
 Open access Proceedings Article DOI:10.1145/1952682.1952700

Workload-aware live storage migration for clouds — Source link

Jie Zheng, Tze Sing Eugene Ng, Kunwadee Sripanidkulchai

Institutions: Rice University

Published on: 09 Mar 2011 - Virtual Execution Environments

Topics: Locality of reference, Cloud computing and Virtual machine

Related papers:

 Live migration of virtual machines

 Live wide-area migration of virtual machines including local persistent state

 CloudNet: dynamic pooling of cloud resources by live WAN migration of virtual machines

 The design and evolution of live storage migration in VMware ESX

 Fast transparent migration for virtual machines

Share this paper:

View more about this paper here: https://typeset.io/papers/workload-aware-live-storage-migration-for-clouds-
4armutwkmi

https://typeset.io/
https://www.doi.org/10.1145/1952682.1952700
https://typeset.io/papers/workload-aware-live-storage-migration-for-clouds-4armutwkmi
https://typeset.io/authors/jie-zheng-2gavhnfz5l
https://typeset.io/authors/tze-sing-eugene-ng-156luh5vx8
https://typeset.io/authors/kunwadee-sripanidkulchai-3izw82ef3x
https://typeset.io/institutions/rice-university-2wkk7zxp
https://typeset.io/conferences/virtual-execution-environments-rvkinzu9
https://typeset.io/topics/locality-of-reference-qe0l4mf8
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/virtual-machine-1wyvv06f
https://typeset.io/papers/live-migration-of-virtual-machines-o3cs0reg9z
https://typeset.io/papers/live-wide-area-migration-of-virtual-machines-including-local-2bre4m5y17
https://typeset.io/papers/cloudnet-dynamic-pooling-of-cloud-resources-by-live-wan-33mwt6z5am
https://typeset.io/papers/the-design-and-evolution-of-live-storage-migration-in-vmware-1091n0hz1o
https://typeset.io/papers/fast-transparent-migration-for-virtual-machines-2zsc1b2yr1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/workload-aware-live-storage-migration-for-clouds-4armutwkmi
https://twitter.com/intent/tweet?text=Workload-aware%20live%20storage%20migration%20for%20clouds&url=https://typeset.io/papers/workload-aware-live-storage-migration-for-clouds-4armutwkmi
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/workload-aware-live-storage-migration-for-clouds-4armutwkmi
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/workload-aware-live-storage-migration-for-clouds-4armutwkmi
https://typeset.io/papers/workload-aware-live-storage-migration-for-clouds-4armutwkmi

Workload-Aware Live Storage Migration for Clouds ∗

Jie Zheng T. S. Eugene Ng

Rice University

Kunwadee Sripanidkulchai

NECTEC, Thailand

Abstract

The emerging open cloud computing model will provide users
with great freedom to dynamically migrate virtualized computing
services to, from, and between clouds over the wide-area. While
this freedom leads to many potential benefits, the running services
must be minimally disrupted by the migration. Unfortunately, cur-
rent solutions for wide-area migration incur too much disruption
as they will significantly slow down storage I/O operations during
migration. The resulting increase in service latency could be very
costly to a business. This paper presents a novel storage migra-
tion scheduling algorithm that can greatly improve storage I/O per-
formance during wide-area migration. Our algorithm is unique in
that it considers individual virtual machine’s storage I/O workload
such as temporal locality, spatial locality and popularity character-
istics to compute an efficient data transfer schedule. Using a fully
implemented system on KVM and a trace-driven framework, we
show that our algorithm provides large performance benefits across
a wide range of popular virtual machine workloads.

Categories and Subject Descriptors D.4.0 [Operating Systems]:
General

General Terms Algorithms, Design, Experimentation, Perfor-
mance

Keywords Live Storage Migration, Virtual Machine, Workload-
aware, Scheduling, Cloud Computing

1. Introduction

Cloud computing has recently attracted significant attention from
both industry and academia for its ability to deliver IT services
at a lower barrier to entry in terms of cost, risk, and expertise,
with higher flexibility and better scaling on-demand. While many
cloud users’ early successes have been realized using a single cloud
provider [4, 8], using multiple clouds to deliver services and having

∗ This research was sponsored by NSF CAREER Award CNS-0448546,
NeTS FIND CNS-0721990, NeTS CNS-1018807, by an IBM Faculty
Award, an Alfred P. Sloan Research Fellowship, and by Microsoft Corp.
Jie Zheng is additionally supported by an IBM Scholarship. Views and con-
clusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or im-
plied, of NSF, IBM Corp., Microsoft Corp., the Alfred P. Sloan Foundation,
or the U.S. government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’11, March 9–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0501-3/11/03. . . $10.00

the flexibility to move freely among different providers is an emerg-
ing requirement [1]. The Open Cloud Manifesto is an example of
how users and vendors are coming together to support and estab-
lish principles in opening up choices in cloud computing [16]. A
key barrier to cloud adoption identified in the manifesto is data and
application portability. Users who implement their applications us-
ing one cloud provider ought to have the capability and flexibility to
migrate their applications back in-house or to other cloud providers
in order to have control over business continuity and avoid fate-
sharing with specific providers.

In addition to avoiding single-provider lock-in, there are other
availability and economic reasons driving the requirement for mi-
gration across clouds. To maintain high performance and availabil-
ity, virtual machines (VMs) could be migrated from one cloud to
another cloud to leverage better resource availability, to avoid hard-
ware or network maintenance down-times, or to avoid power limi-
tations in the source cloud. Furthermore, cloud users may want to
move work to clouds that provide lower-cost. The current practice
for migration causes significant transitional down time. In order
for users to realize the benefits of migration between clouds, we
need both open interfaces and mechanisms to enable such migra-
tion while the services are running with as minimal service disrup-
tion as possible. While providers are working towards open inter-
faces, in this paper we look at the enabling mechanisms without
which migrations would remain a costly effort.

Live migration provides the capability to move VMs from
one physical location to another while still running without any
perceived degradation. Many hypervisors support live migration
within the LAN [6, 10, 13, 17, 20, 25]. However, migrating across
the wide area presents more challenges specifically because of the
large amount of data that needs to be migrated over limited net-
work bandwidth. In order to enable live migration over the wide
area, three capabilities are needed: (i) the running state of the VM
must be migrated (i.e., memory migration), (ii) the storage or vir-
tual disks used by the VM must be migrated, and (iii) existing
client connections must be migrated while new client connections
are directed to the new location. Memory migration and network
connection migration for the wide area have been demonstrated
to work well [5, 24]. However, storage migration inherently faces
significant performance challenges because of its much larger size
compared to memory.

In this paper, we improve the efficiency of migrating storage
across the wide area. Our approach differs from the existing work in
storage migration that treats storage as one large chunk that needs
to be transferred from beginning to end. We introduce storage mi-
gration scheduling to transfer storage blocks according to a deliber-
ately computed order. We develop a workload-aware storage migra-
tion scheduling algorithm that takes advantage of temporal locality,
spatial locality, and access popularity – patterns commonly found
in a wide range of I/O workloads – at the properly chosen gran-
ularity to optimize the data transfer. We show that our scheduling
algorithm can be leveraged by previous work in storage migration

Im age file transfer

(beg inn ing to end)

M em ory

m igra tion

O n-dem and fe tch ing

P re-copy m odel w ithout schedu ling

P re+post-copy m odel w ithout schedu ling

P ost-copy m odel w ithout schedu ling

M em ory

m igra tion

Im age file transfer

(beg inn ing to end)

Im age file transfer

(beg inn ing to end)

M em ory

m igra tion
O n-dem and

Transfe r

d irty b locks

ID sequence

N on-w ritten

chunks

M em ory

m igra tion

O n-dem and fe tch ing

P re-copy m odel w ith schedu ling

P re+post-copy m odel w ith schedu ling

P ost-copy m odel w ith scheduling

M em ory

m igra tion

Sorted

read chunks

h igh→low

M em ory

m igra tion
O n-dem and

Sorted read

d irty b locks

h igh→low

H istory

(log

write op)

H istory

(log

read op)

H istory

(log

read &

write op)

Sorted

w ritten chunks

low h igh

N on-read chunks

N on-w ritten

chunks

S orted

written chunks

low →high

T ransfer

d irty b locks

ID sequence

S orted

d irty b locks

low high

Figure 1. Models of live storage migration.

to greatly improve storage I/O performance during migration across
a wide variety of VM workloads.

