
Working With Patterns and Code
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI 02912
spr@cs.brown.edu

401-863-7641, FAX: 401-863-7657

ABSTRACT

This paper describes the basis for a suite of tools that let the programmer
work in terms of design patterns and source code simultaneously. It first intro-
duces a language for defining design patterns. This language breaks a pattern
down into elements and constraints over a program database of structural and
semantic information. The language supports both creating new program ele-
ments when a pattern is created or modified and generating source code for
these new elements. The paper next describes tools for working with patterns.
These tools let the user identify and create instances of patterns in the source
code. Once patterns are so identified they can be saved in a library of patterns
that accompanies the system and the patterns can be verified, maintained as
the source evolves, and edited to modify the source.

1. Introduction
Patterns are central to the design and development of software systems. They encode
the experience of designers; they provide tested solutions to what are sometimes dif-
ficult or tricky problems; they make it easier to describe and understand complex
systems; and they raise the level of abstraction during system design and develop-
ment.

Patterns in software development occur at many levels. At the lowest level, code pat-
terns form the cliches[8] or idioms [6] that developers use to make simple algorithms
and constructs easier to code [8,25,28]. Most of these common cliches have been
incorporated into language features (such as for loops) or into simple language
extensions (such as iterators in STL). At the highest level, architectural patterns
form the basis for the top-level design of complex systems [24]. Pipe-and-filter and
implicit-invocation models describe high-level architectures that are applicable in a
variety of contexts. Architectural description languages and high-level prototyping
systems have evolved to provide support for these patterns.

In between these two levels are design patterns. These are used today in object-ori-
ented programming to prescribe the use of classes, methods, and objects in address-
ing many of the problems that arise in complex systems. Such design patterns range
from simple, language-supported concepts such as templates to high-level ones such
as interpreters. One of the goals of our work is to provide appropriate tool support for
such patterns.
Working With Patterns April 3, 2000 1

Design patterns in general do not fit nicely at either the language level where code
patterns are defined or the metalanguage level of architectural patterns. They typi-
cally involve a small set of lower-level constructs, such as methods or data fields or
even code fragments, that are spread out across a set of classes and hence in several
different files in different parts of a system. While there have been some attempts at
providing language-level support [3,10,15], these only handle the simpler patterns
and do not address the complex and important issues raised by the more involved
patterns.

In order for design patterns to achieve their full potential as a tool for programming
it is important that they be fully incorporated into the development process. Cur-
rently, because there are no support mechanisms, patterns are used during the
design stages but are then dropped, with the implementation possibly (but not nec-
essarily) reflecting the original patterns. Patterns are often used for creating code or
code fragments but then they are forgotten. Code added during program evolution
and maintenance may or may not conform to the pattern. Finally, patterns are used
to describe code. Even here, because the code might have evolved from when the
pattern was originally envisioned, the description might be inaccurate or even mis-
leading.

The PEKOE system, part of the TEA project, is our first step in providing the tools
needed to make design patterns an integral part of programming. Rather than
attempting to support patterns at the language level, we show that it is possible to
provide software tools that can effectively promote patterns to first class objects
throughout the development process. These tools let the programmer maintain the
set of patterns in the system and ensure that these patterns are valid as the system
evolves. They let the programmer design and create code by adding instances of pat-
terns to the system. Most importantly, however, they let the programmer edit both
the patterns and the code simultaneously as the system is maintained. Here the code
can be edited by modifying the patterns and the patterns are maintained and
checked as the code is modified. This is the first effort that we know of that takes a
comprehensive approach to supporting patterns.

PEKOE is also a first step toward the more general goal of letting the user work at
multiple levels of abstraction simultaneously. Our eventual goal is to support a wide
range of editable abstractions or views of the program and to let the user work in
multiple views simultaneously. While there has been much previous work aimed at
addressing this problem [17], as well as on-going work involving round-trip strate-
gies with various CASE and user interface tools, none of these efforts has been par-
ticularly successful. PEKOE illustrates a new approach that is based on user
interaction and dual mappings. This approach uses the source code as the primary
representation and derives semantic information from the source to build the views.
The tools described in this paper show the feasibility of the approach.

The remainder of this paper describes the foundations of the PEKOE system. We
start by defining what a design pattern is. Most of the books and articles that
present such patterns do so in an informal manner, taking the approach that you’ll
know it when you see it. To provide tool support for patterns we require a much more
formal definition. Our approach involves a modified query language with extensions
Working With Patterns April 3, 2000 2

for creating and editing patterns. This approach is unique both in its inclusion of
semantic as well as structural information and in supporting location, creation and
editing simultaneously. We then cover the mechanics of what it means to find, create,
maintain, verify, and edit patterns in a system. These are illustrated by the proto-
type PEKOE tool which serves as an implementation of the covered concepts. We
conclude by noting several related projects, our limited experiences to date, and the
issues we plan to address in future research.

2. Defining Patterns
A design pattern in the traditional sense is a description of a problem along with a
solution. It consists of four elements: the name, a description of the problem situa-
tions where the pattern may be applied, a description of the program elements that
make up the pattern, and the consequences, i.e. the results and trade-offs of using
the pattern [9,20,27]. A pattern in this sense is typically described by giving one or
more examples of a problem and the application of the pattern to that problem, along
with a semiformal description of those elements of the solution that are considered
part of the pattern.

Such a description is too informal if patterns are to be supported directly by tools.
For tool support we need a formal definition of a pattern that captures its implemen-
tation but not its intent. (A system where the user can formulate the problem in a
non-programmatic way and then find appropriate patterns would be interesting, but
is probably beyond the limits of current technology. Simpler systems that guide the
user to one of a set of design patterns based on a series of choices have been
built [5].) To this end, we note that the implementation of a pattern consists of a col-
lection of program elements that satisfy a set of conditions. Here a program element
could be a class, a method, or a data field. The conditions reflect relationships among
these elements, other properties of the elements such as their data types, and what
the code inside the elements does.

