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ABSTRACT
Recently, a number of federated distributed computational and com-

munication infrastructures have emerged, including the Grid, Plan-

etLab, and Content Distribution Networks. In these environments,

mutually distrustful autonomous domains pool resources together

for their mutual benefit, for instance to gain access to: unique com-

putational resources, multiple vantage points on the network, or

more computation than available locally. Key challenges for such

federated infrastructures include resource allocation, scheduling,

and constructing highly available services in the face of faulty end

hosts and unpredictable network behavior. Developing such appro-

priate mechanisms and policies requires an understanding of the

usage characteristics and operating environment of the target envi-

ronment. In this paper, we present a detailed characterization of

the actual use of the PlanetLab network testbed. PlanetLab con-

sists of 240 nodes spread across 100 autonomous domains with

over 500 active users. Using a variety of measurement tools, we

present a three-month study on the network, CPU, memory and

disk usage of individual PlanetLab nodes and sites. On the con-

sumer side, we further characterize the consumption of individual

users. Next, we present results on the availability and reliability of

system nodes and the network interconnecting them. Finally, we

discuss the implications of our measurements for emerging feder-

ated environments.

1. INTRODUCTION
A number of forces have contributed to the recent popularity of

federated, distributed computation and communication infrastruc-

tures. The vision of a computational grid [13] promises the ability

to leverage statistical multiplexing and unique hardware resources

across the network to carry out computations larger than might be

possible within any single site or administrative domain. Next,

the advent of large-scale distributed systems such as distributed

hash tables, peer-to-peer file sharing, and network measurement

and characterization has lead a number of researchers to build per-

sonal testbeds consisting of available machines at various points in

the network. These testbeds facilitate distributed system develop-

ment, evaluation as well as network measurement and characteriza-

tion. Given commonality in the requirements of this community—a

set of available machines at a diversity of sites across the network—

a variety of shared testbeds have been developed over the years.

PlanetLab [18] is the latest, largest and perhaps most advanced

of these testbeds. Finally, on the production side, companies de-

ploying content distribution networks and shared hosting environ-

ments are considering techniques to pool their resources across

trust boundaries to more cost effectively deliver high levels of per-

formance and availability to their customers.

These emerging federated testbeds are growing to significant size,

geographic and administrative diversity. For instance, as of October

2003, the PlanetLab infrastructure consisted of 240 nodes at over

100 distinct administrative domains in 19 countries and 500 active

users. As the size and reach of a federated infrastructure grows, im-

portant challenges include resource discovery, scheduling, resource

allocation policies, and reliability among mutually distrustful users

and sites. Clearly, the appropriate mechanisms and policies depend

on the exact usage characteristics of the system under considera-

tion. For instance, if resources were never constrained, very simple

resource allocation policies would be appropriate.

While such federated infrastructures are growing in popularity and

importance, there is currently little understanding of how the re-

sources are actually used. Thus, the goal of this work is to char-

acterize the aggregate, per-site, and per-user resource consumption

characteristics of the PlanetLab testbed. In addition, since system

resources are under the control and administration of a wide variety

of authorities, we also measured the availability of the testbed, with

an eye toward the mechanisms appropriate for supporting reliable

large-scale distributed systems.

We instrumented the PlanetLab infrastructure to capture a broad

range of per-node characteristics and present the results of our study

over a three-month period, from July-October 2003. Our high-level

findings include: i) the system transitions from periods of light load

to periods of heavy contention, ii) a small number of users account

for the majority of system activity, iii) active distributed services

typically remain active for less than 5 minutes, though some ser-

vices remain active for weeks, iv) when averaged across a day and

the entire infrastructure, the majority of services consume less than

1% of a single machine’s resources in aggregate, v) most nodes

demonstrate high levels of availability and low mean times to re-

pair; however, the tail is long with 10% of nodes demonstrating

extremely low levels of reliability, vi) node failures can be corre-

lated significantly beyond the level predicted by correlation of node

failures at a single site.

Of course, we cannot claim that the specifics of our measurements

are representative of how such federated infrastructures may be

used in general. However, we discuss the implications of our mea-

surements for emerging PlanetLab infrastructure services in Sec-

tion 6. Further, we believe that the general trends displayed by our

testbed are likely to reflect at least some of the characteristics of

emerging federated distributed systems.

2. PLANETLAB OVERVIEW



Our study examines PlanetLab, an open, global network testbed for

developing, deploying and accessing widely distributed network

services. The goal of PlanetLab is to grow to 1000 geographically

distributed nodes situated in a variety of diverse locations on the In-

ternet (e.g., colocation centers, edge sites, etc.). PlanetLab targets

services that require broad geographic coverage for reasons includ-

ing leveraging multiple vantage points on the network, providing

physical proximity to data sources and sinks, providing multiple

independent failure domains, and spanning multiple administrative

and political boundaries.

In October 2003, the testbed consisted of 240 nodes at over 100

sites in 19 countries. It has been in production use since July 2002,

currently supports over 120 active research projects and over 500

users around the world. The model for sites joining PlanetLab is

that a site contributes some set of local resources (e.g., 2-3 ma-

chines plus network connectivity) and joins the testbed. In ex-

change, the site gains access to remote resources at other sites. Im-

plicit here is the idea that remote resources are more valuable than

local resources. This idea follows naturally given the nature of the

widely distributed network services PlanetLab aims to enable.

Slice Service

cmu5 IrisNet [10]: XML-based distributed query processing

mit4 Chord [21]: Distributed lookup, distributed hash table

northwestern2 Nemo: Resilient overlay multicast protocol

princeton6 Sophia [22]: Prolog-based distributed query processing

princeton9 CoDeeN [17]: Open content distribution network

tennessee7 IBP [8]: Internet Backplane Protocol

ucb5 PIER [16]: Distributed query engine

ucb8 Bamboo: Churn resilient distributed hash table

utah1 Emulab [25]: Emulab-PlanetLab integration service

uw9 ScriptRoute [20]: Network measurement/debugging

Table 1: Example wide-area services running continuously on

PlanetLab.

The abstraction of a slice is fundamental. A slice is a horizontal cut

of global PlanetLab resources. A slice comprises a network of vir-

tual machines spanning some set of physical nodes, where each vir-

tual machine (VM) is bound to some set of local per-node resources

(e.g., CPU, memory, network, disk). Just as processes serves as

the fundamental OS abstraction for single-node applications, slices

serve as the distributed abstraction for widely distributed network

services. Throughout the paper, when we refer to slices, we are

referring to network services that are running in particular slices.

