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Abstract— Advances in virtualization technology are enabling
the creation of resource pools of servers that permit multiple
application workloads to share each server in the pool. Un-
derstanding the nature of enterprise workloads is crucial to
properly designing and provisioning current and future services
in such pools. This paper considers issues of workload analysis,
performance modeling, and capacity planning. Our goal is to
automate the efficient use of resource pools when hosting large
numbers of enterprise services. We use a trace based approach
for capacity management that relies on i) the characterization
of workload demand patterns, ii) the generation of synthetic
workloads that predict future demands based on the patterns,
and iii) a workload placement recommendation service. The
accuracy of capacity planning predictions depends on our ability
to characterize workload demand patterns, to recognize trends
for expected changes in future demands, and to reflect business
forecasts for otherwise unexpected changes in future demands.
A workload analysis demonstrates the burstiness and repetitive
nature of enterprise workloads. Workloads are automatically
classified according to their periodic behavior. The similarity
among repeated occurrences of patterns is evaluated. Synthetic
workloads are generated from the patterns in a manner that
maintains the periodic nature, burstiness, and trending behavior
of the workloads. A case study involving six months of data
for 139 enterprise applications is used to apply and evaluate
the enterprise workload analysis and related capacity planning
methods. The results show that when consolidating to 8 processor
systems, we predicted future per-server required capacity to
within one processor 95% of the time. The accuracy of predic-
tions for required capacity suggests that such resource savings
can be achieved with little risk.

I. INTRODUCTION

In the distant past data centers were made up of small
numbers of large mainframe computers that each hosted sev-
eral application workloads with many users. Capacity planning
experts helped to ensure that sufficient aggregate capacity was
available just in time, as it was needed. With the advent of
distributed computing new application workloads were typi-
cally assigned to their own smaller servers. The incremental
cost of capacity from smaller servers was much less expensive
than the incremental cost of capacity on mainframes. Capacity
planners would often anticipate an application’s workload
demands two years in advance and pre-provision a new server
with sufficient capacity so that the workload could grow into
it. However, the explosive growth in both enterprise computing
and Internet computing has led to server sprawl in data centers.
Enterprise data centers are typically full of large numbers

of lightly utilized servers that incur high cost of ownership
including facilities cost, such as rent and power for computing
and cooling, high software licensing cost, and high cost for
human management activities.

Many enterprises are now beginning to exploit resource
pools of servers supported by virtualization mechanisms that
enable multiple application workloads to be hosted on each
server. The primary motivation for enterprises to adopt such
technologies is increased flexibility, the ability to quickly re-
purpose server capacity to better meet the needs of application
workload owners, and to reduce overall costs of ownership.
Unfortunately, the complexity of these environments presents
additional management challenges. There are many workloads,
a finite number can be hosted by each server, and each work-
load has capacity requirements that may frequently change
based on business needs. Capacity management methods are
not yet available to manage such pools in a cost effective
manner.

The goal of our work is to provide a capacity management
process for resource pools that lets capacity planners match
supply and demand for resource capacity in a just in time man-
ner. In this paper we characterize the workloads of enterprise
applications to gain insights into their behavior. The insights
support the development of capacity management services for
the process.

We use a trace based approach for the capacity management
services. The services implement i) the characterization of
workload demand patterns, ii) the generation of synthetic
workloads that predict future demands based on the patterns,
and iii) a workload placement recommendation service. Our
process automates data gathering and analysis steps that ad-
dress these questions. As a result it enables human operators to
handle the questions more quickly and accurately with lower
labor costs.

To demonstrate the effectiveness of our proposed capacity
management approach, we obtained six months of data from
an enterprise data center. The data describes the time varying
demands of 139 enterprise applications. We use the data to
demonstrate the effectiveness of our approach. The results
show that when consolidating to 8 processor systems, we
predicted per-server required capacity to within one processor
95% of the time while enabling a 35% reduction in proces-
sor usage as compared to today’s current best practice for



workload placement. The remainder of the paper presents our
results in more detail.