As an example, consider the Prototype design pattern defined in [9] and shown in
Figure 1. Prototype is a pattern used for creating new instances of an object where
the new object’s properties tend to change over time. For example, in a graphics
editor, a newly created square should acquire the current color, line styles, line
width, fill style, etc. To make it easier to create such objects without having to
remember all the different properties, the pattern involves creating a prototypical
object (representing the square in this case) that has all the current properties, and
then cloning this object when a new instance is needed. This ensures that the set of
properties need not be known outside of the prototype object and lets the creator
build the new object without having to separately set each of the properties. It also
makes it much easier to add new properties as the system evolves since changes only
have to be made in the object and not in the code that creates or uses the object.

An implementation or instance of the Prototype pattern consists of a class Prototype
which contains a Clone method. This class can actually represent the root of a hier-
archy where each of the concrete classes in the hierarchy has its own Clone method.
There must also be a client class that has a data field to hold the prototype. The con-
Working With Patterns April 3, 2000 3

ditions that are implicit here are that the Clone method return a new instance of the
prototype, that each concrete class have its own Clone method, and that the client
creates new instances of the Prototype class by calling the Clone method.

This informal description of the Prototype pattern can be formalized by viewing the
pattern as a query against a database of program information. The query in this case
returns the various elements of the pattern which can either be individual program
elements or sets of such elements, for example, the set of all concrete subclasses of
the Prototype class. The query then expresses the relationships among the program
elements and the various conditions that need to hold for the pattern to be valid. To
a first approximation, this is the approach that we have taken. However, this
approach by itself needs to be better qualified and extended to cover the whole range
of patterns.

There are three problems that have to be dealt with in converting the informal
description of a pattern into a formal basis for program tools. The first involves
determining what information must be contained in the database that will be
queried to identify the patterns. The second involves identifying external informa-
tion such as naming conventions that is needed to define patterns. The third involves
attempting to accommodate the flexibility inherent in an informal description within
a formal framework.

We first analyzed what information must be contained in a database used to define
patterns. The obvious starting point is a cross-reference database such as that pro-
vided by Sun’s source browser [26] or the .bsc files produced by Microsoft’s Visual
Studio. These essentially contain a symbol table for the program, providing informa-
tion for each defined symbol, scoping information, file information, a description of
the class hierarchy, and the locations where each symbol is referenced. Such a data-
base can be used to define most of the patterns that have been proposed and various
systems have used some sort of query or analysis of such databases for identifying
patterns [2,12,14,16,18].

FIGURE 1. Class structure diagram for the Prototype design pattern.
Working With Patterns April 3, 2000 4

However, if one looks at patterns in more detail, one finds that the constraints that
actually identify a pattern are sometimes more semantic in nature. Simple semantic
constraints such as the return types of functions or the types of parameters may or
may not be contained in a cross-reference database. These are needed fairly fre-
quently. Other information requires analysis of what the code does. In the Prototype
pattern, for example, one needs to understand that the Clone method actually
returns a copy of the current object. Many of the patterns are defined to include code
fragments that reflect a significant part of the meaning of the pattern. Therefore, the
need for such analysis is common.

TEA, the framework that encompasses PEKOE, provides a general database of
program information that is designed to include most of the information needed for
identifying patterns. It starts with a rich cross-reference database of sets describing
various program elements. In addition to information about files and file dependen-
cies, this database contains the information a compiler would gather in its symbol
table in order to do symbol lookup as well as type resolution for expressions. In par-
ticular, it includes:

• Files: a description of each file in the system and its dependencies.

• Definitions: a description of each definable program element including its name,
symbol type, data type, scope, and flags such as TASTE_DEF_SYSTEMto denote a sys-
tem definition or TASTE_DEF_ABSTRACT to denote an abstract definition.

• References: an entry for each reference to a program element that includes a
pointer to the definition it references as well as flags indicating the type of refer-
ence.

• Scopes: information about the complete scope hierarchy of the system including all
the symbols defined in each scope and the relation of this scope to others.

• Parameters: descriptions of the additional properties of function parameters.

• Types: the complete type algebra for the types defined and used in the system,
including system types, user-defined types, and implicit types such as the types of
each method or function.

• Parents: data describing the class and interface hierarchy and inheritance rela-
tionships.

The database is organized as sets of cross-linked objects. For example, reference ele-
ments point to the corresponding definition elements while definition elements point
to the type element of the definition and the scope element containing the definition.
TEA also supports a more dynamic database that is built for files that are currently
being edited. The overall database interface lets the application query either the per-
manent database or, where more up-to-date information is required, a combination
of the permanent database and the dynamic databases for each file currently open in
an editor.

In order to provide semantic information for defining patterns, the database in TEA
contains virtual links for each item to the relevant node of a full abstract syntax tree
representation of the source. Queries or small programs can be written to gather spe-
cific information from the abstract syntax trees. For example, a simple query can be
Working With Patterns April 3, 2000 5

written to test if the Clone method actually calls the constructor for the current type
or the Java built-in clone method while testing the Prototype pattern. Furthermore,
a data flow analysis routine can be applied to the syntax tree for the method to
ensure that the value returned from the function is the result of this call. The ability
to write arbitrary analysis routines and then make use of them for identifying pat-
terns offers PEKOE the power to undertake most of the desired semantic tests
without having to rely on the programmer to tell it what the code is doing.

The links in this case are virtual in that they are not really only references to the
node id for the given source file. The actual abstract syntax trees are not stored in
the database. Instead, if a query or method attempts to access one of the links, the
tree is created and cached by reparsing the source. This caching strategy, similar to
that of Visual Age C++ [13,19], ensures that the database remains of reasonable size
(roughly 4-8 times the size of the source) while still providing adequate performance.

