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Abstract. This paper presents the realisation, using a Service Oriented
Architecture, of an approach for dynamic flexibility and evolution in
workflows through the support of flexible work practices, based not on
proprietary frameworks, but on accepted ideas of how people actually
work. A set of principles have been derived from a sound theoretical base
and applied to the development of worklets, an extensible repertoire of
self-contained sub-processes aligned to each task, from which a dynamic
runtime selection is made depending on the context of the particular
work instance.

1 Introduction

Workflow management systems are used to configure and control structured
business processes from which well-defined workflow models and instances can
be derived [1, 2]. However, the proprietary process definition frameworks im-
posed make it difficult to support (i) dynamic evolution (i.e. modifying process
definitions during execution) following unexpected or developmental change in
the business processes being modelled [3]; and (ii) deviations from the prescribed
process model at runtime [4–6].

Without support for dynamic evolution, the occurrence of a process deviation
requires either suspension of execution while the deviation is handled manually,
or an entire process abort. However, since most processes are long and complex,
neither manual intervention nor process termination are satisfactory solutions
[7]. Manual handling incurs an added penalty: the corrective actions undertaken
are not added to ‘organisational memory’ [8, 9], and so natural process evolution
is not incorporated into future iterations of the process. Other evolution issues
include problems of migration, synchronisation and version control [4, 10].

These limitations mean a large subset of business processes do not easily
map to the rigid modelling structures provided [11], due to the lack of flexibility
inherent in a framework that, by definition, imposes rigidity. Process models are
‘system-centric’, or straight-jacketed [12] into the supplied framework, rather



than truly reflecting the way work is actually performed [13]. As a result, users
are forced to work outside of the system, and/or constantly revise the static
process model, in order to successfully support their activities, thereby negating
the efficiency gains sought by implementing a workflow solution in the first place.

Since the mid-nineties many researchers have worked on problems related to
workflow change (cf. Section 7). This paper is based on and extends the approach
proposed in [14]. It introduces a realisation of ‘worklets’, an extensible reper-
toire of self-contained sub-processes and associated selection rules, grounded in
a formal set of work practice principles called Activity Theory, to support the
modelling, analysis and enactment of business processes. This approach directly
provides for dynamic change and process evolution without having to resort to
off-system intervention and/or system downtime. It has been implemented as a
discrete service for the well-known, open-source workflow environment YAWL
[15, 16] using a Service Oriented Architecture (SOA), and as such its applica-
bility is not limited to that environment. Also, being open-source, it is freely
available for use and extension.

The paper is organised as follows: Section 2 provides a brief overview of
Activity Theory and lists relevant principles derived from it by the authors,
then introduces the worklet paradigm. Section 3 describes the implementation
of the discrete worklet service. Section 4 details the worklet service architecture.
Section 5 discusses process definition methods, while Section 6 describes how
the worklet approach utilises Ripple Down Rules (RDR) to achieve contextual,
dynamic selection of worklets at runtime. Section 7 discusses related work, and
finally Section 8 outlines future directions and concludes the paper.

2 Achieving Flexibility through Worklets

Workflow management systems provide support for business processes that are
generally predictable and repetitive. However, the prescriptive, assembly-line
frameworks imposed by workflow systems limit the ability to model and enact
flexible work practices where deviations are a normal part of every work activ-
ity [12, 17]. For these environments, formal representations of business processes
may be said to provide merely a contingency around which tasks can be formu-
lated dynamically [18], rather than a prescriptive blueprint that must be strictly
adhered to.

Rather than continue to try to force business processes into inflexible frame-
works (with limited success), a more adaptable approach is needed that is based
on accepted ideas of how people actually work.

A powerful set of descriptive and clarifying principles that describe how work
is conceived, performed and reflected upon is Activity Theory, which focusses
on understanding human activity and work practices, incorporating notions of
intentionality, history, mediation, collaboration and development [19]. (A full
exploration of Activity Theory can be found in [20, 21]). In [22], the current
authors undertook a detailed study of Activity Theory and derived from it a



set of principles that describe the nature of participation in organisational work
practices. Briefly, the relevant principles are:

1. Activities (i.e. work processes) are hierarchical (consist of one or more ac-
tions), communal (involve a community of participants working towards a
common objective), contextual (conditions and circumstances deeply affect
the way the objective is achieved), dynamic (evolve asynchronously), and
mediated (by tools, rules and divisions of labour).