II. CAPACITY MANAGEMENT PROCESS

This section describes the capacity management process we
envision and its corresponding services. The process relies on a
combination of sub-processes that implement various use cases
for resource pool operators. Examples of use cases include:

• determine resource pool capacity needed to support a
number of workloads;

• add/remove a workload to a resource pool;
• add/remove capacity to a resource pool;
• rebalance workloads across resources in a pool;
• reduce load on a server resource in a pool by recommend-

ing new workload placements for some of its workloads;
• report significant changes in workload demand behaviors;

and,
• adjust per-workload forecasts, trends or quality of service

requirements.
To support such use cases we must start with a definition of

required capacity. Required capacity is the minimum amount
of capacity needed to satisfy resource demands for workloads
on a server resource [11]. Given a definition for required
capacity, we implement:

• an admission control service;
• a workload placement service; and,
• a workload demand prediction service.
The admission control service decides whether a resource

pool has sufficient resources to host a new workload. If so
it reports which server the workload should be assigned to.
We consider workloads that exploit multiple resources as a
collection of individual workloads possibly having workload
placement constraints that must be addressed by the workload
placement service.

The workload placement service we employ recommends
where to place application workloads among servers in the
pool to reduce the number of servers used or to balance
workloads across the servers. The service implements a trace
based approach for characterizing resource demands and for
recommending solutions. Basically, each workload is charac-
terized using a time varying trace of demands for its key
capacity attributes such as processor usage and memory usage.
The workload placement service includes greedy algorithms
for consolidating workloads onto a small set of servers and for
balancing the workloads across some fixed number of servers.
It also includes a genetic algorithm based optimizing search
that aims to improve upon the greedy solutions. In each case
the algorithms simulate multiple assignment scenarios. Each
scenario considers the placement of zero or more workloads on
each server. The aggregate demand of the workloads assigned
to a server is characterized using a trace that is the sum of its
per-workload time varying demands. The service recommends
the best workload placement it can find over all servers, either
for consolidation or for load leveling. Finally, the service
accepts additional constraints on workload placements that

include affinity between workloads, e. g., workloads must or
must not be placed on the same physical server, and affinity
between workloads and a list of one or more specific servers.

The workload demand prediction service has several pur-
poses:

• it implements pattern discovery techniques;
• it helps to recognize whether a workload’s demands

change significantly over time;
• it supports the generation of synthetic traces that represent

future demands for each workload to support capacity
planning exercises; and,

• it provides a convenient model that can be used to support
forecasting exercises.

The service is described in Section III.
The capacity management process further relies on the

key concept of a capacity management plan. A capacity
management plan is a calendar based data store that keeps
track of: workload identities, forecasts, and resource access
quality of service requirements; resources that are associated
with a pool; and assignments of workloads to resources. As
a calendar based data store, the plan keeps track of such
information as a function of date and time. The information
is used to support capacity planning.

III. WORKLOAD DEMAND PREDICTION

As stated in Section II, the workload demand prediction
service has several purposes: i) to decide on a workload’s de-
mand pattern; ii) to recognize whether a workload’s demands
change significantly over time; iii) to support the generation
of synthetic demand traces that represent future demands for
each workload, e. g., demands for several weeks or months
into the future, to support capacity planning exercises; and,
iv) to provide a convenient model that can be used to support
forecasting exercises. This section describes the techniques we
used to implement this service.

A. Extracting Workload Patterns

We now present methods for deducing patterns, assessing
their quality, and classifying them with regard to quality. A
new approach is presented that assesses the similarity among
occurrences of a pattern.

1) Pattern Analysis: Given a historic workload trace
L = (l (tn))1≤n≤N which is represented by N contiguous
demand values l (tn) we extract a demand pattern P =
(p(tm))1≤m≤M,M≤N/2 with M contiguous demand values p(tm)
with the assumption that the workload has a cyclic behavior.
This assumption is evaluated later in the classification phase.
According to a classical additive component model, a time
series consists of a trend component, a cyclical component,
and a remainder, e. g., characterizing the influence of noise.
The trend is a monotonic function, modeling an overall upward
or downward change in demand.

We illustrate our process for extracting a representative
demand pattern from a workload using Figure 1. Figure 1(a),
illustrates a three week workload demand trace with a public
holiday during the second week.
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(a) 3 Week Workload Demand Trace
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Fig. 1. Extracted Pattern for Workload

To start the analysis, we identify the cyclical component
that describes the periodic characteristics of the workload. To
determine the yet unknown duration M of the pattern, we begin
with an evaluation of the workload’s periodogram function
as shown in Figure 1(b). A Fourier transformation [7] gives

an overlay of harmonics for the time-varying magnitude of
demand. The periodogram shows the intensity I, with which
a harmonic of a wavelength λ is present in the workload.
The most dominant frequencies provide information about the
duration of a potential pattern. Intuitively, if the periodogram
function has a local maximum at λ > 0, then it is likely that
there exists a representative pattern of length λ. In general, it
is not the case that the wavelength with the global maximum,
named maxI , is most representative. Thus, we determine a set
Λ = {λ1, . . . ,λk} of local maxima positions, with I(λi) > maxI

2
for every 1 ≤ i ≤ k. For instance, in the periodogram in
Figure 1(b), we detect two local maxima. The first maximum
proposes a wavelength of 1 day and the second maximum
proposes one at 7 days.

