptation of OVA
(One-vs-All) to the multilabel scenario, this method transforms the original multilabel dataset
into several binary datasets, as many as there are different labels. In this way any binary
classifier can be used by joining the individual predictions to generate the final output.

• Label Powerset (LP): Introduced by Boutell et al. (2004), this method transforms the multilabel
dataset into a multiclass dataset by using the labelset of each instance as class identifier. Any
multiclass classifier can be used, transforming back the predicted class into a labelset.

BR and LP have been used not only as a direct technique to implement multilabel classifiers, but
also as a base method to build more sophisticated algorithms. Several ensembles of binary classifiers
relying on BR have been proposed, such as CC (Classifier Chains) or ECC (Ensemble of Classifier Chains),
both by Read et al. (2011). The same is applicable to the LP transformation, the foundation of ensemble
multilabel classifiers such as RAkEL (Random k-Labelsets for Multi-Label Classification, Tsoumakas
and Vlahavas 2007) and EPS (Ensemble of Pruned Sets, Read et al. 2008).

For the readers interested in more details, a recent review on multilabel classification has been
published by Zhang and Zhou (2014).

The mldr package

R is among the most used tools when it comes to performing data mining tasks, including binary
and multiclass classification. However, the work with MLDs in R is not as easy as it is with classic
datasets. This is the main motivation behind the development of the mldr package, whose goals and
functionality are described in this section.

Main goals of the mldr package

When we planned the development of this package, our main objective was to ease the exploration
of MLDs in R. This included loading existing MLDs in different formats, as well as obtaining from
them all the available information. These functions should be accessible to everyone, even to users not
used to the R command line but to GUIs (Graphical User Interfaces) such as those provided by packages
Rcmdr (aka R Commander, Fox 2005) or rattle (Williams, 2011).

At the same time, we aimed to include the tools needed to manipulate the MLDs, to apply filters
and transformations, as well as to create MLDs from scratch. This functionality, directed to more
experienced R users, opens the doors to implement other algorithms on top of mldr, for instance
preprocessing methods or multilabel classifiers.

Installing and loading the mldr package

The mldr package is available from the Comprehensive R Archive Network (CRAN), therefore it can
be installed as any other package, by simply typing:

> install.packages("mldr")

mldr depends on three R packages: XML (Lang and the CRAN Team, 2015), circlize (Gu et al.,
2014) and shiny. The first one allows reading XML (eXtensible Markup Language) files, the second one
is used to generate a specific type of plot (described below), and the third one is the base of its user
interface.

Older releases of mldr, as well as the development version, are available at http://github.com/
fcharte/mldr. It is possible to install the development version using the install_github() function
from devtools (Wickham and Chang, 2015).

Once installed, the package has to be loaded before it can be used. This can be done through
the library() or require() functions, as usual. After loading the package three sample MLDs will
be available: birds, emotions and genbase. These are contained in the ‘birds.rda’, ‘emotions.rda’ and
‘genbase.rda’ files, which are lazily loaded along with the package.

The mldr package uses its own internal representation for MLDs, which are assigned the “mldr”
class. Inside an “mldr” object, such as the previous mentioned emotions or birds, both the data in the
MLD and all the information obtained from this data can be found.

Loading and creating MLDs

Besides the three sample MLDs included in the package, the mldr() function allows to load any MLD
stored in MULAN or MEKA file formats. Assuming that the files ‘corel5k.arff’ and ‘corel5k.xml’, which
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hold the Corel5k (Duygulu et al., 2002) MLD in MULAN format, are in the current directory, the
loading is done as follows:

> corel5k <- mldr("corel5k")

If the XML file is not available, it is possible to indicate just the number of labels in the MLD
instead. In this case, the function assumes that the labels are at the end of the list of features. For
instance:

> corel5k <- mldr("corel5k", label_amount = 374)

Loading an MLD in MEKA file format is equally easy. In this case there is no XML file with label
information used, but a special header inside the ARFF file, a fact that will be indicated to mldr() with
the use_xml argument:

> imdb <- mldr("imdb", use_xml = FALSE)

In all cases the result, as long as the MLD can be correctly loaded and parsed, will be a new “mldr”
object ready to use.