2. Actions (i.e. tasks) are undertaken and understood contextually. A repertoire
of applicable actions is maintained and made available for each action of an
activity; the activity is performed by making contextual choices from the
repertoire of each action in turn.

3. A work plan is not a prescription of work to be performed, but merely a
guide which may be modified during execution depending on context.

4. Deviations from a plan will naturally occur with every execution, giving rise
to learning experiences which can then be incorporated into future instanti-
ations of the plan.

Consideration of these derived principles have led to the conception, develop-
ment and implementation of a flexible workflow support system that:

– regards the process model as a guide to an activity’s objective, rather than
a prescription for it;

– provides a repertoire (or catalogue) of applicable actions to be made available
for each task at each execution of a process model;

– provides for choices to be made dynamically from the repertoire at runtime
by considering the specific context of the executing instance; and

– allows the repertoire of actions to be dynamically extended at runtime, thus
incorporating unexpected process deviations, not only for the current in-
stance, but for other current and future instantiations of the process model,
leading to natural process evolution.

Thus, each task of a process instance may be linked to an extensible repertoire
of actions, one of which will be contextually chosen at runtime to carry out the
task. In this work, we present these repertoire-member actions as “worklets”.
In effect, a worklet is a small, self-contained, complete workflow process which
handles one specific task (action) in a larger, composite process (activity)1. A
top-level or parent process model is developed that captures the entire workflow
at a macro level. From that manager process, worklets are contextually selected
and invoked from the repertoire of each task when the task instance becomes
enabled during execution.

In addition, new worklets for handling a task may be added to the repertoire
at any time (even during process execution) as different approaches to com-
pleting a task are developed, derived from the context of each process instance.
1 In Activity Theory terms, a worklet may represent one action within an activity, or

may represent an entire activity.



Importantly, the new worklet becomes part of the process model for all current
and future instantiations, avoiding issues of version control. In this way, the
process model undergoes a dynamic natural evolution.

3 The Worklet Custom Service for YAWL

The Worklet Dynamic Process Selection Service has been implemented as a
YAWL Custom Service [15, 16]. The YAWL environment was chosen as the im-
plementation platform since it provides a very powerful and expressive workflow
language based on the workflow patterns identified in [23], together with a for-
mal semantics. It also provides a workflow enactment engine, and an editor for
process model creation, that support the control flow, data and (basic) resource
perspectives. The YAWL environment is open-source and has a service-oriented
architecture, allowing the worklet paradigm to be developed as a service inde-
pendent to the core engine. Thus the deployment of the worklet service is in no
way limited to the YAWL environment, but may be ported to other environ-
ments by making the necessary amendments to the service interface. As such,
this implementation may also be seen as a case study in service-oriented com-
puting whereby dynamic flexibility in workflows, orthogonal to the underlying
workflow language, is provided.

Custom YAWL services interact with the YAWL engine through XML/HTTP
messages via certain interface endpoints, some located on the YAWL engine side
and others on the service side. Specifically, custom services may elect to be no-
tified by the engine when certain events occur in the life-cycle of nominated
process instantiations (i.e. when a workitem becomes enabled, when a workitem
is cancelled, when a case completes). On receiving a workitem-enabled event, the
custom service may elect to ‘check-out’ the workitem from the engine. On doing
so, the engine marks the workitem as executing and effectively passes operational
control for the workitem to the custom service. When the custom service has
finished processing the workitem it will check it back in to the engine, at which
point the engine will mark the workitem as completed, and proceed with the
process execution.

The worklet service utilises these interactions by dynamically substituting an
enabled workitem in a YAWL process with a contextually selected worklet – a
discrete YAWL process that acts as a sub-net for the workitem and so handles
one specific task in a larger, composite process activity.

An extensible repertoire (or catalogue) of worklets is maintained for each
nominated task in a parent workflow process. Each time the service is invoked
for an enabled workitem, a choice is made from the repertoire based on the
data attributes and values associated with the workitem, using a set of rules to
determine the most appropriate substitution (see Section 6). The workitem is
checked out of the YAWL engine, the input variables of the original workitem
are mapped to the net-level input variables of the selected worklet, and then
the worklet is launched in the engine as a separate case. When the worklet has
completed, its net-level output variables are mapped back to the output variables



of the original workitem, which is then checked back into the engine, allowing
the original (parent) process to continue.