Table 1 provides a handful of example services which currently run

continuously on PlanetLab.

Currently, users access their slice through ssh access to the pri-

vate virtual machine1 residing on all global nodes that make up the

slice. Currently, PlanetLab allocates resources to competing virtual

machines on a best effort basis. Hence, the local nodes operating

system, currently a heavily patched Linux 2.4.19 kernel, allocates

memory, CPU, network bandwidth, and disk storage according to

demand with no per-user resource arbitration. However, a num-

ber of efforts [6, 7, 9, 14] are investigating appropriate resource

allocation mechanisms and policies. One of the motivations for

this study is to gain an understanding of resource usage models on

PlanetLab to gain a better understanding of the appropriate resource

allocation policies. While our specific conclusions are restricted to

1Currently, we use lightweight Linux vservers for this mechanism.
However, investigating the appropriate structure for such virtual
machines is an active area of research [11, 24].

PlanetLab’s usage patterns over a recent three month time period,

we believe the general trends are likely applicable to the broad class

of emerging federated, networked computation and communication

infrastructures.

3. MONITORING DATA
We use monitoring data from five different sources in our analysis.

Our five sources of monitoring data include:

• AllPairsPing Minimum, average, and maximum ping times

(over 10 ping attempts) between all pairs of nodes in Planet-

Lab. Measurements were taken and collected approximately

every 30 minutes from each node. Failed ping attempts were

also recorded.

• Ganglia Node resource statistics collected by Ganglia using

the /proc filesystem. Measurements were taken every 15

seconds. However, to save storage, Ganglia compacts older

per-node information. Thus, the long-term node data used

was available only as per-day averages.

• PLNetflow Number of packets, number of bytes sent, net-

work protocol, source and destination IP addresses, and source

and destination ports for every slice on every node. Updated

data was collected every five minutes.

• Scout Number of bytes sent and received for each slice vir-

tual machine on every node. Updated byte counts were taken

every five minutes from a special directory in /proc (i.e.,

/proc/scout), which exports per-slice statistics on Plan-

etLab nodes.

• SliceStat CPU, physical memory, and network bandwidth

usage for each virtual machine on every node. Bandwidth us-

age was computed over 1, 5, and 15 minute windows. Mea-

surements were taken every five minutes and logged to local

files.

Data Set Dates MaxNodes Size (MB)

AllPairsPing 2003-07-01 to 2003-10-01 211 1214

Ganglia 2003-07-01 to 2003-10-01 192 129

PLNetflow 2003-09-10, 2003-09-15 166 8331

Scout 2003-07-01 to 2003-10-01 176 5480

SliceStat 2003-08-22 to 2003-10-04 152 4543

Table 2: Summary of monitoring data sets.

For each source, measurements were taken locally on individual

nodes and periodically archived at a centralized location. In each

case, the set of nodes being monitored varied over time but gen-

erally tended to cover a large fraction of PlanetLab. Variation in

the node sets was due primarily to the introduction of new Plan-

etLab nodes and the time for the maintainers of the various moni-

toring systems to incorporate these nodes into their monitoring by

installing their monitoring software. Table 2 summarizes each of

the five data sets used in terms of time coverage, number of nodes

covered, and the size of the raw monitoring data. All five monitor-

ing sources used are publicly available to users on PlanetLab. Long

term archives for two of the five data sources are also available on

the web 2.

2Archives for AllPairsPing can be found at http://www.
pdos.lcs.mit.edu/˜strib/pl_app. Archives for Scout
can be found at http://www.planet-lab.org/logs/
scout-monitor.
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4. WORKLOAD MEASUREMENT AND

ANALYSIS

4.1 Global Resource Demand
Figures 1, 2 and 5 plot aggregate CPU, network, and disk utiliza-

tion across all PlanetLab nodes between July 1 and October 1 2003.

PlanetLab is a dynamic, constantly evolving system. Hence, the

set of nodes present in the system did not stay constant during the

course of the experiment, with the number of global nodes increas-

ing from 132 to 169 over the three month period, as depicted in

Figure 1. The modest increase in system size is insufficient to ex-

plain the widely varying system load. For each of the graphs, the

x-axis depicts time progressing in days while the y-axis plots ag-

gregate resource utilization averaged across the entire day.
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Figure 1: Aggregate CPU load on PlanetLab based on the Gan-

glia data set.
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Figure 2: Aggregate send and receive bandwidth usage on Plan-

etLab based on the Scout data set. Note the large bandwidth

spike on August 27, 2003.

These results show that CPU and network utilization are bursty.

CPU utilization varies by an order of magnitude, going from a

low point of an aggregate load average of 100 system wide (mean-

ing 100 processes are in the ready queue averaged over each five
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Figure 3: Aggregate send bandwidth on PlanetLab by hour on

August 27, 2003 based on the Scout data set.
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Figure 4: Aggregate send bandwidth on PlanetLab from

1:00am UTC to 4:00am UTC on August 27, 2003 based on the

Scout data set.

minute interval) to an aggregate load average of 1200. Note that

these values are averaged over an entire day; intra-day bursts place

significantly larger load on the system. Network utilization is even

more bursty, varying by more than 2 orders of magnitude. Aggre-

gate send and receive bandwidth varies from approximately 5 Mbps

(aggregate, system-wide) averaged across a single day to 800 Mbps

aggregate. Note that 1 Gbps of aggregate bandwidth corresponds

to approximately 10 TB of data transferred across PlanetLab during

the course of the day. Figure 3 zooms in on the average per-hour

resource consumption on the heaviest day in the trace, August 27,

2003. This figure shows that while the system averaged approxi-

mately 800 Mbps during the day, per-hour bandwidth varied from

a peak of nearly 1.3 Gbps sustained over an hour (0200 UTC) to

approximately 50 Mbps for the last few hours of the day. Finally,

Figure 4 shows bandwidth consumption averaged over 5-minute

intervals (the finest data granularity available) for the three busi-

est hours (0100-0400 UTC) on August 27, 2003. Bandwidth usage

climbs steadily from approximately 400 Mbps to 1.5 Gbps over a
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Figure 5: Aggregate disk usage and capacity on PlanetLab

based on the Ganglia data set.

one hour period, before plateauing in the 1.2-1.4 Gbps range.

