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Abstract
The workload of a generalized n-site asymmetric simple inclusion process (ASIP)
is investigated. Three models are analyzed. The first model is a serial network for
which the steady-state Laplace–Stieltjes transform (LST) of the total workload in the
first k sites (k ≤ n) just after gate openings and at arbitrary epochs is derived. In a
special case, the former (just after gate openings) turns out to be an LST of the sum
of k independent random variables. The second model is a 2-site ASIP with leakage
from the first queue. Gate openings occur at exponentially distributed intervals, and
the external input processes to the stations are two independent subordinator Lévy
processes. The steady-state joint workload distribution right after gate openings, right
before gate openings and at arbitrary epochs is derived. The thirdmodel is a shot-noise
counterpart of the second model where the workload at the first queue behaves like a
shot-noise process. The steady-state total amount of work just before a gate opening
turns out to be a sum of two independent random variables.
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1 Introduction

A tandem stochastic network is a linear set of n sites (queues) denoted Q1,Q2,…,Qn

to which a random stream of particles (or work) flows. Every site consists of a buffer
and a gate behind it that opens according to some stochastic process. Each site is
characterized by some buffer capacityCsite, denoting the maximal number of particles
(amount of work) that the buffer can hold, and by Cgate, the maximal number of
particles (work) that can pass through the gate when it opens. Particles (work) flow
into the system, usually to the first site, and then move unidirectionally from one site
to the next, until exiting the system. Three fundamental models, distinguished by their
Csite andCgate values, have been analyzed in the literature: The first is a tandem Jackson
network (TJN), where particles flow into the first site according to a Poisson process.
The site capacities are Csite = ∞ and Cgate = 1, while each gate opens independently
every exponentially distributed period of time, allowing at most a single particle (if
any) to hop to the next site. The TJN [11,12] is famous for its product-form solution
for the steady-state joint distribution function of the queue occupancies. The second
model is the asymmetric exclusion process (ASEP), a fundamental model in non-
equilibrium statistical physics [10,15], where Csite = 1 and Cgate ≥ 1. If the gate of
Qi opens while the buffer of Qi+1 is not empty, the particle in Qi is blocked. The
third setup is the recently introduced [16,17,19] asymmetric inclusion process (ASIP),
where bothCsite = ∞ andCgate = ∞. As such, theASIP fills themissing link between
the TJN and the ASEP. The major difference between the models is that in the ASIP,
when the gate of Qi opens, all particles (work) present there move simultaneously and
instantaneously to the buffer of the next site, joining the cluster of particles (work)
there to form a larger cluster, while in the TJN or ASEP at most one particle moves
forward when the site’s gate opens. The ASIP may be considered as an inclusion
counterpart of the ASEP and as a batch-service counterpart of the TJN. It was shown
in [17] that, in contrast to the TJN, the ASIP does not admit a product-form solution
for its steady-state joint distribution function of the queue occupancies. However, it
admits a product-form solution for the site loads. ASIP’s limit lawswere treated in [18]
and [19]. It was shown in [19] that, in a symmetric ASIP, the asymptotic probability
that site k is occupied is proportional to 1/

√
k. Occupation probabilities were further

studied in [20]. The ASIP has been generalized in [6] to the case of general gate
opening intervals, where gate openings are determined by a Markov renewal process.
The focus in [6] is on the steady-state joint distribution function of the number of
particles in the various sites. A very recent study [4] analyzed occupancy correlations
in the classical ASIP.

The current paper focuses on the analysis of workload in a few tandem ASIP net-
works. Our motivation for this study is the following: Firstly, we wish to advance the
knowledge of ASIP networks, as an important class of networks in between classical
queueing networks and ASEP networks. Secondly, the tandem model that we treat
in Sect. 2 is motivated by its applicability to statistical physics, as outlined in [17–
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20]. Thirdly, we want to add the feature of leakage to ASIP networks: Work not only
leaves a site instantaneously at gate openings, but it also leaks gradually to the next site
and/or the outside, whenever its queue is not empty. This makes such ASIP models
significantly more complicated (accordingly, in Sects. 3 and 4 we restrict ourselves to
two-queue ASIP models with leakage) but also significantly more versatile. Leakage
could be viewed as regular service, whereas the gate openings could represent inci-
dental clearings of the work that is left. Such phenomena may occur, for instance, in
production systems, administrative processes as well as in fuel transport, where the
transportation itself uses up fuel, but the content of the truck or tanker is emptied at the
final destination. In Sect. 3 we discuss another application area in some more detail,
viz. biological cell transport.

The three models under consideration in this paper are successively treated in
Sects. 2, 3 and 4. The first is a serial model for which the steady-state Laplace–
Stieltjes transform (LST) of the total workload in the first k sites is derived just after
gate openings and at arbitrary epochs. The second model is an ASIP model consisting
of only two sites in series, each with its own gate and a leakage of a fixed rate from
Q1. Gate openings occur at exponentially distributed intervals, and the external input
processes to the two sites are nondecreasing Lévy processes. The steady-state joint
workload distribution functions right after gate openings, right before gate openings
and at arbitrary epochs are derived. The third model is a shot-noise counterpart of the
second model where the leakage rate from the first queue is linear in the workload
and thus, in between gate openings, behaves like a shot-noise process. We obtain the
steady-state joint workload LST just before and just after gate openings.

2 Model 1: n queues in series

This section is devoted to anASIPmodel consisting of n queues in series. Themodel is
described in Sect. 2.1. In Sect. 2.2 we derive an explicit expression for the steady-state
Laplace–Stieltjes transform (LST) of the total workload in the first k queues, just after
a gate opening. The workload LST in the first k queues at arbitrary epochs is derived
in Sect. 2.3. The steady-state joint workload LST right after gate openings is harder to
obtain. In Sect. 2.4 we provide a fairly detailed procedure for obtaining it in the cases
n = 2, 3.