If the MLD we are interested in is not in MULAN or MEKA format, firstly it will have to be
loaded into a “data.frame”, for instance using functions such as read.csv(), read.table() or a more
specialized reader, and secondly this “data.frame” and an integer vector stating the indices of the
labels inside it are given to the mldr_from_dataframe() function. This is a general function for creating
an “mldr” object from any “data.frame”, so it can also be used to generate new MLDs on the fly, as
shown in the following example:

> df <- data.frame(matrix(rnorm(1000), ncol = 10))

> df$Label1 <- c(sample(c(0,1), 100, replace = TRUE))

> df$Label2 <- c(sample(c(0,1), 100, replace = TRUE))

> mymldr <- mldr_from_dataframe(df, labelIndices = c(11, 12), name = "testMLDR")

This will assign to mymldr an MLD, named testMLDR, with 10 input attributes and 2 labels.

Obtaining information from an MLD

After loading any MLD, a quick summary of its main characteristics can be obtained by means of the
usual summary() function, as shown below:

> summary(birds)

num.attributes num.instances num.labels num.labelsets num.single.labelsets

279 645 19 133 73

max.frequency cardinality density meanIR scumble num.inputs

294 1.013953 0.05336597 5.406996 0.03302765 260

Any of these measures can be individually obtained through the measures element of the “mldr”
class, like this:

> emotions$measures$num.attributes

[1] 78

> genbase$measures$scumble

[1] 0.0287591

Full information about the labels in the MLD, including the number of times they appear, their
IRLbl and SCUMBLE measures, can be retrieved by using the labels element of the “mldr” class:

> birds$labels

index count freq IRLbl SCUMBLE

Brown Creeper 261 14 0.021705426 7.357143 0.12484341

Pacific Wren 262 81 0.125581395 1.271605 0.05232609

Pacific-slope Flycatcher 263 46 0.071317829 2.239130 0.06361470

Red-breasted Nuthatch 264 9 0.013953488 11.444444 0.15744451

Dark-eyed Junco 265 20 0.031007752 5.150000 0.10248336

Olive-sided Flycatcher 266 14 0.021705426 7.357143 0.18493760

Hermit Thrush 267 47 0.072868217 2.191489 0.06777263

Chestnut-backed Chickadee 268 40 0.062015504 2.575000 0.06807452

Varied Thrush 269 61 0.094573643 1.688525 0.07940806

Hermit Warbler 270 53 0.082170543 1.943396 0.07999006
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Swainson's Thrush 271 103 0.159689922 1.000000 0.11214301

Hammond's Flycatcher 272 28 0.043410853 3.678571 0.06129884

Western Tanager 273 33 0.051162791 3.121212 0.07273988

Black-headed Grosbeak 274 9 0.013953488 11.444444 0.20916487

Golden Crowned Kinglet 275 37 0.057364341 2.783784 0.09509474

Warbling Vireo 276 17 0.026356589 6.058824 0.14333613

MacGillivray's Warbler 277 6 0.009302326 17.166667 0.24337605

Stellar's Jay 278 10 0.015503876 10.300000 0.12151527

Common Nighthawk 279 26 0.040310078 3.961538 0.06520272

The same is applicable for labelsets and attributes, by means of the labelsets and attributes

elements of the class.

To access the MLD content, attributes and label values, the print() function can be used, as well
as the dataset element of the “mldr” object.

Plotting functions

Exploratory analysis of MLDs can be tedious, since most of them have thousands of attributes and
hundreds of labels. The mldr package provides a plot() function specific for dealing with “mldr”
objects, allowing the generation of several specific types of plots. The first argument given to plot()

must be an “mldr” object, while the second one specifies the type of plot to be produced.

> plot(emotions, type = "LH")

There are seven different types of plots available: three histograms showing relations between
instances and labels, two bar plots with similar purpose, a circular plot indicating types of attributes
and a concurrence plot for labels. All of them are shown in Figure 2, generated by the following code:

> layout(matrix(c(1, 1, 7, 1, 1, 4, 5, 5, 4, 2, 6, 3), 4, 3, byrow = TRUE))

> plot(emotions, type = c("LC", "LH", "LSH", "LB", "LSB", "CH", "AT"))

The concurrence plot is the default one, with type "LC", and responds to the need of exploring
interactions among labels, and specifically between majority and minority ones. This plot has a circular
shape, with the circumference partitioned into several disjoint arcs representing labels. Each arc has
length proportional to the number of instances where the label is present. These arcs are in turn
divided into bands that join two of them, showing the relation between the corresponding labels. The
width of each band indicates the strength of the relation, since it is proportional to the number of
instances in which both labels appear simultaneously. In this manner, a concurrence plot can show
whether imbalanced labels appear frequently together, a situation which could limit the possible
improvement of a preprocessing technique (Charte et al., 2014).

