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Abstract. Multi-core parallelism and accelerators are becoming com-
mon features of today’s computer systems, as they allow for computa-
tional power without sacrificing energy efficiency. Due to heterogeneity,
tuning for each type of compute unit and adequate load balancing is
essential. This paper proposes static and dynamic solutions for load bal-
ancing in the context of an application for visualizing high-dimensional
simulation data. The application relies on the sparse grid technique for
data compression. Its performance critical part is the interpolation rou-
tine used for decompression. Results show that our load balancing scheme
allows for an efficient acceleration of interpolation on heterogeneous sys-
tems containing multi-core CPUs and GPUs.

1 Introduction

Heterogeneous systems containing CPUs and accelerators allow us to reach
higher computational speeds while keeping power consumption at acceptable
levels. The most common accelerators nowadays, GPUs, are very different com-
pared to state-of-the-art general-purpose CPUs. While CPUs incorporate large
caches and complex logic for out-of-order execution, branch prediction, and spec-
ulation, GPUs contain significantly more floating point units. They have in-order
cores which hide pipeline stalls through interleaved multithreading, e.g. allow-
ing up to 1536 concurrent threads per core1. Garland et al. [1] refer to CPUs
as latency oriented processors with complex techniques used for extracting In-
struction Level Parallelism (ILP) from sequential programs. In contrast, GPUs
are throughput oriented, containing a large number of cores (e.g. 16) with wide
SIMD units (e.g. 32 lanes), making them ideal architectures for vectorizable
codes. All applications can be run on CPUs but only a subset can be ported to
or deliver good performance on GPUs, making them special purpose processors.
In the following, we refer to GPUs and CPUs as processors, but of different type.

To support all kinds of heterogeneous systems in a portable way, we need to
make sure that even for GPU-friendly code parts, there is a fallback to execute
on CPU, as we also want to best exploit systems with powerful CPU parts. For
that, multiple code versions of the same function have to be provided. For multi-
core CPUs, OpenMP [2] is the de facto programming model. Nvidia GPUs on

1 In Nvidia terminology a core is called Streaming Multi-Processor.
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the other hand are best programmed using CUDA [3]. OpenCL [4] targets both
CPUs and GPUs. Still, for optimal performance, multiple versions are essential
to target the different hardware characteristics. Another crucial part for efficient
programming of heterogeneous systems is adequate workload distributing.

The main contribution of this paper consists of proposed solutions for load
balancing in the context of the decompression of high-dimensional data com-
pressed using the sparse grid technique [5]. This technique allows for an efficient
storage of high-dimensional functions. Sparse grid interpolation (or decompres-
sion) is the performance critical part. For realizing load balancing, we employ a
dynamic strategy in which the computation is decomposed at runtime into tasks
of a given size (the grain size) which are grabbed for execution by the CPU
and the GPU. We compare this strategy to a static approach, where the load
distribution is done at the beginning of the computation, according to the com-
putational power of the heterogeneous components. By this, we show that our
interpolation runs efficiently on heterogeneous systems. To the best of our knowl-
edge, this is the first implementation of sparse grid interpolation that optimally
combines code tuned for multi-core CPUs and Nvidia GPUs.

2 Related Work

Our work is complementary to the one described in [6]. There, space and time
efficient algorithms for the sparse grid technique are proposed. We use these
algorithms as basis for our implementation of sparse grid interpolation for CPU
and GPU. It is worth mentioning that in [6] the focus is on porting the sparse grid
technique to GPUs. While the GPU code is executed, the CPUs are idle. Instead
our goal is to avoid having idle processors and to further improve performance.

Similar to our approach, MAGMA [7] exploits heterogeneous systems by pro-
viding efficient routines for linear algebra. StarPU [8] is a framework that simpli-
fies the programming of heterogeneous systems. Programs are decomposed into
StarPU tasks (bundles of multi-version functions for every processor type) with
according task dependencies, and automatically mapped to available processors
(CPU / GPU). StarPU implements a distributed shared memory (DSM) over
the CPU and the GPU memory via software controlled coherence. This allows
for automatic data transfers to / from the GPU memory. Parameters exposed
by StarPU to programmers are e.g. task size, task priority, and schedulers.

