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Abstract: Dynamic muscular workload assessments of tractor operators are rarely studied or docu-
mented, which is critical to improving their performance efficiency and safety. A study was conducted
to assess and model dynamic load on muscles, physiological variations, and discomfort of the tractor
operators arriving from the repeated clutch and brake operations using wearable non-invasive er-
gonomic transducers and data-run techniques. Nineteen licensed tractor operators operated three
different tractor types of varying power ranges at three operating speeds (4–5 km/h), and on two
common operating surfaces (tarmacadam and farm roads). During these operations, ergonomic
transducers were utilized to capture the load on foot muscles (gastrocnemius right [GR] and soleus
right [SR] for brake operation and gastrocnemius left [GL], and soleus left [SL] for clutch operation)
using electromyography (EMG). Forces exerted by the feet during brake and clutch operations were
measured using a custom-developed foot transducer. During the process, heart rate (HR) and oxygen
consumption rates (OCR) were also measured using HR monitor and K4b2 systems, and energy
expenditure rate (EER) was determined using empirical equation. Post-tractor operation cycle, an
overall discomfort rating (ODR) for that operation was manually recorded on a 10-point psychophys-
ical scale. EMG-based maximum volumetric contraction (%MVC) measurements revealed higher
strain on GR (%MVC = 43%), GL (%MVC = 38%), and SR (%MVC = 41%) muscles which in normal
conditions should be below 30%. The clutch and brake actuation forces were recorded in the ranges of
90–312 N and 105–332 N, respectively and were significantly affected by the operating speed, tractor
type, and operating surface (p < 0.05). EERs of the operators were measured in the moderate-heavy
to heavy ranges (9–24 kJ/min) during the course of trials, suggesting the need to refine existing
clutch and brake system designs. Average operator ODR responses indicated 7.8% operations in light,
48.5% in light-moderate, 25.2% in moderate, 10.7% in moderate-high, and 4.9% operations in high
discomfort categories. When evaluated for the possibility of minimizing the number of transducers
for physical workload assessment, EER showed moderate-high correlations with the EMG signals
(rGR = 0.78, rGL = 0.75, rSR = 0.68, rSL = 0.66). Similarly, actuation forces had higher correlations with
EMG signals for all the selected muscles (r = 0.70–0.87), suggesting the use of simpler transducers
for effective operator workload assessment. As a means to minimize subjectivity in ODR responses,
machine learning algorithms, including K-nearest neighbor (KNN), random forest classifier (RFC),
and support vector machine (SVM), predicted the ODR using body mass index (BMI), HR, EER, and
EMG at high accuracies of 87–97%, with RFC being the most accurate. Such high-throughput and
data-run ergonomic evaluations can be instrumental in reconsidering workplace designs and better
fits for end-users in terms of agricultural tractors and machinery systems.

Keywords: tractors; dynamic operator workload; lower limb muscles; ergonomic transducers;
machine learning
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1. Introduction

The safety and efficiency of agricultural machinery operators have been ever-increasing
global concerns. This requires reductions of the involved risks and muscle fatigue through
appropriate workplace design or refinements based on operator workload assessments [1–4].
Electromyography (EMG) is one of the latest and widely used technology for dynamic
muscle fatigue and activity assessment [4,5]. EMG is a composite of all the muscle fiber
action potentials occurring in the muscles beneath the skin [6,7]. EMG captures small
electrical signals called electromyograms as the result of ion exchange across muscle fiber
membranes prior to force generation from muscle contractions. EMG is measured by
placing electrodes on the skin surface (non-invasive, surface EMG [sEMG]) or inserted in
the muscle (invasive, intramuscular EMG [iEMG]) [8,9]. sEMG is commonly used due to
its non-invasiveness, minimal risk involvement, and ease of frequent use [8,10]. Typical
EMG features utilized for muscle activity assessments include root mean square (RMS),
mean frequency (MNF), median frequency (MDF) and percentage of maximum voluntary
contraction known as muscle workload (%MVC) [4]. %MVC is obtained as the ratio of the
RMS signal for the muscle under contraction in real time to the signal for muscle under
maximum contraction measured without any constraints or load, which represents muscular
involvements for a given operation [11]. EMG also enables the identification of comfort
level and body postures for a given operation [12,13].

In the year 2000, EMG was used to evaluate muscle fatigue during repeated isokinetic
knee extension, i.e., under peak muscle torque, and strong positive correlations were
observed between MNF and peak torque [14]. For the human elbow muscles, the effect of
joint angle has also been evaluated through relationships between applied relative force
and MVC [15]. It was observed that the EMG amplitude for the biceps, brachioradialis and
triceps muscles was better determined by the required percentage of available force with the
muscles compared to the absolute required force. A similar study identified the Gaussian
and positive linear relationship between applied force and EMG signals for bicep muscles as
feasibility to understanding occupational fatigue or neuromuscular disorders [16]. A meta-
study conducted using globally published data observed EMG as a better characterizer
compared to traditional approaches such as Rapid Entire Body Assessment (REBA), Rapid
Upper Limb Assessment (RULA), Ovako working posture assessment system (OWAS), and
psychophysical scales, such as body parts discomfort scale (BPDS), and overall discomfort
rating (ODR). The study also observed EMG to be a very widely adopted approach for the
real-time and high-throughput monitoring of muscle fatigue and musculoskeletal risks in
laboratories and industries of production engineering [4].