Identifying and creating some of the proposed patterns requires additional informa-
tion in the form of mappings and associations. The Prototype pattern contains a
simple association: there is a separate Clone method associated with each concrete
subclass of the Prototype class. Other patterns contain more sophisticated associa-
tions. For example, a Visitor pattern is used to add functionality to a hierarchical
structure without creating additional methods. Here an AbstractVisitor class is
created to represent arbitrary functionality. This class has an abstract method for
each concrete instance of the original structure. A concrete instance of this class is
created whenever new functionality is to be added. Each class in the original struc-
ture implements an accept method that takes an instance of the AbstractVisitor class
and calls the method specific to that class. Here there is an association from the
method in the AbstractVisitor class to the concrete subclass in the original structure.
This association is based on a mapping between the names of the two elements, for
example associating the method visitIntConstant with the class PekoeIntConstant. A
full definition of a Visitor pattern thus requires a specification of the name mapping
in addition to the association.

The informality of the current descriptions of design patterns allows a single repre-
sentation to denote many different variations. For example, in the prototype pattern,
we noted that the client class has to have a data field that contains the prototype. In
reality, the client class needs only to have a handle to such an instance. This handle
could be a data field or it could be stored in a hash table or even accessible via some
global structure.

There are two ways of handling such flexibility in a formal, tool-oriented system. The
first is to attempt to define each pattern in the most general way possible. This can
be done to some extent, for example by noting that the Clone method can either call
the Java Object.clone method or call a constructor. This approach, however, cannot
handle all the possible variations that one might want, since in doing so one would
lose the essence of the pattern and be left with nothing.

A more reasonable approach is to view these variants for what they are, additional
patterns. In this approach, each instance would have its own pattern definition. This
is relatively easy to do and has the additional advantage that it lets us better associ-
Working With Patterns April 3, 2000 6

ate code with a pattern so that patterns can also be generated. The approach has the
disadvantage in that it will eventually create a much larger library of patterns and
will thus make it more difficult for the programmer to select appropriate ones and to
maintain an understanding of their system. Our future research involves finding
ways of addressing this issue and simplifying the definition of pattern variants.

3. A Pattern Definition Language
To meet these varied requirements for defining a pattern, we have developed a
simple prototype language. This language effectively defines the set of queries
needed to identify instances of the pattern from the database of program informa-
tion. Since the database is essentially a collection of sets of objects, we have modeled
the language on the object-oriented query language OQL [7]. The language is proto-
typical in that we are still refining the various syntactic details, attempting to sim-
plify it and make it easier to use, and we are working on extensions for pattern
variants, specifying the dynamic behavior of patterns, and pattern editing.

To illustrate the language, we consider the Prototype pattern discussed in the previ-
ous section. A simplified form of the pattern definition is shown in Figure 2. The first
line provides the name of the pattern. This is followed by a series of GIVEN and
DEFINE sections that specify the various program elements that compose the
pattern and optional REQUIRE and CHECK sections which specify the constraints
on the pattern elements. Elements in a GIVEN section are assumed to already be
part of the code, whereas elements in a DEFINE section are specific to the pattern
and will be created if the pattern is being created.

Each element is represented as a variable that can either represent a single program
element or a set of elements. The first variable, prototype, represents a single value,
the class to prototype. The second, alts, represents the set of all classes that are sub-
classes of prototype and that are not abstract. The ALL term indicates that all such
elements should be considered part of the set. The language also permits SETOF
here to indicate a more flexible selection of matching elements.

There are two things to note in these definitions. First, the order in which the vari-
ables are specified is important. This order is used to actually find candidate ele-
ments for each variable and thus controls the search. Moreover, the definition of one
element can refer to the value of any preceding element but not to later ones.

The second thing to note is that the functions and types used in the definition are not
actually primitives. The underlying database, as we noted, provides a limited
number of sets. Class elements are actually definition elements that happen to rep-
resent a class or structure. Determining whether a class is a superclass of another
requires looking at the type fields of the two types. Checking whether a type is
abstract or not requires looking at the flags in the corresponding definition entry.
The pattern definition language provides a schema feature similar to that of Z [30] or
of database views to handle such definitions. The corresponding definitions are
shown in Figure 3.
Working With Patterns April 3, 2000 7

Each of the variable definitions in Figure 2 specifies a prompt string used to inform
the user of the corresponding role of the variable in the pattern, a type that restricts
the domain of the variable and an optional set of constraints that the variable must
meet. Additional constraints are then given in the REQUIRE and CHECK sections.
Constraints in these sections can be given in any order. They are generally tested as
part of the selection process for a given variable when all other variables in the
expression have been assigned. For example, the first REQUIRE clause is tested as
part of the specification of the prototype variable while the last REQUIRE clause is
checked as part of clone_methods since the other variables it uses, alts and prototype,
are already assigned at that point.

The difference between the REQUIRE and CHECK sections are that the require-
ments must be present for the pattern be considered to exist, while the checks are
tested for but not required. If a CHECK clause is violated, the pattern will still be
considered present, but the user will be warned that it is either incomplete or incon-

PATTERN Prototype

GIVEN
 prototype “Class to prototype” : Class ;
 alts : ALL Class : c | isConcreteSubclassOf(c,prototype);

DEFINE
 clone “Method used to clone the prototype” : Method |

clone.baseClass == prototype;
 clone_methods : ALL Method : m | m.name == clone.name AND

m.baseClass IN alts;

GIVEN
 client “Class to contain the prototype” : Class;

DEFINE
 proto_field “Field to contain the prototype” : Member |

proto_field.type.definition == prototype AND
proto_field.baseClass == client;