Since drawing interactions among a lot of labels can produce a confusing result, this last type of
plot accepts more arguments: labelCount, which accepts an integer that will be used to generate the
plot with that number of labels chosen at random; and labelIndices, which allows to indicate exactly
the indices of the labels to be displayed in the plot. For example, in order to plot the first ten labels of
genbase:

> plot(genbase, labelIndices = genbase$labels$index[1:10])

The label histogram (type "LH") relates labels and instances in a way that shows how well-
represented labels are in general. The X axis represents the number of instances and the Y axis the
amount of labels. This means that if a large number of labels are appearing in very few instances, all
data will be concentrated on the left side of the plot. On the contrary, if labels are generally present
in many instances, data will tend to accumulate on the right side. This plot shows imbalance of
labels when there is data accumulated on both sides of the plot, which implies that many labels are
underrepresented, and a large amount are overrepresented as well.

The labelset histogram (named "LSH") is similar to the former. However, instead of representing
the number of instances in which each label appears, it shows the amount of labelsets. This indicates
quantitatively whether labelsets repeat consistently or not among instances.

The label and labelset bar plots display exactly the number of instances for each one of the labels
and labelsets, respectively. Their codes are "LB" for the label bar plot and "LSB" for the labelset one.

The cardinality histogram (type "CH") represents the amount of labels instances have in general.
Therefore data accumulating on the right side of the plot indicates that instances do have a notable
amount of labels, whereas data concentrating on the left side shows the opposite situation.

The attribute types plot (named "AT") is a pie chart displaying the number of labels, numeric
attributes and finite set (character) attributes, thus showing the proportions between these types of
attributes to ease the understanding of the amount of input information and that of output data.
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Figure 2: Plots generated by mldr’s plot() function. The type of plot is indicated at the top-left corner
of each rectangle.

Additionally, plot() accepts coloring arguments, col and color.function. The former can be
used on all plot types except for the label concurrence plot, and must be a vector of colors. The
latter is only used on the label concurrence plot and accepts a coloring function, such as rainbow or
heat.colors, as can be seen in the following example:

> plot(emotions, type = "LC", color.function = heat.colors)

> plot(emotions, type = "LB", col = terrain.colors(emotions$measures$num.labels))

Transforming and filtering functions

Manipulation of datasets is a crucial task in multilabel classification. Since transformation is one of the
main approaches to tackle the problem, both BR and LP transformations are implemented in package
mldr. They can be obtained using the mldr_transform function, which accepts an “mldr” object as
first argument, the type of transformation, "BR" or "LP", as second, and an optional vector of label
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indices to be included in the transformation as last argument:

> emotionsbr <- mldr_transform(emotions, type = "BR")

> emotionslp <- mldr_transform(emotions, type = "LP", emotions$labels$index[1:4])

The BR transformation will return a list of “data.frame” objects, each one of them using one of
the labels as class, whereas the LP transformation will return a single “data.frame” representing a
multiclass dataset using each labelset as a class. Both of these transformations can be directly used in
order to apply binary and multiclass classification algorithms, or even implement new ones.

> emo_lp <- mldr_transform(emotions, "LP")

> library(RWeka)

> classifier <- IBk(classLabel ~ ., data = emo_lp, control = Weka_control(K = 10))

> evaluate_Weka_classifier(classifier, numFolds = 5)

=== 5 Fold Cross Validation ===

=== Summary ===

Correctly Classified Instances 205 34.57 %

Incorrectly Classified Instances 388 65.43 %

Kappa statistic 0.2695

Mean absolute error 0.057

Root mean squared error 0.1748

Relative absolute error 83.7024 %

Root relative squared error 94.9069 %

Coverage of cases (0.95 level) 75.3794 %

Mean rel. region size (0.95 level) 19.574 %

Total Number of Instances 593

A filtering utility is included in the package as well. Using it is intuitive, since it can be called
with the square bracket operator [. This allows to partition an MLD or filter it according to a logical
condition.