Among the use cases, EMG was utilized to identify muscle activity redundancy and
fatigue during pedal operation in passenger cars and identified that as the pedal stroke
increases, the muscle activation increases [17]. The EMG was further used to evaluate
the fatigue behavior of forearm muscles during power gripping by racing motorcycle
riders [18]. The posture and braking operations were simulated and a significant positive
relationship was observed between the normalized MVC and the duration of the task
when 5 s contractions were interspersed at 30% of maximum muscle contraction by 5 s of
recovery. At the same time, no relationship was observed when 10 s contractions at 50% of
maximum muscle contraction were interspersed by 1 s recovery. The findings suggested
short recovery periods (5–10 s) after maximum muscle contraction for the healthy operation
of motorbikes [18].

In the aviation sector, EMG has been used to evaluate the back-muscle fatigue of
pilots as a result of vibration and postural redundancies [19]. A similar study evaluated
the neck stress of jet pilots through the fatigue of the left and right sternocleidomastoid,
upper trapezius and middle trapezius muscles using EMG, and significant sensitivities
were observed. Study findings suggested that helmet and seat designs be reconsidered [20].
EMG has also been used recently for autonomous steering control of passenger cars, and a
high path with the following accuracy was obtained [21]. Most of the fatigue evaluation
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research has been limited to passenger vehicles or aircraft, but the load and muscular
fatigues of tractors or agricultural machinery operators are rarely recognized.

Agricultural mechanization and automation have increased significantly in recent
decades, where intensified field operations are carried out using tractors or tractor-driven
machinery systems. However, the study of the safety and ergonomics of tractor operators
has not improved and requires critical attention [13]. Tractor or tractor-driven machinery
operates in tough and rugged conditions and therefore requires highly variable and redun-
dant actuation forces compared to other automobiles [22,23]. Operators are also subjected
to prolonged and redundant vibration and shock exposures at high frequencies and mag-
nitudes that can be hazardous to musculoskeletal disorders (MSDs), lower back pain and
other cardiovascular problems [13,23–25]. Such problems are further complemented by
inappropriate workspace designs, limited ergonomic upgradations, awkward operating
postures, prolonged working hours, repeated body movements, and over-exertions that
eventually risk work-time loss, increased costs, and injuries [26–28]. As discussed and
demonstrated by the previous studies on passenger vehicles, motorbikes, and aircraft,
muscle fatigue and workload assessments can aid workplace design reconsiderations and
safe ergonomics in mechanized agriculture.

Traditionally, tractor operator workload assessments have been conducted using
REBA, RULA, OWAS, BPDS, and ODR-based scales and methods and using physiolog-
ical measurements of working heart rate (HR), oxygen consumption rate (OCR), energy
expenditure rate (EER) and blood pressure (BP) [25,29,30]. These studies provided overall
assessments of operator health and level of exertions during operation but did not quantify
the muscular fatigue or loads. EMG was recently deployed to identify comfortable operator
hand positions during tractor operations [13]. The elbow angle of 100◦ and inclination of
the steering column against the horizontal plane of 50◦ was identified as the most com-
fortable setting for upper limbs. The operators who operated a non-power-steering tractor
encountered the highest load.

A recent, similar study in the US Midwest evaluated the activity levels of upper
body muscle groups; erector spinae, upper trapezius, forearm flexor, and forearm extensor,
using EMG for general agriculture and machinery operations [31]. Muscle fatigue was
significantly affected by the equipment, tools, and work practices where the upper arm
postures and movement speeds did not confer excessive risk to the shoulders. Although
these studies provided reasonable evaluations for upper body muscles, sufficient studies
on workload assessments of lower limbs and pertaining muscles during tractor operations
are still lacking. A study from Iran was conducted in 2016 where aggregate pain thresholds
of four lower limb muscles, gastrocnemius, trapezius and quadrate’s lumborum were
quantified using algometers during the clutch operation of two different tractors [32].
The study observed the highest pain threshold reduction for the quadratus lumborum
muscle and clutching forces to be above the allowable limit for both tractors. In the end,
clutch design modifications were suggested. This was just one study that utilized a force
transducer to quantify the aggregate pain threshold for lower limb muscles. Similar studies
are required for a range of operating conditions, tractor or tractor-run machinery types,
and geographical regions. Most importantly, in this domain, high-throughput ergonomic
sensors and data-run techniques that provide continuous data in real-time and enable
comprehensive analysis of lower limb muscle workload, fatigue, and discomfort are still
not explored and addressing this gap is our goal.

This study contributes to the larger goal by focusing on the tractors and tractor
operators in Indian conditions. Specifically, we aim to (1) quantify dynamic muscle fatigue
on lower limb muscles, foot workload, and overall physiological responses using EMG,
ergonomic force transducer, and biomechanical transducers during tractor clutch and brake
operations in the field and normal road conditions, (2) we will also evaluate the possibility
of limiting the number of transducers to quantify muscle-specific activity by investigating
relationships between force and energy requirements, and dynamic load on the muscles,
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and (3) finally, we aim to develop a non-subjective classification of overall discomfort from
transducer responses using machine learning algorithms.

2. Materials and Methods
2.1. Tractors and Operator Selection

The study was conducted in the year 2021. Three tractors in power ranges of 47–60 HP
were selected from the farm shed of the Agricultural and Food Engineering Department,
Indian Institute of Technology, Kharagpur, India. These tractors included a New Holland
6010, John Deere 5055E, and Escort 355 (Details in Table 1).

Table 1. Specifications of the selected tractors in the study.