3 Optimizing Programs for Heterogeneous Computing

Programming the CPU and the GPU is inherently different. Multi-core CPUs
are programmed using threads through pthreads or OpenMP. For GPU program-
ming, CUDA is also based on threads, but there are differences. For synchroniza-
tion, CUDA only provides barriers within thread groups running on the same
GPU core, and atomic operations. For performance, the architectural details of
GPUs have to be considered. Maximizing the number of threads running con-
currently on the GPU, coalescing accesses to global memory, eliminating bank
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conflicts, minimizing the number of branches, and utilizing the various memories
appropriately (global, shared, texture, constant) are important GPU optimiza-
tions. In contrast, CPU optimizations include cache blocking and vectorization.

When programming heterogeneous systems with CPUs and GPUs, we can
use an off-loading approach, as used in systems with co-processors for specific
tasks. We determine a mapping between each function and the type of processor
on which its execution time is minimal. As each function is executed by one
type of processor, there is a risk for idle compute resources2. The solution is to
move from off-loading to full function distribution. For this, we provide multi-
version functions. We design them such that the CPU and the GPU cooperate
for computing each function. Since this approach allows for a full utilization of
a heterogeneous system, we focus on it in the rest of the paper.

Multiple versions of the same function must be orchestrated by an upper layer
responsible for balancing the workload, either statically or dynamically. A static
approach distributes the workload according to the computational speed of the
processors. An initially determined distribution does not change during the ex-
ecution of the function. In contrast, dynamic load balancing allows for changing
the workload distribution after the computation has been started. It can be
triggered by overloaded (sender initiated) or underloaded (receiver initiated) re-
sources, can be executed in centralized or decentralized manner, and results in
direct rebalancing (e.g. work stealing) or in repartitioning the data mapped to
compute resources for the next iteration of the computation on that data. [9]
provides a good overview of dynamic load balancing strategies. A typical dy-
namic strategy is receiver initiated load balancing of pieces of work which are
not pre-mapped to given compute resources, but only distributed shortly before
execution (also known as self-scheduling). This is also found in the OpenMP
dynamic scheduling strategy for parallel for-loops. We call this the dynamic task
based approach. The computation is decomposed into tasks which are inserted
into a global queue. From there, the tasks are extracted by worker threads. Of-
ten, the tasks have dependencies, making the extraction more time-consuming.
Variations use multiple queues or scheduling strategies based on work stealing,
on greedy algorithms or algorithms that predict distribution costs. For hetero-
geneous systems, the worker threads invoke according versions of a function on
the CPU or the GPU.

While the dynamic task based approach adapts implicitly to different ma-
chines, different input parameters, and external system load, there is an overhead
for task queue management and distribution. Especially, the task size, called
grain size in the following, influences that overhead. If it is too large, load bal-
ancing may not be achievable. If it is too small, the overhead may dominate and
destroy any speedup. In contrast, the overhead of static balancing is minimal.
Obviously, there is no grain size problem, but it has to adapt to function input
parameters and machine type. If the workload depends not only on parameters
such as data size, but on data values, static balancing is not feasible.

2 Note that our objective is minimal execution time, not minimal energy consumption.
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Fig. 1. Grain size impact. D/L/N = 6/12/5 × 105 (left), 20/6/3 × 106 (right)

We now focus on the importance of the grain size in the dynamic task based
approach. In addition to the previous general remarks, a highly tuned CPU
version of a function performs the best for a task size that matches or is a multiple
of the tile size used for cache blocking. On the GPU, the task size should match
or be a multiple of the maximum number of active threads. This would ensure
full utilization of the GPU cores, of the SIMD units, and of multithreading.
For sparse grid interpolation, we developed an according first-come first-served
scheduler strategy using OpenMP and CUDA (OMP + CUDA). Moreover, we
implemented our application with StarPU, using various schedulers available
there. Fig. 1 shows the performance of interpolation for different grain sizes with
different input parameters: number of dimensions (D), refinement level (L), and
number of interpolations (N). The measurements are done using a Quad-core
Nehalem and an Nvidia GTX480. Note that the optimal grain size depends on
these parameters, especially for StarPU eager and our OMP + CUDA scheduler.
The dmda scheduler assigns tasks based on a performance model that considers
execution history and PCIe transfer overheads. For more details we refer to [8].