The worklet executed for a task is run as a separate case in the YAWL engine,
so that, from an engine perspective, the worklet and its parent are two distinct,
unrelated cases. The worklet service tracks the relationships, data mappings and
synchronisations between cases, and creates a process log that may be combined
with the engine’s process logs via case identifiers to provide a complete opera-
tional history of each process.

Worklets may be associated with either an atomic task, or a multiple-instance
atomic task. Any number of worklets can form the repertoire of an individual
task, and any number of tasks in a particular specification can be associated
with the worklet service. A worklet may be a member of one or more reper-
toires – that is, it may be re-used for several distinct tasks within and across
process specifications. In the case of multiple-instance tasks, a separate worklet
is launched for each child workitem. Because each child workitem may contain
different data, the worklets that substitute for them are individually selected,
and so may all be different.

The repertoire of worklets for a task can be added to at any time, as can
the rules base used for the selection process, including while the parent process
is executing. Thus the service provides for dynamic ad-hoc change and process
evolution, without having to resort to off-system intervention and/or system
downtime, or requiring modification of the original process specification.

4 Worklet Service Architecture
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Fig. 1. External Architecture of the Worklet Service

Figure 1 shows the external architecture of the worklet service. As men-
tioned previously, the service has been implemented as a Custom YAWL Service



[16]. The YAWL engine provides a number of interfaces, two of which are used
by the worklet service. Interface A provides endpoints for process definition,
administration and monitoring; Interface B provides endpoints for client and in-
voked applications and workflow interoperability [16]. The worklet service uses
Interface A to upload worklet specifications into the engine, and Interface B
for connecting to the engine, to start and cancel case instances, and to check
workitems in and out of the engine after interrogating their associated data.

The disk entities ‘Worklet specs’, ‘RDRs’ and ‘Logs’ in Figure 1 comprise
the worklet repository. The service uses the repository to store rule sets and load
them for enabled workitems; to store worklet specifications for uploading to the
engine; and to store generated process and audit logs. The YAWL editor is used
to create new worklet specifications, and may be invoked from the RDR (Ripple
Down Rules) Editor. The RDR Editor is used to create new or augment existing
rule sets, making use of certain selection logs to do so, and may communicate
with the worklet service via a JSP/Servlet interface to override worklet selections
following rule set additions (see Section 6).

WorkletSelector

wsGateway 

RdrSet

RdrTree 

RdrNode 

CheckedOutItem 

CheckedOutChildItem

ConditionEvaluator

Worklet 
service 

to YAWL 
Engine 

to Rules 
Editor 

1 *

1

1

1

1

*

*

*

*

Fig. 2. Internal Architecture of the Worklet Service

Figure 2 shows a representation of the internal architecture of the worklet
service. The WorkletSelector object handles all interactions with the YAWL
engine, and administrates the service. For each workitem that it checks out
of the engine, it creates a CheckedOutItem object. In YAWL, each workitem
is a ‘parent’ of one or more child items – one if it is an atomic task, or a
number of child items in the case of a multiple instance atomic task. Thus,



the role of each CheckedOutItem object is to create and manage one or more
CheckedOutChildItems, which hold information about worklet selection, data
associated with the workitem and the results of rules searches.

The WorkletSelector, for each workitem that is checked out from the engine,
also loads from file the set of rules pertaining to the specification of which the
workitem is a member into an RdrSet object. At any time, there may be a
number of RdrSets loaded into the service, one for each specification for which
a workitem has been checked out. Each RdrSet manages one or more RdrTree
objects, each tree representing the rule tree for a particular task within the
specification, of which this workitem is an instance. In turn, each RdrTree owns
a number of RdrNode objects, which contain the actual rules, conclusions and
other data for each node of the rule tree.

When a rule tree is evaluated against the data set of a workitem, each of the
associated nodes of that tree has its condition evaluated by the ConditionEvalu-
ator object, which returns the boolean result to the node, allowing it to traverse
to its true or false branch as necessary. Finally, the wsGateway object provides
communications via a JSP/Servlet interface between the service and the Rules
Editor (see Section 6 for more details).