REQUIRE
 NOT prototype.testFlag(TASTE_DEF_SYSTEM);
 NOT client.testFlag(TASTE_DEF_SYSTEM);
 EXISTS c IN Class : (NOT c.testFlag(TASTE_DEF_SYSTEM) AND

isConcreteSubclassOf(c,prototype));
 COUNT(alts) > 0;
 clone.returnType == prototype;
 FORALL c IN alts :
 EXISTS s IN clone_methods :

 (s.baseClass == c AND s.returnType == prototype);

CHECK
 callconst “Clone method must call constructor” :
 FORALL c IN alts :

 EXISTS s IN clone_methods :
 (s.baseClass == c AND s.returnType == prototype AND

callsConstructor(s,c));

END

FIGURE 2. Prototype pattern definition.
Working With Patterns April 3, 2000 8

sistent. In the example of Figure 2, the single CHECK clause tests whether the clone
method actually calls a constructor. (This test is actually done in a language-depen-
dent manner since in Java it is sufficient to call the built-in clone method which calls
the right constructor implicitly.) The primary reason for making this a check rather
than requiring it is that when the pattern is first created the newly defined method
will not have associated code and this condition would not hold. A deeper reason is
that it is impossible in general to detect if a constructor is actually being called
unless the user is willing do so quite directly.

The language provides some additional constructs that are not illustrated by this
example. In particular, it allows the definition of name mappings using regular
expressions and stored associations among program elements to address the naming
issues described in the previous section. The name mappings are defined by specify-
ing a regular expression to match and the substitution pattern that should be used if
the match succeeds. Another language construct support associations. These are
query-based functions from one program element to another. They are computed on
demand and the result cached for efficiency. An example of these can be seen in the
extract from a Visitor pattern definition shown in Figure 4.

4. Finding Pattern Instances
The pattern definitions described above are designed to make it relatively easy to
identify instances of design patterns in a system. Such a search is done by looking at
the variables specified in the pattern definition in the order they are listed. For each
variable, the set of candidate objects is determined by constructing and evaluating a
query against the database. This query uses the variable’s type to define the initial

PROVIDE Class
 RETURN

SELECT d FROM d : Definitions WHERE
d.symbolType == TASTE_SYM_CLASS_TAG
OR d.SymbolType == TASTE_SYM_STRUCT_TAG ;

END Class

PROVIDE isSubclassOf(sub : Class, sup : Class)
 RETURN
 sub == sup OR sub.type.isSuperType(sup.type) ;
END isSubClassOf

PROVIDE isAbstract(c : Class)
 RETURN c.testFlag(TASTE_DEF_ABSTRACT) ;
END isAbstract

PROVIDE isConcreteSubclassOf(sub : Class, sup : Class)
 RETURN
 isSubclassOf(sub,sup) AND NOT isAbstract(sub)
END isConcreteSubsumedType

FIGURE 3. Auxiliary definitions for the Prototype pattern.
Working With Patterns April 3, 2000 9

set of candidates and then applies any restrictions in the variable’s definition as well
as all REQUIRE clauses that involve only this and previously defined variables.

As an example, consider a search for a Prototype pattern given the above definition.
The equivalent OQL query for the first variable, prototype, that is generated by the
system is shown in Figure 5. Building this query involves expanding the various
auxiliary definitions and including the first and third REQUIRE clauses, both of
which only involve the variable prototype. The system evaluates this query to find
the set of candidate elements for prototype. Then, since the variable prototype repre-
sents a single element, the system continues the search by looking at the subsequent
variables for each value in this candidate set.

PATTERN Visitor

MAPPING
 classToMethod (c “Class to visit”) => “visit$1”
 methodToClass (m “Method to visit” [“^visit(.*)$” : “$1”]) => “$1”

GIVEN
 root : Class | isAbstract(root);
 elts : ALL Class : c | isConcreteSubclassOf(c,root);

DEFINE
 visitor : Class | isAbstract(visitor);
 accept : Method | accept.baseClass == root;
 vmethods : SETOF Method m | m.baseClass == visitor;

amethods : SETOF Metho d m | m.baseClass IN elts AND m.name ==
accept.name;

ASSOCIATE
aclas s (m : amethods) => SELECT c FRO M c : elts WHERE m.baseClass == c;

REQUIRE
 FORALL e IN elts : EXISTS m IN amethods : aclass(m) == e;
 FORALL m IN amethods : calls(m,classToMethod(m.baseClass));
 ...

END

FIGURE 4. Extracts from the Visitor pattern definition.

FIGURE 5. Expanded query for the variable prototype.

SELECT d
FROM Definition : d
WHERE

(d.symbolType() == TASTE_SYM_CLASS_TAG OR
d.symbolType() == TASTE_SYM_STRUCT_TAG) AND

NOT d.testFlag(TASTE_DEF_SYSTEM) AND
EXISTS c : Definition

WHERE ((c.symbolType() == TASTE_SYM_CLASS_TAG OR
c.symbolType() == TASTE_SYM_STRUCT_TAG) AND

NOT c.testFlag(TASTE_DEF_SYSTEM) AND
(c == d OR c.type().isSuperType(d.type())) AND
NOT c.testFlag(TASTE_DEF_ABSTRACT)
Working With Patterns April 3, 2000 10

The second variable, alts, represents a set of program elements. The ALL phrase
indicates that all elements matching the search criteria must be included in the set.
Thus, for each prototype candidate, the system would generate the corresponding
alts set using the appropriate query. Given this set, the system would next find all
potential values for the clone variable. For each value, it would continue the search,
building the set of clone_methods, then finding appropriate candidates for client and
proto_field in turn.

While this search can be done without any user interaction, we felt that it was best
to make it an interactive process. There are a variety of reasons for this:

• Often, the user is looking for a particular instance of a pattern in the code and is
not interested in all instances.