Parameter
(unit)

Tractors

T1 T2 T3

Make and Model New Holland 6010 John Deere 5055E Escort 355
Power (HP) 60 55 47
Rated rpm 2200 2400 2100

Forward speeds 12 9 10
Reverse speeds 12 3 2

Clutch type Mechanical Mechanical Mechanical

Brake type Hydraulic, oil-immersed
multi-disc

Self-adjusting, self-equalizing,
oil-immersed disc Mechanical

Operational age >3 years >10 years >15 years
Mass (kg) 2415 2110 1760

Tire condition Good, negligible wear and tear Slightly worn out Slightly worn out
Front tire size
Rear tire size

7.5 × 16
16.9 × 28

6.5 × 20
16.9 × 28

6.0 × 16
14.9 × 28

Nineteen licensed tractor operators with more than five years of driving experience and
no prior reported musculoskeletal disorders or injuries were selected. Their average age
ranged between 35.6 ± 3.5 years, weight between 72 ± 2.6 kg, height between 171 ± 2 cm,
and body mass index (BMI) between 24.4 ± 0.6 kg/m2. Appropriate consent for participation
in the study was also collected prior to the evaluation trials.

2.2. Data Collection

Tractor clutch and brake operations involve frequent increases and decreases of knee
and ankle angles and engage gastrocnemius and soleus muscles of the lower limbs [32]. The
gastrocnemius is a calf surface muscle that flexes the knee and foot. The soleus is a broad
muscle in the lower calf, used for plantar flexion (downward foot movement away from the
body) and dorsiflexion (foot’s backward bending or contraction). Therefore, gastrocnemius
right (GR), soleus right (SR) and gastrocnemius left (GL), and soleus left (SL) muscles
were identified for fatigue evaluations. Above the skin over these muscles, EMG sensor
electrodes were mounted (DataLITE, Biometrics Ltd., Ynysddu, UK, Table 2). GR and SR
muscles pertained to brake operation, while GL and SL pertained to clutch operation. MVC
is the highest muscle contraction which produces the highest-amplitude EMG signal and
is treated as the reference for signal data processing and muscle fatigue assessment. The
highest muscle contraction was induced through a strength measurement setup developed
by the Central Institute of Agricultural Engineering, Bhopal, India (Figure 1a) [33] against
maximum application force (592 ± 82 N by left leg and 632 ± 61 N by right leg) and MVC
was measured in response.



Sensors 2023, 23, 1408 5 of 20

Table 2. Sensor and instrumentation specifications used in the study.

Instruments Specifications Measurement

Data LITE Surface EMG sensor
(Biometrics Ltd., UK)

Integral dry reusable, Bandwidth:
10–250, 470, 950; Full scale: +/− 6 mV

Peak to Peak; Gain: +/− 60 mV to
+/− 6000 mV; Accuracy: +/− 1.0%

EMG signal response of muscles

Instrumented foot transducer (IFT) Accuracy: +/− 0.1% Actuation force of clutch and brake pedals

Heart rate monitor (Polar, Finland), Operating temp: −10 ◦C to +50 ◦C
Accuracy: +/− 0.01% Heart rate of the operators

K4b2 portable metabolic analyzer Accuracy: +/− 0.02% Oxygen uptake of the operatorsSensors 2023, 23, 1408 5 of 21 
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Figure 1. Operator electromyography and load measurement on (a) strength measurement setup,
and (b) during tractor clutch and brake operation.

The skin was inspected and sanitized, and then the EMG electrodes were placed
under the supervision of a medical professional, in line with the selected muscles, to
minimize the skin impedance and noise [8,9]. Electrodes were connected wirelessly to a
remote computer to retrieve a continuous data stream in real-time in the provided software
application. Three repeated measurements of 30,000 data points were collected for 30 s
each for both the lower limbs during maximum muscle contraction measurements, while
a total of 60,000 data points were collected for 60 s each during actual tractor clutch and
brake pedal operations (Figure 1b). HR of the subjects was recorded using an HR monitor
(Polar, Finland), and OCR was recorded using K4b2 portable metabolic analyzer (COSMED,
Rome, Italy). Actuation forces of the brake and clutch were recorded using a custom-built
instrumented foot transducer (IFT) [28,34]. The overall discomfort rating (ODR) of the
subjects was recorded on a 10-point psychophysical rating scale (0: no discomfort [ND];
3: light discomfort [LD]; 4: more than light discomfort [MLD]; 5: moderate discomfort
[MD]; 6: more than moderate discomfort [MMD]; 7: uncomfortable [UC]; 10: extreme
discomfort [ED]) which is an adoption of Corlett and Bishop technique [35]. Subjects were
asked to rate their overall discomfort on a 10-point scale after each trial run.

These measurements were recorded for a total of 342 trials (19 operators × 3 tractors
× 3 speeds × 2 surfaces) in a randomized order to minimize the error during data col-
lection. The selected operational speeds were 4.2–4.3 km/h (S1), 4.3–4.7 km/h (S2), and
4.7–5.0 km/h (S3) and operating surfaces were tarmacadam and farm road surface (TR and
FR). HR was recorded after the 6th minute of operation post-stabilization [36], and OCR
was used to calculate EER Equation (1) [37].