In addition to the periodogram, we calculate the auto-
correlation function for the workload demand trace. For a
formal definition and further details on auto-correlation func-
tion see reference [3]. Figure 1(c) shows the auto-correlation
function for the workload. It describes dependencies within the
workload curve, i. e., the similarity between the workload and
the workload shifted by a lag g. A high value ρ for the auto-
correlation at lag g denotes that the workload curve shifted by
g looks similar to the original one. Thus, if the auto-correlation
shows local extrema at multiples of a lag g, it is a strong
indicator that there exists a temporal dependency of length
g. In the same way as with the periodogram, we determine a
set of hypotheses {λk+1, . . . ,λk+h} of significant local extreme
positions and add them to the set Λ.

Workloads from enterprise data centers typically show a
periodicity which is a multiple of hours, days, weeks, and
so forth. Due to unavoidable computational inaccuracies and
influences of irregular events and noise, the wavelengths in Λ
can diverge slightly from these typical periods. We perform
a comparison to calendar specific periods and determine for
every wavelength candidate λi the best matching multiple
of hours, days, and weeks and augment Λ with corrected
wavelengths so that they are also considered.

In the second step, we select the best candidate wavelength
λ′ from the λi ∈ Λ. For each λi, we compute the average
magnitude for ρ at multiples of λi. For example, if λi = 1
day, then we take the average of ρi from observations at lags
of one day. If λi = 7 days, then we take the average of ρi from
observations at lags of seven days. If the workload exhibits a
pattern with length λi then the workload after shifting it by
multiples of λi is similar to itself and thus the auto-correlation
function exhibits high values at the lags {v ·λi | v ∈ N+}. The
average magnitude ρ̄i is a measure of similarity among cyclic
repetitions in demand for λi. For our example in Figure 1(c),
λ′ = 7 days has the highest average magnitude ρ̄′ as compared
to other values for λi and is recognized as the best pattern
length. This implies that the pattern length is M = 2016
intervals1 of duration d = 5 minutes. We note that the figure
does not illustrate lags beyond 11 days even though they are
included in the computation.

1There are 288 5-minutes intervals per day.



Total Minutes Week 1 Week 2 Week 3
Week 1 - 181 69
Week 2 181 - 171
Week 3 69 171 -

TABLE I
MINUTES PER DAY OF EXTREME DIFFERENCES IN LOAD BEHAVIOR

The chosen value for the pattern length of M intervals
is used to calculate the pattern P = (p(tm))1≤m≤M for the
workload. First we define occurrences for the pattern and then
define the pattern’s demand values p(tm). Given M, we divide
the workload L into N/M complete occurrences and possibly
one partial occurrence. Let O be the occurrences of the pattern
for o ≤ N/M +1. Thus, occurrence o is a subtrace of the trace
L with values lo(tm) = l (tm+o·M) for each 1 ≤ m ≤ M. For
every interval tm in the pattern we calculate a weighted average
p(tm) for the interval. The weighted average is computed using
intervals tm from the occurrences O of the pattern. We define
a weight for each occurrence o and interval m as:

wo,m =
lo(tm)

Σolo(tm)

With these weights we compute the weighted average demand
for each interval tm as p(tm) = ∑o wo,m · lo(tm). We use the
weighted average to emphasize the importance of larger values
over smaller values for capacity management.

Figure 1(d) shows the pattern and an occurrence of the
pattern together in one diagram. The curves closely resemble
one another.

2) Quality and Classification: The classification phase de-
cides which workloads have periodic behavior. The classifica-
tion is based on two measures for the quality of the pattern.
The first measure is ρ̄′ from Section III-A.1. Larger values
for ρ̄′ imply a better quality of fit. The second measure
characterizes the difference between occurrences O and the
pattern. The difference is computed as the average absolute
error ζ = ∑1≤m≤M,o |p(tm)−lo(tm)|

N between the original workload
and the pattern P. Smaller differences suggest a better quality
of pattern.

To classify the quality of patterns for a large number of
workloads, we employ a k means cluster algorithm [10] with
clustering attributes ζ and ρ̄′. The algorithm partitions the
patterns into three groups that we interpret as having strong,
medium, or weak patterns. Weak patterns are not regarded
as having a periodic pattern because no clear cycle could be
deduced for the trace. This may be due to changes in workload
behavior during the analyis period or because the pattern has
a duration greater than half the analysis period.