• Since the semantic criteria of some of the pattern definitions are difficult to test,
the matching process can yield some false instances which the user will want to
eliminate.

• Since we want to make patterns first-class objects, we need the user to name and
save each pattern instance as it is found.

• We wanted to point out patterns that match but where one or more CHECK
clauses might be violated.

• Some aspects of the pattern specification such as name mapping information, are
probably best defined by the particular user rather than saved as part of the pat-
tern definition since they are dependent on coding styles which vary from one user
to another.

• Finally, in a large system a complex search can be quite time-consuming and we
wanted to let the user narrow the search to those portions of the system that
might be new or more relevant.

The front end that we devised consists of a series of dialog boxes that let the user
select or restrict the definition of each variable. A sample series is shown in Figure 6.
The first dialog box serves as a splash screen to start the search process. The second
one asks the user to identify which pattern they want to use. The third occurs as the
search finds two candidate objects for the first variable, prototype. Here the user is
given the option of either selecting one of the candidates or of selecting Restrict and
then identifying which candidates should be considered further and which should
not be. The next dialog box represents the fifth variable, client, as denoted by the
prompt “Restrict Class to contain the prototype” associated with that variable.
Dialog boxes are not generated for variables identified by ALL clauses or where
there is only one alternative found since asking the user in these cases is unneces-
sary. Note that in each case the previous selections are listed at the top of the dialog
box to provide context for the current selection. The final dialog box indicates that a
pattern instance has been found. At this point the user is given the option of naming
and storing the pattern before proceeding to find additional instances of the pattern
throughout the system.
Working With Patterns April 3, 2000 11

FIGURE 6. Dialog sequence for pattern finding.
Working With Patterns April 3, 2000 12

5. Maintaining a Library of Pattern Instances
In order for patterns to be first class objects, one must keep track of the set of pattern
instances in a system and let the user work with these instances. The TEA frame-
work provides two tools for this purpose. The first lets the programmer define what
is meant by a system or project while the second maintains the set of pattern
instances for that system. The corresponding interfaces are shown in Figure 7.

The project manager shown on the left of Figure 7 lets the user define the system.
This is done by specifying which directories and files should be included as part of
the system. The manager lets the user specify both specific paths to include and pat-
terns describing paths that should not be included.

The pattern manager shown on the right of Figure 7 keeps track of all the pattern
instances that the user has saved. It lets the user delete, rename, and duplicate
instances as needed. It allows patterns to be viewed either by name or by pattern
type. Moreover, it provides a front end for finding and creating new patterns.

An additional facility the pattern manager provides is the ability to verify that an
existing pattern instance is still reflected in the source. This can be done either for
all recorded instances or for an individual instance. The underlying system handles
this in a manner similar to a search for a pattern instance. However, in this case the
old instance values are used to drive the search. The user is provided with the initial
splash panel. If all goes well, a dialog is displayed to indicate that the pattern was
verified. If the instance is no longer consistent with the source or violates a CHECK

FIGURE 7. The project manager and pattern manager windows
Working With Patterns April 3, 2000 13

clause, appropriate dialog boxes are put up for the user to change the search criteria
in order to update the pattern instance.

6. Creating Pattern Instances
To make patterns first class objects in a programming environment, we felt it was
essential that the user be able to edit the source code by creating and editing pattern
instances. This involved three additions to the way we find and manage patterns.
The first involves augmenting the pattern definition language so that new program
elements can be defined. The second involves adding a section to the pattern defini-
tion describing what code should be generated for any new pattern element. The
third involves modifying the search process to let the user specify new program ele-
ments at appropriate places.

Creating a new instance of a pattern involves doing a search where GIVEN elements
are found as before but where the user has the option of creating a new program
element for a DEFINE clause. In order to accomplish this during the search, the
system has to know the properties of the new program element. Some of the informa-
tion that is required here can be derived automatically. For example, knowing that
the element is of type Class indicates that a definition element for a class should be
built. Other properties, such as the name, the superclass, the return type for a
method, or the data type for a field may or may not be deducible from the underlying
constraints. Moreover, how the objects are created is language-dependent. For exam-
ple, creating a new class in Java involves not only building the class element, but
also building corresponding type, scope and parent elements.

To accommodate all this, we introduced a mechanism in the search whereby a
program element corresponding to any variable being defined can be created. We
added syntax to the definition language to specify the properties of the new element.
These properties can either be defined from existing variable values or interactively.
The modified syntax for the variables clone and proto_field of the Prototype pattern
of Figure 2 is shown in Figure 8. If a new element needs to be created, the system
will first determine the type of the element from the variable type. Then, using

DEFINE
 clone “Method used to clone the prototype” : Method | clone.baseClass ==

prototype;
 REQUEST class = prototype;
 name : String;
 rettype = prototype.type.name;
 END

 proto_field “Field to contain the prototype” : Member |
proto_field.type.definition == prototype AND

 proto_field.baseClass == client;
 REQUEST class = client;
 name : String;
 END

FIGURE 8. Variable modifications for element definitions.
Working With Patterns April 3, 2000 14

knowledge of the underlying programming language from the system and the
pattern description, it will invoke an appropriate specialized routine to build that
element and any other related elements. This routine uses the parameters defined in
the request clause to define the element as completely as possible. A relatively com-
plete definition is generally needed if the element is to be used later in the search
procedure.

To go along with this clause, the search user interface detects when the user is creat-
ing a pattern and the current variable is one that can be defined. In this case the cor-
responding dialog box provides the user with the option of defining a new variable. If
the user selects this option, then the dialog prompts for the values defined in the
request field. An example of this for the Prototype pattern is shown at the top of
Figure 9.