2.1 Model description

Consider the following model of n queues Q1, . . . , Qn in series: Each queue has one
gate behind it, which may be viewed as a server. Gates are closed almost all the time.
When gate i = 1, 2, . . . , n − 1 (the gate behind Qi ) opens, all the work present in
Qi is instantaneously transferred to Qi+1. When gate n opens, all the work present in
Qn instantaneously leaves the system. After the transfer, the gate immediately closes
again. Gate openings are determined by a Markov renewal process. If, at some time t ,
gate i opens, then with probability pi j the next gate to open is gate j and the time until
that gate opens is an independent random variable distributed like Oi j . We assume
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that the Markov chain governing the successive gate openings is irreducible and we
denote its steady-state distribution by πi , i = 1, . . . , n.

During an Oi j period, work (sometimes denoted as fluid) may externally arrive
at all queues. The LST of amounts of work arriving to Q1, . . . , Qn during an
Oi j period is given by Ai j (s1, . . . , sn). Given Oi j , these amounts are independent
of amounts arriving during previous periods. In addition, we denote the LST of
the cumulative amount of work arriving to Q1, . . . , Qk during an Oi j period by
Ai jk(s) = Ai j (s, . . . , s, 1, . . . , 1), where the last s occurs at position k. Notice that one
example is provided by an n-dimensional Lévy subordinator process, possibly with
dependence between amounts arriving at different queues and with Laplace exponents
which may depend on the type of gate opening interval.

We recall that we restrict ourselves to the case in which work from Qi can only
move to Qi+1, i = 1, 2, . . . , n − 1. That assumption will allow us to obtain exact
steady-state results for the total amount of work V(k) which is present in the first k
queues right after a gate opening (k = 1, 2, . . . , n). Our results will become somewhat
simpler in the special case in which the next gate opening is of gate j with a fixed
probability q j , i.e., irrespective of the index of the previous gate opening.

2.2 Analysis of the total workload in the first k queues

We are interested in the steady-state joint distribution of the amounts of work
(V1, . . . , Vn) just after a gate opening. To argue the existence of such a distribu-
tion, one can follow a similar reasoning as in Section 2 of [6], which also considers
an ASIP model of n queues in series, but in which the focus is on customers instead
of work/fluid.

In the present subsection we shall in particular focus on V(k) = V1 + · · · + Vk ,
namely the total amount of work in the first k queues right after a gate opening. It will
turn out that the analysis of V(k) can closely follow the reasoning for queue lengths
in [6].

Introducing M , the index of the gate that has just opened, we consider

ξki (s) = E[e−sV(k)1{M=i}], k, i = 1, . . . , n, (1)

where 1{·} denotes an indicator. The fact that fluid can onlymove to downstreamqueues
(i.e., with higher index) will allow us to express all ξki (s) for a fixed k as functions of
ξk−1, j (s) and, inductively, as functions of ξ1 j (s), which can be determined explicitly.

Step 1: Determination of ξ1 j (s), j = 1, . . . , n.
Obviously

ξ11(s) = P(M = 1) = π1. (2)

Indeed, after gate 1 has opened, Q1 instantaneously has become empty. Now consider
two successive gate openings in steady state, the latter one being an opening of gate
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j . Summing over all possible gates i opened at the previous gate opening gives

ξ1 j (s) =
n∑

i=1

ξ1i (s)pi j Ai j1(s) =
n∑

i=2

ξ1i (s)pi j Ai j1(s) + ξ11(s)p1 j A1 j1(s), j �= 1.

(3)
Here we have employed Ai j1(s), the LST of the amount of work arriving at Q1 during
the gate opening interval.

Introducing the (n − 1)-dimensional vectors

ξ1(s) = (ξ12(s), . . . , , ξ1n(s)), R1(s) = (p12A121(s), . . . , p1n A1n1(s)),

and with the (n − 1) × (n − 1) matrix P1(s) of which the (i − 1, j − 1)th coordinate
is pi j Ai j1(s), i, j = 2, . . . , n, we can write (3) as

ξ1(s) = ξ1(s)P1(s) + ξ11(s)R1(s), (4)

and hence, with I thematrix with ones on the diagonal and zeroes outside the diagonal,

ξ1(s) = ξ11(s)R1(s)(I − P1(s))
−1. (5)

All the terms in the right-hand side of (5) are known; in particular, ξ11(s) = π1 is
given in (2). Hence, we have determined ξ11(s), ξ12(s), . . . , ξ1n(s).

Step 2: Expressing ξk j (s) in terms of ξk−1,i (s), for i, j = 1, . . . , n, k = 2, . . . , n.
Considering two successive gate openings in steady state, the last one being of gate
j , and summing over all possible gates i for the first gate opening, we have for k =
2, . . . , n,

ξk j (s) =
n∑

i=1

ξki (s)pi j Ai jk(s) =
∑

i �=k

ξki (s)pi j Ai jk(s) + ξkk(s)pkj Ak jk(s), j �= k,

(6)
whereas

ξkk(s) =
n∑

i=1

ξk−1,i (s)pik Aik,k−1(s). (7)

The explanation for the deviating terms (ξk−1,i (s) instead of ξki (s) and Aik,k−1(s)
instead of Aikk(s)) is that Qk has become empty right after an opening of gate k, so
that the total amount of fluid present in Q1, . . . , Qk equals the total amount present
in Q1, . . . , Qk−1 after the previous gate opening, plus the amount of fluid arriving in
the first k − 1 queues.