3) Similarity of Behavior for Pattern Occurrences: We
expect a certain amount of variation in demands among
occurrences of a pattern. These may be due to random user
behavior, holidays, etc.. However, larger variations may reflect
a repurposing of a server or a change in business conditions
that affect capacity management. We may choose to ignore
atypical occurrences when estimating trends for demand or

only use the most recent occurrences when estimating future
workloads if demands have clearly changed. We now present
an automated test to recognize whether there are significant
differences between occurrences of a pattern.

The test is motivated by the Chi-square test [4]. It is
designed to highlight extreme differences in load behavior. The
test compares two occurrences at a time. For an occurrence o,
we define a difference for time interval tm as p(tm)− lo(tm).
The differences for 1 ≤ m ≤ M express the variation of the oc-
currence o with respect to the pattern. We partition the differ-
ence values into three buckets. The three buckets have ranges
[−100,−10],(−10,10],(10,100], respectively. The differences
in the range (−10,10] are deemed to be inconsequential from a
resource pool capacity management perspective. The right and
left buckets define the extreme differences from the pattern.

A Chi-square test can be used to determine whether a pair
of occurrences, o and o′, have statistically similar numbers of
observations per bucket. However, we have found that inter-
preting the computed Chi-square statistic is problematic. The
value of the statistic is sensitive to the number of observations
in the right and left buckets and the interpretation of the value
depends on pattern lengths. Instead, we choose to consider the
sum of the absolute differences in counts for the left and right
buckets. This sum tells us whether the occurrences differ from
the pattern in a similar way. The sum is a count of intervals
and can be expressed in terms of the number of minutes per
day that the occurrences have differences in extreme behavior.

Table I gives the resulting minutes per day differences
in extreme load behavior as computed for the workload in
Figure 1(a). Weeks 1 and 3 have differences in extreme
behavior of approximately 69 minutes per day. Week 2 differs
from the other weeks. It has differences in extreme behavior
of 181 and 171 minutes per day as compared with week 1
and week 3, respectively. This is likely due to the holiday that
occurred in week 2. In the case study we consider the impact
of alternative values for a threshold that decides whether a pair
of occurrences differs significantly in behavior.

B. Analyzing the Trend

To characterize a trend of the workload we calculate the
aggregate demand difference of each occurrence of the pat-
tern from the original workload L. Let co

m be the difference
between the p(tm) and the demand value for interval tm in
the occurrence o. We define co as the aggregate demand
difference of occurrence o with respect to the pattern P as:
co = ∑1≤m≤M(p(tm)− lo(tm)). Further, we define the trend τ
as the gradient of the linear least squares fit [8] through the
values co for the occurrences O as ordered by time. The trend
τ estimates the change of demand over time with respect to
the pattern.

C. Generating Synthetic Workload Traces and Forecasting

We now consider a process for generating a synthetic trace
to represent a future workload demand trace L′ for some time
period in the future. Typically, we generate traces to represent



demands for a time period that is several weeks or months
into the future.

Our goal for a synthetic trace is to capture the highs and
lows of demand and contiguous sequences of demand. These
are critical for modeling a workload’s ability to share resource
capacity with other workloads and to model required capacity
for the workload. Furthermore, our approach must be able to
introduce an observed trend or forecast information.

To generate an occurrence o′ for L′ we rely on the historical
pattern occurrences O. A value lo′(tm) is chosen randomly
from the corresponding tm values from O. Given a sufficiently
large number of future occurrences O′, we will obtain the
same time varying distribution of demands as in O. This gives
us a pattern of demands that captures the lows and highs of
demand in a representative way. Furthermore, we note that
the occurrences may have a trend τ. For the sequence of
historical pattern occurrences we normalize the demand values
so that the trend is removed with respect to the last occurrence
before constructing O′. This allows us to forecast demands for
synthetic traces based on τ and time into the future.

Demands lo′(tm) in the synthetic trace are augmented to
reflect the trend τ. We assume an additive model. For each
future occurrence o′, we compute an absolute value based on
τ that must be added to each demand in occurrence o′. The
further o′ is into the future the greater the change with respect
to the historical data, assuming τ is not zero.

To better model burstiness in demand we must take into
account sequences of contiguous demands in the trace L. We
accomplish this by randomly selecting blocks of b intervals
tm, tm+1, . . . , tm+b at a time from the occurrences O. In this way,
the synthetically generated traces have contiguous sequences
of demand that are similar to the historical trace.