As expected, disk utilization is much less bursty as shown in Fig-

ure 5. Disk capacity grows with the number of nodes in PlanetLab

while utilization also grows steadily as users bring additional ex-

periments and data sets online. We expect the gap between disk

capacity and disk usage to shrink as time passes.

4.2 Node Resource Contention
Having considered aggregate system resource utilization, Figures 6-

8 analyze per-node resource utilization. In each figure, time once

again progresses on the x axis over the target 3 month period. The

y-axis has bands for each node in PlanetLab sorted by total resource

utilization over the entire 3 month period. Thus, the node that is

busiest on average for the entire 3 months is presented at the top of

graph, while the least busy node is at the bottom. Individual squares

within the band represent total resource utilization at a particular

node on a given day, with the shade indicating the level of resource

utilization. Lighter shades indicate lower levels of resource utiliza-

tion while darker shades indicate higher levels of resource utiliza-

tion (see the figure captions for precise quantification). Figure 6

shows fairly light per-node CPU utilization across PlanetLab for

the three month period. However, there are periods of time where

30-40 of the nodes show high levels of CPU utilization.

We believe that the relatively light level of PlanetLab CPU utiliza-

tion can be attributed in part to the types of services and applica-

tions currently running on the infrastructure. However, note that

during periods of contention (e.g., during the week leading to the

NSDI paper submission deadline, Sep 15-22 2003), there was sig-

nificant CPU contention, with many nodes maintaining 5-minute

load averages over 10 for the entire day (many have sustained load

averages over 50). On the other hand, PlanetLab services make

more heavy and constant use of available bandwidth, as borne out

by the level of bandwidth utilization depicted in Figure 7. There are

significant periods of heavy network utilization where a large frac-

tion of nodes are averaging more than 1 Mbps of sustained traffic.

Since most PlanetLab services currently are attempting to charac-

terize the Internet or improve its communication behavior it stands

to reason that network bandwidth is the most constrained system

resource.
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N
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Figure 6: Per-node CPU load on PlanetLab based on the Gan-

glia data set. CPU load is represented as a grayscale ranging

from white (no load) to black (CPU load ≥ 10.0).
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Figure 7: Per-node send bandwidth on PlanetLab based on the

Scout data set. Bandwidth is represented as a grayscale ranging

from white (0 Mbps) to black (≥ 1 Mbps).

As expected, Figure 8 shows that disk utilization does not demon-

strate significant variation in utilization. Approximately 15-20%

of the nodes are at or near capacity during the entire lifetime of

our measurement with the rest of the nodes demonstrating increas-

ingly higher levels of utilization over the 3 month period. Note that

during this time period, PlanetLab did not enforce any per-user disk

quota, validating the notion that without external stimuli disk usage

will simply grow unabated.

Having described some of the aggregate and per-node character-

istics of PlanetLab, we now turn to geographic characteristics of

the system. Table 3 plots the mean and standard deviation for the

number of slices hosted per day in each geographic region over the

3 month period. Interestingly, while there are significantly more

nodes located in the United States, the average number of slices

in different geographical regions of the world is approximately the

same. In fact, the top seven regions when measured by average

4



Region µV Ms/day σV Ms/day

australia 20.4 0.0

netherlands 19.7 0.7

brazil 19.3 0.1

denmark 19.0 0.1

hongkong 18.0 1.4

sweden 17.9 1.1

italy 17.8 0.6

us.central 17.8 5.3

us.eastern 17.7 3.8

germany 16.9 1.9

us.mountain 16.1 7.7

taiwan 16.0 2.4

canada 15.1 5.2

france 15.1 0.0

us.pacific 15.0 5.3

uk 11.5 6.6

china 9.6 0.9

israel 9.0 1.6

russia 7.8 0.0

Table 3: For each region, this table shows the average and stan-

dard deviation number of VMs running on each node per day

based on the Scout data set.

Region µuniqslices σuniqslices

australia 117.0 8.5

denmark 116.5 0.7

sweden 112.5 7.8

italy 106.0 7.1

hongkong 102.5 0.7

germany 101.0 9.6

us.central 98.2 38.6

brazil 98.0 0.0

us.eastern 97.5 31.5

netherlands 97.5 2.1

us.mountain 96.6 60.8

us.pacific 84.3 39.0

taiwan 72.5 13.4

france 71.0 0.0

canada 66.3 45.0

uk 46.2 46.4

china 35.0 1.4

israel 25.5 16.3

russia 15.0 0.0

Table 4: For each region, this table shows the average and stan-

dard deviation number of unique slice VMs active on each node

during the entire trace period for the Scout data set.

Site µV Ms/day σV Ms/day

duke 23.3 3.7

cmu 22.5 1.3

arizona 22.1 1.4

utexas 21.8 1.0

caltech 21.3 1.0

rice 21.2 1.4

ucla 21.2 0.0

princeton 21.0 3.5

columbia 21.0 1.8

ucb 20.8 2.8

Table 5: Top 10 sites ranked by average number of VMs per

node based on the Scout data set.
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Figure 8: Per-node disk utilization on PlanetLab based on the

Ganglia data set. Disk utilization is represented as a grayscale

ranging from white (0% utilization) to black (100% utiliza-

tion).

number of slices are all outside of the United States. This can par-

tially be explained by the fact that the types of services running on

PlanetLab desire multiple vantage points on the network, making

sites outside of the U.S. more desirable. Further, there are many

more nodes currently in the United States than outside it, meaning

that system load can be more diffuse if one desires access to U.S.

resources compared to non-U.S. resources—if one wishes to run in

Australia for example there are only a small number of nodes to

choose from. At the same time, Table 5 shows that the 10 most

busiest sites, in terms of average number of slices hosted, are all

within the United States.

Table 4 plots the mean and standard deviation for the number of

unique slices hosted in that geographic region in the 3 month pe-

riod. Note that certain regions, such as Russia, came up during

the course of our measurements, naturally leading to both a smaller

number of unique slices and smaller average number of slices per

day as system users slowly learn of the existence of a new set of

nodes. The Table shows that once again, nodes outside of the U.S.

were among the most popular from the perspective of running dis-

tributed experiments and services.