Introducing the (n − 1)-dimensional vectors

ξk(s) = (ξk1(s), . . . , ξk,k−1(s), ξk,k+1(s), . . . , ξkn(s)),

Rk(s) = (pk1Ak1k(s), . . . , pk,k−1Ak,k−1,k(s), pk,k+1Ak,k+1,k(s), . . . , pkn Aknk(s)),
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and with the matrix Pk(s) = (pi j Ai jk(s))i, j �=k we can write (6) as

ξk(s) = ξk(s)Pk(s) + ξkk(s)Rk(s), (8)

yielding
ξk(s) = ξkk(s)Rk(s)(I − Pk(s))

−1. (9)

Introducing

Ck−1(s) = (p1k A1k, k−1(s), . . . , pk−2,k Ak−2,k,k−1(s),

pkk Akk,k−1(s), . . . , pnk Ank,k−1(s)),

we can rewrite (7) as

ξkk(s) = ξk−1(s)C
T
k−1(s) + ξk−1,k−1(s)pk−1,k Ak−1,k,k−1(s). (10)

We have thus expressed ξk(s) in terms of ξkk(s) via (9), and ξkk(s) in terms of ξk−1(s)
and ξk−1,k−1(s) via (10). Iterating, defining an empty product to be one and defining
ξ0(s)CT

0 (s) to equal π1 for notational convenience, we obtain

ξkk(s) =
k−1∑

i=0

ξi (s)C
T
i (s)

k−1∏

j=i+1

p j, j+1A j, j+1, j (s). (11)

By carefully studying the structure of the above recursions, and introducing

Hi (s) = Ri (s)(I − Pi (s))
−1CT

i (s), i = 1, . . . , n,

the following holds:

ξkk(s) = π1

∑

�1,...,�k−1∈{0,1}

k−1∏

i=1

(�i Hi (s) + (1 − �i )pi,i+1Ai,i+1,i (s)), k = 1, . . . , n.

(12)
With (12) and (9) we have a recipe for determining ξk j (s) explicitly, for k, j =
1, . . . , n.

Example Let us consider the special case in which pi j = p1 j , ∀ i, j , and Ai jk(s) =
A1 jk(s), ∀ i, j, k. Namely, the Markov renewal process that determines the gate
openings and the intervals in between has a simple structure. Each time the next
gate opening is of gate j with probability p1 j , and the interval length until the next
opening also only depends on j . In this case we can obtain a simple expression for
E[e−sV(k) ] = ∑n

j=1 ξk j (s). We have

ξ11(s) = π1 = p11, (13)
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and, summing (3) over j = 2, . . . , n,

E[e−sV(1) ] =
n∑

j=1

ξ1 j (s) = p11 +
n∑

j=2

p1 j A1 j1(s)E[e−sV(1) ], (14)

yielding

E[e−sV(1) ] = p11
1 − ∑n

j=2 p1 j A1 j1(s)
. (15)

Furthermore, summing (6) over j �= k and using (7),

E[e−sV(k) ] = p1k A1k,k−1(s)E[e−sV(k−1) ] +
∑

j �=k

p1 j A1 jk(s)E[e−sV(k) ], (16)

leading to the following recursive expression of E[e−sV(k) ] in terms of E[e−sV(k−1) ]:

E[e−sV(k) ] = p1k A1k,k−1(s)

1 − ∑
j �=k p1 j A1 jk(s)

E[e−sV(k−1) ]. (17)

Via iteration we obtain

E[e−sV(k) ] =
k∏

i=1

p1i A1i,i−1(s)

1 − ∑
j �=i p1 j A1 jk(s)

, (18)

where A110(s) = 1.

Formula (18) reveals a decomposition property. That is, the LST is a product of k
terms, all of which are LSTs of random variables, and this implies that V(k) can be
represented as sum of k independent random variables.

2.3 The workload distribution at an arbitrary epoch

Armed with the LSTs ξki (s) from the previous subsection, we shall now derive
an expression for the steady-state LST χk(s) of the total workload in the first k
queues at an arbitrary epoch. In order to do this, we need to further specify the
arrival process. Indeed, it clearly makes a difference whether the amounts of work
which arrive in the queues during a gate opening interval Oi j enter the system at the
beginning of such an interval, or at the end, or according to some other stochastic
process. In this subsection we shall assume that the external arrival process is an n-
dimensional subordinator (hence a nondecreasing Lévy process) whichmay vary from
one gate interval to another. Denote the Lévy input process during an Oi j period by

{X (1)
i j (t), . . . , X (n)

i j (t), t ≥ 0} and its Laplace exponent by −ηi j (s1, . . . , sn), i.e.,

E[e−s1X
(1)
i j (t)−···−sn X

(n)
i j (t)] = e−tηi j (s1,...,sn).
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The LST χk(s) is obtained by averaging over all possible gate intervals, and by observ-
ing that the amount of work present in the first k queues at an arbitrary epoch in an Oi j

interval is the sum of the amount of work just after the corresponding gate i opening
(which has LST ξki (s)), and—independent of it— the amount of work ζi j that has
arrived in the past part of that interval:

χk(s) =
∑

i
∑

j πi pi jE[Oi j ]ξki (s)E[e−sζi j ]
∑

i
∑

j πi pi jE[Oi j ] ,

where ξki (s), k �= i , are given in (9) and ξkk(s) in (12). Considering an Oi j interval
at an arbitrary epoch during that interval, the LST of the work ζi j that has arrived at
the queues during Opast

i j , the past part of Oi j , equals (using that Opast
i j has density

P(Oi j>t)
E[Oi j ] and denoting the LST of Oi j by ωi j (s))

∫ ∞

0
E

[
e−s

∑k
m=1 X

(m)
i j (t)

]
P(Oi j > t)

E[Oi j ] dt =
∫ ∞

0
e−tηi j (s,...,s,0,...,0)P(Oi j > t)

E[Oi j ] dt

= 1 − ωi j (ηi j (s, . . . , s, 0, . . . , 0))

E[Oi j ]ηi j (s, . . . , s, 0, . . . , 0) , (19)

where the last s in the n-dimensional expressions in the above formula occurs at
position k. Hence,

χk(s) =
∑

i
∑

j πi pi jξki (s)
1−ωi j (ηi j (s,...,s,0,...,0))

ηi j (s,...,s,0,...,0)∑
i
∑

j πi pi jE[Oi j ] . (20)

When Oi j ∼ exp(λi j ), (20) becomes

χk(s) =
∑

i
∑

j
πi pi j

λi j+ηi j (s,...,s,0,...,0)
ξki (s)

∑
i
∑

j
πi pi j
λi j

. (21)