EER = 20.93 × OCR (1)
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2.3. Data Analysis

The raw EMG signals of the GR, GL, SR and SL muscles were preprocessed using
MATLAB 2020b software (The MathWorks, Natick, MA, USA) using Fast Fourier Transform
(FFT), rectification, filtration, and feature extraction (Figure 2, [4]). Firstly, the raw data was
plotted in a time domain (Figure 3a) and transformed into a frequency domain through
FFT along with the identification of mean and median frequencies (MNF, Equation (2),
cyan bar in Figure 3b, and MDF, Equation (3), yellow bar in Figure 3b) for muscle fatigue
assessments [38,39]. Next, data filtration was conducted using a fourth-order Butterworth
filter and low- and high-frequency limits (20 and 300 Hz) [22]. Full wave rectification was
then conducted to convert negative signals to positive ones for further analysis (Figure 3c).
After filtration and rectification, root mean square (RMS, Equation (4)) [38] and muscle
workload (%MVC, Equation (5)) [13] values were calculated for the respective muscles [40].
Figure 3d shows a sample RMS envelope for a muscle during operation. As a step towards
identifying the factors affecting muscle fatigue and workload so that insights on workplace
design reconsiderations and best operation practices can be derived, an N-way Analysis
of Variance (ANOVA) was formulated (Python version 3.9). Operational speed, tractor
model, and operating surface were selected as the independent variables, while RMS,
%MVC, MNF, MDF, actuation force, HR, and EER were selected as the response variables.
Pertaining to objective 2, Pearson correlations (normal data distribution) were assessed
between RMS and EER, and RMS and actuation forces [14]. All statistical analyses were
conducted at 5% significance (p-value = 0.05).

MNF = ∑M
j=1 Pj/M (2)

MDF =
1
2 ∑M

j=1 Pj (3)

RMS =

√
1
N ∑N

i=1 xi
2 (4)

%MVC = RMS × 100/MVC (5)

where Pj = Power spectrum, M = power spectra length, N = number of samples, i = EMG
data point.
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2.4. Operator Workload Classification

In addition to manually recording ODR from the subjects, classification of overall dis-
comfort was conducted (Figure 4) as the ODR can be subjectively intensified by numerous
unaccounted psychological factors. For this, three best-data-size-suited machine learning
algorithms were formulated: (1) k-nearest neighbor (KNN) with k value of 6, (2) random
forest classifier (RFC) with n_estimators of 10, and (3) support vector machine (SVM) with
a polynomial kernel. KNN is the simplest classifier that computes the distance of data
points from the neighbors (k) and classifies them into different classes [41,42]. RFC uses a
bagging approach to create several decision trees (n_estimators) where each node questions
a datapoint, and the branches represent possible answers to that question [43]. SVM is a
supervised machine learning classifier that classifies data into different domains by finding
hyperplanes with a maximum margin [42]. RMS of electromyography (EMG-RMS), BMI,
HR, and EER measurements were defined as the input variables during the recorded ODR
ratings as the response variable. The response ODRs were also classified into six classes:
ND, LD, MLD, MD, MMD, and UC classes, as mentioned in Section 2.2.
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3. Results
3.1. Actuation Forces

At the selected operating speeds (S1–S3), clutch and brake actuation forces (Figure 5)
were recorded in the ranges of 133 ± 28 N (mean ± standard deviation) and 163 ± 38 N,
respectively, for tractor T1 on the tarmacadam road surface. Those observations on the farm
surface were significantly lower and in the ranges of 122 ± 32 N and 138 ± 30 N, respectively.
For tractor T2, the clutch and brake operation forces were much higher than tractor T1 and
in the ranges of 247 ± 22 N and 270 ± 22 N, respectively, on the tarmacadam surface and
220 ± 20 N and 255 ± 25 N, respectively, on the farm surface. While for tractor T3, pertinent
forces were further higher and in ranges of 279 ± 28 N and 304 ± 21 N, respectively, on the
tarmacadam surface, and 265 ± 26 N and 287 ± 20 N on the farm surface. For all tractors,
the actuation forces were significantly higher for brakes (Range: 120–305 N) compared to
clutch (Range: 109–295 N, two sample t-tests, p < 0.01). The actuation forces for clutch and
brake operations were significantly affected by the speed of operation, tractor type, operating
surface, and their associated interactions (N-way ANOVA, p < 0.01). Additional details are
summarized in Table 3.

Sensors 2023, 23, 1408 8 of 21 
 

 

recorded ODR ratings as the response variable. The response ODRs were also classified 
into six classes: ND, LD, MLD, MD, MMD, and UC classes, as mentioned in Section 2.2. 

 
Figure 4. Flow chart for operator’s overall discomfort classification using a machine learning algo-
rithm. 

3. Results 
3.1. Actuation Forces 

At the selected operating speeds (S1–S3), clutch and brake actuation forces (Figure 5) 
were recorded in the ranges of 133 ± 28 N (mean ± standard deviation) and 163 ± 38 N, 
respectively, for tractor T1 on the tarmacadam road surface. Those observations on the 
farm surface were significantly lower and in the ranges of 122 ± 32 N and 138 ± 30 N, 
respectively. For tractor T2, the clutch and brake operation forces were much higher than 
tractor T1 and in the ranges of 247 ± 22 N and 270 ± 22 N, respectively, on the tarmacadam 
surface and 220 ± 20 N and 255 ± 25 N, respectively, on the farm surface. While for tractor 
T3, pertinent forces were further higher and in ranges of 279 ± 28 N and 304 ± 21 N, re-
spectively, on the tarmacadam surface, and 265 ± 26 N and 287 ± 20 N on the farm surface. 
For all tractors, the actuation forces were significantly higher for brakes (Range: 120–305 
N) compared to clutch (Range: 109–295 N, two sample t-tests, p < 0.01). The actuation 
forces for clutch and brake operations were significantly affected by the speed of opera-
tion, tractor type, operating surface, and their associated interactions (N-way ANOVA, p 
< 0.01). Additional details are summarized in Table 3. 