4.3 PerSite Resource Consumption
To this point, we have discussed how PlanetLab resources are used

in aggregate across the system. We now turn our attention to who

is consuming the resources, with the associated implications on re-

source allocation scheduling. We use our SliceStat infrastructure

(described in Section 3) to measure per-slice resource consumption

over a six week period. Tables 6, 7 and 8 depict the amount of

CPU, memory, and network send bandwidth consumed in aggre-

gate averaged per-day over a six week period, ranked in order by

total per-site resource consumption over the entire period. Table 6

shows that average CPU consumption is fairly modest during this

period. SliceStat measures the percentage of CPU utilized by each

slice on each node, and hence our CPU utilization numbers are dif-

ferent from the Ganglia profiles we used to monitor overall Planet-

Lab characteristics earlier, which used 5-minute load average as an

indication of CPU load. Table 6 shows that slices originating from

site ast consume 21 CPUs on average over the entire period with
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a standard deviation of 11 CPUs, suggesting periods where the site

was consuming all of the CPU at 30-40 machine equivalents over

an entire day. The rest of the top 10 consumed a more modest .2-7

machine equivalents on average.

Site µ CPU% σ CPU%

ast 2131.91 1118.82

mit 688.09 1039.01

ucb 614.41 678.42

idsl 609.04 262.02

princeton 402.29 281.62

nyu 364.71 910.48

uiuc 144.61 299.45

duke 77.96 162.44

northwestern 67.30 63.08

cornell 22.22 61.75

Table 6: Top 10 sites ranked by mean aggregate CPU usage

over six weeks. For each site, the table shows the mean and

standard deviation aggregate CPU usage.

Site µ GB σ GB

mit 8.928 4.953

ucb 8.299 5.512

princeton 4.715 1.252

irb 1.389 0.684

northwestern 1.269 1.167

idsl 1.120 0.407

pl 1.087 0.811

uiuc 0.643 1.180

nyu 0.544 1.259

emulab 0.403 0.523

Table 7: Top 10 sites ranked by mean aggregate physical mem-

ory usage over six weeks. For each site, the table shows the

mean and standard deviation aggregate physical memory us-

age.

Site µ Mbps σ Mbps

mit 23.4 77.5

ucsb 7.0 22.4

ucb 3.5 4.1

rice 3.1 9.0

princeton 1.9 1.3

cmu 1.9 4.4

tennessee 1.2 1.9

nyu 1.2 3.2

uiuc 1.0 3.1

duke 0.7 1.3

Table 8: Top 10 sites ranked by mean aggregate send band-

width. For each site, the table shows the mean and standard

deviation aggregate send bandwidth usage.

As discussed below, the average number of nodes per slice is sig-

nificantly higher than these values, suggesting that slices typically

use a subset of available CPU on a larger number of individual

machines. Interestingly, no PlanetLab site contributed more than

3 machines to the infrastructure during the measurement period,

clearly indicating that there PlanetLab users do wish to make use

of statistical multiplexing to gain access to not just additional van-

tage points on the network, but also to access more resources than

they might contribute.

As depicted in Figure 7, average memory consumption is similar

to CPU utilization. The top site, mit, consumes an average of 9

GB of global physical memory over the six month period. Each

PlanetLab machine has at least 1 GB of physical memory, so this

approximately corresponds to MIT users saturating the available

physical memory on 9 machines on average across the trace period.

Finally, Table 8 shows that network bandwidth is the most heav-

ily used and most bursty global system resource. For instance,

MIT users average 23.4 Mbps per day across the six week pe-

riod. This corresponds to 253 MB transferred per day on average

by MIT users. However, network bandwidth utilization is much

more bursty than other resources, with a standard deviation of 77.5

Mb/s for MIT. In fact, each site in the top ten has a standard devia-

tion higher than its mean utilization of network resources. On one

day during the trace period, MIT users averaged nearly 700 Mb/s,

corresponding to 7.4 TB transferred across the PlanetLab infras-

tructure on behalf of that site in one day.

One conclusion from these measurements is that individual sites or

administrative domains in any shared infrastructure will consume a

disproportionately large fraction of global system resources. This

suggests the need for a resource allocation infrastructure where

each site receives its “fair” (for various definitions of fair) portion

of global system resources. At the same time, resource consump-

tion is highly bursty, implying that any static resource allocation

mechanism will either leave resources significantly under-utilized

or will not allow certain classes of application and services to ob-

tain their full resource needs. It may then be appropriate to leverage

statistical multiplexing to guarantee sites and individual users some

minimum portion of system resources under constraint. However,

in the common case, many users will not require their full allot-

ment, allowing other currently more demanding users to pick up

the slack.
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Figure 9: Aggregate CPU usage for the top three sites (ranked

by average aggregate CPU usage) based on the SliceStat data

set.

Having presented the per-day average resource utilization for the

most active sites on PlanetLab, we now focus on variation in be-

havior over the six-week period. Figures 9, 10 and 11 depict the

per-day average resource utilization for the top three sites for CPU,

physical memory and send bandwidth respectively. The figures de-

pict significant variation in utilization for all three resources and,

once again, in particular for communication bandwidth (note the

log scale on the y-axis in Figure 11). Figure 9 shows a significant
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Figure 11: Aggregate site send bandwidth over time for the top

three sites (ranked by average site send bandwidth) based on

the Scout data set.

spike in CPU utilization, growing from approximately 10 machine

equivalents in aggregate to saturating approximately 80 machine

equivalents for a 2-day period. Site ast moved from averaging

10-20 machine equivalents for the first three weeks of the mea-

surement period to averaging 30-40 machine equivalents for the

last three weeks. Interestingly, the NSDI paper submission dead-

line coincided with the transition to 30-40 aggregate CPUs system

wide. This transition suggests that system resources were simply

constrained for the first three weeks of the trace and there was ac-

tually pent-up demand on the part of ast. As soon as the dead-

line passed, other sites freed up CPU resources, freeing up ast

to consume additional global resources3. Site ucb demonstrates

yet qualitatively different behavior, rapidly varying between 10-30

machine equivalents within the same day for a two week period.

3Recall that each PlanetLab node runs a best effort scheduler to
arbitrate local CPU contention.