2.4 Multi-dimensional workload distributions

In this subsection we outline how the joint workload distribution just after gate open-
ings can be obtained. We provide a fairly detailed procedure for the cases n = 2 and
n = 3 and, for the sake of brevity, under the simplifying assumptions that pi j = q j

for all relevant i and that Ai j (·) = A(·) for all relevant i, j . For higher values of n, as
well as without these simplifying assumptions, a similar procedure can be followed;
however, it leads to quite messy expressions.
The case n = 2
We shall determine the LST of the steady-state joint distribution of the workloads right
after gate openings, ξ(s1, s2) = E[e−s1V1−s2V2 ].
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If V (r)
i denotes the amount of work in Qi immediately after the r th gate opening,

and A(r+1)
i the amount of fluid entering Qi between the r th and (r+1)st gate openings,

then

V (r+1)
1 = 0, V (r+1)

2 = V (r)
1 + A(r+1)

1 + V (r)
2 + A(r+1)

2 ,

if the (r + 1)st gate opening is of gate 1, and

V (r+1)
1 = V (r)

1 + A(r+1)
1 , V (r+1)

2 = 0,

if the (r + 1)st gate opening is of gate 2. In steady state this yields

ξ(s1, s2) = q1A(s2, s2)ξ(s2, s2) + q2A(s1, 0)ξ(s1, 0). (22)

Now observe that ξ(s1, 0) = ξ1(s1), and that this term, which only refers to Q1,
can be obtained from the results of Sect. 2.2. Furthermore, observe that ξ(s2, s2) =
E[e−s2V (2)], a result for the total workload in Q1 + Q2, which also follows from
Sect. 2.2. We are thus able to obtain ξ(s1, s2).

Remark 1 Let us assume that station 2 is replaced by L parallel stations Q21, . . . , Q2L .
A proportion p j of every drop that leaves station Q1 is routed to station Q2 j and the
gates at station 2 open at the same times. Let 1−∑L

j=1 p j be the proportion that leave
the system entirely (from station Q1). If we denote by V1, V21, . . . , V2L the workloads
in all stations, then it is easily seen that V2 j = p j V2, where (V1, V2) was defined at
the beginning of this subsection. This immediately implies that the steady-state LST
for this case becomes

E[e−α1V1−∑L
j=1 α2 j V2 j ] = E[e−α1V1−∑L

j=1 α2 j p j V2 ] = ξ

⎛

⎝α1,

L∑

j=1

p jα2 j

⎞

⎠ . (23)

This remains true regardless of the simplifying assumptions or the assumptions on
the arrival process and, in fact, in the n station case, every station can be replaced by
parallel stations in a similar manner with the same consequence.

The case n = 3
Here we compute the three-dimensional steady-state transform ξ(s1, s2, s3) =
E[e−s1V1−s2V2−s3V3 ] of workload right after gate openings (under the same simpli-
fying assumptions described in the beginning of this subsection). We have

V (r+1)
1 = 0, V (r+1)

2 = V (r)
1 + A(r+1)

1 + V (r)
2 + A(r+1)

2 , V (r+1)
3 = V (r)

3 + A(r+1)
3 ,

if the (r + 1)st gate opening is of gate 1, and

V (r+1)
1 = V (r)

1 + A(r+1)
1 , V (r+1)

2 = 0, V (r+1)
3 = V (r)

2 + A(r+1)
2 + V (r)

3 + A(r+1)
3 ,
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if the (r + 1)st gate opening is of gate 2, and

V (r+1)
1 = V (r)

1 + A(r+1)
1 , V (r+1)

2 = V (r)
2 + A(r+1)

2 , V (r+1)
3 = 0,

if the (r + 1)st gate opening is of gate 3. Here the A(r+1) terms are independent of the
V (r) terms. In steady state, this yields

ξ(s1, s2, s3) = q1A(s2, s2, s3)ξ(s2, s2, s3) + q2A(s1, s3, s3)ξ(s1, s3, s3)

+ q3A(s1, s2, 0)ξ(s1, s2, 0). (24)

Taking s3 = 0 gives

ξ(s1, s2, 0) = q1A(s2, s2, 0)ξ(s2, s2, 0) + q2A(s1, 0, 0)ξ(s1, 0, 0)

1 − q3A(s1, s2, 0)
. (25)

Notice that ξ(s1, 0, 0) = E[e−s1V (1)] and that ξ(s2, s2, 0) = E[e−s2V (2)] are known
from the previous section, so that ξ(s1, s2, 0) is known. Of course, this term is also
closely related to the result in (22) for a model with n = 2 queues. In fact, a straight-
forward extension of (22) for the first two queues of an n-queue tandem ASIP is

ξ(s1, s2, 0, . . . , 0) = q1A(s2, s2, 0, . . . , 0)ξ(s2, s2, 0, . . . , 0)

+ q2A(s1, 0, 0, . . . , 0)ξ(s1, 0, 0, . . . , 0)

+
n∑

j=3

q j A(s1, s2, 0, . . . , 0)ξ(s1, s2, 0, . . . , 0). (26)

We still need to determine ξ(s2, s2, s3) and ξ(s1, s3, s3) in (24). Take s2 = s3 in (24)
to get

ξ(s1, s3, s3) = q1A(s3, s3, s3)ξ(s3, s3, s3) + q2A(s1, s3, s3)ξ(s1, s3, s3)

+ q3A(s1, s3, 0)ξ(s1, s3, 0). (27)

This equation allows us to express ξ(s1, s3, s3) in terms of the, by now known, func-
tions ξ(s3, s3, s3) = E[e−s3V (3)] and ξ(s1, s3, 0) (cf. (25)). It remains to determine
ξ(s2, s2, s3). For this purpose, take s1 = s2 in (24):

ξ(s2, s2, s3) = q1A(s2, s2, s3)ξ(s2, s2, s3) + q2A(s2, s3, s3)ξ(s2, s3, s3)

+ q3A(s2, s2, 0)ξ(s2, s2, 0). (28)