5 Process Definition

Fundamentally, a worklet is nothing more than a workflow specification that has
been designed to perform one part of a larger, parent specification. However,
it differs from a decomposition or sub-net in that it is dynamically assigned to
perform a particular task at runtime, while sub-nets are statically assigned at
design time. So, rather than being forced to define all possible branches in a
specification, the worklet service allows the definition of a much simpler specifi-
cation that will evolve dynamically as more worklets are added to the repertoire
for particular tasks within it.

Figure 3 shows a simple example specification (in the YAWL Editor) for
a Casualty Treatment process. Note that this process specification has been
intentionally simplified to demonstrate the operation of the worklet service; while
it is not intended to portray a realistic process, it is desirable to not camouflage
the subject of this paper by using a more complex process specification.

In this process, the Treat task is to be substituted at runtime with the ap-
propriate worklet based on the patient data collected in the Admit and Triage
tasks. That is, depending on each patient’s actual physical data and reported
symptoms, we would like to run the worklet that best treats the patient’s con-
dition.

Each task in a process specification may be flagged to notify the worklet
service when it becomes enabled. In this example, only the Treat task is flagged
so; the other tasks are handled directly by the YAWL environment. So, when
a Casualty Treatment process is executed, the YAWL Engine will notify the
worklet service when the Treat task becomes enabled. The worklet service will



Fig. 3. Parent ‘Casualty Treatment’ Process

then examine the data of the task and use it to determine which worklet to
execute as a substitute for the task.

A worklet specification is a standard YAWL process specification, and as
such is created in the YAWL Editor in the usual manner. Figure 4 shows a very
simple example worklet to be substituted for the Treat top-level task when a
patient complains of a fever.

In itself, there is nothing special about the Treat Fever specification in Figure
4. Even though it will be considered by the worklet service as a member of
the worklet repertoire and may thus be considered a “worklet”, it also remains
a standard YAWL specification and as such may be executed directly by the
YAWL engine without any reference to the worklet service, if desired.

Fig. 4. The ‘Treat Fever’ Worklet Process

The association of tasks with the worklet service is not restricted to top-level
specifications. Worklet specifications also may contain tasks that are associated
with the worklet service and so may have worklets substituted for them, so that
a hierarchy of executing worklets may sometimes exist. It is also possible to
recursively define worklet substitutions - that is, a worklet may contain a task
that, while certain conditions hold true, is substituted by another instance of
the same worklet specification that contains the task.

Any number of worklets can be created for a particular task. For the Casualty
Treatment example, there are currently five worklets in the repertoire for the



Treat task, one for each of the five conditions that a patient may present with
in the Triage task: Fever, Rash, Fracture, Wound and Abdominal Pain. In this
example, which worklet is chosen for the Treat task depends on which of the five
is given a value of True in the Triage task.

6 Context and Worklet Selection

The consideration of context plays a crucial role in many diverse domains, in-
cluding philosophy, pragmatics, semantics, cognitive psychology and artificial
intelligence [24]. In order to realise the worklet approach, the situated contex-
tual factors relevant to each case instance were required to be quantified and
recorded [25] so that the appropriate worklet can be ‘intelligently’ selected from
the repertoire at runtime.

The types of contextual data that may be recorded and applied to a busi-
ness case may be categorised as follows (examples are drawn from the Casualty
Treatment process):

– Generic (case independent): data attributes that can be considered likely
to occur within any process (of course, the data values change from case to
case). Such data would include descriptors such as created when, created by,
times invoked, last invoked, current status; and role or agent descriptors such
as experience, skills, rank, history with this process and/or task and so on.
Process execution states and process log data also belong to this category.

– Case dependent with a-priori knowledge: that set of data that are
known to be pertinent to a particular case when it is instantiated. Generally,
this data set reflects the data variables of a particular process instance.
Examples are: patient name and id, blood pressure readings, height, weight,
symptoms and so on; deadlines both approaching and expired; and diagnoses,
treatments and prescribed medications.

– Case dependent with no a-priori knowledge: that set of data that
only becomes known when the case is active and deviations from the known
process occur. Examples in this category may include complications that
arise in a patient’s condition after triage, allergies to certain medications
and so on.