Figure 10 shows somewhat different behavior for physical memory

consumption. The heaviest memory consumer, mit, consumed a

baseline of at least 5 GB of global physical memory for the entire

six week period, with steady climbs to 20 GB twice during the trace

period. The second largest consumer, ucb, demonstrates highly

bursty behavior, coinciding with the bursts in its CPU consump-

tion. While ucb consumes just 1 GB of aggregate physical mem-

ory at the beginning of the trace, total consumption rises quickly

and erratically, bursting to over 30 GB for individual xxx-hour pe-

riods over a two week period. At this point, memory consumption

returns to a steadier baseline of between 5-10 GB for the last three

weeks of the trace period. Finally, the third biggest memory con-

sumer, princeton demonstrated very steady memory utilization

over the entire 6 week period, hovering just under 5 GB of aggre-

gate utilization with a steady climb to 6 GB over a one week period

near the end of the trace.

Finally, Figure 11 shows the highly bursty nature of per-site band-

width consumption over the entire 3 month period. Site mit is

the top consumer in aggregate, with its transmission bandwidth in-

creasing steadily from 1 Mbps at the beginning of the period to

nearly 1 Gbps two months into the trace. After dropping its aver-

age network utilization by nearly two orders of magnitude, it jumps

back up by those same two orders of magnitude to 700 Mbps three

weeks later. Finally mit settles back into the 10 Mbps range for

the last two weeks of the trace. The second largest consumer,

ucsb, demonstrates similarly bursty behavior. Its consumption

grows from the 1 Mbps range, peaking first at 100 Mbps, drop-

ping sharply, and rising abruptly back to 200 Mbps before tailing

off to zero for the last half of the trace. We were able to determine

that this final peak corresponded to a graduate student completing

the “last” set of experiments before having his PhD dissertation

signed. Finally, the third largest consumer, ucb, shows (relatively)

the most stable behavior. Its bandwidth varies from 0-5 Mbps for

the first two months of the trace before holding more steady in the

3-10 Mbps for the last month of the trace.

4.4 PerSlice Resource Consumption
The previous subsection discussed resource consumption on a per-

site basis. We now delve one level deeper into resource consump-

tion on a per-slice basis. Recall that a slice corresponds to the re-

source consumption of a single PlanetLab user or service. We begin

by measuring the active number of individual slices on the Planet-

Lab infrastructure and the number of nodes that they are using as a

function of time. To gather this information, we track the number

of nodes that showed any activity (defined to be transmitting at least

one byte of data during the day) on behalf of a slice on a given day.

Figure 12 plots these results. It shows that the number of slices that

had activity on at least one node grows from approximately 70 to

over 160 over the 3 month period. Note that the number of active

slices varies widely. In the first two months of the period (from July

1 to Sep 1), the number of slices hovers around 70, varying from 40

up to 90. Starting September 1, the number of active slices begins

to grow steadily, perhaps corresponding with the conference sub-

mission deadline in mid September. We believe that the number of

slices is likely to remain elevated and grow as an increasing num-

ber of users become aware of the utility of the infrastructure with

each passing deadline. The number of slices that consume a larger

number of nodes also grew steadily over the 3 month period, with

more than 30 slices running across at least 64 nodes continuously

by the end of the trace period.

Figure 13 shows the number of active slices per node, for 7 specific
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Figure 12: Number of active slices on PlanetLab based on the

Scout data set.
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Figure 13: Cumulative distribution of slices per node on Plan-

etLab based on the Scout data set. Each curve represents the

cumulative distribution of slices per node on the first day of

each two week interval from July 1, 2003 to October 1, 2003.

dates during the trace period (the dates were chosen to be inter-

spaced by approximately 2 weeks). For the first two months of

the trace, 50% of the nodes hosted 12 slices or less on a given day,

with 3-15% of the nodes hsoting 20 or more active slices. In the last

few weeks of the trace period (corresponding with the conference

deadline), 50% of the nodes hosted at least 25 active slices with

some popular nodes hosting between 35-40 slices. While not all

slices are active simultaneously, if this trend were to continue, the

PlanetLab infrastructure would require additional nodes per site to

handle the CPU demands (currently there are typically 2-3 nodes

per site) and efficient scheduling mechanisms would be required to

ensure that nodes do not thrash context switching among a large

number of active slices.

Next, we consider the question of how long a slice remains active

once it runs. We define a slice to be active if any of its constituent

virtual machines transmit a threshold amount of data in a given
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Figure 14: Cumulative distribution of slice lifetimes based on

the Scout data set. Each curve plots a slice lifetime CDF for a

different definition of slice liveness based on a minimum num-

ber of bytes sent or received per day.

time period. The finest time granularity we can consider is 5 min-

utes given the resolution of our available data sets. Figure 14 plots

CDFs of slice lifetime for different data thresholds of activity. Note

the logarithmic scale on the x-axis. The figure shows that if we con-

sider a slice to be active if even one of its virtual machines transmits

1 byte of data, then approximately 65% of slices are active for less

than 5 minutes or less and 80% are active for 10 minutes or less.

Less than 5% of slices are active for more than 100 minutes while

a few slices are active for the duration of the trace.
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Figure 15: Cumulative distribution of slice activity for varying

slice lifetimes across all slices based on the Scout data set.

Next, Figures 15 and 16 plot the fraction of nodes that a slice does

use during over its lifetime. First, we determine the maximum num-

ber of nodes that are active during a particular lifetime, as measured

by the total number of distinct virtual machines that show any net-

work activity (transmitting at least one byte) during the slice’s life-

time. Next during each 5 minute interval in the slice’s lifetime we

consider what fraction of the overall virtual machine set were ac-

tive. Figure 15 plots this result for slices of different overall dura-
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tion while Figure 16 does so for slices of different maximum size.

Figure 15 shows that short-lived slices tend to run on all of their

virtual machines for the duration of their activity. Slices that run

for less than 10 minutes run on all of their VMs 80% of the time.

The trend is fairly general with most slices running on most of their

VMs for the duration of their experiment. Slices that run for more

than one week are active on at least 75% of their VMs in 50% of

their periods activity. Figure 16 shows that the percentage of ac-

tive VMs is largely independent of the overall size of the slice. For

slices that ran on a maximum of between 32 and 64 VMs during

their period of activity, 75% of the VMs were active more than

60% of the time. Interestingly however, less than 10% of the VMs

were active 40% of the time, suggesting that a large fraction of a

slice’s VMs will see significant periods of inactivity.
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Figure 17: Cumulative distribution of mean, per-day aggregate

CPU used by per slice on PlanetLab based on the SliceStat data

set.