This equation allowsus to express ξ(s2, s2, s3) in termsof the, bynowknown, functions
ξ(s2, s3, s3) and ξ(s2, s2, 0) = E[e−s2V (2)]. Thus, ξ(s1, s2, s3) has been obtained.
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3 Model 2: an ASIP with leakage

In this sectionwe consider anASIP consisting of two stations Q1 and Q2 in series, each
with its own gate, with the additional feature that there is leakage from Q1. Namely,
the content of Q1 is not only transferred to Q2 at openings of the gate after Q1, but
the content also leaks at a fixed rate out of Q1 (whenever the queue is not empty).
We restrict ourselves in this section to gate openings at i.i.d. exponentially distributed
intervals, and we assume that the external input processes to the two stations are two
independent subordinators (nondecreasing Lévy processes). In Sect. 3.1 we present
some preliminary results on aLévy process reflected at zero,which are used in Sect. 3.2
to derive the steady-state joint workload distribution right after gate openings, right
before gate openings and at arbitrary epochs.

In Sect. 1 we provided some motivation for introducing the feature of leakage in
ASIP models. Here we would like to mention one specific application area in biology
in which such a combination of gate openings and leakage appears quite naturally:
cellular transport. Cells in the human body require a large variety of particles to sustain
themselves. As explained in Sections 2 and 3 of [13], a cell wall is semipermeable:
Particles like water, carbon dioxide and oxygen can cross it. They get molecules from
a nearby blood vessel (arrivals). Inside a cell, a particle is consumed (energy; this
corresponds to leakage out of the system). Single particles can cross a cell wall by
using energy from an ATP, i.e., adenosine triphosphate, molecule (leakage from one
cell to the next one). In addition, a vesicle captures particles and moves toward the
cell wall, allowing the particles to cross it [3,13]. Such vesicle-mediated transport is
in our model represented by the gate openings.

3.1 Preliminaries

Let X = {X(t)|t ≥ 0} be a Lévy process with no negative jumps which is not a
subordinator and with Laplace exponent ϕ(α) = logE[e−αX(1)]. Denote

Lx (t) = − inf
0≤s≤t

(x + X(s))− = (L0(t) − x)+, (29)

Zx (t) = x + X(t) + Lx (t) = X(t) + x ∨ L0(t) , (30)

and finally, for u ≥ 0 let
ψ(u) = inf{α|ϕ(α) > u}. (31)

Assuming that T ∼ exp(λ) is independent of X , then for any α ≥ 0, and β >

−ψ(λ) we have that

E[e−αZx (T )−βLx (T )] = e−αx (ψ(λ) + β) − e−ψ(λ)x (α + β)(
1 − ϕ(α)

λ

)
(ψ(λ) + β)

, (32)

where for α = ψ(λ) the right-hand side is defined by continuity via L’Hôpital’s rule.
This is, in essence, Theorem 3.10 on page 259 of [1], which is a direct application
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of [14]. It is easy to check that the proof is valid for all α, β as given here and not just
α, β > 0 as in [1]. This will be important later.

Whenever Y = {Y (t)|t ≥ 0} is a measurable process which is independent of
Tλ ∼ exp(λ), then clearly, for every γ > −λ we have that

E[Y (Tλ)e
−γ Tλ ] =

∫ ∞

0
E[Y (t)]e−γ tλe−λtdt = λ

λ + γ
E[Y (Tλ+γ )] . (33)

From (32) and (33) it immediately follows that, for each α ≥ 0, γ > −λ and β >

−ψ(λ + γ ),

E[e−αZx (T )−βLx (T )−γ T ] = λ

λ + γ
· e

−αx (ψ(λ + γ ) + β) − e−ψ(λ+γ )x (α + β)(
1 − ϕ(α)

λ+γ

)
(ψ(λ + γ ) + β)

= e−αx (ψ(λ + γ ) + β) − e−ψ(λ+γ )x (α + β)(
1 + γ−ϕ(α)

λ

)
(ψ(λ + γ ) + β)

. (34)

3.2 Analysis

Now consider a system consisting of two stations in series. The external input process
of station Qi is a nondecreasing Lévy process Ji , i = 1, 2. These are independent
subordinators with

ηi (α) = − log e−α Ji (1) = ciα +
∫

(0,∞)

(1 − e−αu)νi (du),

where ci ≥ 0 and νi is a Lévy measure satisfying
∫
(0,∞)

(u ∧ 1)νi (du) < ∞ and
νi (−∞, 0] = 0.

The cumulative input to Q1 is x1+ J1(t),where x1 ≥ 0 is its initial state.Whenever
Q1 is not empty, the content leaks (is processed) at some rate r ≥ 0. When c1 < r
and Q1 is empty, the leak is at rate c1. A proportion p ∈ [0, 1] leaks into Q2 and the
rest leaves the system altogether. At independent intervals, also independent of J1, J2
and distributed as exp(λ1), the entire content of Q1 is transferred to Q2. As for Q2,
the cumulative input is whatever arrives from Q1 (either from the leakage or from the
occasional transfer) as well as x2 + J2(t), where x2 ≥ 0 is the initial state of Q2. At
independent intervals which are distributed as exp(λ2) and independent of everything
else (including the inter-transfer times of Q1) all the available content of Q2 leaves the
system all at once. This is the two-queue ASIP system that we would like to explore.

Denote λ = λ1 + λ2. For X1(t) = J1(t) − r t , with Laplace–Stieltjes exponent
ϕ1(α) = logE[e−αX1(1)] = rα − η1(α), the content of Q1 at time t ≥ 0 is Z1,x1(t),
where Z1,x1 replaces Zx in (30). As long as there is no transfer until time t ≥ 0, the
input to Q2 is p(r t − L1,x1(t)), as L1,x1(t) is the cumulative lost capacity.