Each worklet is a representation of a particular situated action, the runtime
selection of which relies on the relevant context of each case instance, derived
from case data. The worklet selection process is achieved through the use of Rip-
ple Down Rules (RDR), which comprise a hierarchical set of rules with associated
exceptions, first devised by Compton and Jansen [26].

The fundamental feature of RDR is that it avoids the difficulties inherent in
attempting to compile, a-priori, a systematic understanding, organisation and
assembly of all knowledge in a particular domain. Instead, it allows for general
rules to be defined first with refinements added later as the need arises [27].

An RDR Knowledge Base is a collection of simple rules of the form “if condi-
tion then conclusion” (together with other associated descriptors), conceptually



arranged in a binary tree structure. Each rule node may have a false (‘or’)
branch and/or a true (‘exception’) branch to another rule node, except for the
root node, which contains a default rule and can have a true branch only. If a
rule is satisfied, the true branch is taken and the subsequent rule is evaluated;
if it is not satisfied, the false branch is taken and its rule evaluated [28]. When
a terminal node is reached, if its rule is satisfied, then its conclusion is taken; if
its rule is not satisfied, then the conclusion of the last rule satisfied on the path
to that node is taken. This tree traversal provides implied locality - a rule on an
exception branch is tested for applicability only if its parent (next-general) rule
is also applicable.
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true 

default 
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Fever = True 

TreatFever 
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Wound = True 

TreatWound 
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AbdominalPain = True 

TreatAbPain 
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Fracture = True 

TreatFracture 
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Rash = True 

TreatRash 

6 

HeartRate >= 190 

TreatHighHeartRate 

Condition not satisfied Condition satisfied 

condition 

conclusion 

Fig. 5. Conceptual Structure of a Ripple Down Rule (Casualty Treatment Ex-
ample)

A workflow process specification may contain a number of tasks, one or more
of which may be associated with the worklet service. For each specification that



contains a worklet-enabled task, the worklet service maintains a corresponding
set of ripple down rules that determine which worklet will be selected as a sub-
stitute for the task at runtime, based on the current case data of that particular
instance. Each worklet-enabled task in a specification has its own discrete rule
set. The rule set or sets for each specification are stored as XML data in a disk
file that has the same name as the specification, except with an “.xrs” extension
(XML Rule Set). All rule set files are stored in the worklet repository.

Occasionally, the worklet started as a substitute for a particular workitem,
while the correct choice based on the current rule set, is considered by a user
to be an inappropriate choice for a particular case. For example, if a patient in
a Casualty Treatment case presents with a rash and a heart rate of 190, while
the current rule set correctly returns the TreatRash worklet, it may be more
desirable to treat the racing heart rate before the rash is attended to. In such
a case, when the worklet service begins an instance of the TreatRash process, a
user may reject it by advising an administrator (via a button on their worklist)
of the inappropriate choice. Thus the administrator would need to add a new
rule to the rule set so that cases that have such data (both now and in the
future) will be handled correctly.

If the worklet returned is found to be unsuitable for a particular case instance,
a new rule is formulated that defines the contextual circumstances of the instance
and is added as a new leaf node using the following algorithm:

– If the worklet returned was the conclusion of a satisfied terminal rule, then
the new rule is added as a local exception node via a new true branch from
the terminal node.

– If the worklet returned was the conclusion of a non-terminal, ancestor node
(that is, the condition of the terminal rule was not satisfied), then the new
rule node is added via a new false branch from the unsatisfied terminal node.

In essence, each added exception rule is a refinement of its parent rule. This
method of defining new rules allows the construction and maintenance of the
KB by “sub-domain” experts (i.e. those who understand and carry out the work
they are responsible for) without regard to any engineering or programming
assistance or skill [29].

Each rule node also incorporates a set of case descriptors that describe the
actual case that was the catalyst for the creation of its rule. This case is referred
to as the ‘cornerstone case’. The descriptors of the cornerstone case refer to
essential attributes of a case, in this example, the sex, heart rate, age, weight
and so on of a patient. The condition for the new rule is determined by comparing
the descriptors of the current case to those of the cornerstone case of the returned
worklet and identifying a sub-set of differences. Not all differences will be relevant
– to define a new rule it is only necessary to determine the factor or factors
that make it necessary to handle the current case in a different fashion to the
cornerstone case. The identified differences are expressed as attribute-value pairs,
using the normal conditional operators. The current case descriptors become the
cornerstone case for the newly formulated rule; its condition is formed by the



identified attribute-values and represents the context of the case instance that
caused the addition of the rule.