> emotions$measures$num.instances

[1] 593

> emotions[emotions$dataset$.SCUMBLE > 0.01]$measures$num.instances

[1] 222

Combined with the joining operator, +, this enables users to implement new preprocessing tech-
niques that modify information in the MLD in order to improve classification results. For example, the
following would be an implementation of an algorithm disabling majority labels on instances with
highly imbalanced labels:

> mldbase <- mld[.SCUMBLE <= mld$measures$scumble]

> # Samples with coocurrence of highly imbalanced labels

> mldhigh <- mld[.SCUMBLE > mld$measures$scumble]

> majIndexes <- mld$labels[mld$labels$IRLbl < mld$measures$meanIR, "index"]

> # Deactivate majority labels

> mldhigh$dataset[, majIndexes] <- 0

> mldbase + mldhigh # Join the instances without changes with the filtered ones

In this last example, the first two commands filter the MLD, separating instances with their
SCUMBLE lower than the mean and those with it higher. Then, the third line obtains the indices of the
labels with lower IRLbl than the mean, thus these are the majority labels of the dataset. Finally, these
labels are set to 0 in the instances with high SCUMBLE, and then the two partitions are joined again.

Lastly, another useful feature included in the mldr package is the MLD comparison with the ==

operator. This indicates whether both MLDs in comparison share the same structure, which would
mean they have the same attributes, and these would have the same type.

> emotions[1:10] == emotions[20:30]

[1] TRUE

> emotions == birds

[1] FALSE
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Assessing multilabel predictive performance

Assuming that a set of predictions has been obtained for a MLD, e.g., through a set of binary classifiers,
a multiclass classifier or any other algorithm, the next step would be to evaluate the classification
performance. In the literature there exist more than 20 metrics for this task, and some of them are quite
complex to calculate. The mldr package provides the mldr_evaluate function to accomplish this task,
supplying both example based and label based metrics.

Multilabel evaluation metrics are grouped into two main categories: example based and label
based metrics. Example based metrics are computed individually for each instance, then averaged
to obtain the final value. Label based metrics are computed per label, instead of per instance. There
are two approaches called micro-averaging and macro-averaging (described below). The output of the
classifier can be a bipartition (i.e., a set of 0s and 1s denoting the predicted labels) or a ranking (i.e., a
set of real values denoting the relevance of each label). For this reason, there are bipartition based and
ranking based evaluation metrics for each one of the two previous categories.

D being the MLD, L the full set of labels used in D, Yi the subset of predicted labels for the
i-th instance, and Zi the true subset of labels, the example/bipartition based metrics returned by
mldr_evaluate are the following:

• Accuracy: It is defined (see Equation 8) as the proportion of correctly predicted labels with
respect to the total number of labels for each instance.

Accuracy =
1

|D|

|D|

∑
i=1

|Yi ∩ Zi|

|Yi ∪ Zi|
. (8)

• Precision: This metric is computed as indicated in Equation 9, giving as result the ratio of
relevant labels predicted by the classifier.

Precision =
1

|D|

|D|

∑
i=1

|Yi ∩ Zi|

|Zi|
. (9)

• Recall: It is a metric (see Equation 10) commonly used along with the previous one, measuring
the proportion of predicted labels which are relevant.

Recall =
1

|D|

|D|

∑
i=1

|Yi ∩ Zi|

|Yi|
. (10)

• F-Measure: As can be seen in Equation 11, this metric is the harmonic mean between Precision
(see Equation 9) and Recall (see Equation 10), providing a balanced assessment between precision
and sensitivity.

FMeasure = 2 ∗
Precision · Recall

Precision + Recall
. (11)

• Hamming Loss: It is the most common evaluation metric in the multilabel literature, computed
(see Equation 12) as the symmetric difference between predicted and true labels and divided by
the total number of labels in the MLD.

HammingLoss =
1

|D|

|D|

∑
i=1

|Yi△Zi|

|L|
. (12)

• Subset Accuracy: This metric is also known as 0/1 Subset Accuracy and Classification Accuracy,
and it is the most strict evaluation metric. The JexprK operator (see Equation 13) returns 1 when
expr is true and 0 otherwise. In this case its value is 1 only if the predicted set of labels equals
the true one.