In the next section, we provide an overview of the existing stor-
age migration technologies and the challenges that they face. Sec-
tion 3 quantifies the locality and popularity characteristics we found
in VM storage workload traces. Motivated by these characteristics,
we present in Section 4 a novel storage migration scheduling al-
gorithm that leverages these characteristics to make storage migra-
tion much more efficient. We present the implementation of our
scheduling algorithm on KVM in Section 5 and evaluate its perfor-
mance in Section 6. In Section 7, we further present trace-based
simulation results for the scheduling algorithm under two addi-
tional migration models not adopted by KVM. Finally, we sum-
marize our findings in Section 8.

2. Background

A VM consists of virtual hardware devices such as CPU, memory
and disk. Live migration of a VM within a data center is quite com-
mon. It involves the transfer of the memory and CPU state of the
VM from one hypervisor to another. However, live migration across
the wide area requires not only transferring the memory and CPU
state, but also virtual disk storage and network connections associ-
ated with a VM. While wide-area memory and network connection
migration have matured [5, 19, 22, 24], wide-area storage migration
still faces significant performance challenges. The VM’s disk is im-
plemented as a (set of) file(s) stored on the physical disk. Because
sharing storage across the wide area has unacceptable performance,
storage must be migrated to the destination cloud. And because
of the larger size storage has compared to memory and the limi-
tations in wide-area network bandwidth, storage migration could
negatively impact VM performance if not performed efficiently.

2.1 Storage Migration Models

Previous work in storage migration can be classified into three
migration models: pre-copy, post-copy and pre+post-copy. In the
pre-copy model, storage migration is performed prior to memory
migration whereas in the post-copy model, the storage migration is
performed after memory migration. The pre+post-copy model is a
hybrid of the first two models.

Figure 1 depicts the three models on the left-hand side. In the
pre-copy model as implemented by KVM [14] (a slightly different
variant is also found in [5]), the entire virtual disk file is copied
from beginning to end prior to memory migration. During the vir-
tual disk copy, all write operations to the disk are logged. The dirty
blocks are retransmitted, and new dirty blocks generated during this
time are again logged and retransmitted. This dirty block retrans-
mission process repeats until the number of dirty blocks falls below
a threshold, then memory migration begins. During memory mi-
gration, dirty blocks are again logged and retransmitted iteratively.

The strength of the pre-copy model is that VM disk read opera-
tions at the destination have good performance because blocks are
copied over prior to when the VM starts running at the destination.
However, the pre-copy model has weaknesses. First, pre-copying
may introduce extra traffic. If we had an oracle that told us when
disk blocks are updated, we would send only the latest copy of disk
blocks. In this case, the total number of bytes transferred over the
network would be the minimum possible which is the total size of
the virtual disk. Without an oracle, some transmitted blocks will
become dirty and require retransmissions, resulting in extra traf-
fic beyond the size of the virtual disk. Second, if the I/O workload
on the VM is write-intensive, write-throttling is employed to slow
down I/O operations so that iterative dirty block retransmission can
converge. While throttling is useful, it can degrade application I/O
performance.

In the post-copy model [11, 12], storage migration is executed
after memory migration completes and the VM is running at the
destination. Two mechanisms are used to copy disk blocks over:
background copying and remote read. In background copying, the
simplest strategy proposed by Hirofuchi et al. [12] is to copy blocks
sequentially from the beginning of a virtual disk to the end. They
also proposed an advanced background copy strategy which will
be discussed later in Section 2.3. During this time if the VM is-
sues an I/O request, it is handled immediately. If the VM issues a
write operation, the blocks are directly updated at the destination
storage. If the VM issues a read operation and the blocks have yet
to arrive at the destination, then on-demand fetching is employed
to request those blocks from the source. We call such operations
remote reads. With the combination of background copying and re-
mote reads, each block is transferred at most once ensuring that the
total amount of data transferred for storage migration is minimized.
However, remote reads incur extra wide-area delays, resulting in
I/O performance degradation.

In the hybrid pre+post-copy model [15], the virtual disk is
copied to the destination prior to memory migration. During disk
copy and memory migration, a bit-map of dirty disk blocks is main-
tained. After memory migration completes, the bit-map is sent to
the destination where a background copying and remote read model
is employed for the dirty blocks. While this model still incurs extra
traffic and remote read delays, the amount of extra traffic is smaller
compared to the pre-copy model and the number of remote reads
is smaller compared to the post-copy model. Table 1 summarizes
these three models.

2.2 Performance Degradation from Migration

While migration is a powerful capability, any performance degra-
dation caused by wide area migration could be damaging to users
that are sensitive to latency. Anecdotally, every 100 ms of latency
costs Amazon 1% in sales and an extra 500 ms page generation time
dropped 20% of Google’s traffic [9]. In our analysis (details in Sec-
tion 7) of a 10 GB MySQL database server that has 160 clients mi-
grating over a 100 Mbps wide area link using the post-copy model,
over 25,000 read operations experience performance degradation
during migration due to remote read. This I/O performance degra-
dation can significantly impact application performance on the VM.
Reducing this degradation is key to making live migration a practi-
cal mechanism for moving applications across clouds.

2.3 Our Solution

Our solution is called workload-aware storage migration schedul-
ing. Rather than copying the storage from beginning to end, we
deliberately compute a schedule to transfer storage at the appropri-
ate granularity which we call chunk and in the appropriate order
to minimize performance degradation. Our schedule is computed
to take advantage of the particular I/O locality characteristics of

Model Pre-copy [5, 14] Pre+post-copy [15] Post-copy [11, 12]

Application Write Operation Degradation Yes No No
Performance Read Operation Degradation No Medium Heavy

Impact Degradation Time Long Medium Long
I/O Operations Throttled Yes No No

Total Migration Time >> Best > Best Best

Amount of Migrated Data >> Best > Best Best

Table 1. Comparison of VM storage migration methods.

the migrated workload and can be applied to improve any of the
three storage migration models as depicted on the right-hand side
of Figure 1. To reduce the extra migration traffic and throttling un-
der the pre-copy model, our scheduling algorithm groups storage
blocks into chunks and sends the chunks to the destination in an
optimized order. Similarly, to reduce the number of remote reads
under the post-copy model, scheduling is used to group and or-
der storage blocks sent over during background copying. In the hy-
brid pre+post-copy model, scheduling is used for both the pre-copy
phase and the post-copy phase to reducing extra migration traffic
and remote reads.

Hirofuchi et al. [12] proposed an advanced strategy for back-
ground copying in the post-copy model by recording and trans-
ferring frequently accessed ext2/3 block groups first. While their
proposal is similar in spirit to our solution, there are important dif-
ferences. First, their proposal is dependent on the use of an ext2/3
file system in the VM. In contrast, our solution is general without
any file system constraints, because we track I/O accesses at the
raw disk block level which is beneath the file system. Second, the
access recording and block copying in their proposal are based on
a fixed granularity, i.e. an ext2/3 block group. However, our solu-
tion is adaptive to workloads. We propose algorithms to leverage
the locality characteristics of workloads to decide the appropriate
granularity. As our experiments show, using an incorrect granular-
ity leads to a large loss of performance. Third, we show how our so-
lution can be applied to all three storage migration models and ex-
perimentally quantify the storage I/O performance improvements.

To our knowledge, past explorations in memory migration [6,
10] leverage memory access patterns to decide which memory
pages to transfer first to some extent. However, comparing to our
technique, there are large differences.

In a pre-copy model proposed by Clark et al. [6], only during
the iterative dirty page copying stage, the copying of pages that
have been dirtied both in the previous iteration and the current
iteration is postponed. In a post-copy model proposed by Hines and
Gopalan [10], when a page that causes a page fault is copied, a set
of pages surrounding the faulting page is copied together. This is
done regardless of the actual popularity of the set of surrounding
pages, and continues until the next page fault occurs.

In contrast, our scheduling technique for storage migration (1)
is general for the three storage migration models as discussed
above, (2) uses actual access frequencies, (3) computes fine-grained
access-frequency-based schedules for migration throughout the
disk image copying stage and the iterative dirty block copying
stage, (4) automatically computes the appropriate chunk size for
copying, and (5) proactively computes schedules based on a global
view of the entire disk image and the access history, rather than
reacting to each local event. Furthermore, under typical workloads,
memory and storage access patterns are different, and the con-
straints in the memory and storage subsystems are different. Tech-
niques that work well for one may not necessarily work well for the
other. Our technique is tailored specifically for storage migration
and storage access pattern.

Workload VM Configuration Server Default #

Name Application Clients

File SLES 10 32-bit dbench 45

Server (fs) 1 CPU,256MB RAM,8GB disk

Mail Windows 2003 32-bit Exchange 1000

Server (ms) 2 CPU,1GB RAM,24GB disk 2003

Java Windows 2003 64-bit SPECjbb 8

Server (js) 2 CPU,1GB RAM,8GB disk @2005-based

Web SLES 10 64-bit SPECweb 100

Server (ws) 2 CPU,512MB RAM,8GB disk @2005-based

Database SLES 10 64-bit MySQL 16

Server (ds) 2 CPU,2GB RAM,10GB disk

Table 2. VMmark workload summary.