In our capacity management process, we repeat our analysis
steps using multiple randomly generated instances of L′ to bet-
ter characterize the range of potential behavior for the overall
system. Multiple instances better characterize interactions in
demands among multiple workloads.

Finally, a workload pattern P provides a convenient way to
express what-if-scenarios and business forecasts that are not
observable to us from historic data. Suppose we have a pattern
P with O occurrences and we require a change to the pattern.
Then, we can express a change once with respect to P rather
than once for each of the possibly many occurrences.

IV. CASE STUDY

To evaluate the effectiveness of our methods and processes
we obtained six months of workload trace data for 139
workloads from a data center. The data center specializes in
hosting enterprise applications such as customer relationship
management applications for small and medium sized busi-
nesses. Each workload was hosted on its own server so we use
resource demand measurements for a server to characterize the
workload’s demand trace. The measurements were originally
recorded using vmstat and sar. Each trace describes resource
usage, e. g., processor and memory demands, as measured
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Fig. 2. Top Percentile of CPU Demand for Applications under Study.

every 5 minutes starting January 1st, 2006. Our case study
considers:

• a characterization of the data center’s workloads;
• results from workload demand pattern analysis;
• an analysis of similarity among occurrences of patterns;
• a validation of the trending and synthetic workload gen-

eration techniques; and
• a walk-forward test that employs the pattern matching,

trending, and synthetic workload generation methods.

A. Workload Characterization

This section illustrates the nature of the enterprise applica-
tion workloads under study. We show percentiles of demands
and durations for bursts of demands. Figure 2 gives the
percentiles of CPU demand for the 139 applications over a
period of 5 weeks. We chose to limit the duration to 5 weeks so
that we didn’t exaggerate the peak demands beyond what we
may use as part of the proposed capacity management process.
The demands we illustrate are normalized as a percentage with
respect to their peak values. Several curves are shown that
illustrate the 99th, 97th, and 95th percentile of demand as well
as the mean demand (the workloads are ordered by the 99th
percentile for clarity). The figure shows that more than half of
all studied workloads have a small percentage of points that
are very large with respect to their remaining demands. The
left-most 60 workloads have their top 3% of demand values
between 10 and 2 times higher than the remaining demands
in the trace. Furthermore, more than half of the workloads
observe a mean demand less than 30% of the peak demand.
These curves show the bursty nature of demands for most
of the enterprise applications under study. Consolidating such
bursty workloads onto a smaller number of more powerful
servers is likely to reduce the capacity needed to support the
workloads.

An additional and complementary property for a workload is
the maximum duration of its contiguous application demands.
While a system must be provisioned to handle sustained bursts
of high demand, short bursts may not significantly affect the
workload’s users. For example, if a workload’s contiguous
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demands above the 99th percentile of demand are never longer
than 10 minutes then it may be economical to support the
workload’s 99th percentile of demand and allow the remaining
bursts to be served with degraded performance [6].

Figure 3 presents the maximum duration of the contiguous
demands above 99th percentile of the workload demand. The
figure shows that for 50% of the workloads the periods of a
high load are very time-limited:

• 23.7% of the workloads have a longest busy period less
than 15 minutes;

• 34.5% of the workloads have a longest busy period less
than 20 minutes;

• 53.3% of the workloads have a longest busy period less
than 30 minutes.

Therefore, for a significant portion of the enterprise applica-
tions under study, allowing a time-limited degraded application
performance (e. g., up to 30 min.) is likely to offer significant
savings in the amount of capacity that must be provisioned.

B. Workload Pattern Analysis

This section presents general results for the workload
pattern analysis. The results we present consider workload
demand traces from April, 1st 2006 to July, 8th 2006. To begin
we offer a general overview of the workloads. Figure 4 gives
a summary of the pattern lengths for the 139 workloads. The
pattern analysis extracts patterns with lengths between three
hours and seven weeks:

• 68% of the workloads exhibit a weekly behavior, and
• 17% of the workloads exhibit a daily behavior.

We note that not all of the pattern lengths are directly related to
a multiple of days, for example one workload exhibits a strong
cyclical behavior with a period of 10 days, 10 hours, and 45
minutes. Thus having knowledge of the patterns can help to
recognize when workloads with different pattern durations will
have collisions for their larger demands.