4 Sparse Grid Interpolation

Our application is the visualization of compressed, high-dimensional data result-
ing from simulations [10]. Decompression is in our case a form of interpolation
based on the sparse grid technique described in [5]. Fig. 2 depicts an example
of 5d data, i.e. velocity field, obtained from simulating the lid driven cavity for
different Reynolds numbers (Re). The velocity of cavity’s upper wall can also be
transformed into a parameter, making this a 6d problem. For a high number of
dimensions, managing the data can pose serious challenges. Therefore, we com-
press the data using the sparse grid technique in order to reduce its size and we
decompress it afterwards for real-time visualization. This technique also enables
us to interpolate at points for which we do not have values from simulation.
Hence, it can provide hints on the simulation outside the initial data.
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Fig. 2. 5d (x, y, z, t, Re) data from a CFD simulation

Sparse grid interpolation has 5 input parameters: the number of dimensions
(D), the refinement level (L), the number of interpolations (N), the precision
(P) (single or double precision), and the adaptivity (A) (adaptive or regular).
In this paper we concentrate on the first 3, these being the most important as
they can take a wide range of values. Fig. 3 (left) shows that a sparse grid can
be represented as a sequence of regular grids [6]. Using this storage scheme,
we can explain the interpolation and the impact of the inputs on performance.
Interpolating (Fig. 3 (right)) at a given D-dimensional point means traversing
the set of regular grids and computing the contribution of each regular grid on
the result. For each regular grid a D-linear basis function (O(D)) is built and
evaluated at the point. Interpolating at one point uses exactly one value from
each regular grid for scaling the basis function.

D increases the computational intensity, i.e. the ratio between the on-chip
computation time and off-chip communication time. On GPU, a large D causes
an increased consumption of shared memory per thread reducing the benefits of
multithreading. A large L decreases the computational intensity since the size of
the regular grids increases exponentially, i.e. from 20 to 2L−1. We can see this
in Fig. 3 (left) for L = 3 (regular grids of sizes between 20 and 23). As only one
regular grid value is used per interpolation, only a small percentage of the com-
pressed data transferred over PCIe to the GPU is actually used for computation.
N is proportional to the computational intensity, i.e the more interpolations we
perform, the more worthwhile is the data transfer over PCIe.

Our versions of interpolation are based on the iterative algorithm from [6].
The CPU version is optimized for best use of caches and vector units. Our GPU
implementation includes the following optimizations: coalesced memory accesses,
use of shared memory, no bank conflicts, etc. Having these two versions of inter-
polation, we combine them so that all the processors in a heterogeneous system
simultaneously work on interpolation. In general, on the systems where we mea-
sured the performance of interpolation, the GPU was faster than the CPU. But,
since our goal is performance portability, it makes sense to consider the situa-
tion in which the GPU is not faster than the multi-core CPUs available in the
system. This can be the case for instance with Intel’s Sandy Bridge processors
which have a SIMD unit [11] (256 bit AVX) twice as wide as the previous gen-
eration, Nehalem (128 bit SSE). The parallelization of sparse grid interpolation
is based on distributing the points for interpolation among threads.
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Fig. 3. Left: 2d sparse grid decomposed as a sequence of regular grids. Group l (l =
0 . . . 3) contains Cl

D+l−1 regular grids of size 2l. D expands the groups horizontally
while L expands them vertically. Right: simplified interpolation.

5 Interpolation and Heterogeneous Computing

Having two optimized versions for CPUs and GPUs, we want to interpolate si-
multaneously on all the processors of a heterogeneous system. For this, workload
balancing is essential. This section details our approaches for load balancing.

5.1 Dynamic Task Based Load Balancing

Dynamic load balancing offers a natural way to allow the fastest processor to
grab a number of tasks proportional with its speed. But, failing to determine the
optimal task can seriously reduce the performance. For maximum performance,
we treat the grain size as a tunable parameter. Finding its optimal value can be
difficult when it is influenced by the input parameters of the application (Fig. 1).
This is the case with sparse grid interpolation.