3. Workload Characteristics

To investigate storage migration scheduling, we collect and study a
modest set of VMware VMmark virtualization benchmark [23] I/O
traces. Our trace analysis explores several I/O characteristics at the
time-scale relevant to storage migration to understand whether the
history of I/O accesses prior to a migration is useful for optimizing
storage migration. It is complementary to existing general studies
of other storage workloads [2, 18, 21].

3.1 Trace Collection

VMmark includes servers, listed in Table 2, that are representa-
tive of the applications run by VMware users. We collect traces
for multiple client workload intensities by varying the number of
client threads. A trace is named according to the server type and
the number of client threads. For example, “fs-45” refers to a file
server I/O trace with 45 client threads. Two machines with a 3GHz
Quad-core AMD Phenom II 945 processor and 8GB of DRAM are
used. One machine runs the server application while the other runs
the VMmark client. The server is run as a VM on a VMware ESXi
4.0 hypervisor. The configuration of the server VM and the client
is as specified by VMmark. To collect the I/O trace, we run an NFS
server as a VM on the application server physical machine and
mount it on the ESXi hypervisor. The application server’s virtual
disk is then placed on the NFS storage as a VMDK flat format file.
tcpdump is used on the virtual network interface to log the NFS
requests that correspond to virtual disk I/O accesses. NFS-based
tracing has been used in past studies of storage workload [3, 7] and
requires no special OS instrumentation. We experimentally con-
firmed that the tracing framework introduces negligible application
performance degradation compared to placing the virtual disk di-
rectly on the hypervisor’s locally attached disk. We trace I/O oper-
ations at the disk sector granularity – 512 bytes. We call each 512
byte sector a block. However, this is generally not the file system
block size. Each trace entry includes the access time, read or write,
the offset in the VMDK file, and the data length. Each trace con-
tains the I/O operations executed by a server over a 12 hour period.

3.2 History and Migration Periods

Let t denote the start time of a migration. Each I/O trace analysis
is performed 20 times with different randomly selected migration
start times t ∈ [3000s, 5000s], where 0s represents the beginning
of the trace. For simplicity, we use a fixed history period of 3000
seconds before t, and a fixed storage migration period of (2 ×
image size + memory size) / bandwidth seconds. The latter

 0

 20

 40

 60

 80

 100

Fileserver Mailserver Javaserver Webserver DB server

P
er

ce
nt

ag
e

of
 I/

O
 a

cc
es

se
s

fr
om

 p
re

vi
ou

s
ac

ce
ss

es
 (

%
)

Workload

Read blocks
Written blocks
Read chunks

Written chunks

Figure 2. The temporal locality of I/O accesses as measured by the
percentage of accesses in the migration that was also previously
accessed in the history. The block size is 512B and the chunk
size is 1MB. Temporal locality exists in all of the workloads, but
is stronger at the chunk level. The Java server has very few read
accesses resulting in no measurable locality.

corresponds to a pessimistic case that during the transfer of the
disk image, all the blocks were written to by the VM and the
entire image needs to be retransmitted. Other reasonable choices
for these periods could be used, but the qualitative findings from our
analysis are not expected to change. image size, memory size,
and workload (i.e. # client threads) are as specified in Table 2, and
bandwidth is 100 Mbps in the following analysis.

3.3 Temporal Locality Characteristics

Figure 2 shows that, across all workloads, blocks that are read
during the migration are often also the blocks that were read in the
history. Take the file server as an example, 72% of the blocks that
are read in the migration were also read in the history. Among these
blocks, 96% of them are blocks whose read access frequencies were
≥ 3 in the history. Thus, it is possible to predict which blocks are
more likely to be read in the near future by analyzing the recent
past history.

However, write accesses do not behave like the read accesses.
Write operations tend to access new blocks that have not been
written before. Again, take the file server as an example. Only
32% of the blocks that are written in the migration were written
in history. Therefore, simply counting the write accesses in history
will poorly predict the write accesses in migration.

Figure 2 also shows that both read and write temporal locality
improves dramatically when 1MB chunk is used as the basic unit
of counting accesses. This is explained next.

3.4 Spatial Locality Characteristics

We find strong spatial locality for write accesses. Take the file
server as an example. For the 68% of the blocks that are freshly
written in migration but not in history, we compute the dis-
tance between each of these blocks and its closest neighbor
block that was written in history. The distance is defined as
(block id difference ∗ blocksize). Figure 3 plots, for the file
server, the cumulative percentage of the fresh written blocks ver-
sus the closest neighbor distance normalized by the storage size
(8GB). For all the fresh written blocks, their closest neighbors can
be found within a distance of 0.0045*8GB=36.8MB. For 90% of
the cases, the closest neighbor can be found within a short distance
of 0.0001*8GB=839KB. For comparison, we also plot the results
for an equal number of simulated random write accesses, which
confirm that the spatial locality found in the real trace is significant.
Taken together, in the file server trace, 32%+68%∗90% = 93.2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

P
er

ce
nt

ag
e

of
 th

e
fr

es
h

w
rit

te
n

bl
oc

ks

Distance / Storage size

Actual accesses from trace
Simulated random accesses

Figure 3. Spatial locality of file server writes and simulated ran-
dom writes measured by normalized distance to closest block writ-
ten in history. The 90th percentiles are 0.0001 and 0.0035.

of the written blocks in the migration are found within a range of
839KB of the written blocks in history.

This explains why, across all workloads, the temporal locality of
write accesses increases dramatically in Figure 2 when we consider
1MB chunk instead of 512B block as the basic unit of counting
accesses. The temporal locality of read accesses also increases. The
caveat is that as the chunk size increases, although the percentage of
covered accessed blocks in migration will increase, each chunk will
also cover more unaccessed blocks. Therefore, to provide useful
read and write access prediction, a balanced chunk size is necessary
and will depend on the workload (see Section 4).

3.5 Popularity Characteristics

Popular chunks in history are also likely to be popular in migration.
We rank chunks by their read/write frequencies and compute the
rank correlation between the ranking in history and the ranking in
migration. Figure 4 shows that a positive correlation exists for all
cases except for the Java server read accesses at 1MB and 4MB
chunk sizes.1 As the chunk size increases, the rank correlation
increases. This increase is expected since if the chunk size is set
to the size of the whole storage, the rank correlation will become
1 by definition. A balanced chunk size is required to exploit this
popularity characteristic effectively (see Section 4).

4. Scheduling Algorithm

The main idea of the algorithm is to exploit locality to compute
a more optimized storage migration schedule. We intercept and
record a short history of the recent disk I/O operations of the VM,
then use this history to predict the temporal locality, spatial local-
ity, and popularity characteristics of the I/O workload during mi-
gration. Based on these predictions, we compute a storage trans-
fer schedule that reduces the amount of extra migration traffic and
throttling in the pre-copy model, the number of remote reads in
the post-copy model, and reduces both extra migration traffic and
remote reads in the pre+post-copy model. The net result is that stor-
age I/O performance during migration is greatly improved. The al-
gorithm presented below is conceptual. In Section 5, we present
several implementation techniques.

4.1 History of I/O Accesses

To collect history, we record the most recent N I/O operations in
a FIFO queue. We will show that the performance improvement is
significant even with a small N in Section 6 and 7. Therefore the

1 This is because the Java server has extremely few read accesses and little
read locality

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Fileserver Mailserver Javaserver Webserver DB server

T
he

 r
an

k
co

rr
el

at
io

n
of

 th
e

ch
un

k
po

pu
la

rit
y

Workload

Chunk Size 1MB
Chunk Size 4MB

Chunk Size 16MB
Chunk Size 64MB

(a) Read Access

 0

 0.2

 0.4

 0.6

 0.8

 1

Fileserver Mailserver Javaserver Webserver DB server

T
he

 r
an

k
co

rr
el

at
io

n
of

 th
e

ch
un

k
po

pu
la

rit
y

Workload

Chunk Size 1MB
Chunk Size 4MB

Chunk Size 16MB
Chunk Size 64MB

(b) Write Access

Figure 4. The rank correlation of the chunk popularity in history vs. in migration.

(c) Scheduling on the access frequency of chunks.