We now discuss the wide range of resource consumption on a per-

slice basis. Figures 17, 18, and 19 depict cumulative distribution

functions of per-slice consumption of CPU, physical memory, and

network send bandwidth over a six week period. Note the log scale
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Figure 18: Cumulative distribution of mean, per-day aggregate

physical memory in GB used by per slice on PlanetLab base on

the SliceStat data set.
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Figure 19: Cumulative distribution of mean, per-day aggregate

send bandwidth in Mbps based on the Scout data set.

on the x-axis for all three figures. Figure 17 shows that most slices

consume relatively little CPU. In fact, nearly 65% of PlanetLab

slices consume less than .01% of aggregate CPU per day. The vast

majority of consumed CPU can be attributed to the top 5% of slices.

One slice averaged 21 CPU equivalents over the entire 6 week pe-

riod.

Next, Figure 18 shows that typical physical memory consumption

is even more modest. 65% of the slices consume less than 1 MB of

physical memory aggregated across the entire infrastructure. While

more spread out than CPU utilization, most of aggregate system

memory is concentrated in the top 20% of slices, each of which

consume more than 30 MB of aggregate memory each. One slice

averaged over 5 GB of aggregate memory consumption.

Finally, Figure 19 shows that among the three measured resources,

network bandwidth once again shows the widest range in resource

consumption. 70% of active slices in the six week period average
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Figure 20: Cumulative distribution of average per-day band-

width consumption across all slices based on the Scout data set.

less than 1 Kbps of aggregate per-day bandwidth. However, the

number of “heavy” users of network bandwidth is larger. Approxi-

mately 10% of active slices average more than 100 Kbps of average

bandwidth (with much larger bursts). 3% of slices averaged over 1

Mbps of traffic, with one slice averaging approximately 20 Mbps

during the six week period. Figure 20 plots a cumulative distribu-

tion function for the percentage of slices responsible for transmit-

ting various portions of all the bytes sent across PlanetLab for the

three month period. The figure shows that the top 10% of slices

are responsible for transmitting 99% of the data transmitted across

PlanetLab in the three month period. Further, three of the slices

are responsible for more than 50% of all transmitted bytes. We ex-

pect the set of heavy users to expand as the infrastructure matures,

but the concentration of resource utilization among a small set of

users is consistent with similar measurements in other distributed

settings [1, 2, 4, 15, 19].

4.5 IntraSlice Communication Patterns
Finally, we consider the communication patterns among the vir-

tual machines that make up the distributed slice. Figure 21 plots

the intra-slice communication patterns for eight large-scale services

running across PlanetLab in September 2003. Each square is a grid,

where each (x, y) point plots the communication intensity from

node y to node x over the entire day. The darker the shade, the

more communication between the pair of nodes. Grid shade in-

tensity is normalized relative to the heaviest communicating pair

of nodes. The axes are sorted by the IP address of the nodes, such

that nodes in the same administrative domain are clustered together.

The eight communication patterns show a wide range of patterns.

Here, we highlight a few. Figure 21(b) shows one service running

on 44 nodes, with a maximum of 3.2 MB of data transferred be-

tween any pair of nodes. Among the 44 nodes, 5 dark vertical bands

correspond to a subset of the nodes receiving data from all slice par-

ticipants. On the other hand, the two horizontal bands correspond

to two nodes sending significant amounts of data to all slice partic-

ipants. Figure 21(d) shows the communication pattern of a central-

ized service. In response to user-specified queries to a central loca-

tion, the central node communicates with all slice participants, col-

lects responses and returns the collected answer to the user. Next,

Figure 21(f) plots the communication pattern of a distributed hash

table running across 82 nodes. As expected, each node communi-

cates with a subset of global participants (consisting of its routing

and leaf table entries). This particular DHT structure attempts to

maintain some proximity in its entry corresponding to the cluster

of heavy communication around the point y = −x (IP addresses

grow down on the y-axes and to the right on the x-axes) resulting

from locating nodes in the same site. Finally, Figures 21(a) and (h)

plot two variations of slices that demonstrate all-to-all communica-

tion.

5. FAILURE CHARACTERISTICS

5.1 Node and Network Failures
Figure 22 shows network availability of PlanetLab nodes over a

three month time period based on the AllPairsPing data set. Each

curve in the figure plots the CDF of network availability for Plan-

etLab nodes with a round-trip timeout T . For each value of T , we

define the availability of a node as the fraction of average ping times

to the node with a round-trip time less than or equal to T . Avail-

ability, as defined here, captures three types of failures: (i) local

node failures, since a node that is down is unpingable, (ii) network

routing failures, and (iii) network failures in terms of performance

availability [3]. Given PlanetLab’s focus on planetary-scale net-

work services, we believe that this definition provides a more use-

ful measure of node availability as compared to focusing strictly on

local node crashes. Note that given that our all-pairs ping measure-

ments are taken every 30 minutes, the availability numbers here

may not correspond to actual system availability. However, given

the long-term nature of these measurements, we believe that the

samples represent a relatively unbiased view of system availability.
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Figure 22: Node availability distribution based on the AllPair-

sPing data set. For each timeout T , availability of a node is

defined as the fraction of average ping times to the node with a

round-trip time less than or equal to T .

These results show that, while node availability is high for a signifi-

cant fraction of nodes, a number of nodes exhibit failures that result

in significant total downtime. The rightmost curve (T = 106), for

example, characterizes the extent that PlanetLab nodes are up and

reachable via ping independent of network performance. Raw

data for this curve indicates that 37.7% of all nodes realize greater

than 99% availability. However, the curve also shows that approx-

imately 6% of all PlanetLab nodes are unavailable half of the time

and that approximately 12% of all nodes display availabilities less

than than 80%, when averaged across all nodes in the system.
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(a) ast5 (165

nodes, max = 493
KB)

(b) michigan6

(44 nodes, max =
3.2 MB)

(c) mit2 (155

nodes, max = 1.1
MB)

(d) princeton6

(165 nodes, max =
36 KB)

(e) ucb6 (108

nodes, max = 1.1
MB)

(f) ucb8 (82

nodes, max = 45
MB)

(g) uw9 (109

nodes, max = 50
KB)

(h) vrije8 (50

nodes, max = 298
KB)

Figure 21: Inter-node slice communication patterns based on a day’s worth of PLNetflow data before the NSDI deadline in September

2003. The intensity of each point (x,y) represents the amount of data sent from node y to node x normalized relative to the heaviest

communicating pair of nodes.