 
Figure 5. Actuation forces recorded during clutch and brake pedal operations of selected tractors. 
TR—Tarmacadam road surface, FR—Farm road surface; C—Clutch, B—Brakes. Further details are 
presented in Table 3. 

Figure 5. Actuation forces recorded during clutch and brake pedal operations of selected tractors.
TR—Tarmacadam road surface, FR—Farm road surface; C—Clutch, B—Brakes. Further details are
presented in Table 3.



Sensors 2023, 23, 1408 9 of 20

Table 3. Mean of physiological and electromyography responses measured for the selected subjects
pertinent to clutch and brake operations with three tractors at three operating speeds and on two
operating surfaces.

Tarmacadam Surface Farm Road

Muscle/Leg Response T1 T2 T3 T1 T2 T3

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

RL AF 120 163 207 245 271 296 283 299 329 106 136 173 224 261 281 262 292 305
LL AF 109 123 169 220 254 267 246 281 310 92 109 164 198 217 246 236 265 295

Full body HR 90 95 99 100 105 110 106 114 118 85 90 95 97 103 108 101 109 113
Full body EER 11 12 14 14 16 18 16 19 20 9 11 12 13 15 17 15 17 19
Full body ODR 3.9 4.5 4.9 5.0 5.5 6.0 5.5 6.2 6.6 3.5 4.0 4.5 4.7 5.3 5.8 5.1 5.9 6.3

GR

RMS 8 13 17 11 13 23 15 19 28 8 12 15 11 12 19 13 18 25
MNF 79 103 111 110 119 119 120 126 124 75 98 107 105 110 117 117 121 122
MDF 50 79 78 71 89 87 106 111 108 49 73 80 112 114 121 75 111 108

%MVC 10 18 22 13 17 26 24 28 34 11 15 13 16 17 25 22 24 32

GL

RMS 10 12 18 12 14 19 14 17 21 9 12 15 8 9 14 12 14 20
MNF 92 102 107 111 110 126 110 128 132 89 99 104 108 109 119 107 123 125
MDF 90 93 86 93 92 101 94 106 122 71 79 82 74 79 99 90 101 120

%MVC 16 21 33 17 20 26 20 24 33 18 22 28 18 19 24 18 23 30

SR

RMS 12 13 19 12 16 19 14 16 25 11 12 19 11 13 19 11 13 25
MNF 85 90 99 89 85 107 91 89 102 83 86 9 81 84 101 85 87 98
MDF 48 52 70 45 48 59 74 83 91 34 39 59 44 44 50 73 79 100

%MVC 15 17 28 16 18 26 19 21 32 16 17 21 17 18 23 17 19 28

SL

RMS 8 13 15 9 11 16 12 14 18 7 8 11 8 9 13 10 11 15
MNF 79 85 95 74 79 90 77 81 90 76 82 91 74 77 87 75 79 88
MDF 37 45 59 45 47 53 71 77 85 37 43 55 41 46 49 68 74 80

%MVC 8 10 17 9 11 17 13 15 19 8 10 14 9 11 16 11 13 17

RL—Right leg, LL—Left leg, S1, S2, S3 represent three speed ranges described in Section 2.3, T1, T2, and T3
are the tractors, GR—gastrocnemius right, GL—gastrocnemius left, SR—soleus right, SL—soleus left muscles.
AF—Actuation force (N), HR—Heart rate (beats/min), EER—Energy expenditure rate (kJ/min), ODR—Overall
discomfort rating, RMS—Root mean square of electromyography (µV), MNF—Mean frequency of electromyog-
raphy (Hz), MDF—Median frequency of electromyography (Hz). MVC—Maximum volumetric contraction of
electromyography (%). It must be noted that RL, GR, and SR pertained to brake operations and LL, GL, and SL
pertained to clutch operations.

3.2. Heart Rate (HR)

The operator HR during the operation of tractor T1 ranged from 81–105 beats/min
on the tarmacadam surface at all selected operating speeds (S1–S3), whereas on the farm
surface, the values ranged from 80–100 beats/min. Such ranges for tractor T2 were higher, i.e.,
95–117 beats/min and 94–115 beats/min, respectively. For tractor T3, the values
were even higher and ranged between 100–131 beats/min on the tarmacadam surface and
99–125 beats/min on the farm surface (Figure 6). HR was recorded to be higher for operations
on tarmacadam roads (90–118 beats/min) compared to the farm road (85–113 beats/min).
ANOVA revealed that HR was significantly affected by the operation speed, tractor type, and
road surface (p < 0.01). HR of operators were observed in the light (<90 beats/min) to heavy
workload ranges (110–130 beats/min) [44]. Additional details are summarized in Table 3.

3.3. Energy Expenditure Rate

The EER of the operators for operating tractor T1 ranged between 9–15 kJ/min on
the tarmacadam surface and 7–13 kJ/min on the farm surface at selected operating speeds.
Such ranges for tractor T2 were higher, i.e., 13–19 kJ/min on the tarmacadam surface and
11–17 kJ/min on the farm surface. While for tractor T3 those ranges were further higher, i.e.,
14–24 kJ/min on the tarmacadam surface and 13–21 kJ/min on the farm surface (Figure 7,
additional details are presented in Table 3). EER was affected by the operation speed,
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tractor type and road surface (p < 0.01). Some EER observations were in the light load
(<9 kJ/min) but mostly within the moderate to heavy load categories (18–27 kJ/min) [45].
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3.4. Electromyography Features
3.4.1. Root Mean Square (RMS) and Muscle Workload (%MVC)