Extra traffic = 0 blocks

No write access in history

7 8 9 10 3 4 5 6 1 2

……

Sorted with write frequency

time

3 1 2 1 2 34 2 4 2 5 1 6 1 2 1 2

Memory

migration

Transfer

dirty

blocks

Unique Dirty Blocks = { }

Frequency

Of Block

3,4,<5,6<1,2

History

5 3 5 1 2 21 2 1 2

No write access in history

4 6 7 8 9 10 3 5 1 2
Frequency

Of Block

3<5<1<2

History

……

Sorted with write frequency

time

(b) Scheduling on the access frequency of blocks.

Extra traffic = 2 blocks

3 1 2 1 2 34 2 4 2 5 1 6 1 2 1 2

Memory

migration

5 3 5 1 2 21 2 1 2

Transfer

dirty

blocks

Unique Dirty Blocks = {4, 6}

Written Block

Block Sequence in Storage Migration

Migrated Block

……

time

Write

Sequence

1 2 3 4 5 6 7 8 9 10

Blocks Written After Migration

3 1 2 1 2 34 2 4 2 5 1 6 1 2 1 2

(a) No scheduling. Extra traffic = 6 blocks

Unique Dirty Blocks = {1, 2, 3, 4, 5, 6}

Memory

migration

Transfer

dirty

blocks

Figure 5. A simple example of the scheduling algorithm applied
to the pre-copy model.

memory overhead for maintaining this history is very small. Differ-
ent migration models are sensitive to different types of I/O accesses
as discussed in Section 2. This is related to the cause of the per-
formance degradation. The extra migration traffic in the pre-copy
model is caused by the write operations during the migration, while
the remote reads in the post-copy model are caused by the read op-
erations before certain blocks have been migrated. Therefore, when
the pre-copy model is used, we collect only a history of write oper-
ations; when the post-copy model is used, we collect only a history
of read operations; and when the pre+post-copy model is used, both
read and write operations are collected. For each operation, a four-
tuple, < flag,offset,length,time >, is recorded, where flag

……

time

1 2 4 5 6 8 10

3

MEMORY

MIGRATION

3 4 7 73 4 8 10 7 9 14

Frequency

Of Block

9<7<3

History

739373

No read access in historySorted with read frequency

(b) Scheduling on the access frequency of blocks.

Remote read = 3 times

3 7 9

……

time

3

MEMORY

MIGRATION

3 4 7 73 4 8 10 7 9 14

Frequency

Of Chunk
9,10<7,8<3,4

History

739373

No read access in historySorted with read frequency

(c) Scheduling on the access frequency of chunks.

Remote read = 0 times

5 67 8 9 103 4 1 2

Block Sequence in Storage Migration

Migrated Block

……

time

Read

Sequence

1 2 3 4 5 6 7 8 9 10

Blocks Read Before Migration

(a) No scheduling. Remote read = 6 times

Read Block

3

MEMORY

MIGRATION

3 4 7 73 4 8 10 7 9 14

Figure 6. A simple example of the scheduling algorithm applied
to the post-copy model.

indicates whether this is a read or write operation, offset indicates
the block number being accessed, length indicates the size of the
operation, and time indicates the time the operation is performed.

4.2 Scheduling Based on Access Frequency of Chunks

In this section, we discuss how we use I/O access history to com-
pute a storage transfer schedule. Figure 5 and 6 illustrate how the
migration and the I/O access sequence interact to cause the extra
migration traffic and remote reads for the pre-copy and post-copy
models respectively. The pre+post-copy model combines these two
scenarios but the problems are similar. Without scheduling, the mi-
gration controller will simply transfer the blocks of the virtual disk
sequentially from the beginning to the end. In the examples, there

are only 10 blocks for migration and several I/O accesses denoted
as either the write or read sequence. With no scheduling, under pre-
copy, a total of 6 blocks are dirtied after they have been transmitted
and have to be resent. Similarly, under post-copy, there are 6 remote
read operations where a block is needed before it is transferred to
the destination.

Our scheduling algorithm exploits the temporal locality and
popularity characteristics and uses the information in the history
to perform predictions. That is, the block with a higher write fre-
quency in history (i.e., more likely to be written to again) should be
migrated later in the pre-copy model, and the block with a higher
read frequency (i.e., more likely to be read again) should be mi-
grated earlier in the post-copy model. In the illustrative example in
Figures 5 and 6, when we schedule the blocks according to their ac-
cess frequencies, the extra traffic and remote reads can be reduced
from 6 to 2 and from 6 to 3 respectively.

In the example, blocks {4,6} in the pre-copy model and blocks
{4,8,10} in the post-copy model are not found in the history, but
they are accessed a lot during the migration due to spatial locality.
The scheduling algorithm exploits spatial locality by scheduling the
migration based on chunks. Each chunk is a cluster of contiguous
blocks. The chunk size in the simple example is 2 blocks. We note
that different workloads may have different effective chunk sizes
and present a chunk size selection algorithm later in Section 4.3.

The access frequency of a chunk is defined as the sum of the
access frequencies of the blocks in that chunk. The scheduling
algorithm for the pre-copy model migrates the chunks that have
not been written to in history first as those chunks are unlikely to
be written to during migration and then followed by the written
chunks. The written chunks are further sorted by their access fre-
quencies to exploit the popularity characteristics. For the post-copy
model, the read chunks are migrated in decreasing order of chunk
read access frequencies, and then followed by the non-read chunks.
The schedule ensures that chunks that have been read frequently in
history are sent to the destination first as they are more likely to
be accessed. In the example, by performing chunk scheduling, the
extra traffic and remote reads are further reduced to 0.

The scheduling algorithm is summarized in pseudocode as Fig-
ure 7 shows. The time complexity is O(n · log(n)), the space com-
plexity is O(n), where n is the number of blocks in the disk.

Note that α is an input value for the chunk size estimation
algorithm and will be explained later. The pre+post-copy model is a
special case which has two migration stages. The above algorithm
works for its first stage. The second stage begins when the VM
memory migration has finished. In this second stage, the remaining
dirty blocks are scheduled from high to low read frequency. The
time complexity is O(n · log(n)), the space complexity is O(n),
where n is the number of dirty blocks.

The scheduling algorithm relies on the precondition that the ac-
cess history can help predict the future accesses during migration,
and our analysis has shown this to be the case for a wide range of
workloads. However, an actual implementation might want to in-
clude certain safeguards to ensure that even in the rare case that the
access characteristics are turned upside down during the migration,
any negative impact is contained. First, a test can be performed on
the history itself, to see if the first half of the history does provide
good prediction for the second half. Second, during the migration,
newly issued I/O operations can be tested against the expected ac-
cess patterns to find out whether they are consistent. If either one
of these tests fails, a simple solution is to revert to the basic non-
scheduling migration approach.

4.3 Chunk Size Selection

The chunk size used in the scheduling algorithm needs to be ju-
diciously selected. It needs to be sufficiently large to cover the

DATA STRUCTURE IN ALGORITHM:
-op flag: the flag of operation to indicate it is a read or a write
-Qhistory : the queue of access operations collected from history
-α: the fraction of simulated history.
-Lb(op flag): A block access list of < blockid, time >
-Lcfreq(op flag): A list of < chunkid, frequency >
-Lschunk(op flag): A list of chunkid sorted by frequency
-Lnchunk(op flag): A list of chunkid not accessed in history

INPUT OF ALGORITHM: Qhistory , model flag and α ∈[0, 1]
OUTPUT OF ALGORITHM: migration schedule Smigration

Smigration = { };
IF ((model flag == PRE COPY)
‖(model flag == PRE + POST COPY))

Smigration=GetSortedMigrationSequence(WRITE);
ELSE (model flag == POST COPY)

Smigration=GetSortedMigrationSequence(READ);
RETURN Smigration;

FUNCTION GetSortedMigrationSequence(op flag)
Lb(op flag) = Convert ∀OP ∈ Qhistory

whose flag == op flag into < blockid, time >;
chunksize=ChunkSizeEstimation(Lb(op flag),α);
Divide the storage into chunks;
Sall = {All chunks};
FOR EACH chunki ∈ Sall

frequencyi=
∑

frequencyblockk

where blockk ∈ chunki and blockk ∈ Lb(op flag);
frequencyblockk

=# of times blockk appearing in Lb(op flag);

END FOR
Lcfreq(op flag) = {(chunki, frequencyi)|frequencyi > 0};
IF (op flag == WRITE)

Lschunk(op flag) =Sort Lcfreq(op flag) by freq low→high
ELSE

Lschunk(op flag) =Sort Lcfreq(op flag) by freq high→low
(chunks with the same frequency are sorted by id low→high)
Lnchunk(op flag) = Sall − Lschunk(op flag) with id low→high;
IF op flag == WRITE

return {Lnchunk(op flag), Lschunk(op flag)};
ELSE

return {Lschunk(op flag), Lnchunk(op flag)};

Figure 7. Scheduling algorithm.

likely future accesses near the previously accessed blocks, but not
so large as to cover many irrelevant blocks that will not be ac-
cessed. To balance these factors, for a neighborhood size n, we
define a metric called balanced coverage = access coverage +
(1−storage coverage). Consider splitting the access history into
two parts based on some reference point. Then, access coverage
is the percentage of the accessed blocks (either read or write) in
the second part that are within the neighborhood size n around the
accessed blocks in the first part. storage coverage is simply the
percentage of the overall storage within the neighborhood size n
around the accessed blocks in the first part. The neighborhood size
that maximizes balanced coverage is then chosen as the chunk
size by our algorithm.