Using the clustering algorithm, we classified the 139 pat-
terns in the following way. There were

• 31 strong patterns. Most of the 31 strong patterns cor-
respond to batch jobs that exhibit a very distinct cyclic
behavior;

• 76 medium patterns. The medium patterns typically in-
clude interactive and/or mixed batch and interactive work;

7 Weeks

6 Weeks

5 Weeks

4 Weeks

3 Weeks

2 Weeks

10 Days

1 Week
5 Days

1 Day

0 20 40 60 80 100 120 140

Le
ng

th
 o

f D
et

ec
te

d 
P

at
te

rn
s

Workload Number

Fig. 4. Lengths of Workload Demand Patterns

• 32 weak patterns. The weak patterns include: i) workloads
showing no cyclic behavior, e. g., constant or random
demands, ii) workloads that have been interrupted several
times, e. g., by intermediate peaks with 100% load each
lasting a couple of days, or iii) workloads that changed
completely during the duration of the workload trace,
e. g., the workload in Figure 5.

These results suggest that pattern matching methods deduce
reasonable patterns for 107 out of 139 cases.

C. Similarity of Behavior for Pattern Occurrences

As discussed in Section III-A.3, we need to understand
when there are significant differences in a workload’s pattern
occurrences. Significant differences may cause a pattern to be
classified as weak.

Figure 5 shows a 14 week workload demand trace for a
workload classified as having a weak pattern. There is a clear
discontinuity in behavior at week 10 and what appear to be
three separate patterns.

The pattern chosen for this workload is influenced heavily
by the first 8 weeks of the workload. Figure 6 shows a plus-
minus CDF for variability of differences in demand with
respect to the overall pattern for each of the 14 weeks. The
figure shows that there are large differences in the tails of the
differences in demand with respect to the pattern. Table II
shows the range of minute per day differences in extreme
behavior for the occurrences with respect to week 1. The table
shows that weeks 1 through 8 have average differences of
approximately an hour per day – except for week three which
has a difference of 109 minutes per day, while the others have

Week 2 – 8 Week 9 Week 10 Week 11 – 14
Week 1 36 – 66 (109 241 817 302 – 630

for week 3)

TABLE II
RANGE OF MINUTES PER DAY OF DIFFERENCES IN EXTREME LOAD

BEHAVIOR
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differences of 4 or more hours per day. Thus the approach we
present is able to distinguish such changes in demands across
occurrences and can provide insights into why some patterns
are classified as weak.

Figure 7 considers all 139 workloads for a five week
analysis period. Five weeks is a typical period for our use of
these methods. It shows the percentage of workloads that have
a fraction of occurrences pairs with differences in extreme
behavior of less than 60, 120, and 180 minutes per day, respec-
tively. We see that the 120 minute per day scenario has 31%
of workloads where all occurrences are similar, and 20% of
workloads where no more than 20% of occurrences are similar.
This corresponds well to the breakdown of pattern quality
we observed from the clustering algorithm of Section IV-B
for these same 5 weeks. The clustering algorithm had 24%
strong patterns and 19% weak patterns. We note that our new
approach lets us classify the quality of a patttern on a per-
workload basis, i.e., without the need for clustering. For the
60 minute threshold, only the top 30% of workloads have
more than 50% of occurrence pairs being similar. As expected
the 60 minute threshold is more strict causing more pairs of
occurrences to be regarded as dissimilar. Likewise the 180
minute threshold is less restrictive. We choose to use the 120
minute threshold because it has a good correspondence with
the clustering based classification system.

D. Trending

The approach to trending that we employ assumes an
additive model. Historic data is used to estimate the expected
change in demand from one occurrence to the next. This
change is applied repeatedly when generating the synthetic
traces for future occurrences. There are a few challenges that
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Fig. 7. CDF of Differences in Extreme Behavior in Minutes per Day

arise when applying this method. This section discusses two
of them, and how we address them.

First, public holidays, runaway operating system processes,
and failed operating system processes may each influence what
is perceived as a trend. Long term trends are less affected by
these events. Pattern similarity can warn of occurrences that
deviate from the observed pattern, and such occurrences can
be excluded from a trend.

Secondly, sufficient historical data is needed to predict a
trend for a period of time into the future. For example, a
minimum of two weeks of data are needed to predict a weekly
trend. However, short term trends, e. g., on the order of days
or weeks, may exist that are not representative of the longer
term. For example, the last week of a month may always
have greater demands than the first three weeks. Depending on
where the historic data starts, trending methods may identify
an increasing or decreasing short term trend. These trends
exist but each has a particular time into the future for which
it is relevant. Significant historical data is needed to capture
trends that are on the timescale of quarter years. At these
longer timescales applications demands may change, due to
new application functionality or software releases, or business
conditions may change thereby making such trends less useful.
For long timescales business forecasts aim to capture such
disruptions. They must be represented in the capacity plan.