If T ∼ exp(λ) (the minimum of the transfer times from Q1 and Q2), then with
probability λ1/λ there is a transfer from Q1 to Q2, in which case the state of the
stations will be (0, Z1,x1(T )+ p(rT − L1,x1(T ))+ x2 + J2(T )), and with probability
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λ2/λ the state will be (Z1,x1(T ), 0). Therefore, we will be interested in the LST of
Z1,x1(T ) + p(rT − L1,x1(T )) + J2(T ) and that of Z1,x1(T ).

If r ≤ c1 (which includes the case r = 0), then X1 is a subordinator and (34)
does not apply. However, in this case the result is far simpler, as L1,x1(T ) = 0 and
Z1,x1(T ) = x1 + X1(T ). When r > c1 then, noting that

E[e−α(Z1,x1 (T )+p(rT−L1,x1 (T ))+J2(T ))] = E[e−(αZ1,x1 (T )−α pL1,x1 (T )+(prα+η2(α))T )] ,

(35)
we simply apply (34), setting either γ = prα + η2(α) and β = −pα (for Z1,x1(T ) +
p(rT − L1,x1(T )) + J2(T )) or γ = β = 0 (for Z1,x1(T )). Recall that in order to use
(34) we must have β > −ψ1(λ + γ ), cf. (31). To see that this holds in this case, note
that, when β < 0, this is equivalent to ϕ1(−β) < λ+γ and if we insert β = −pα and
γ = prα + η2(α), and observe that ϕ1(α) = rα − η1(α), then indeed, as required,

ϕ1(−β) = rpα − η1(pα) < λ + prα + η2(α) = λ + γ. (36)

This system is regenerative. The reason is that starting from (x1, x2) the system will
(almost surely) reach some state (0, x ′

2) after which it will reach a state (Z1,0(τ ), 0),
where τ is the first time thereafter that the second station is emptied. This state is
a regenerative one, and it is clear that the inter-regeneration times distribution has
a finite mean and is nonarithmetic; it actually has a density. Thus, there exists a
limiting=ergodic=stationary distribution for the joint content process. Assume that
(Z1, Z2) has this joint distribution (of the buffer contents right after an arbitrary
gate opening) and denote f A(α1, α2) = E[e−α1Z1−α2Z2 ]. Then, given the preceding
arguments, we must have for the case where r > c1 that

f A(α1, α2) (37)

= λ1

λ

f A(α2, α2)(ψ1(λ + prα2 + η2(α2)) − pα2) − f A(ψ1(λ + prα2 + η2(α2)), α2)α2(1 − p)(
1 − (1−p)rα2−η1(α2)−η2(α2)

λ

)
(ψ1(λ + prα2 + η2(α2)) − pα2)

+ λ2

λ

f A(α1, 0)ψ1(λ) − f A(ψ1(λ), 0)α1(
1 − rα1−η1(α1)

λ

)
ψ1(λ)

. (38)

We shall successively determine (i) f A(α1, 0) and f A(ψ1(λ), 0), (ii) f A(α2, α2),
f A(ψ1(λ + prα2), α2) and f A(α1, α2).
(i) Determination of fA(α1, 0) and fA(ψ1(λ), 0).
Taking α2 = 0 in (38), with α1 �= ψ1(λ1), gives

f A(α1, 0) = λ1

λ
+ λ2

λ

f A(α1, 0)ψ1(λ) − f A(ψ1(λ), 0)α1

1 − rα1−η1(α1)
λ

ψ1(λ)
, (39)

which is equivalent to

(λ1 − rα1 + η1(α1)) f A(α1, 0) = λ1 − λ f A(ψ1(λ), 0)
α1

ψ1(λ)
. (40)
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Setting α1 = ψ1(λ1), the left-hand side of (40) becomes zero, and hence, also the
right-hand side should be zero, implying f A(ψ1(λ), 0) = λ1

λ
ψ1(λ)
ψ1(λ1)

, and hence,

f A(α1, 0) = λ1(1 − α1
ψ1(λ1)

)

λ1 − rα1 + η1(α1)
= 1 − α1

ψ1(λ1)

1 − ϕ1(α1)
λ1

. (41)

Notice that this is also the LST of the workload in Q1 just before a gate opening of
Q1, i.e., after an exp(λ1) amount of time starting from an empty state, cf. Theorem
4.1 of [7]. This is expected by PASTA.
(ii) Determination of fA(α2, α2), f A(ψ1(λ + prα2 + η2(α2)), α2) and fA(α1, α2).
Introducing the following functions for terms appearing in (38):

A(α2) = λ1

λ

1

1 − (1−p)rα2−η1(α2)−η2(α2)
λ

, (42)

B(α2) = −A(α2)
α2(1 − p)

ψ1(λ + prα2 + η2(α2)) − pα2
, (43)

H(y) = λ2

λ

f (y, 0)ψ1(λ) − f (ψ1(λ), 0)y

(1 − r y−η1(y)
λ

)ψ1(λ)
, (44)

one can rewrite (38) as

f A(α1, α2) = H(α1) + G(α2), (45)

where

G(α2) = A(α2) f A(α2, α2) + B(α2) f A(ψ1(λ + prα2 + η2(α2)), α2). (46)

The decomposition in (45) makes sense as we are observing the system just after gate
openings. With probability λi/λ, the gate opening was at Qi , and then Qi has become
empty, yielding a termwithout αi , i = 1, 2. The decomposition form of course implies
that E[Z1Z2] = 0, which obviously holds because after each gate opening at least one
of the two queues has become empty, and hence, Z1Z2 = 0. This also implies, as is
quite intuitive, that Z1 and Z2 are negatively correlated.