At selected speeds, EMG-RMS (Figure 8a) of the GR and SR muscles (involved in brake
operation) were in the ranges of 13 ± 4, 15 ± 6, 21 ± 9 µV and 14 ± 4, 16 ± 5, and 18 ± 5 µV
for T1, T2, and T3 tractors, respectively, on the tarmacadam surface. Those observations on
the farm surface were lower and recorded as 11 ± 3, 14 ± 4, 19 ± 8 µV and 13 ± 4, 14 ± 5,
and 15 ± 5 µV. RMS for GL and SL muscles (involved in clutch operation) were obtained in
the ranges of 13 ± 5, 15 ± 6, 17 ± 5 µV and 11 ± 3, 12 ± 3, 15 ± 3 µV for T1, T2, AND T3
tractors on the tarmacadam surface. Such observations on the farm surface were lower and in
the ranges of 12 ± 4, 10 ± 4, 15 ± 4 µV and 9 ± 3, 10 ± 3, and 12 ± 3 µV on the farm surface.
EMG-RMS for all the muscles were affected by speed, tractor type and operating surface
(p < 0.01). Additional details are presented in Table 3.
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Figure 8. Electromyography (a) root mean square and (b) %maximum volumetric contraction.
TR—Tarmacadam road surface, FR—Farm road surface; C—Clutch, B—Brakes. Further details are
presented in Table 3.

%MVC (Figure 8b) of the GR and SR muscles (brake operation) for tractors T1, T2,
AND T3 were observed in the ranges of 17 ± 5, 19 ± 6, 26 ± 10% and 20 ± 10, 21 ± 8,
24 ± 10%, respectively, on the tarmacadam surface and 15 ± 5, 19 ± 6, 24 ± 9% and 18 ± 7,
19 ± 6, 21 ± 10%, respectively, on the farm surface at selected speeds. %MVC of the GL
and SL muscles (clutch operation) were observed in the ranges of 21 ± 8, 22 ± 7, 28 ± 6%
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and 11 ± 4, 13 ± 3, 16 ± 4% on the tarmacadam surface while, 22 ± 7, 22 ± 3, 26 ± 5% and
11 ± 5, 12 ± 3, 14 ± 4% on the farm surface for tractors T1, T2, and T3 at selected speeds.
%MVC for all the muscles were affected by the speed and tractor type (p < 0.01) but not the
operating surface. Muscle activation (%MVC) was higher for tractor T3 followed by tractor
T2 and T1. Additional details are presented in Table 3.

3.4.2. Mean and Median Frequency

At the selected forward speeds, MNF of the GR and SR muscles (brake operation) were
observed in the ranges of 98 ± 20, 116 ± 10, 123 ± 8 Hz and 91 ± 7, 92 ± 12, 94 ± 8 Hz on the
tarmacadam surface for tractors T1, T2, and T3, respectively (Figure 9a). Those observations
on the farm surface were lower and in the ranges of 93 ± 21, 111 ± 8, 120 ± 7 Hz and 87 ± 5,
88 ± 10, and 90 ± 7 Hz. Pertinent values for GL and SL were recorded in the ranges of
100 ± 13, 115 ± 10, 123 ± 12 Hz and 86 ± 9, 81 ± 9, and 83 ± 7 Hz for T1, T2, and T3 tractors
on the tarmacadam surface, and 97 ± 12, 112 ± 5, 118 ± 11 Hz and 83 ± 9, 79 ± 8, and
80 ± 8 Hz, respectively, on the farm surface.
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MDF (Figure 9b) of the GR and SR muscles for tractors T1, T2, and T3 were observed
in the ranges of 68 ± 16, 82 ± 14, 108 ± 5 Hz and 57 ± 11, 51 ± 8, and 83 ± 9 Hz on the
tarmacadam surface, and 67 ± 31, 115 ± 18, 96 ± 29 Hz, 44 ± 17, 46 ± 9, and 84 ± 15 Hz,
respectively, on the farm surface. Pertinent observations for GL and SL were in the ranges
of 89 ± 10, 95 ± 12, 107 ± 13 Hz and 47 ± 15, 48 ± 5, 78 ± 7 Hz for tractors T1, T2, and T3,
respectively, on the tarmacadam surface, and 77 ± 33, 84 ± 27, 103 ± 18 Hz and 45 ± 14,
45 ± 5, 74 ± 6 Hz, respectively, on the farm surface. Additional details are presented in
Table 3. RMS, %MVC, MDF, and MNF as the indicators of muscle activation, workload,
and strain were higher for tractor T3, followed by T2 and T1. The values were also higher
for operations on the tarmacadam surface compared to the farm road.

3.5. Relationships between Actuation Forces, Energy Expenditure Rate, and Electromyography

The clutch and brake actuation forces were observed to have a positive-significant and
moderate-high correlation with EMG-RMS of the selected muscles (r: 0.71–0.87, p < 0.01,
Figure 10). EER for brake operations had a relatively higher correlation with the EMG-RMS
of gastrocnemius muscles (rGR = 0.77, rGL = 0.78) compared to soleus muscles (rSR = 0.68,
rSL = 0.66, Figure 11). Higher correlations for GR and GL muscles could be mostly because
those muscles are responsible for knee flexion-extension and foot plantar dorsiflexion.
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3.6. Overall Discomfort Rating (ODR) and Its Classification