With knowledge of the above limitations, we can still exploit
trending for shorter timescales in the capacity management
process. Figure 8 shows a workload along with a trend τ that
we compute using three weeks of historical data. The figure
shows a slowly decreasing trend of −2.3 units of demand per
week that correctly anticipates decreasing demands one or two
weeks into the future.

E. Representativeness of a Synthetic Trace with Trending

In this section, we illustrate the representativeness of a
synthetic workload trace generated using our approach. We
use three weeks of historic data from May 14 through June 4
to generate a synthetic trace for the next two weeks, using
trending, and compare the characteristics with that of the
actual workload data for the following two weeks, namely
June 5 through June 18. Figure 8 shows the corresponding
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historical, synthetic, and future workload demands. The trend
is clearly useful at this timescale.

To further assess the representativeness of the synthetic
trace as compared with the historic data, we see that Fig-
ures 9 and 10 show that the periodogram and auto-correlation
functions for the two data sets are very similar. Finally, the
required capacity values for the historic, synthetic, and actual
future workload demands were 508, 455, and 461 units of
demand, respectively. The corresponding contiguous bursts of
demand that were beyond the 99-percentile were 160, 60, and
35 minutes, respectively. Thus the synthetic trace has both
a similar pattern and required capacity as the actual demand
trace it aimed to predict. In the next section, we further validate
aspects of this workload demand prediction service.

F. Walk-Forward Test

In this section, we exploit the workload demand prediction
service as part of the capacity management process. We
conduct a walk-forward test over the six months of data to
emulate how well our capacity management process would
have served the data center for the six months.

• Starting with the first week, a window with w weeks of
data is used to recommend a consolidated configuration
C1, i. e., each workload is assigned to a specific server, for
the system. The configuration reports expected capacity
values for each server in the configuration. Multiple
synthetic traces, in our case thirty, are used to determine a
range of estimates for required capacities for each server.
The greatest observed required capacity for a server is
chosen as the estimate for required capacity of the server.
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• The next y weeks of data are then simulated with respect
to C1. This simulation gives the actual capacity for the
next y weeks.

• The difference between a server’s estimated and actual
capacity gives the absolute error for the estimate of capac-
ity. The negative errors reflect “under-estimated” capacity
while the positive errors correspond to “over-estimated”
capacity. We use a plus-minus CDF that reflects both
types of errors for the walk-forward test.

• The steps in the walk-forward test are repeated iteratively
with w weeks of data but now starting with weeks 2, 3,
and so on.

• Let i be the step number in the walk-forward test. Step
i computes a new configuration Ci and a new set of dif-
ferences between estimated and actual required capacity
values for each server.

We consider an ongoing process where the workloads are
repeatedly consolidated onto a number of powerful servers
over time. The servers have 8 processors. In general, the
consolidation required 13 to 15 of these servers at a time.
To evaluate the effectiveness of workload demand prediction
methods we consider several different scenarios for generating
synthetic workloads. The scenarios include:

a) use pattern analysis and trending;
b) use pattern analysis alone;
c) all workloads are associated with daily pattern; and,
d) all workloads are associated with a 30 hour pattern

(specifically chosen to be incorrect).
For our study we use w = 5 weeks of historic input for

the process and predict required capacity y = 1 week and y =
5 weeks into the future. Figures 11 and 12 show CDFs of
errors in predictions for required capacity for the scenarios
over the entire walk-forward test. A negative error suggests
that a method estimates less capacity than is actually required
for a server.

Figure 11 shows the results for the one week prediction.
Scenarios a) and b) are pretty much indistinguishable. Trend-
ing avoided two large but similar negative errors. A fixed daily
pattern without trending, scenario c), caused several larger
negative errors than a), i. e., values less than -1 processor.
The clearly incorrect 30 hour pattern from scenario d) caused
severe errors.
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Figure 12 shows that the results for predicting required
capacity 5 weeks into the future are very similar. The only
difference is errors were a little lower for scenario b), i. e.,
without trending, than a) with trending. This is reasonable.
Our historic window of 5 weeks of data is not likely to be
sufficient for predicting trends 5 weeks into the future for all
workloads for all steps in the walk-forward test.

For both 1 week and 5 week predictions, Scenario a)
estimates per-server required capacity to within one processor
(out of eight processors) 95% of the time.