G(α2) is determined by substituting α1 = α2, respectively, α1 = ψ1(λ + prα2 +
η2(α2)) in (45):

G(α2) = A(α2)H(α2) + B(α2)H(ψ1(λ + prα2 + η2(α2)))

1 − A(α2) − B(α2)
,

and hence,

f A(α1, α2) = H(α1) + A(α2)H(α2) + B(α2)H(ψ1(λ + prα2 + η2(α2)))

1 − A(α2) − B(α2)
. (47)
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For completeness we give the LST of the total workload in the two queues, f A(α, α):

f A(α, α) = (1 − B(α))H(α) + B(α)H(ψ1(λ + prα + η2(α)))

1 − A(α) − B(α)
. (48)

The time-stationary workload LST
Above we have computed the steady-state joint workload LST of our system just after
gate openings. If fB(α1, α2) is the steady-state joint workload LST just before (any)
gate openings, then by PASTA it is also the continuous-time steady-state workload
LST. Clearly, one relationship between f A and fB is as follows:

f A(α1, α2) = λ1

λ
fB(α2, α2) + λ2

λ
fB(α1, 0). (49)

However, this is not enough and in order to compute fB we need to compute the
joint LST of the system that starts with distribution having LST f A and ends after an
independent exponential time period with parameter λ. Thus, letting T ∼ exp(λ) be
independent of everything else, then in an identical manner as for (37) we have (when
r > c1) that

fB(α1, α2)

= f A(α1, α2)(ψ1(λ + prα2 + η2(α2)) − pα2) − f A(ψ1(λ + prα2 + η2(α2)), α2)(α1 − pα2)(
1 + rpα2+η2(α2)−(rα1−η1(α1))

λ

)
(ψ1(λ + rpα2 + η2(α2)) − pα2)

.

(50)

Therefore, we also have fB , the steady-state joint workload LST just before gate
openings and at arbitrary epochs.
Determination of moments
It readily follows from (41) that the mean buffer content in Q1 right after an arbitrary
gate opening is given by

E[Z1] = − d

dα1
f A(α1, 0)|α1=0 = η′

1(0) − r

λ1
+ 1

ψ1(λ1)
. (51)

E[Z2] follows by differentiating the expression in (45) w.r.t. α2. Alternatively, we
could obtain E[Z1 + Z2] from (48) and then subtract E[Z1]. Omitting the messy
details, the final result can be written as follows:

E[Z2] = η′
1(0) − (1 − p)r

λ2
+ λ1

λλ2
η′
2(0) + λ21

λλ2

1 − p

ψ1(λ)

+λ1

λ

(
E[Z1] + λ1

λ2

(
ψ1 (λ)

ψ1 (λ1)
− 1)

1

ψ1 (λ)
+ η′

1(0) − r

λ1

)

+λ1

λ2

1 − p

ψ1(λ)
H(ψ1(λ)). (52)
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4 Model 3: the shot-noise counterpart of Model 2

In this sectionwe again consider anASIPmodel consisting of two queues Q1 and Q2 in
series, Qi having a gate which opens at independent, exp(λi ) distributed intervals, for
i = 1, 2. If the gate of Q1 opens, the buffer content of this queue instantaneouslymoves
to Q2; if the gate of Q2 opens, the buffer content of this queue instantaneously leaves
the system. Again, the two queues receive external input according to two independent
Lévy subordinators Ji , i = 1, 2. As in Model 2, there is leakage from Q1; a fraction
p of the leakage from Q1 moves to Q2 and the rest disappears altogether. So far the
model description is the same as for Model 2 in Sect. 3. The special feature of the
present model, compared toModel 2, is that in between gate openings, the workload at
Q1 behaves like a shot-noise process. In a shot-noise process, the workload decreases
proportionally to the buffer content, at rate r x when the buffer content equals x ;
this amounts to an exponentially decreasing process, and can be seen as a fluid-type
counterpart of an infinite-server queue. It can model situations in which all material
that is present in a station is processed simultaneously. In the cell transport model that
was described in the previous section, it might be natural to let the processing rate of
work (leakage) be proportional to the amount of work (particles present). That is one
reason why we wish to investigate this ASIP model with shot-noise-like processing
of work.

Material from Q2 can leave this queue only when it has a gate opening. For this
case, we note that when there is no gate opening before time t , then the two buffer
contents Z1,x1(t) and Z2,x1,x2(t) evolve as follows:

Z1,x1(t) = x1 + J1(t) − r
∫ t

0
Z1,x1(s)ds = x1e

−r t +
∫

(0,t]
e−r(t−s)dJ1(s),

Z2,x1,x2(t) = p(x1 + J1(t) − Z1,x1(t)) + x2 + J2(t)

= p

(
x1(1 − e−r t ) +

∫

(0,t]
(1 − e−r(t−s))dJ1(s)

)
+ x2 + J2(t), (53)

noting that the fourth equality follows from the second. Indeed, at any time t (before
the first gate opening) a fraction p of the difference between x1 + J1(t) and the buffer
content Z1,x1(t) has moved to Q2. Recalling that for nonnegative Borel functions h
we have (see, for example, Formula (8) of [5])

E[e− ∫
(0,t] h(t−s)dJ1(s)] = e− ∫ t

0 η1(h(s))ds, (54)

this implies that

E

[
e−α1Z1,x1 (t)−α2Z2,x1,x2 (t)

]
= exp

(
− α2x2 − x1(α1e

−r t + α2 p(1 − e−r t ))

−
∫ t

0
η1(α1e

−rs + α2 p(1 − e−rs))ds − η2(α2)t

)

123



Queueing Systems (2021) 97:81–100 97

= exp

(
− α2x2 − x1(α1e

−r t + α2 p(1 − e−r t ))

−
∫ 1

e−r t
η1(α1u + α2 p(1 − u))

du

ru
− η2(α2)t

)
. (55)

Multiplying by λe−λt , where λ = λ1 + λ2, and integrating give, after the obvious
change of variables v = e−r t ,

E

[
e−α1Z1,x1 (T )−α2Z2,x1,x2 (T )

]
= λ

r

∫ 1

0
v

λ+η2(α2)

r −1 exp

(
− α2x2 − x1(α1v + α2 p(1 − v))

−
∫ 1

v

η1(α1u + α2 p(1 − u))
du

ru

)
dv , (56)

where T ∼ exp(λ) is independent of everything else.