Figure 8 shows the balanced coverage metric for different
neighborhood sizes for different server workloads. As can be seen,
the best neighborhood size will depend on the workload itself.

In the scheduling algorithm, we divide the access list
Lb(op flag) in the history into two parts, SH1 consists of the ac-
cesses in the first α fraction of the history period, where α is a con-
figurable parameter, and SH2 consists of the remaining accesses.
We set the lower bound of the chunk size to 512B. The algorithm
also bounds the maximum selected chunk size. In the evaluation,
we set this bound to 1GB.

The algorithm pseudocode is shown in Figure 9. The time com-
plexity of this algorithm is O(n · log(n)) and the space complexity
is O(n), where n is the number of blocks in the disk.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

B
al

an
ce

d
 C

o
v

er
ag

e

Distance / Storage Size

Fileserver
Mailserver

Javaserver
Webserver

DBserver

Figure 8. A peak in balanced coverage determines the appropriate
chunk size for a given workload.

5. Implementation

We have implemented the scheduling algorithm on kernel-based
virtual machine (KVM). KVM consists of a loadable kernel module
that provides the core virtualization infrastructure and a processor
specific module. It also requires a user-space program, a modified
QEMU emulator, to set up the guest VM’s address space, handle
the VM’s I/O requests and manage the VM. KVM employs the
pre-copy model as described in Section 2. When a disk I/O request
is issued by the guest VM, the KVM kernel module forwards
the request to the QEMU block driver. The scheduling algorithm
is therefore implemented mainly in the QEMU block driver. In
addition, the storage migration code is slightly modified to copy
blocks according to the computed schedule rather than sequentially.
Incremental schedule computation

A naive way to implement the scheduling algorithm is to add a
history tracker that simply records the write operations. When mi-
gration starts, the history is used to compute, on-demand, the mi-
gration schedule. This on-demand approach works poorly in prac-
tice because the computations could take several minutes even for
a history buffer of only 5,000 operations. During this period, other
QEMU management functions must wait because they share the
same thread. The resulting burst of high CPU utilization also affects
the VM’s performance. Moreover, storage migration is delayed un-
til the scheduler finishes the computations.

Instead, we have implemented an efficient incremental sched-
uler. The main idea is to update the scheduled sequence incremen-
tally when write requests are processed. The scheduled sequence is
thus always ready and no extra computation is needed when migra-
tion starts. The two main problems are (1) how to efficiently sort the
chunks based on access frequency and (2) how to efficiently select
the optimal chunk size. We first describe our solution to problem
(1) assuming a chunk size has been chosen; then we discuss our
solution to problem (2).
Incremental and efficient sorting

We create an array and a set of doubly linked lists for storing
access frequencies of chunks as shown in Figure 10. The index of
the array is the chunk ID. Each element in the array (square) is an
object that contains three pointers that point to an element in the
frequency list (oval) and the previous and next chunks (square) that
have the same frequency. An element in the frequency list (oval)
contains the value of the access frequency, a pointer to the head of
the doubly linked list containing chunks with that frequency and
two pointers to its previous and next neighbors in the frequency
list. The frequency list (oval) is sorted by frequency. Initially, the
frequency list (oval) only has one element whose frequency is zero
and it points to the head of a doubly linked list containing all
chunks. When a write request arrives, the frequency of the accessed

DATA STRUCTURE IN ALGORITHM:
-Lb(op flag): A block access list of < blockid, time >
-α: the fraction of simulated history.
-total block: the number of total blocks in the storage.
-upper, low bound: max & min allowed chunk size, e.g. 512B-1GB.
-SH1,SH2: the sets of blocks accessed in the first and second part.
-distance: The storage size between the locations of two blocks.
-ND: Normalized distance computed by distance/storage size.
-SNormDistance: A set of normalized distances for blocks that are

in SH2.
-SNormDistanceCDF : A set of pair < ND, % >. The percentage

is the cumulative distribution of ND in the set SNormDistance.
-ESH1: A set of blocks obtained by expanding every block in SH1

by covering its neighborhood range.
-BalancedCoveragemax: the maximum value of balanced coverage
-NDBCmax: the neighborhood size (a normalized distance) that

maximizes balanced coverage

INPUT OF ALGORITHM: Lb(op flag) and α ∈[0, 1]
OUTPUT OF ALGORITHM: chunk size

FUNCTION ChunkSizeEstimation(Lb(op flag),α)
max time= the duration of Lb(op flag);
FOR EACH < blockid, time >∈ Lb(op flag)

IF time < max time ∗ α
Add blockid into SH1;

ELSE ADD blockid into SH2;
END FOR
FOR EACH blockid ∈ SH2

NormDistance=
{min (|blockid−m|)∀m∈SH1}

total block
;

Add NormDistance into SNormDistance;
END FOR
SNormDistanceCDF = compute the cumulative distribution
function of SNormDistance;

BalancedCoveragemax = 0;
NDBCmax = 0;
NDmin= the minimal ND in SNormDistanceCDF ;
NDmax= the maximal ND in SNormDistanceCDF ;

NDstep =
NDmax−NDmin

1000 ;
FOR ND = NDmin; ND ≤ NDmax; ND+ = NDstep

distance = ND ∗ total block;
ESH1 = { }
FOR EACH m ∈ SH1

add blockid from (m − distance) to (m + distance) to ESH1;
END FOR

storage coverage =
of unique blocks in ESH1

total block
;

access coverage =the percentage of ND in SNormDistanceCDF ;
balanced coverage = access coverage + (1 − storage coverage);
IF balanced coverage > BalancedCoveragemax{

BalancedCoveragemax = balanced coverage;
NDBCmax = ND;

}
END FOR
chunk size = NDBCmax ∗ total block ∗ block size;
IF (chunk size == 0)

chunk size = lower bound;
ELSE IF chunk size > upper bound

chunk size = upper bound;
RETURN chunk size;

Figure 9. Algorithm for chunk size selection.

chunk is increased by 1. The chunk is moved from the old chunk
list to the head of the chunk list for the new frequency. A new
frequency list element is added if necessary. The time complexity
of this update is O(1) and the space complexity is O(n) where n is
the number of chunks. The scheduling order is always available by
simply traversing the frequency list in increasing order of frequency
and the corresponding chunk lists. This same approach is used to
maintain the schedule for dirty blocks that need to be retransmitted.
Incremental and efficient chunk size selection

To improve efficiency, we estimate the optimal chunk size peri-
odically. The period is called a round and is defined as the duration
of every N write operations. N is also the history buffer size. Only
the latest two rounds of history are kept in the system, called the
previous round and the current round. At the end of each round,

0

Frequency Doubly-Linked List

Chunk Array

1 2 3 4 5

3 1 0

01

3

5

2

4

Figure 10. Data structures for maintaining the sorted access fre-
quencies of chunks.

the optimal chunk size is computed and it is used as the chunk size
for tracking the access frequency in the next round using the afore-
mentioned data structure. Initially, a default chunk size of 4MB is
used.

It is not feasible to do a fine grained search for the optimal chunk
size in reality. A trade-off between precision and efficiency must
be made. We use a simple example to depict our idea in Figure 11.
We pick 8 exponentially increasing candidate chunk sizes: 4MB,
8MB, 16MB, 32MB, 64MB, 128MB, 256MB, 512MB, and 1GB.
Each round is subdivided into two halves. In the first half, each
candidate chunk size is associated with a bitmap for logging which
chunk is written to. When a chunk gets the first write access, the bit
for that chunk is set to 1 and the storage coverage at that candidate

chunk size is updated. Storage coverage is defined as # of set bits

total bits
.