SubsetAccuracy =
1

|D|

|D|

∑
i=1

JYi = ZiK . (13)

Let rank (xi, y) be a function returning the position of y, a certain label, in the xi instance. The
example/ranking based evaluation metrics returned by the mldr_evaluate function are the following
ones:

• Average Precision: This metric (see Equation 14) computes the proportion of labels ranked
ahead of a certain relevant label. The goal is to establish how many positions have to be
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traversed until this label is found.

AveragePrecision =
1

|D|

|D|

∑
i=1

1

|Yi|
∑

y∈Yi

|{y′ ∈ Yi : rank (xi, y′) ≤ rank (xi, y)}|

rank (xi, y)
. (14)

• Coverage: Defined as indicated in Equation 15, this metric calculates the extent to which it is
necessary to go up in the ranking to cover all relevant labels.

Coverage =
1

|D|

|D|

∑
i=1

max
y∈Yi

rank (xi, y)− 1. (15)

• One Error: It is a metric (see Equation 16) which determines how many times the best ranked
label given by the classifier is not part of the true label set of the instance.

OneError =
1

|D|

|D|

∑
i=1

t
argmax

y∈Zi

rank (xi, y) /∈ Yi

|
. (16)

• Ranking Loss: This metric (see Equation 17) compares each pair of labels in L, computing
how many times a relevant label (member of the true labelset) appears ranked lower than a
non-relevant label. In the equation, Yi denotes L\Yi.

RankingLoss =
1

|D|

|D|

∑
i=1

1

|Yi|
∣

∣Yi

∣

∣

∣

∣

{

(ya, yb) ∈ Yi × Yi : rank (xi, ya) > rank (xi, yb)
}∣

∣ . (17)

Regarding the label based metrics, there are two different ways to aggregate the values of the labels.
The macro-averaging approach (see Equation 18) computes the metric independently for each label
and then averages the obtained values to get the final measure. On the contrary, the micro-averaging
approach (see Equation 19) first aggregates the counters for all the labels and then computes the metric
only once. In the following equations TP, FP, TN and FN stand for True Positives, False Positives, True
Negatives and False Negatives, respectively.

MacroMetric =
1

|L|

|L|

∑
l=1

evalMetric (TPl , FPl , TNl , FNl) . (18)

MicroMetric = evalMetric

(

|L|

∑
l=1

TPl ,
|L|

∑
l=1

FPl ,
|L|

∑
l=1

TNl ,
|L|

∑
l=1

FNl

)

. (19)

All the bipartition based metrics, such as Precision, Recall or FMeasure, can be computed as label
based measures following these two approaches. In this category, there are as well as some ranking
based metrics, such as MacroAUC (see Equation 20) and MicroAUC (see Equation 21).

MacroAUC =
1

|L|

|L|

∑
l=1

∣

∣

{

x′, x′′ : rank (x′, yl) ≥ rank (x′′, yl) , (x′, x′′) ∈ Xl × Xl

}∣

∣

|Xl |
∣

∣Xl

∣

∣

,

Xl = {xi : yl ∈ Yi} , Xl = {xi : yl /∈ Yi} .

(20)

MicroAUC =

∣

∣

{

x′, x′′, y′, y′′ : rank (x′, y′) ≥ rank (x′′, y′′) , (x′, y′) ∈ S+, (x′′, y′′) ∈ S−
}∣

∣

|S+| |S−|
,

S+ = {(xi, y) : y ∈ Yi} , S− = {(xi, y) : y /∈ Yi} .

(21)

When the partition of the MLD for which the predictions have been obtained, and the predictions
themselves are given to the mldr_evaluate function, a list of 20 measures is returned. For instance:

> # Get the true labels in emotions

> predictions <- as.matrix(emotions$dataset[, emotions$labels$index])

> # and introduce some noise

> predictions[sample(1:593, 100), sample(1:6, 100, replace = TRUE)] <-

+ sample(0:1, 100, replace = TRUE)

> # then evaluate the predictive performance

> res <- mldr_evaluate(emotions, predictions)

> str(res)
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ROC curve for emotions
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Figure 3: ROC curve plot for the data returned by mldr_evaluate.