These results also suggest that if a PlanetLab node is up and reach-

able, it is usually reachable from all other PlanetLab nodes with

a round-trip time under 500 msec. This follows from considering

performance faults and observing that the availability curves for

moderate timeouts (500 msec to 4 secs) virtually overlap the right-

most availability curve. As we decrease timeouts even further, the

curves eventually shift to the left as speed of light delays and typi-

cal levels of network congestion begin to manifest. With a 50 msec

timeout, we see that the highest observed availability is about 60%,

which suggests that 40% of PlanetLab is effectively “partitioned”

off in a network distance sense.

In Figure 23, we plot CDFs for node mean time to failure (MTTF)

and node mean time to repair (MTTR). Here, we break three months

of AllPairPings data down into a sequence (approximately 30 min-

utes apart) of all pairs ping measurements and, for each set of ping

measurements, we define each node as being up if one or more ping

attempts were successful to the node and down if all ping attempts

to the node failed. For each node, we then compute alternating

runs of up time and down time and use those runs to compute the

MTTF and MTTR for that node. For each down to up transition, we

assume the node recovered at the midpoint of the transition. The

figure shows the CDF of MTTF and MTTR values across all Plan-

etLab nodes. The underlying data reveals a median node MTTF of

321.7 hours (about two weeks) and a median node MTTR of about

2.5 hours.

The primary observation is that node MTTF and MTTR vary sub-
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Figure 23: Cumulative distribution of node mean time to fail-

ure (MTTF) and mean time to repair (MTTR) in hours based

on the AllPairsPing data set.
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stantially across PlanetLab nodes and span several orders of magni-

tude. For MTTF, the minimum MTTF recorded was 22.5 minutes,

while the maximum MTTF was the entire three month interval. In

the data set, three nodes at distinct sites were online and observed

to be up the entire time (i.e., during any hour, at least one ping was

successful). Nine other nodes, which came online after the start of

the three month interval, were also observed to be up the remainder

of the three month time period. For MTTR, the minimum MTTR

was 15 minutes, while the maximum MTTR was 12.7 days (if the

node came back online at all). The minimum MTTR was likely

smaller than 15 minutes (e.g., reboots, transient network outages),

but this was not measurable given the granularity of the AllPairsP-

ing data set.

Upon closer examination of the data and discussions with the Plan-

etLab operations team, we found the primary sources of failures

to be software (kernel and device drivers) bugs, hardware failures

(e.g., memory parity errors), Internet path outages, system melt-

downs under heavy load, reboots due to resource exhaustion (e.g.,

file descriptors), frequent reboots and downtime as new nodes come

into production use, and downtime caused as a result of site-specific

administrative issues that needed to be resolved in response to ex-

cessive, anomalous, or inappropriate network traffic.

Most of these failure classes have been observed in previous sys-

tems. The last category of failures, however, is new and could be-

come increasingly relevant as federated systems grow in popularity

and applications use the network in new and interesting ways in the

presence of network intrusion detection systems. One interesting

observation from PlanetLab’s operation is that, in some cases, sites

must be taken down for non-technical reasons. For instance, one

(remote) PlanetLab service began consuming nearly a third of the

bandwidth exiting a site’s primary network connection. This par-

ticular site payed for bandwidth by the byte. As opposed to CPU,

memory, and disk resources, which all in some sense carry a fixed

up-front cost, network bandwidth is a renewable resource that can

incur a recurring cost depending on the payment structure. It be-

came necessary to rate limit traffic out of that site to ensure that

the monetary costs of participating in the PlanetLab testbed did not

outweigh the benefits gained locally.

Overall, we found that transient failures occur often and that human

response times appear to be the dominating factor with respect to

downtime and MTTR. For small MTTRs, we observed 30% of the

nodes as having an MTTR of 15 minutes. (Some were probably

even lower, but the granularity of our data prevented us from ver-

ifying that.) These times suggest transient failures with automatic

recovery not involving a human operator (e.g., rebooting a node re-

motely, short-term network path outages [12] near end hosts, etc.).

For larger MTTRs, we see that the range of MTTRs varies over

several orders of magnitude with many nodes having an MTTR of

multiple hours or even days. Given the types of failures that occur

on PlanetLab, this is not surprising given that kernel panics, hard-

ware faults, and resolving network traffic issues with human ad-

ministrators all ultimately require power cycling a machine (man-

ually in most cases). Moving forward, we believe that automated

mechanisms for remotely power cycling machines can substantially

improve MTTR, by removing the need to gain the attention of a

particular operator at a particular site.

5.2 Correlated Failures
Next, we characterize to what extent node failures are correlated on

PlanetLab. For correlation, we use conditional failure probabilities

as proposed by Bakkologlu et al. [5] for characterizing correlated

failures in survivable storage systems. To quantify the failure cor-

relation between nodes X And Y, we compute the conditional prob-

abilities P(X is down | Y is down) and P(Y is down | X is down).

We use conditional probabilities, as opposed to the classic defini-

tion of correlation, because failure is typically a rare event. Since

most nodes are up the majority of the time, the classic definition

of correlation would lead to many node pairs having high correla-

tions, values which would be largely independent of how failures

were actually distributed. With conditional failure probabilities, if

node failures always overlap, conditional failure probabilities are

1. Similarly, if downtimes never overlap, conditional failure prob-

abilities are 0.
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Figure 24: Cumulative distribution of conditional failure prob-

abilities, i.e., P(X is down | Y is down) for all X, Y where X 6=
Y.

Figure 24 plots the CDF of conditional failure probabilities for all

node pairs (X,Y) where X 6= Y. Failures are based on the same

definition used in computing MTTF and MTTR in Section 5.1, ex-

cept here we consider nodes pairwise at an hour granularity. The

data shows that approximately 70% of node pairs have conditional

failure probabilities of 0, meaning that 70% of all node pairs were

never observed to fail at the same time. On the other hand, we

also observe that the remaining 30% of node pairs display non-

zero conditional failure probabilities over a wide range of values.

Note that a fraction of these correlations are caused by some nodes

simply being down for long periods of time. The next visualization,

however, shows that concurrent failures are observed on other node

pairs besides those that are the chronically down.