A separate Rules Editor tool has been developed to allow for the easy addition
of new rules and associated worklets to existing rule sets, and the creation of
new rule sets.

Each time the worklet service selects a worklet to execute as a substitute
for a specification instance’s workitem, a file is created that contains certain
descriptive data about the selection process. These files are stored in the worklet
repository, again in XML format. Thus to add a new rule to the existing rule
set after an inappropriate selection, the particular selection file for the case that
was the catalyst for the rule addition is first loaded into the Rules Editor.

Figure 6 shows the Add New Rule screen of the Rules Editor with a selection
file loaded. The Cornerstone Case panel shows the case data that existed for the
creation of the original rule for the TreatRash selection. The Current Case panel
shows the case data for the current case - that is, the case that is the catalyst
for the addition of the new rule. The New Rule Node panel is where the details
of the new rule are added. Notice that the ids of the parent node and the new
node are shown as read only - the Rules Editor takes care of where in the rule
tree the new rule node is to be placed, and whether it is to be added as a true
child or false child node, using the algorithm described above.

Fig. 6. Rules Editor (Add New Rule Screen)



In this example, there are many data values that differ between the two case
data sets shown in Figure 6, such as PatientID, Name, Sex, Blood Pressure
readings, Height, Weight and Age. However, the only differing data item of
relevance here is HeartRate - that is the only data item that, in this case, makes
the selection of the TreatRash worklet inappropriate. Selecting the HeartRate
line in the list of Current Case data items will insert it to the condition field,
where it may be modified as necessary. In this case, the new rule would become,
as an example, “HeartRate ≥ 190”.

It is not necessary to define a conjunctive rule such as “Rash = True AND
HeartRate ≥ 190”, since this new rule will be added as an exception to the
true branch of the TreatRash node. By doing so, it will only be evaluated if the
condition of its parent, ”Rash = True”, first evaluates to True. Therefore, any
rule nodes added to the true branch of a parent node become exception rules,
and thus refinements, of the parent rule.

After defining a condition for the new rule, the name of the worklet to be
executed when this condition evaluates to true must be entered in the Worklet
field of the Editor (refer Figure 6). This input is a drop-down list that contains
the name of all the worklets currently in the worklet repository. An appropriate
worklet for this rule may be chosen from the list, or, if none are suitable, a new
worklet specification may be created.

After a new rule is added, the Editor provides an administrator with the
choice to replace the previously started (inappropriate) worklet instance with
an instance of the worklet defined in the new rule. If the administrator chooses
to replace the worklet, the Rules Editor contacts the worklet service via HTTP
and requests the change. The service responds with a dialog similar to Figure 7.

Fig. 7. Example Dialog Showing a Successful Dynamic Replacement

7 Related Work

Since the mid-nineties much research has been done on issues related to flexibility
and change in workflow management systems (cf. the classification into ad-hoc,
administrative, and production workflows in [30]). While it is not the intention
of this paper to provide a complete overview of the work done in this area,



reference is made here to a number of quite different approaches to providing
dynamic flexibility in workflows.

Generally, commercial workflow management systems provide various levels
of support for the decomposition of tasks and sub-processing. However, each
of the products require the model to be fully defined before it can be instan-
tiated, and changes must be incorporated by modifying the model statically.
Staffware provides ‘re-usable process segments’ that can be inserted into any
process. SAP R/3 allows for the definition of ‘blocks’ that can be inserted into
other ‘blocks’, thus providing some support for encapsulation and reuse. COSA
supports parent-sibling processes, where data can be passed to/from a process to
a sub-process. MQ Workflow allows sub-processes to be defined and called stat-
ically from within a process. Clearly, all of these static forms of decomposition
do not offer support for dynamic flexibility.