The storage coverage for the candidate chunk size 4MB is 0.5 in
the example. In the second half, a new bitmap for the smallest
candidate chunk size of 4MB is created to log the new accessed
chunks in the second half. Moreover, for each candidate chunk
size, we maintain the corresponding access coverage. When a 4MB
chunk gets its first write access in the second half, the access bit
is set to 1. Access coverage is defined as the percentage of bits set
in the second half which are also set in the first half. The access
coverage for each candidate chunk size is updated by checking
whether the corresponding bit is also set in the previous bitmap
in the first half. An update only occurs when a chunk is accessed
for the first time. Each update operation is O(1) time. At the end
of each round, the storage coverage and access coverage for all
candidate chunk sizes are available and we pick the chunk size that
maximizes the balanced coverage = access coverage + (1 −
storage coverage). In Figure 11, the access coverage for chunk
size 4MB is 0.6 and its balanced coverage is 1.1, which is the
highest. Thus, 4MB is the selected chunk size for counting access
frequencies in the next round.

When migration starts, the frequency list from the previous
round is used for deciding the migration sequence and chunk size
since the current round is incomplete.

We evaluate the impact of the scheduling algorithm on the
latency and throughput of write operations in the file server. The
history buffer size is set to 20,000 and we measure 100,000 write
operations. With scheduling, the average write latency increases by
only 0.97%. The application level write throughput reduces by only
1.2%. Therefore, the incremental scheduler is lightweight enough
to be enabled at all time, or if desired, enabled manually only prior
to migration.

6. Evaluation on KVM

The experimental platform consists of two machines as the source
and destination for migration. Each of them is configured with

First half round Second half round

Bitmap (Granularity 4MB)

Bitmap

1 0 1

0 1 1 1 0 1 1

1 1 0 1 0 0 1

0

0

Granularity

4MB

8MB

16MB

32MB-1GB

storage_coverage = 4/8 = 0.50

storage_coverage = 3/4 = 0.75

access_coverage = 3/5 = 0.60

access_coverage = 4/5 = 0.80

1 1

storage_coverage = 2/2 = 1.00

access_coverage = 5/5 = 1.00

access_coverage + (1- storage_coverage) = 1.10

access_coverage + (1- storage_coverage) = 1.05

access_coverage + (1- storage_coverage) = 1.00

................

1

................

Figure 11. Data structures for chunk size selection.

a 3GHz Quad-core AMD Phenom II X4 945 processor, 8GB of
DRAM, runs Ubuntu 9.10 with Linux kernel (with the KVM mod-
ule) version 2.6.31 and QEMU version 0.12.50. The network is a
1Gbps Ethernet with varying rate-limits to emulate different net-
work speeds.

During the initial transfer of the image file, we configure the
migration process to read and copy image file data over the net-
work at a relatively large granularity of 4MB to achieve high disk
I/O throughput. Consequently, our scheduling algorithm chunk size
is constrained to be a multiple of 4MB. In contrast, we configure
QEMU to track dirty blocks at a much finer granularity of 128KB
to keep unnecessary data retransmission down. When any bytes of
a 128KB block is written to, the entire 128KB block is consid-
ered dirty and is retransmitted. We define the disk dirty rate as the
number of dirty bytes per second. Setting the granularity to track
dirty blocks larger (e.g. the QEMU default granularity of 1MB)
will greatly increase the amount of unnecessary retransmissions.
The history buffer size is set to 20,000. We run each experiment 3
times with randomly chosen migration start times in [900s, 1800s].
The average result across the 3 runs is reported. We present results
for the mail server and the file server in VMmark, which have, re-
spectively, a moderate and an intensive I/O workload (average write
rate 2.5MB/s and 16.7MB/s). The disk dirty rate during migration
could be much higher than the disk write rate because of the dirty
block tracking granularity discussed above. Note that the benefit of
scheduling is not pronounced when the I/O workload is light.

6.1 Benefits Under Pre-Copy

The following results show the benefits of scheduling under the pre-
copy model since this model is employed by KVM. We measure
the extra traffic and the time for the migration with and without
scheduling. Migration time is defined as the duration from the
migration command is received to the time when the VM resumes
on the destination machine. Extra traffic is the total size of the
retransmitted blocks.

QEMU provides a flow-control mechanism to control the avail-
able network bandwidth for migration. We vary the bandwidth from
224Mbps to 128Mbps. Figure 12 shows that when the bandwidth
is 224Mbps, with scheduling, the extra traffic is reduced by 25%,
and the migration time is reduced by 9 seconds for the mail server.
When the network bandwidth decreases, we expect the extra traffic
and the migration time to increase. With the scheduling algorithm,
the rate at which extra traffic increases is much lower. At a network
bandwidth of 128Mbps, the extra traffic is reduced by 41% from
3.16GB to 1.86GB. The migration time is reduced by 7% or 136s.

When the network bandwidth is 128Mbps, we find that the mi-
gration of the file server does not converge because its disk dirty
rate is too high relative to the network bandwidth, and QEMU has
no built-in mechanism to address this problem. There are two pos-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 120 140 160 180 200 220 240
 1000

 1500

 2000

 2500

 3000
E

xt
ra

 T
ra

ffi
c(

G
B

)

M
ig

ra
tio

n
T

im
e(

s)

Bandwidth(Mbps)

ms-1000: Extra Traffic w/o Scheduling
ms-1000: ExtraTraffic with Scheduling

ms-1000: Migration Time w/o Scheduling
ms-1000: Migration Time with Scheduling

Figure 12. Improvement in extra traffic and migration time for the
mail server.

 5

 10

 15

 20

 25

 30

 16 18 20 22 24 26 28 30

A
p

p
lic

a
ti

o
n

 W
ri

te
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Client Running Time (min)

fs-45: w/o scheduling
fs-45: with scheduling

 Before

migration

Image file transfer Dirty iterations

 (throttling)

 After

migration

Figure 13. File server performance during migration.

sible solutions: stop the VM [26], or throttle disk writes (mentioned
in [5]), with the latter achieving a more graceful performance
degradation. However, there is no definitive throttling mechanism
described in the literature. Thus, we have implemented our own
simple throttling variants called aggressive throttling and soft throt-
tling. During each dirty block retransmission iteration, the throttler
limits the dirty rate to at most half of the migration speed. When-
ever it receives a write request at time t0, it checks the dirty block
bitmap to compute the number of new dirty blocks generated and
estimates the time t it takes to retransmit these new dirty blocks at
the limited rate. If the next write operation comes before t0 + t,
aggressive throttling defers this write operation until time t0 + t by
adding extra latency. In contrast, soft throttling maintains an aver-
age dirty rate from the beginning of the dirty iteration. It adds ex-
tra latency to a write operation only when the average dirty rate is
larger than the limit. Aggressive throttling negatively impacts more
write operations than soft throttling, but it can shorten the migration
time and reduce extra traffic. We show results using both throttling
variants.

We fix the network bandwidth at 128Mbps and vary the number
of file server clients from 30 to 60 to achieve different I/O inten-
sities. First, we evaluate the impact to I/O performance by mea-
suring the number of operations penalized by extra latency due
to throttling. Table 3 shows that when soft throttling is applied,
scheduling can help to reduce the number of throttled operations
from hundreds to a small number (≤ 22). When aggressive throt-
tling is applied, the number of throttled operations is in thousands.
The scheduling algorithm can reduce the throttled operations by 25-
28% across the three workloads. In order to know how this benefit
is translated to application level improvement, Figure 13 shows the
average write throughput as reported by the VMmark client before,

fs-30 fs-30 fs-45 fs-45 fs-60 fs-60

no-schel schel no-schel schel no-schel schel

S
o

ft
-T

h
ro

t # of OP with 122 0 205 21 226 22

Extra-latency

Extra 1.08 0.82 1.62 1.45 2.01 1.53

Traffic(GB)

Migration 585 575 642 625 694 665

Time(s)

A
g

g
r-

T
h

ro
t # of OP with 1369 1020 3075 2192 4328 3286

Extra-latency

Extra 0.84 0.80 1.51 1.33 1.93 1.38

Traffic(GB)

Migration 582 574 628 613 674 641

Time(s)

Table 3. No scheduling vs. scheduling for file server with different
number of clients (network bandwidth = 128Mbps).

during and after migration under the fs-45 workload with aggres-
sive throttling. Migration starts at the 17th minute. Before that, the
average write throughput is around 21MB/s. When migration starts,
the average write throughput drops by about 0.5-1MB/s because the
migration competes with the application for I/O capacity. When the
initial image file transfer finishes at around 25.7 minutes, the dirty
iteration starts and throttling is enabled. The dirty iteration lasts for
2 minutes and 1 minute 43 seconds for no-scheduling and schedul-
ing respectively. Without scheduling, the average write through-
put during that time drops to 12.9MB/s. With scheduling, the write
throughput only drops to 18.3MB/s. Under the fs-60 workload, the
impact of throttling is more severe and scheduling provides more
benefits. Specifically, throughput drops from 25MB/s to 10MB/s
without scheduling, but only drops to 17MB/s with scheduling.
Under the relatively light fs-30 workload, throughput drops from
14MB/s to 12.2MB/s without scheduling and to 13.5MB/s with
scheduling.