Figure 25 depicts correlated failures using a plot where the pixel in-

tensity of point (X,Y) is based on the conditional failure probability

P(Y is down | X is down). Nodes are sorted based on IP address,

which roughly clusters nodes by sites on either axis. The diagonal

band corresponds to P(X is down | X is down), which necessarily is

1 (black). We plot (X,Y) pairs where no data was available between

the pair of nodes as white.

The key result from this data is that correlated failures do occur

on PlanetLab and that such failures are not entirely caused by sites

that are down for extended periods of time. Nodes that are down for

long periods of time appear as dark horizontal bands. For example,

the dark band in the upper part of the figure corresponds to three
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Figure 25: Conditional failure probabilities. Each point (X,Y)

shows P(Y is down | X is down) ranging from 0 (white) to 1

(black).

nodes at a site that had to be taken offline for many weeks while

issues pertaining to anomalous network traffic were resolved. In

general, horizontal bands depict cases where the failure of a set of

nodes together predict the failure of a given node. Vertical bands

on the other hand indicate the cases where the failure of a single

node (on the x axis) predicts the failure of a set of other nodes.

While relatively short vertical bands indicate correlation for nodes

at the same site going down simultaneously (recall that the axes are

sorted according to IP address and that nodes at the same site have

similar IP addresses), longer bands cannot be necessarily explained

by network proximity.

6. SUMMARY AND IMPLICATIONS
Given our detailed system analysis, we now present a high-level

summary of our findings based on our three-month study of system

usage of the PlanetLab federated infrastructure.

• Resource utilization is highly bursty, varying by one order of

magnitude for CPU and memory (peak to trough) and by two

orders of magnitude for network bandwidth.

• Following from the above, there is significant contention for

testbed resources in time.

• Demand for system resources is truly global. Users desire

access to resources across the world.

• Resource consumption is highly asymmetric on both a per-

site and a per-slice basis. Most of global system resources are

consumed by a small number of users running resource inten-

sive slices. The top three users of the testbed consumed more

than 50% of global network resources over a three-month pe-

riod.

• The typical testbed node simultaneously hosted 25-30 active

slices during busy periods with significant contention for all

node resources, including secondary storage.

• Most slices show less than 5 minutes of system activity. Less

than 3% of slices are active for more than 2 hours and less

than 0.4% for more than 1 day.

• 50% of slices consume less than .01% of CPU, 1 MB of

memory, and 1 bit/sec of bandwidth when averaged over an

entire day.

• 60% of the nodes have availability above 98% over the 3

month period. However, approximately 10% of the nodes

have an availability of under 50%. The median mean time to

repair (MTTR) for all nodes is 2 hours. However, 20% of the

nodes have an MTTR of 1 day or more. The higher MTTRs

typically resulted from needing human attention at a remote

site to power cycle a failed node.

• Nearly 75% of all pairs of nodes show no correlation of fail-

ure. However, 10% of the node pairs, (X, Y ), have a condi-

tional probability of failure of 0.5 or more, i.e., P(X is down

| Y is down) > 0.5.

We believe that the above findings have implications for resource

discovery, resource allocation, service placement, and construction

of highly available services. Given the highly bursty access pat-

terns and the skewed distribution of resource demand among the

user population, we believe that some form of resource arbitration

(allocating portions of global resources to individual users) will be

necessary for the infrastructure. A best effort scheduler will render

the system unusable during times of contention for the vast ma-

jority of users who have fairly modest resource requirements. At

the same time, a strict resource reservation scheme is unwarranted

given high levels of resource availability during the times when the

system is not constrained. Finally, given system usage patterns,

some form of user-initiated resource trading infrastructure may in-

crease overall system utility. That is, during times of contention,

all users may fall back to some guaranteed baseline minimum of

global system resources. However, it may make sense for users to

trade their resource privileges in time to temporarily gain access to

more than their baseline share of global system resources.

In our measurements, system users often wish to run on a large

number of machines spread across the world. Currently, users man-

ually choose the set of sites that they run on. Moving forward,

we believe that an automated resource discovery scheme would

greatly simplify access to PlanetLab resources, for instance, au-

tomatically recruiting a set of nodes based on user-specified pref-

erences. Given the demand for resources, spread across the world,

the testbed would benefit from additional resource availability out-

side of North America. At the same time, given significant resource

contention for nodes outside of North America, any resource dis-

covery scheme must monitor the connectivity and CPU load of

nodes spread across the infrastructure to meet user requirements

while making best use of aggregate global system resources. Fi-

nally, we believe that some portion of resource contention can be

attributed to the lag in time from when additional PlanetLab nodes

become available to when existing users manually learn of their

presence. An automated resource discovery mechanism could cer-

tainly mitigate this problem.

Our measurements also indicate that individual testbed nodes host

a large number of active virtual machines (up to 40, with 25-30

typical). We further found that individual virtual machines within

a slice were often inactive, for instance not transmitting a single

byte over a 5-minute interval. This implies that the operating sys-

tem scheduler must be lightweight and able to quickly swap in and

out among active virtual machines. The current PlanetLab design

statically creates a virtual machine (with all the associated disk
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space) on all PlanetLab nodes in anticipation of its potential use.

Given significant contention for especially disk resources, the sys-

tem would benefit from a more dynamic model where virtual ma-

chines are instantiated on demand or perhaps in response to a re-

source discovery request.

Our availability measurements indicate that in a heterogeneous,

federated testbed there will be significant variation in the uptime

and upkeep of individual nodes in the system. This observation has

a number of implications. Any resource discovery infrastructure

must account for a site’s availability history in making allocation

decisions. The system may require some incentive for individual

sites to maintain a high level of node availability. Further, rather

than requiring an a remote administrator to reboot a machine, in-

frastructure for automated remote power cycling may greatly de-

crease MTTR for certain sites, at the same time increasing overall

node availability at those sites.

Finally, our measurements show a significant and perhaps surpris-

ing level of correlation among pairs of node failures, going beyond

the expected level of correlated failure one would expect among

nodes at a single site. While we have not had the opportunity to ex-

plore the causes for such correlated failures, their presence and our

ability to measure them have implications for replica placement in

the construction of highly available services [23]. Such historical

information should be made available to the resource discovery in-

frastructure as well as possibly the service itself to aid in decisions

of node recruitment and data placement to ensure high levels of

overall availability and survivability in the face of correlated fail-

ures.
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