Each combination of values for the inputs can determine a different optimal
value for the grain size. This complicates the process of tuning this parameter.
The 3d space determined by D, L, and N (or 5d if we add P and A) can make the
search for the optimal grain size very time-consuming or even impractical. To
reduce the time spent by the search we use a performance model that returns in
an acceptable amount of time an approximation of the execution time for each
combination of values for the inputs. Our model is based on the following system
of linear equations:

T ′
cpu(w) = ncpu · tcpu(w) (1)

T ′
gpu(w) = ngpu · tgpu(w) + tpcie (2)

(ccpu · ncpu + cgpu · ngpu) · w = N (3)

T ′
cpu(w) = T ′

gpu(w) (4)
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Fig. 4. Left: Execution time on the CPU as a function of workload. Dependence is
linear. Right: Execution time on the GPU as a function of workload. The steps result
from: large number of cores, wide SIMD units, and multithreading.

T ′
cpu(w), T

′
gpu(w), ncpu , and ngpu are the unknowns. The first equation builds

the approximation T ′
cpu of the execution time on the CPU, Tcpu , as the product

between the number of tasks grabbed by a worker thread (ncpu) and the duration
of a task as a function of workload (tcpu(w)), i.e. the workload is equivalent to
the number of points at which we interpolate. Similarly, the approximation of the
execution time on the GPU, T ′

gpu , is the sum between the duration of all tasks
executed on the GPU (ngpu · tgpu(w)) and the one-time overhead (tpcie) caused
by transferring the compressed data over PCIe. The third equation means that
the total workload equals the sum of the workload handled by CPUs and the
workload handled by GPUs. ccpu is the number of CPU cores or CPU worker
threads and ncpu is the number of interpolations allocated to a core. cgpu is the
number of GPUs and ngpu is the number of interpolations per GPU. Finally, the
fourth equation expresses that the CPU and the GPU finish at the same time.

We now have to find good approximations (linear or piecewise) for the tcpu(w)
and the tgpu(w) functions depicted in Fig. 4. These can be considered cheap
operations since the definition domain of these functions is relatively small, i.e.
from 1 to 35000, compared to the common values for N, i.e. 106 or more. The
approximations are computed once for each combination of values for D and L.
We can subsequently reuse these functions for determining the total execution
time, T ′

cpu(w) or T ′
gpu(w) for any value of N. It is worth mentioning that in

the case of the CPU, for D/L/N = 6/12/5 × 105, the optimal performance is
reached for a grain size of 4096. At the opposite end, a grain size of 1 makes
the execution up to 6 times slower. The optimal grain size changes with the
input parameters, i.e. for D/L/N = 10/10/5× 105, it is 1024. Now it is trivial to
discover the optimal grain size, g, that minimizes T ′

cpu(w). Note that without our
optimization we would have to search the grain size that minimizes the execution
time for each tuple (D, L, N) we get as input. This means that for every value of
the grain size considered in the search we interpolate at a potentially large set
of points (e.g. 3× 106) which can be very time-consuming for a large D or L.
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5.2 Static Load Balancing

Static workload balancing eliminates the problems of dynamic workload balanc-
ing. What we follow now is to decompose the workload in two partitions. The
partitions have sizes proportional to the computational speeds of the CPU and
the GPU, or inverse proportional to the execution times. As explained above, the
inputs of sparse grid interpolation have a great impact on performance. Hence,
they cannot be ignored when determining the speed of the processors.

It is easier to present our approach for static balancing if we consider the
execution time functions on the CPU and the GPU as functions of 3 parame-
ters: D, L, and N. To simplify the notations, let us consider that D and L are
fixed. We thus have the functions Tcpu(w) and Tgpu(w) that approximate the
execution times on the CPU and the GPU, and take as parameter the number of
interpolations. Fig. 4 depicts these 2 functions for various values for the inputs.

Statically solving the workload balancing problem for a given N means finding
the value f of w that minimizes max(Tcpu(w), Tgpu(N − w). If we approximate
Tcpu and Tgpu with 2 linear functions T ′′

cpu and T ′′
gpu (Fig. 4) then it is trivial to

find f in O(1) since it is equivalent to intersecting 2 linear functions. Even for
more advanced approximations, determining f can be achieved in linear time.

To achieve efficient static balancing, our goal is to determine the execution
time functions as accurate and fast as possible. Consequently, the problem must
be reduced to a size that allows us to build the approximations in a minimum
amount of time. To obtain accuracy, the reduced problem has to provide results
that expose a global behavior, i.e. they are applicable to larger problems. Note
that the search for f must be performed for each pair (D, L) so we can consider
it as the nest of two loops iterating over a range for D and a range for L.