V. RELATED WORK

Existing studies of internet and media workloads [1], [5]
indicate that client demands are highly variable (“peak-to-
mean” ratios may be an order of magnitude or more), and that
it is not economical to overprovision the system using “peak”
demands. However, we are not aware of similar studies for en-
terprise workloads. We present results that illustrate the peak-
to-mean behavior for 139 enterprise application workloads. An
understanding of burstiness for enterprise workloads can help
to choosing the right trade off between the application quality
of service and resource pool capacity requirements. The ability
to plan and operate at the most cost effective capacity is a
critical competitive advantage.

Historically, enterprise capacity management groups have
relied upon curve fitting and queueing models to anticipate
capacity requirements for shared resources such as mainframes
or large servers. Curve fitting and business level demand
forecasting methods are used to extrapolate measurements
of application demands on each resource. Queueing models
may be used to relate desired mean response times for model
specific workload classes [14], [15], [16] (e. g., batch or in-
teractive, payroll, accounts receivable) to target for maximum
resource utilizations. Unfortunately, this approach is typically
a people intensive and hence expensive process. Our approach
accounts for the non-linear relationship between utilization

and application responsiveness by considering the relationship
between resource demand and the utilization of time-varying
capacity as allocated by workload managers [6].

We believe that understanding workload patterns, trends,
and forecasts, and using them for future demand prediction
is critical for a capacity management process that aims to
make efficient use of capacity for resource pools. The demand
prediction we consider predicts demands days and weeks into
the future. We distinguish the methods we employ from those
that are typically used to predict demands several seconds
or minutes into the future. Techniques for very short term
predictions often use other approaches such as ARMA [3]
or GARCH [9], [2] models. While these approaches may be
appropriate for the very short term their predictions quickly
converge to a mean value for the time scales of interest to us.
[18] also describes methods for predicting workload demand
patterns that exploit periodograms and auto-correlation. They
are similar to the methods we propose, but do not consider
trends, or synthetic workload generation as we developed in
this paper.

Traces have been used to support what-if analysis that
consider the assignment of workloads to consolidated servers.
VMware Capacity Planner [17] and TeamQuest [13] offer
products that employ trace-based methods to support consoli-
dation exercises. AutoGlobe [12] proposes a self-organizing
infrastructure where the available hardware is virtualized,
pooled, and monitored. They introduce a fuzzy logic based
controller to supervise all services running on the hardware
platform. If the controller recognizes an exceptional situation
it triggers actions to remedy the situation automatically. In
addition to that, they introduce a static optimization module
that uses historical demand information to compute workload
placement recommendations. They calculate the recommenda-
tion using a greedy heuristic.

We believe the workload placement service we employ has
advantages over other workload placement services described
above. It supports both consolidation and load balancing
services as needed in a comprehensive capacity management
process and is supported by a genetic algorithm that tends
to improve upon greedy workload placement solutions. Fur-
thermore, the workload placement methods go further than
the other methods by addressing per workload resource ac-
cess quality of service specifications, classes of service, and
placement constraints.

VI. CONCLUSIONS AND FUTURE WORK

We describe a capacity management process for resource
pools. The process relies on services that automate and sim-
plify management for resource pool operators. In this paper
we focused on a workload demand prediction technique. A
case study exploited six months of data for 139 enterprise
applications to evaluate the effectiveness of our methods. The
automated methods predicted the capacity of servers hosting
the workloads to within one processor out of eight 95% of the
time while reducing aggregate processor requirements by 35%
without significant risks. Such advance knowledge can help



resource pool operators to decide whether to order additional
capacity for their pools.

The workload demand prediction service relies on pattern
and trend recognition methods. We characterized the quality
of models for workload patterns and introduced a method
to automatically recognize when occurrences of a pattern
have large differences in behavior. The technique recognizes
transitions in behavior that cause poor quality patterns. We
introduced a method to generate synthetic traces to represent
the future behavior of workloads, taking into account medium
term trends, e. g., weekly. The synthetic trace had similar
properties as the actual future behavior of the workload. Our
case study results show that trend prediction can be helpful
as long as we do not exaggerate how far into the future we
expect trends to continue. We believe that workload demand
prediction methods are advantageous for a capacity manage-
ment process. They recognize odd patterns which may interact
in the future, e. g., 3 day and 5 day patterns may interact every
15 days, and can help to report when a workload’s demands
appear to deviate from past behavior.

Our future work includes: developing on-line automated
methods for monitoring and reporting unplanned changes to
workload characteristics; better exploiting notions of con-
fidence and risk regarding predictions for future capacity
requirements; and better integrating business forecasts for
change into our approach.
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