List of 20

$ Accuracy : num 0.917

$ AUC : num 0.916

$ AveragePrecision: num 0.673

$ Coverage : num 2.71

$ FMeasure : num 0.952

$ HammingLoss : num 0.0835

$ MacroAUC : num 0.916

$ MacroFMeasure : num 0.87

$ MacroPrecision : num 0.829

$ MacroRecall : num 0.915

$ MicroAUC : num 0.916

$ MicroFMeasure : num 0.872

$ MicroPrecision : num 0.834

$ MicroRecall : num 0.914

$ OneError : num 0.116

$ Precision : num 0.938

$ RankingLoss : num 0.518

$ Recall : num 0.914

$ SubsetAccuracy : num 0.831

$ ROC :List of 15

...

> plot(res$ROC, main = "ROC curve for emotions") # Plot ROC curve

If the pROC (Robin et al., 2011) package is available, this list will include non-null AUC (Area
Under the ROC Curve) measures and also an element called ROC. The latter holds the information needed
to plot the ROC (Receiver Operating Characteristic) curve, as shown in the last line of the previous
example. The result would be a plot similar to that in Figure 3.

The mldr user interface

This package provides the user with a web-based graphical user interface on top of the shiny package,
allowing to interactively manipulate measurements and obtain graphics and other results. Once mldr
is loaded, this GUI can be launched from the R console with a single command:

> mldrGUI()

This will cause the user’s default browser to start or open a new tab in which the GUI will be
displayed, organized into a tab bar and a content pane. The tab bar allows the change of section so
that different information is shown in the pane.
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Figure 4: Main page of the shiny based graphical user interface.

The GUI will initially display the Main section, as shown in Figure 4. It contains options able to
select an MLD from those available, and to load a new one by uploading its ARFF and XML files onto
the application. On the right side, several plots are stacked. These show the amount of attributes of
each type (numeric, character or label), the amount of labels per instance, the amount of instances
corresponding to labels and the number of instances related to labelsets. Each plot can be saved as
an image on the file system. Right below these graphics, some tables containing basic measures are
shown. The first one lists generic measures related to the entire MLD, and is followed by measures
specific to labels, such as Card or Dens. The last table shows a summary of measures for labelsets.

The Labels section contains a table enumerating each label of the MLD with its relevant details
and measures: its index in the attribute list, its count and frequency, its IRLbl and its SCUMBLE. Labels
in this table can be reordered using the headers, and filtered by the Search field. Furthermore, if the
list is longer than the number specified in the Show field, it will be split into several pages. The data
shown in all tables can be exported to files in several formats. On the right side, a plot shows the
amount of instances that have each label. This is an interactive plot, and allows the range of labels to
be manipulated.

Since relations between labels can determine the behavior of new data, studying labelsets is
important in multilabel classification. Thus, the section named Labelsets provides information about
them, listing each labelset along with its count. This list can be filtered and split into pages as well,
and is accompanied by a bar plot showing the count of instances per labelset.

In order to obtain statistical measures about input attributes, the Attributes section organizes
all of them into a paged table, displaying their type and some data or measures according to it. If
the attribute is numeric, then there will be a table containing its minimum and maximum values, its
quartiles and its mean. On the contrary, if the attribute takes values from a finite set, each possible
value will be shown along with its count in the MLD.

Lastly, concurrence among labels is provenly a factor to take into account when applying pre-
processing techniques to MLDs. For this reason, the Concurrence section attempts to create an easy
way of visualizing concurrence among labels (see Figure 5), with a label concurrence plot displaying
the selected labels in the left-side table and their coocurrences represented by bands in the circle. By
default, the ten labels with highest SCUMBLE are selected. The user is able to select and deselect other
labels by clicking their corresponding row on the table.

Summary

In this paper the mldr package, aimed to provide exploratory analysis and manipulation tools for
MLDs, has been introduced. The functions supplied by this package allow both loading existing MLDs
and generating new ones. Several characterization measures and specific plots can be obtained for
any MLD, and the content of an MLD can be extracted, filtered and joined, producing new MLDs.
Any MLD can be transformed into a set of binary datasets or a multiclass dataset by means of the
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Figure 5: The plots can be customized and saved.

transformation functions of package mldr. Finally, a web-based graphical user interface eases the
access to most of this functionality for everyone.

In its current version, package mldr is a strong base to develop any preprocessing method for
MLDs, as has been shown. The development of the mldr package will continue in the near future by
including the tools needed to implement and evaluate multilabel classifiers. With this foundation, we
aim to encourage other developers to incorporate their own algorithms into mldr, as we will do in
forthcoming releases.
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