On the CPU, approximating the execution time is straight-forward since the
maximum speed is reached for a relatively small number of interpolation points,
leading to the linear behavior visible in Fig. 4 (left). In contrast, on the GPU
the large number of active threads (approximately 23040) creates the stepping
effect from Fig. 4 (right). For an accurate approximation of the execution time
on the GPU, we consider two points: the execution time for N = 1 and the
execution time for N = maximum number of active threads + 1. Both measure-
ments include the initial transfer of the compressed data. This ensures a proper
approximation that covers the main characteristics of the GPU: the overhead
generated by transferring the compressed data to the GPU over PCIe, the high
throughput character of the GPU expressed through a large number of SIMD
units, and multithreading on the GPU that can improve the performance.

6 Evaluation

We now describe our experimental setup and results. The tested hardware is:

– a system containing a Quad-core Intel Nehalem i7-920 (2.67 GHz) and an
Nvidia GTX480 (1.4 GHz, 15 cores, 32-lane SIMD)

– a system with 8 Intel Xeon L5630 cores (2.13 GHz) arranged in two sockets
and an Nvidia Tesla X2500 (1.15 GHz, 14 cores, 32-lane SIMD).
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Fig. 5. Left: GFlops rate on 2 × Intel Xeon Quad-core + Nvidia Tesla x2050. Right:
GFlops rate on Nehalem Quad-core + Nvidia GTX480

Our application is compiled using gcc 4.4 and nvcc 3.2.
Regarding the problem size, in each run of our application we perform 3 ×

106 interpolations. The number of dimensions, D is in the range from 1 to 20
while the refinement level, L is 6. The dynamic approach is implemented using
a combination of StarPU and CUDA and a mix of OpenMP and CUDA. From
StarPU we only use the fastest 2 schedulers for our application: eager and dmda.

The optimal grain size was determined for each value of D both through brute
search and through our optimized search described in Sec. 5. Both searches re-
turned similar optimal grain sizes decreasing from 44000 to 7500, for D between
1 and 20 respectively. These numbers follow to some extent the maximum num-
ber of active threads (on the GPU) for D in the range from 1 to 20. Remember
that increasing D causes the decrease of the number of active threads. It is worth
mentioning that setting the optimal grain size as the maximum number of active
threads cannot provide performance portability. On our heterogeneous systems,
interpolating on GPU is between 4 and 8 times faster than interpolating on
CPU. It is likely that on other systems where the CPU is faster than the GPU,
the optimal grain size does not match the maximum number of active threads
but instead has a value that permits for the best exploitation of CPU caches.

We can see in Fig. 5 that static workload balancing delivers better performance
than the dynamic approach. It is up to 25% times faster than the dynamic ver-
sion. We attribute this difference to the latency overhead resulting from invoking
a significantly larger number of copies to / from the GPU and a larger number
of launches of our CUDA program. The amount of transferred data is the same
in both approaches but in the static one, only one transfer is necessary.

The max line is a plot of the sum between the GFlops rates of the CPU,
GFlopscpu , and of the GPU, GFlopsgpu . To obtain GFlopscpu we run ony the
CPU version of interpolation. Similarly, we compute GFlopsgpu by executing
only on the GPU. Note that the line for the static approach is very close to the
max line. More exactly, our static approach reaches up to 98% efficiency defined
as: E = GFlops static/(GFlopscpu + GFlopsgpu). This confirms that the linear
approximations from the static approach are sufficiently accurate.
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7 Conclusion

In this paper we addressed the workload balancing problem on systems with
CPUs and GPUs in the context of sparse grid interpolation. We described static
and dynamic task based approaches for load balancing. We showed that input
parameters strongly influence the performance of interpolation and the opti-
mal values for load balancing parameters. One such parameter of the dynamic
approach is the grain size that can severely reduce the performance on hetero-
geneous systems. We presented a performance model that helps us to determine
the optimal value of the grain size in an acceptable amount of time. Our static
approach also enables us to cope with the grain size problem and is built around
linear approximations of the execution times on CPU and GPU as functions of
workload. Results show that for interpolation, static balancing delivers up to
25% more performance than the dynamic task based strategy.
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