Post-operation trials, operator ODR (Figure 12) responses were in the ranges of 3.2–5.7
(LD to MMD) for the T1 tractor at all the operating speeds on the tarmacadam surface and
3.0–5.3 on the farm road surface (LD to MD). For the T2 tractor, ODR ranged within 4.5–6.7
(MLD to UC) on the tarmacadam road surface and within 4.3–6.4 (MLD to UC) on farm
road surface for all selected operation speeds. For the T3 tractor, the values were in the
ranges of 5.1–7.8 (MD to below ED), and 4.9–7.4 (MD to below ED) on tarmacadam and
farm road surface, respectively. ODR Observations determine that tractor operation on
the tarmacadam surface was more strenuous than the farm surface (Table 3). Furthermore,
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the operation with T3 induced more workload, followed by that from T2, and T1. When
evaluated statistically, ODR was observed to be affected by the operation speed, tractor
type and road surface (p < 0.01). When ODR was classified for the workload on all
selected muscles, maximum accuracy was yielded by RFC machine learning algorithm (97%,
Table 4), followed by SVM (92–96%) and KNN (87–91%). RFC classified 7.8% operations
in LD, 48.5% in MLD, 25.2% in MD, 10.7% in MMD, and 4.9% in UC categories, and
misclassified 2% operations in MLD and 1% operations in MD category (Figure 13).
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Table 4. Accuracy of operator’s overall discomfort classification using machine learning algorithms.

Accuracy (%)

Classifier GR GL SR SL

KNN 91 87 90 91
RFC 97 97 97 97
SVM 96 92 93 96

KNN—K-nearest neighbor, SVM—Support Vector Machine, RFC—Random Forest classifier.
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Figure 13. Random forest classified muscle workload for (a) gastrocnemius right, (b) gastrocnemius
left, (c) soleus right, (d) soleus left. Right muscles: brake operation, left muscles: clutch operation.
LD—light discomfort, MLD—more than light discomfort, MD: moderate discomfort, MMD—more
than moderate discomfort, UC—uncomfortable.

4. Discussion

Clutch and brake actuation forces were at maximum for tractor T3 where both are
mechanically actuated and therefore require larger muscle work for operation. Secondly,
in case of mechanical controls, internal frictions increase wear and tear as the operation
age progresses. These observations are well supported by the findings concluded in the
literature that nominally fixed machine joints are subjected to micro-mobility followed
by wear due to vibrations. Extra forces and muscular actions are required to counter
these vibrations [46]. In the case of relatively newer tractors (T1 and T2), upgradations of
hydraulically operating brakes and clutches have been included. These upgrades reduce
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the vibrations and internal frictions, therefore, the magnitude of reactive and required
actuation forces [46]. Similar observations of higher clutch actuation forces were reported
by Fallahi et al. [32], where the older tractor (75 HP) required a higher clutch actuating
force of 340 N compared to the newer and upgraded tractor (100 HP) that required 290 N
of force, despite the former tractor being of lower power capacity. A study on a range of
passenger vehicles [47] also documented that the mean braking distance increased by 22%,
deacceleration reduced by 13%, and braking time to reduce the speed by 16 km/h increased
by 27% when manual brake systems were used relative to hydraulically actuated brakes.
Clutch and brake actuation forces increased with the increased speed of operation. This
can be explained by a well-established fact that higher force is required to break the motion
when moving at higher speeds or accelerations [48,49]. A study by Mortimer et al. [47] also
reported that the deacceleration of the vehicle traveling at 56 km/h was higher than the
vehicle travelling at 80 km/h and concluded that it was more difficult for the subjects to
stop a faster-moving vehicle. The study also reported higher braking distances and time
against higher speeds. The reason for brake and clutch actuation forces to be higher on
the tarmacadam surface compared to the farm surface is that the tarmacadam road has
a relatively lower coefficient of rolling friction and, therefore, a higher slipping potential
where braking a vehicle would require larger actuation forces [50]. This is also observed
in the prior studies that reported higher braking distances and time required for a vehicle
moving on wet/slippery surfaces compared to dry surfaces [47,51].

Clutch and brake actuation forces also conform with the EMG responses. Higher
forward speeds lead to higher RMS, %MVC, MNF, and MDF values and vice-versa at lower
forward speeds for all the evaluated muscles. These observations are due to increased
motor unit action potentials (recorded by EMG), muscle contraction intensity, speed of
activation potential, and a number of active motor neurons that increased in direct pro-
portion with the muscle engagement against required actuation forces [14,52]. This was
very well evident from the moderate to moderately-high correlations observed between
the RMS values for all the involved muscles and actuation forces (rGR = 0.77, rGL = 0.78,
rSR = 0.68, rSL = 0.66, Figure 11). Therefore, similar reasons that stand for the highest
actuation forces for tractor T3, followed by T2 and T1, remain valid for higher EMG signal
response orders for those tractors, operating surfaces, and speeds [53]. Such responses are
further complemented by a prior study on tractor clutch actuation forces [32], where the
pain threshold reduction for GL muscle within 30–60 s of actuation was higher pertaining
to the older tractor with mechanical clutch (3.87–6.30 N) compared to a newer tractor with
upgraded clutch mechanism (3.23–4.30 N). The study also reported that the pain threshold
point was hit much earlier in the case of the older tractor. RMS, MNF, MDF, and %MVC
for GL muscle were higher than GR muscle for tractors T1 and T2 but were lower for T3
(Table 3) as the former tractors have mechanically actuated clutches and hydraulically
actuated brakes, while T3 has both mechanically actuated clutch and brakes. %MVC was
higher for the GL muscle compared to the GR muscle, possibly because the frequency of
clutch operation is higher than the brake operation. In the case of the lower limbs, the
GL muscle is the most affected muscle among tractor operators because it is involved in
planter flexion of ankle that is engaged in clutching; this finding has also been reported by
Fallahi et al. [30]. Nonetheless, EMG signal responses clearly outline that muscle fatigue,
operation workload, and occupation risk can be higher for older tractors with mechanically
actuated controls, at higher operating speeds, and over smoother surfaces. This is evident
from the %MVC for GR, GL, and SR muscles that were beyond the recommended limit
(30%) for tractor T3 at speed S3.