The dialog box at the bottom of Figure 9 shows what is presented to the user when a
pattern has been newly defined. It differs from the previous conclusion dialog (the
last dialog in Figure 6) in two ways. First, it includes a warning to the user that the

FIGURE 9. Some of the dialogs from pattern creation.
Working With Patterns April 3, 2000 15

new clone method does not yet call the constructor. Second, it offers the user the
option of generating code for the pattern instance. This generation is directed by an
additional section of the pattern definition that specifies what the code should look
like for each definable pattern element of the instance. A sample of such a specifica-
tion for the Prototype pattern is shown in Figure 10.

The specification language allows multiple generation sections. Each such genera-
tion section starts with a WHEN clause. The conditions in this clause currently can
include the user or the language. This lets it be used to generate different code for
different languages or to change the code format for different users.

Each generation section next specifies how to generate the individual program ele-
ments that the pattern may define. In the case of a set variable, the language defines
what to do for each new element of that set. The specification identifies any addi-
tional parameters that should be requested from the user as well as the default loca-
tion where the code for the element should be inserted. This location can either be a
line in a file or it can be relative (before, after, top or bottom) to another program ele-
ment. The final part of the specification is the string that is to be generated for the
element. This string includes expressions between dollar signs as well as straight
text. The expressions can include both the pattern variables and the requested
values.

The system provides a separate series of dialogs to go along with this language to
ensure that the user provides the appropriate information, to give the user addi-
tional flexibility as to locations, and to ensure that the user is aware of what code is
being modified as each element in turn is added. A sampling of these is shown in

GENERATE WHEN (Language=java)

 FOREACH m IN clone_methods
 REQUEST
 protection : String = “private”;
 LOCATE BOTTOMOF m.baseClass;
 YIELD

$protection$ $prototype.type.name$ $m.name$() {
 try {
 return ($prototype.type.name$) clone();
 }
 catch (CloneNotSupportedException e) { return null; }
}
.

 FOR proto_field
 REQUEST
 protection : String = “private”;
 LOCATE TOPOF client;
 YIELD
$protection$ $prototype.name$ $proto_field.name$;
.

END

FIGURE 10. Generation specification for the Prototype pattern.
Working With Patterns April 3, 2000 16

Figure 11. They include prompts to keep the user informed, dialogs asking the user
to supply the requested values, and a dialog box that lets the user specify the loca-
tion for generation. The latter also allows the user to select a new file and to select a
location in that file by picking the position in a read-only view of the file.

The system collects the information for all new elements of the pattern instance and
then, after the user has approved all the changes, will actually make the modifica-
tions to the appropriate files throughout the system, thereby creating the instance.
Making batch changes in this manner ensures that the system remains in a stable
state and lets the system use the existing database to compute locations and other

FIGURE 11. Dialog boxes used for generating pattern code.
Working With Patterns April 3, 2000 17

information. If elements were generated one at a time, the database would need to
be updated after each modification.

7. Editing Pattern Instances
In addition to being able to find, verify, and create pattern instances, we wanted pro-
grammers to be able to edit the source code through patterns. This meant that we
wanted programmers to be able to modify the existing pattern instances in the
system and to have the code modified accordingly when they do so. The first problem
we faced here was determining what it means to edit a pattern instance.

The simplest means of editing a pattern instance is to modify the set of program ele-
ments that it contains. For example, a Prototype pattern instance might be modified
by changing the field that holds the prototype or by adding or removing a concrete
subclass of the class being prototyped. These changes are the structural ones that let
the set of patterns better track the evolving system.

Our pattern tools handle this type of editing as a cross between defining a new
pattern and verifying an existing one. They step through the verification process,
looking at each variable in turn and computing the initial value of that variable
based on the saved pattern instance. However, instead of just accepting that value,
they put up essentially the same dialog box as in the creation case, thereby letting
the user modify the selection of elements for that variable of the pattern either by
restricting the set or by defining new elements. Because the system actually checks
the pattern instance both against the original value and using the query associated
with the variable, this approach is useful both for modifying the code to fit a modified
pattern instance and for changing the pattern instance to fit modified code. The
editor will again allow the user to generate code for any new pattern elements that
are created here.

There are other ways, however, that the programmer might want to edit patterns.
They might, for example, want to edit the properties associated with the patterns.
Changing the mapping definition for a Visitor pattern could be used, for example, to
change the names of the visitation methods throughout the system. Changing the
user-specified properties used for generation could be used to modify the code that
was generated originally for the pattern. It is also possible to have pattern variables
that range over values other than program elements which are used either in select-
ing other program elements or in generating code. The user might want to modify
these and then have the code modified accordingly. In cases where there are multiple
variants of a given pattern, the user might want to change a particular instances
from one variant to another, for example taking a prototype pattern and moving
changing how the prototype is stored.

In many of these cases it is unclear as to what the edits to the code should be. For
example, if the user changes the mapping of a Visitor pattern instance, the system
must change the class name of the visitor or the names of all the visit methods. If it
does the latter, it has to account for potential name conflicts. Similarly, if the user
decides to move the prototype from a data field to a hash table, should the original
data field still remain or should it be removed and all access to it replaced with
Working With Patterns April 3, 2000 18

access to the hash table. In general, the problems that arise here are similar to the
view-update problem for databases: various different modifications of the code can be
used to achieve a modification in the pattern instance, and it is inherently ambigu-
ous which should be used.

We are attempting to address these problems in our on-going work. We are currently
extending our definition of patterns so that the generation specification can be used
as a pattern for generated and user code so that any modifications or specializations
made by the user to the code can be maintained as the code is modified. We are
working on incorporating high-level editing operations such as changing a name con-
sistently throughout the system. We are working on developing appropriate lan-
guage-specific techniques for mapping changes in the internal representation of
program elements to appropriate changes in the code. For example, the system needs
to understand what has to be done to the code if the protection fields of a program
element are modified. As these underlying mechanisms fall into place, we will incor-
porate them into the pattern editing facilities.