Among the non-commercial systems, ADEPT [31] supports modification of
a process during execution (i.e. add, delete and change the sequence of tasks)
both at the type (dynamic evolution) and instance levels (ad-hoc changes). Such
changes are made to a traditional monolithic model and must be achieved via
manual intervention. The WASA [32] system provides some support for dynamic
change, mainly focusing on scientific applications. It allows an administrator
to modify a (monolithic) specification and then restart a task, but then only
at the instance level. A catalog of ‘skeleton’ patterns that can be instantiated
or specialised at design time is supported by the WERDE system [5]. Again,
there is no scope for specialisation changes to be made at runtime. AgentWork
[33] provides the ability to modify process instances by dropping and adding
individual tasks based on events and ECA rules. However, the rules do not offer
the flexibility or extensibility of Ripple Down Rules, and changes are limited
to individual tasks, rather than the process-for-task substitution provided by
the worklet service. Also, the possibility exists for conflicting rules to generate
incompatible actions, which requires manual intervention and resolution.

It should be noted that only a small number of academic prototypes have had
any impact on the frameworks offered by commercial systems [34]. Nevertheless,
there are some interesting commercial products that offer innovative features
with respect to flexibility. Caramba [35] supports virtual teams in their ad hoc
and collaborative processes by enabling links between artifacts (for example,
documents and database objects), business processes (activities), and resources
(persons, roles, etc.). FLOWer supports the concept of case-handling; the pro-
cess model only describes the preferred way of doing things and a variety of
mechanisms are offered to allow users to deviate in a controlled manner [1].

The implementation discussed in this paper differs considerably from the
above approaches. Worklets dynamically linked together by extensible Ripple
Down Rules provide an alternative method for the provision of dynamic flexibil-
ity. An approach with some similarities to worklets is is the Process Orchestrator,
an optional component of Staffware [36], which provides for the dynamic alloca-
tion of sub-processes at runtime. It requires a construct called a “dynamic event”
to be explicitly modelled that will execute a number of sub-processes listed in an



‘array’ when execution reaches that event. Which sub-processes execute depend
on predefined data conditionals matching the current case. Unlike the worklet
approach, the listed sub-processes are statically defined, as are the conditionals –
there is no scope for dynamically refining conditionals, nor adding sub-processes
at runtime.

8 Conclusion and Future Work

Workflow management systems impose a certain rigidity on process definition
and enactment because they use frameworks based on assembly line metaphors
rather than on ways work is actually planned and carried out. An analysis of
Activity Theory provided principles of work practices that were used as a tem-
plate on which a workflow service has been built that better supports flexibility
and dynamic evolution. By capturing contextual data, a repertoire of actions is
constructed that allow for contextual choices to be made from the repertoire at
runtime to efficiently carry out work tasks. These actions, or worklets, directly
provide for process evolution and flexibility, and mirror accepted work practices.

The worklet implementation presents several key benefits, including:

– A process modeller can describe the standard activities and actions for a
workflow process, and any deviations, using the same methodology;

– It allows re-use of existing process components and aids in the development
of fault tolerant workflows using pre-existing building blocks [37];

– Its modularity simplifies the logic and verification of the standard model,
since individual worklets are less complex to build and therefore easier to
verify than monolithic models;

– It provides for a variety of workflow views of differing granularity, which
offers ease of comprehensibility for all stakeholders;

– It allows for gradual and ongoing evolution of the model, so that global
modification each time a business practice changes or a deviation occurs is
unnecessary; and

– In the occurrence of an unexpected event, the process modeller needs sim-
ply to choose an existing worklet or build a new one for that event, which
can be automatically added to the repertoire for current and future use as
necessary, thus avoiding manifold complexities including downtime, model
restructuring, versioning problems and so on.

This implementation used the open-source, service-oriented architecture of
YAWL to develop a service for dynamic flexibility independent to the core en-
gine. Thus, the implementation may be viewed as a successful case study in
service-oriented computing. It is the first instalment of a comprehensive ap-
proach to dynamic workflow and is intended to be extended in the near future
to also provide support for dynamic handling of process exceptions using the
same service paradigm. One of the more interesting things to be investigated
and incorporated is the application of process mining techniques to the various
logs collected by the Worklet service; a better understanding of when and why



people tend to “deviate” from a work plan is essential for providing better tool
support.

All system files, source code and documentation for YAWL and the worklet
service, including the examples discussed in this paper, may be downloaded via
www.yawl-system.com.
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