The MNF and MDF signals also represent muscle fatigue and are affected by the
operation durations and muscle fiber composition and distribution in individual sub-
jects [4,15,16,54,55]. Higher values of MDF and MNF are clearly observable from Table 3,
where the values were higher for tarmacadam surface, higher speeds, and tractors that
mechanically actuated controls indicative of the heavy engagement for larger/prolonged
duration. Similar observations were reported by Phinyomark et al. [55] where the amount
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and duration of muscle forces proportionally impacted MNF and MDF values in addition
to the subject-dependent-anthropometric characteristics, muscle fiber types and dimen-
sions. ODR ratings which were lowest for tractor T1, followed by tractors T2 and T3, also
conformed with the EMG and forced responses of muscle strain and workloads. ODRs
were also higher for higher forward speeds as those resulted in increased vibrations and
enhanced muscle activities [56].

Similar to actuation force, EMG and ODR responses and HR and EER observations
were also the highest for the tractor T3, tarmacadam surface, and highest speed (S3)
combination followed by for other combinations of the independent factors. This was well
represented in their correlation plots with RMS values that ranged between moderate to
moderate-high (Figure 11). Similar observations of these biomechanical indicators were
reported in prior studies where vibrations at higher speeds increased HR and EER [57,58].
This is because of the action potentials of the muscle fiber beneath the skin that increases
with the muscle firing rates as a result of the increased actuation forces [58]. Specifically,
HR and EER relate to muscle contractions that occur in four different phases: (1) Adenosine
triphosphate (ATP) hydrolysis that reorients and energizes the myosin, (2) attachment of
myosin to actin to form cross-bridges, (3) power stroke with cross-bridge rotation towards
the sarcomere’s center, and (4) detachment of myosin from actin after the power stroke [4].
Significantly high correlations observed between actuation forces and muscle-specific EMG
responses as well as between EER and muscle-specific EMG responses, suggest that it
might not always be necessary to use EMG sensors, which require mounting electrodes on
the skin surface—using simpler ergonomic transducers can also yield the muscle fatigue
and workload assessments under resource-constrained situations. Such situations may
not be common to the automobile, aviation, or other production engineering sectors but
may be very common to the agricultural mechanization sector that encompasses a range of
operation types apart from the tractor-based, as well as varied socio-economic backgrounds
mostly visible in the developing countries.

ODR can often become subjective, and to minimize that, RFC categorization of ODR
at sufficiently high accuracies may be helpful. Utilization of multiple automated responses
from other independent ergonomic transducers, i.e., BMI, HR, EER and EMG-RMS, also
aided in minimizing subjectivity and enhancing accuracy. Earlier studies have determined
overall workload classes solely based on RMS responses and obtained slightly lower or
similar accuracies using RFC machine learning [43,59]. RFC performed well compared to
other machine learning algorithms (Table 4) because it uses a bagging approach to create a
bunch of decision trees with a random subset of the data and then trains the model several
times on a random sample to achieve good prediction performance.

5. Conclusions

Findings of the study in real conditions and with real operators clearly outline it
is possible to quantify lower limb muscle workload and fatigue using high-throughput
ergonomic transducers. Along these lines, the GL and SL muscles experienced higher
strain resulting from higher clutch actuation forces (90–312 N) compared to the brakes
(105–332 N) that used the GR and SR muscles. The fatigue and workloads were assessed
using EMG, force transducers, and other biomechanical measurements aggravated at the
highest selected operating speed, tarmacadam surface, and for the oldest of the tractors
that had mechanically actuated clutch and brake controls. The aggravation was such
that it exceeded the allowable limits of muscle contraction (i.e., of 30% where GR: 43%,
SR: 41%, GL: 38%). HR and EER were recorded in moderately heavy to heavy categories,
which increased with the operation speed and were highest for the oldest of all the tractors
(100–132 beats/min, 15–20 kJ/min). Well supported by the ODR responses in moderate to
uncomfortable categories, observations of the study suggest a critical reconsideration of
the designs of existing workplaces with tractors.

Clutch and brake actuation forces and EER mostly held significantly high correlations
(r: 0.68–0.87) with the muscle-specific activity responses, suggesting that a comprehensive
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assessment of muscle workload and fatigue can also be conducted using simpler force mea-
suring and ergonomic transducers. Machine learning showed the possibility of classifying
operator discomfort at maximum accuracy (up to 97%).

Amid the limited, documented assessment of muscle workload and fatigue resulting
from lower limb-based actuation of tractor clutch and brake systems in real conditions,
the findings of the study are critical. This study, although focused on operators and
tractors in Indian conditions, could be very well adopted on a global scale. More studies are
required to efficiently model and simulate muscle workload, fatigue, and overall discomfort
from tractor or tractor-driven machinery operations. Eventually, modeled and simulated
findings assist in the development of a global protocol for designing efficient and safe
operator workplaces or reconsidering the designs of existing tractor workplaces. This is
critically needed to enhance work efficiency and agricultural productivity as agricultural
mechanization advances globally.
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