Table 3 also shows that the extra traffic and migration time are
reduced across the three workloads with the scheduling algorithm.
Take the aggressive throttling scenario as an example, under fs-45,
the extra traffic is reduced by 180MB and the migration time is
reduced by 15s. Under fs-60, the I/O rate and the extra traffic both
increase. The scheduling algorithm is able to reduce the extra traffic
by 28% from 1.93GB to 1.38GB and reduce the migration time by
33s. The benefit of scheduling increases with I/O intensity.

We have also experimented with fs-45 under 64Mbps and
32Mbps of network bandwidth with aggressive throttling. At
64Mbps, scheduling reduces throttled operations by 2155. Extra
traffic is reduced by 300MB and migration time is reduced by 56s.
At 32Mbps, throttled operations is reduced by 3544. Extra traffic
and migration time are reduced by 600MB and 223s respectively.
The benefit of scheduling increases with decreasing network band-
width.

7. Trace-Based Simulation

Since KVM only employs the pre-copy model, we perform trace-
based simulations to evaluate the benefits of scheduling under the
post-copy and pre+post-copy models. Although we cannot simulate
all nuances of a fully implemented system, we believe our results
can provide useful guidance to system designers.

We use the amount of extra traffic and the number of degraded
operations that require remote reads as the performance metrics
for evaluation. Extra traffic is used to evaluate the pre+post-copy
model. It is the total size of retransmitted blocks. The number
of degraded operations is used to evaluate both post-copy and
pre+post-copy models. The performance of a read operation is
degraded when it needs to remotely request some data from the
source machine which incurs at least one network round trip delay.
Therefore, a large number of degraded operations is detrimental to
VM performance.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

fs-45 ms-1000 js-8 ws-100 ds-16

of

 D
eg

ra
de

d
O

P

Workload on 100Mbps network

Without Scheduling
With Scheduling

(a) Different Workload

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200

of

 D
eg

ra
de

d
O

P

Bandwidth (Mbps)

fs-45: Without Scheduling
fs-45: With Scheduling

(b) Different Bandwidth

 0

 5000

 10000

 15000

 20000

 25000

 30000

ds-16 ds-64 ds-160

of

 D
eg

ra
de

d
O

P

Workload on 100Mbps network

Without Scheduling
With Scheduling

(c) Different Number of Clients

Figure 14. The improvement of degraded operations under the post-copy model.

7.1 Simulation Methodology

We assume the network has a fixed bandwidth and a fixed delay. We
assume there is no network congestion and no packet loss. Thus,
once the migration of a piece of data is started at the source, the
data arrives at the destination after data size

bandwidth
+ delay seconds.

In our experiments, we simulate a delay of 50ms and use different
values of fixed bandwidths for different experiments.

For the following discussion, it may be helpful to refer to Fig-
ure 1. Each experiment is run 3 times using different random mi-
gration start times t chosen from [3000, 5000] seconds. When the
simulation begins at time t, we assume the scheduling algorithm
has already produced a queue of block IDs ordered according to
the computed chunk schedule to be migrated across the network in
the specified order. Let us call this the primary queue. The schedule
is computed based on using a portion of the trace prior to time t as
history. The default history size is 50,000 operations. The default α
for chunk size computation is 0.7. In addition, there is an auxiliary
queue which serves different purposes for different migration mod-
els. As we simulate the storage and memory migrations, we also
playback the I/O accesses in the trace starting at time t, simulating
the continuing execution of the virtual machine in parallel. We as-
sume each I/O access is independent. In other words, one delayed
operation does not affect the issuance of the subsequent operations
in the trace.

We do not simulate disk access performance characteristics
such as seek time or read and write bandwidth. The reason is
that, under the concurrent disk operations simulated from the trace,
the block migration process, remote read requests, and operations
issued by other virtual machines sharing the same physical disk, it
is impossible to simulate the effects that disk characteristics will
have in a convincing manner. Thus, disk read and write operations
are treated to be instantaneous in all scenarios. However, under
our scheduling approach, blocks might be migrated in an arbitrary
order. To be conservative, we do add a performance penalty to our
scheduling approach. Specifically, the start of the migration of a
primary queue block is delayed by 10ms if the previous migrated
block did not immediately precede this block.

In the post-copy model, the memory migration is simulated first
and starts at time t. When it is completed, storage migration begins
according to the order in the primary queue. Subsequently, when a
read operation for a block that has not yet arrived at the destination
is played back from the trace, the desired block ID is enqueued
to the auxiliary queue after a network delay (unless the transfer of
that block has already started), simulating the remote read request.
The auxiliary queue is serviced with strict priority over the primary
queue. When a block is migrated through the auxiliary queue, the
corresponding block in the primary queue is removed. Note that

when a block is written to at the destination, we assume the source
is not notified, so the corresponding block in the primary queue
remains.

In the pre+post-copy model, in the pre-copy phase, the storage
is migrated according to the primary queue; the auxiliary queue
is not used in this phase. At the end of the memory migration,
the dirty blocks’ migration schedule is computed and stored in the
primary queue. Subsequently, the simulation in the post-copy phase
proceeds identically to the post-copy model.

Finally, when scheduling is not used, the simulation methodol-
ogy is still the same, except that the blocks are ordered sequentially
in the primary queue.

7.2 Benefits Under Post-Copy

Figure 14 shows the benefits of scheduling in terms of the number
of degraded operations under the various server types, bandwidths,
and workload intensities. The reductions in the number of degraded
operations are 43%, 80%, 95% and 90% in the file server, mail
server, web server and database server respectively when the net-
work bandwidth is 100 Mbps. The traffic that is involved in remote
reads is also reduced. For example, 172MB and 382MB are saved
with the scheduling algorithm for the file server and mail server re-
spectively. If the history size is reduced significantly from 50,000
operations to merely 1,000 operations, the corresponding benefits
are reduced to 19%, 54%, 75%, and 83% respectively. Thus, even
maintaining a short history could provide substantial benefits. The
Java server performs very few read operations, so there is no remote
read.

When the network bandwidth is low, the file server (fs-45)
suffers from more degraded operations because the migration time
is longer. At 10Mbps, 13,601 (or 24%) degraded operations are
eliminated by scheduling in the file server. For the mail server, web
server and database server, their degraded operations are reduced
by 45%, 52% and 79% respectively when the network bandwidth
is 10Mbps. The traffic involved in remote reads for the file server is
reduced from 1.2GB to 0.9GB and for the mail server from 2.6GB
to 1.4GB.

When the number of clients increases, the read rate becomes
more intensive. For example, the ds-160 workload results in 25,334
degraded operations when scheduling is not used. With scheduling,
the degraded operations is reduced by 84%-90% under the ds-16,
ds-64, and ds-160 workloads. When the number of the clients in the
file server is increased to 70, there are 23,011 degraded operations.
With scheduling, it can be reduced by 47%.

 0

 50

 100

 150

 200

 250

fs-45 ms-1000 js-8 ws-100 ds-16

E
xt

ra
 tr

af
fic

 (
M

B
)

Workload on 100Mbps network

Without Scheduling
With Scheduling

Figure 15. The improvement of extra traffic under the pre+post-
copy model.

 0

 20

 40

 60

 80

 100

 120

fs-45 ms-1000 js-8 ws-100 ds-16

of

 D
eg

ra
de

d
O

P

Workload on 100Mbps network

Without Scheduling
With Scheduling

Figure 16. The improvement of degraded operations under the
pre+post-copy model.

fs-45 ms-1000 js-8 ws-100 ds-16

Worst chunk size 49% 43% 49% 74% 54%
performance gain

Optimal chunk size 77% 70% 64% 90% 66%
performance gain

Algorithm selected 76% 50% 58% 87% 64%
chunk size

performance gain

Table 4. Comparison between selected chunk size and measured
optimal chunk size (extra traffic under pre+post-copy).

7.3 Benefits Under Pre+Post-Copy

In the pre+post copy model, the extra traffic consists of only the
final dirty blocks at the end of memory migration. As Figure 15
shows, the scheduling algorithm reduces the extra traffic in the five
workloads by 76%, 51%, 67%, 86% and 59% respectively.

In the pre+post copy model, the degraded operations exist only
during the retransmission of the dirty blocks. Since the amount of
dirty data is much smaller than the virtual disk size, the problem
is not as serious as in the post-copy model. Figure 16 shows that
the Java server, web server and database server have no degraded
operations because their amount of dirty data is small. But the file
server and mail server suffer from degraded operations, and apply-
ing scheduling can reduce them by 99% and 88% respectively.