8. Related Work
Even though patterns are a relatively new concept, there have been quite a few
efforts at deriving tools to support them. However, none of these provide the full
range of support nor the integration between patterns and source code that our tools
offer.

In order to provide tool support, all of the efforts have had to come up with some
formal description of a design pattern. They take a similar approach in that a
pattern is derived from a query of a design space. They differ substantially in how
such a query is defined. Banisya writes code to represent each pattern [2]. Kim and
Benner represent a pattern using a representation scheme similar to AI knowledge
frames [14]. Both Meijers [16] and Gruijs [12] use fragments, essentially a set of
objects that represent the pattern and that are matched against the code. Seemann
and von Gudenberg use a graph-grammar-based query language over their own
database for finding patterns [22]. The databases used in these cases are limited to
structural information (i.e. what one finds in a UML class diagram such as Figure 1
without any code fragments. They do not utilize the semantic information that is
necessary for a deeper understanding of patterns and to eliminate numerous false
hits for some of the simpler patterns like Bridge. Moreover, these representations
are limited to identifying or creating patterns and do not handle the full range of
pattern operations that we have targeted. Finally, a somewhat related effort by
Mikkonen uses a formal semantics to manipulate rather than identify and generate
patterns [18].

The tools that have been developed for pattern manipulation typically fall into three
categories. The first are tools for selecting a design pattern and then generating the
skeletal code needed to support this [5]. The second are tools that attempt to find
instances of design patterns in existing code [2]. The third and more sophisticated
class of tools let design patterns be specified and compared to existing code, noting
when a previously identified pattern is violated by changes in the code [14,23]. In
Working With Patterns April 3, 2000 19

addition, efforts at Utrecht University [12,16] attempt to both let the programmer
create a new instance of a pattern or identify and store existing instances. The mech-
anisms we provide should support all these tasks in a more generic and complete
manner while letting the developer actually work in terms of the patterns.

Our work is also based on significant work in related areas. There has also been sig-
nificant work on high-level program editing. This includes semantic editors such as
that done at Wisconsin [31], Water’s Programmers Apprentice [29], Pan from Berke-
ley [1], the semantics-based restructuring tools of Griswold, et al [4,11], and the
program refactoring tools from Illinois [21], The latter has been used to perform
behavior-preserving pattern-based edits.

9. Conclusions and Experience
The PEKOE system was implemented to demonstrate that tools could be developed
to let the programmer work in terms of patterns over the full lifecycle of software
development. Even in its current restricted prototype form it shows that patterns
can be identified, created, verified, and edited in conjunction with existing code.
Moreover, we have been able to use our pattern definition language to define almost
all of the patterns in the standard text [9]. (The exceptions are patterns like inter-
preter that require too much semantic knowledge to be recognized.) The system is
written in Java and, while much of it is language-independent, the current database
framework only supports Java.

There are two principal contributions of this work. The first is the flexible query-
based definition of a design pattern that is suitable for a variety of activities. This
includes the database framework provided by TEA which incorporates the structural
and semantic information needed to identify patterns, the pattern-element oriented
OQL-based query language on top of this database, the request definitions to let new
pattern elements be created, and the generation specifications for generating all or
parts of a pattern.

The actual language that is used for defining patterns is our strawman implementa-
tion of such a query-based definition. While we have attempted to make it as simple
and easy to use as possible, we are also looking into other approaches that would
provide a different user interface to essentially the same semantic information.
These include approaches that are more closely tied to the original source languages,
approaches that make use of an interactive visual language, and approaches that
work from examples.

The second contribution is the tool-based framework for using patterns throughout
program development. This framework consists of the pattern manager that main-
tains the library of patterns, along with a consistent set of tools for finding, verifying,
creating, maintaining, and editing patterns along with the source code.

In order to demonstrate the desirability of working in terms of patterns, we are cur-
rently working on integrating the pattern-based tools into a Java development envi-
ronment. This will provide a user community and a basis for user studies of the
effectiveness of the tool. The obvious question in such studies is if and by how much
Working With Patterns April 3, 2000 20

ge-

de

l,
tools such as PEKOE will improve programmer productivity. While the actual
answer must await the result of the studies, we feel that the tool will help in several
ways. First it will eliminate the drudgery involved in implementing many of the pat-
terns, for example, the need to create multiple methods in multiple locations.
Second, it will provide for higher-quality systems by ensuring that patterns devel-
oped during the design are maintained as the system evolves. Finally, it will encour-
age programmers to think about and work on their systems at a higher level, thus
allowing larger systems to be built.

We are also exploring several avenues of related research. We are developing generic
code formatting facilities so that the generated code looks good to the programmer.
We are developing the higher-level editing facilities that we noted are needed for
more general pattern editing. We are working on incorporating a behavior specifica-
tion language into the pattern definition so that we can do dynamic checking of
pattern behavior ([23] does this to a limited extent already). We are planning a front
end to guide the programmer to the right pattern when a design issue arises. We are
thinking about a more flexible query language that would allow some variation in
the patterns. This could be tied to a graphical front end to let the user define pat-
terns more easily. Finally, we are attempting to generalize from our experience with
design patterns to more general abstractions. Here we want to look at visual design
languages, domain-specific frameworks, architectural patterns, and semantic editing
as technologies that can be implemented using a framework similar to that of
PEKOE.

10. References

1. Robert A. Ballance, Susan L. Graham, and Michael L. Van De Vanter, “The Pan langua
based editing system for integrated development environments,”ACM Software Engineering
Notes Vol. 15(6) pp. 77-93 (December 1990).

2. Jagdish Bansiya, “Automatic design-pattern identification,”Dr. Dobbs’ Journal, pp. 20-28
(June 1998).

3. Jan Bosch, “Design patterns as language constructs,” inLanguage Support for Design
Patterns and Frameworks, ed. S. Mitchell,Springer-Verlag (1997).