Remark 2 If, in addition, we assume that J1 is a compound Poisson processwith arrival
rate λ and jumps ∼ exp(μ), then

η1(α) = λ

(
1 − μ

μ + α

)
= λα

μ + α
, (57)

in which case ∫ 1

v

η1(α1u + α2 p(1 − u))
du

ru
(58)

can be computed explicitly by observing that

η1(α1u + α2 p(1 − u))

ru
= λ

r(μ + pα2)

(
pα2

u
+ μ(α1 − pα2)

(α1 − pα2)u + μ + pα2

)
, (59)

and so the integral in (58) becomes

λ

r(μ + pα2)

(
−pα2 log v + μ log

(
α1 + μ

α1v + pα2(1 − v) + μ

))
. (60)

Multiplying by minus one and taking the exponent give

v
λpα2

r(μ+pα2)

(
α1 + μ

α1v + pα2(1 − v) + μ

)− λμ
r(μ+pα2)

. (61)

We shall now determine the steady-state joint workload LST just before gate open-
ings and just after gate openings. Let (Z1,A, Z2,A) denote the steady-state workload
vector at Q1 and Q2 just after an arbitrary gate opening, with LST FA(α1, α2), and
let (Z1,B, Z2,B) denote the steady-state workload vector just before an arbitrary gate
opening, with LST FB(α1, α2). Observe that, if gate 1 just opened, then Z1,A becomes
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zero and Z2,A becomes Z1,B + Z2,B , and if gate 2 just opened, then Z1,A becomes
Z1,B and Z2,A becomes 0. Hence, with (again) λ = λ1 + λ2,

FA(α1, α2) = λ1

λ
FB(α2, α2) + λ2

λ
FB(α1, 0). (62)

From (56), conditioning on Z1,A = x1, Z2,A = x2, we have

FB(α1, α2) = λ

r

∫ 1

0
v

λ+η2(α2)

r −1e− 1
r

∫ 1
v η1(α1u+α2 p(1−u)) duu FA(α1v+α2 p(1−v), α2)dv.

(63)
We shall first determine K1(α1) = FB(α1, 0). Taking α2 = 0 in (63) yields

K1(α1) = λ

r

∫ 1

0
v

λ
r −1e− 1

r

∫ 1
v η1(α1u) duu FA(α1v, 0)dv

= λ

r

∫ α1

0

y
λ
r −1

α
λ
r
1

e− 1
r

∫ α1
y η1(z)

dz
z

(
λ1

λ
+ λ2

λ
K1(y)

)
dy. (64)

Differentiation w.r.t. α1 results in a first-order inhomogeneous differential equation:

K ′
1(α1) = λ1

rα1
−

(
λ1

rα1
+ η1(α1)

rα1

)
K1(α1), (65)

whose solution is readily seen to be

K1(α1) = α
− λ1

r
1 e− 1

r

∫ α1
0

η1(u)

u du
[
C + λ1

r

∫ α1

0
v

λ1
r −1e

1
r

∫ v
0

η1(u)

u dudv

]
. (66)

The fact that we should have K1(0) = 1 implies that the term between square brackets
should be zero, and hence, C = 0. One can subsequently quickly verify, by the
transformation w = v/α1, that

limα1↓0K1(α1) = λ1

r

∫ 1

0
w

λ1
r −1dw = 1. (67)

We conclude that

K1(α1) = FB(α1, 0) = λ1

rα1

∫ α1

0

(
v

α1

) λ1
r −1

e− 1
r

∫ α1
v

η1(u)

u dudv. (68)

By PASTA, this is also the LST of the steady-state workload in Q1 at an arbitrary
epoch. We next turn to the determination of K2(α2) = FB(α2, α2), which, again by
PASTA, is the LST of the steady-state total workload in theASIP system at an arbitrary
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epoch. Taking α1 = α2 in (63) gives

K2(α2) = λ

r

∫ 1

0
v

λ+η2(α2)

r −1e− 1
r

∫ 1
v η1(α2u+α2 p(1−u)) duu FA(α2v + α2 p(1 − v), α2)dv

= λ

r

∫ 1

0
v

λ+η2(α2)

r −1

× e− 1
r

∫ 1
v η1(α2u+α2 p(1−u)) duu

(
λ1

λ
K2(α2) + λ2

λ
K1(α2 p + α2(1 − p)v)

)
dv.

(69)

Solving for K2(α2) yields

K2(α2) =
[
1 − λ1

r

∫ 1

0
v

λ+η2(α2)

r −1e− 1
r

∫ 1
v η1(α2u+α2 p(1−u)) duu

]−1

× λ2

r

∫ 1

0
v

λ+η2(α2)

r −1e− 1
r

∫ 1
v η1(α2u+α2 p(1−u)) duu K1(α2 p + α2(1 − p)v)dv.

(70)

One could subsequently substitute the expression for K1(α1) as found in (66) in (70).
This results in a quite complicated integral, which it seems that one has to evaluate
numerically. However, if p = 1 (so all the leakage goes to Q2), then (70) simplifies:

K2(α2) =
[
1 − λ1

r

∫ 1

0
v

λ+η2(α2)+η1(α2)

r −1dv

]−1
λ2

r

∫ 1

0
v

λ+η2(α2)+η1(α2)

r −1K1(α2)dv

=
λ2

λ+η2(α2)+η1(α2)
K1(α2)

1 − λ1
λ+η2(α2)+η1(α2)

= λ2

λ2 + η2(α2) + η1(α2)
K1(α2). (71)

Remark 3 When the initial workloads at the two stations are x1, x2 and when p = 1,
the sum of the workloads at the two stations just before a gate opening is clearly
x1 + x2 + J1(T ) + J2(T ). Therefore, it is obvious that we necessarily have that

E[e−αZ1,x1 (T )−αZ2,x1,x2 (T )] = e−αx1−αx2 λ

λ + η1(α) + η2(α)
. (72)

This agrees with (56) upon setting α1 = α2 = α (and p = 1) as well as formula (63),
which reduces to the following: When we take p = 1 and α1 = α2 = α,

FB(α, α) = λ

λ + η1(α) + η2(α)
FA(α, α). (73)

In combination with (62), this readily agrees with (71).
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