7.4 Optimality of Chunk Size

In order to understand how optimal is the chunk size selected by the
algorithm, we conduct experiments with various manually selected
chunk sizes, ranging from 512KB to 1GB in factor of 2 increments,

to measure the performance gain achieved at these different chunk
sizes. The chunk size that results in the biggest performance gain is
considered the measured optimal chunk size. The one with the least
gain is considered the measured worst chunk size. Table 4 compares
the selected chunk size against the optimal and worst chunk sizes
in terms of extra traffic under the pre+post-copy model. As can be
seen, the gain achieved by the selected chunk size is greater than the
measured worst chunk size across the 5 workloads. Most of them
are very close to the measured optimal chunk size.

8. Summary

Migrating virtual machines between clouds is an emerging require-
ment to support open clouds and to enable better service availabil-
ity. We demonstrate that existing migration solutions can have poor
I/O performance during migration that could be mitigated by taking
a workload-aware approach to storage migration. We develop our
insight on workload characteristics by collecting I/O traces of five
representative applications to validate the extent of temporal local-
ity, spatial locality and access popularity that widely exists. We then
design a scheduling algorithm that exploits the individual virtual
machine’s workload to compute an efficient ordering of chunks at
an appropriate chunk size to schedule for transfer over the network.
We demonstrate the improvements introduced by work-load aware
scheduling on a fully implemented system for KVM and through
a trace-driven simulation framework. Under a wide range of I/O
workloads and network conditions, we show that workload-aware
scheduling can effectively reduce the amount of extra traffic and
I/O throttling for the pre-copy model and significantly reduce the
number of remote reads to improve the performance of post-copy
and pre+post-copy model. Furthermore, the overhead introduced by
our scheduling algorithm in KVM is low.

Next, we discuss and summarize the benefits of workload-aware
scheduling under different conditions and workloads using the pre-
copy migration model as an example.
Network bandwidth: The benefits of scheduling increases as the
amount of available network bandwidth for migration decreases.
Given that lower bandwidth results in a longer pre-copy period,
the opportunity for any content to become dirty (i.e., requiring a
retransmission) is larger. However, with scheduling, content that is
likely to be written is migrated towards the end of the pre-copy
period thus reducing the amount of time and the opportunity for it
to become dirty.
Image size: The benefits of scheduling increases as the image size
(i.e., the used blocks in the file system) gets larger even if the active
I/O working set remains the same. A larger image size results in
a longer pre-copy period, thus the opportunity for any content to
become dirty is bigger. However, with scheduling, the working set
gets transferred last, reducing the probability that migrated content
becomes dirty despite the longer migration time.
I/O rate: As the I/O rate becomes more intense, the benefits of
scheduling increases. With higher I/O intensity, the probability that
any previously migrated content becomes dirty is higher. Again, by
transferring active content towards the end of the pre-copy period,
we lower the probability that it would become dirty and has to be
retransmitted.
I/O characteristics: As the extent of locality or popularity be-
comes less pronounced, the benefits of scheduling decreases. For
example, when the popularity of accessed blocks is more uniformly
distributed, it is more difficult to accurately predict the access pat-
tern. In the extreme case where there is no locality or popularity
pattern in the workload, scheduling provides similar performance
to non-scheduling.

These characteristics indicate that our workload-aware schedul-
ing algorithm can improve the performance of storage migration
under a wide range of realistic environments and workloads.

References

[1] Michael Armbrust, Armando Fox, Rean Griffith, and et. al. Above
the clouds: A berkeley view of cloud computing. Technical Re-
port UCB/EECS-2009-28, EECS Department, University of Califor-
nia, Berkeley, Feb 2009.

[2] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K.
Ousterhout. Measurements of a distributed file system. ACM SIGOPS

Operating Systems Review, 25(5):212, 1991.

[3] M. Blaze. NFS tracing by passive network monitoring. In Proceedings

of the USENIX Winter 1992 Technical Conference, pages 333–343,
1992.

[4] ”Amazon Web Services Blog”. Animoto - Scaling Through Viral
Growth. http://aws.typepad.com/aws/2008/04/animoto—scali.html,
April 2008.

[5] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald
Schioberg. Live wide-area migration of virtual machines including
local persistent state. In ACM/Usenix VEE, June 2007.

[6] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. In NSDI’05: Proceedings of the 2nd

conference on Symposium on Networked Systems Design & Implemen-

tation, pages 273–286, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

[7] M.D. Dahlin, C.J. Mather, R.Y. Wang, T.E. Anderson, and D.A. Pat-
terson. A quantitative analysis of cache policies for scalable network
file systems. ACM SIGMETRICS Performance Evaluation Review,
22(1):150–160, 1994.

[8] Derek Gottfrid. The New York Times Archives + Amazon
Web Services = TimesMachine. http://open.blogs.nytimes.com/
2008/05/21/the-new-york-times-archives-amazon-web- services-
timesmachine/, May 2008.

[9] James Hamilton. The Cost of Latency.
http://perspectives.mvdirona.com/2009/10/31/ TheCostOfLa-
tency.aspx, October 2009.

[10] Michael R. Hines and Kartik Gopalan. Post-copy based live vir-
tual machine migration using adaptive pre-paging and dynamic self-
ballooning. In VEE ’09: Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environ-

ments, 2009.

[11] Takahiro Hirofuchi, Hidemoto Nakada, Hirotaka Ogawa, Satoshi Itoh,
and Satoshi Sekiguchi. A live storage migration mechanism over wan
and its performance evaluation. In VIDC’09: Proceedings of the 3rd

International Workshop on Virtualization Technologies in Distributed

Computing, Barcelona, Spain, 2009. ACM.

[12] Takahiro Hirofuchi, Hirotaka Ogawa, Hidemoto Nakada, Satoshi Itoh,
and Satoshi Sekiguchi. A live storage migration mechanism over wan

for relocatable virtual machine services on clouds. In CCGRID’09:

Proceedings of the 2009 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid, Shanghai, China, 2009. IEEE
Computer Society.

[13] Hai Jin, Li Deng, Song Wu, and Xuanhua Shi. Live virtual machine
migration integrating memory compression with precopy. In IEEE

International Conference on Cluster Computing, 2009.

[14] KVM. QEMU-KVM code. http://sourceforge.net/projects/kvm/files,
January 2010.

[15] Yingwei Luo, Binbin Zhang, Xiaolin Wang, Zhenlin Wang, Yifeng
Sun, and Haogang Chen. Live and Incremental Whole-System Migra-
tion of Virtual Machines Using Block-Bitmap. In IEEE International

Conference on Cluster Computing, 2008.

[16] Open Cloud Manifesto. Open Cloud Manifesto.
http://www.opencloudmanifesto.org/, January 2010.

[17] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent
migration for virtual machines. In USENIX’05: Proceedings of the

2005 Usenix Annual Technical Conference, Berkeley, CA, USA, 2005.
USENIX Association.

[18] J.K. Ousterhout, H. Da Costa, D. Harrison, J.A. Kunze, M. Kupfer,
and J.G. Thompson. A trace-driven analysis of the UNIX 4.2 BSD file
system. ACM SIGOPS Operating Systems Review, 19(5):24, 1985.

[19] K.K. Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe.
Live data center migration across wans: A robust cooperative context
aware approach. In ACM SIGCOMM Workshop on Internet Network

Management (INM), Kyoto, Japan, aug 2007.

[20] IBM Redbooks. IBM Powervm Live Partition Mobility IBM Interna-

tional Technical Support Organization. Vervante, 2009.

[21] D. Roselli, J.R. Lorch, and T.E. Anderson. A comparison of file system
workloads. In Proceedings of the annual conference on USENIX

Annual Technical Conference, page 4. USENIX Association, 2000.

[22] Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Cees
de Laat, Joe Mambretti, Inder Monga, Bas van Oudenaarde, Satish
Raghunath, and Phil Yonghui Wang. Seamless live migration of virtual
machines over the man/wan. Future Gener. Comput. Syst., 22(8):901–
907, 2006.

[23] VMWare. VMmark Virtualization Benchmarks.
http://www.vmware.com/products/vmmark/, January 2010.

[24] Timothy Wood, Prashant Shenoy, Alexandre Gerber, K.K. Ramakr-
ishnan, and Jacobus Van der Merwe. The Case for Enterprise-Ready
Virtual Private Clouds. In Proc. of HotCloud Workshop, 2009.

[25] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin
Yousif. Black-box and gray-box strategies for virtual machine mi-
gration. In NSDI, 2007.

[26] XEN. XEN Project. http://www.xen.org, January 2009.