4. Robert W. Bowdidge and William G. Griswold, “Supporting the restructuring of data
abstractinos through manipulation of a program visualization,”ACM Trans. on Software
Engineering and Methodology Vol. 7(2) pp. 109-157 (April 1998).

5. Frank J. Budinsky, Marilyn A. Finnie, John M. Vlissides, and Patsy S. Yu, “Automatic co
generation from design patterns,”IBM Systems Journal Vol. 35(2)(1996).

6. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael StaA
System of Patterns, John Wiley and Sons (1996).

7. R. G. G. Cattell and Douglas K. Barry,The Object Database Standard: ODMG 2.0, Morgan
Kaufmann (May, 1997).
Working With Patterns April 3, 2000 21

r,

esign
t

d and

e

f

f Java

are
8. Kate Ehrlich and E. Soloway, “An empirical investigation of the tacit plan knowledge in
programming,” inHuman Factors in Computing Systems, ed. M. L. Schneider,Ablex Inc. (1982).

9. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,Design Patterns, Addison-
Wesley (1995).

10. Joseph Gil and David H. Lorenz, “Design patterns vs. language design,” inLanguage Support
for Design Patterns and Frameworks, ed. S. Mitchell,Springer-Verlag (1997).

11. William G. Griswold, Morison I. Chen, Robert W. Bowdidge, and J. David Morgenthale
“Tool support for planning the restructuring of data absractions in large systems,”Software
Engineering Notes Vol. 21(6) pp. 33-45 (November 1996).

12. Dennis Gruijs, “A framework of concepts for representing object-oriented design and d
patterns in the context of tool support,” Dept. of Computer Science INF-SCR-97-28, Utrech
University (August 1998).

13. Michael Karasick, “The architecture of Montana: an open and extensible programming
environment with an incremental C++ compiler,”Software Engineering NotesVol. 23(6) pp. 131-
142 (November 1998).

14. Jung J. Kim and Kevin M. Benner, “An experience using design patterns: lessons learne
tool support,”Theory and Practice of Object Systems Vol. 2(1) pp. 61-74 (1996).

15. Shriram Krishnamurthi, Yan-David Erlich, and Matthias Felleisen, “Patterns as languag
extensions,” Rice University Technical Report (October 1998).

16. Marco Meijers, “Tool support for object-oriented design patterns,” Dept. of Computer
Science INF-SCR-96-28, Utrecht University (August 1996).

17. Scott Meyers, “Difficulties in integrating multiview development systems,”IEEE Software
Vol. 8(1) pp. 50-57 (January 1991).

18. Tommi Mikkonen, “Formalizing design patterns,”Proc. 20th Intl. Conf. on Software
Engineering, pp. 115-124 (April 1998).

19. Lee R. Nackman, “An overview of Montana,”IBM Research, (1996).

20. Wolfgang Pree,Design Patterns for Object-Oriented Software Development, Addison-Wesley
(1994).

21. Don Roberts, John Brant, and Ralph Johnson, “A refactoring tool for Smalltalk,” Dept. o
Computer Science, U. of Illinois at Urbana-Champaign (1997).

22. Jochen Seemann and Jurgen Wolff von Gudenberg, “Pattern-based design recovery o
software,”Software Engineering Notes Vol. 23(6) pp. 10-16 (November 1998).

23. Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell, “Monitoring compliance of a softw
system with its high-level design models,”Proc. 18th Intl. Conf. on Software Engineering, pp.
387-396 (March 1996).

24. Mary Shaw and David Garlan,Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall (1996).
Working With Patterns April 3, 2000 22

).

” in
25. E. Soloway, K. Ehrlich, and J Bonar, “Cognitive strategies and looping constructs: an
empirical study,” Research Report, Yale University Department of Computer Science (1982

26. SunPro,Browsing Source Code. December 1993.

27. John Vlissides,Pattern Hatching: Design Patterns Applied, Addison-Wesley (1998).

28. R. Waters, “A Knowledge Based Program Editor,”Proc. Seventh Annual IJCAI Conf., (1981).

29. Richard C. Waters, “The programmer’s apprentice: knowledge-based program editing,
Interactive Programming Environments, ed. D. R. Barstow, H. E. Shrobe and E.
Sandewall,McGraw-Hill, New York (1984).

30. J. B. Wordsworth,Software Development with Z, Addison-Wesley (1992).

31. Wuu Yang, Susan Horwitz, and Thomas Reps, “A program integration algorithm that
accommodates semantics-preserving transformations,”ACM Software Engineering Notes Vol.
15(6) pp. 133-143 (December 1990).
Working With Patterns April 3, 2000 23

	Working With Patterns and Code
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912
	spr@cs.brown.edu
	401-863-7641, FAX: 401-863-7657

	ABSTRACT
	1. Introduction
	2. Defining Patterns
	FIGURE 1. Class structure diagram for the Prototype design pattern.

	3. A Pattern Definition Language
	FIGURE 2. Prototype pattern definition.
	FIGURE 3. Auxiliary definitions for the Prototype pattern.
	FIGURE 4. Extracts from the Visitor pattern definition.

	4. Finding Pattern Instances
	FIGURE 5. Expanded query for the variable prototype.
	FIGURE 6. Dialog sequence for pattern finding.

	5. Maintaining a Library of Pattern Instances
	FIGURE 7. The project manager and pattern manager windows

	6. Creating Pattern Instances
	FIGURE 8. Variable modifications for element definitions.
	FIGURE 9. Some of the dialogs from pattern creation.
	FIGURE 10. Generation specification for the Prototype pattern.
	FIGURE 11. Dialog boxes used for generating pattern code.

	7. Editing Pattern Instances
	8. Related Work
	9. Conclusions and Experience
	10. References

