
2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, MONTH 2014 1

Workload Prediction Using ARIMA Model and Its
Impact on Cloud Applications’ QoS

Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, Rajkumar Buyya

Abstract—As companies shift from desktop applications to Cloud-based Software as a Service (SaaS) applications deployed on

public Clouds, the competition for end-users by Cloud providers offering similar services grows. In order to survive in such a

competitive market, Cloud-based companies must achieve good Quality of Service (QoS) for their users, or risk losing their customers

to competitors. However, meeting the QoS with a cost-effective amount of resources is challenging because workloads experience

variation over time. This problem can be solved with proactive dynamic provisioning of resources, which can estimate the future need

of applications in terms of resources and allocate them in advance, releasing them once they are not required. In this paper, we present

the realization of a Cloud workload prediction module for SaaS providers based on the Autoregressive Integrated Moving Average

(ARIMA) model. We introduce the prediction based on the ARIMA model and evaluate its accuracy of future workload prediction using

real traces of requests to web servers. We also evaluate the impact of the achieved accuracy in terms of efficiency in resource utilization

and QoS. Simulation results show that our model is able to achieve an average accuracy of up to 91%, which leads to efficiency in

resource utilization with minimal impact on the QoS.

Index Terms—Cloud Computing; Workload Prediction; ARIMA.

✦

1 INTRODUCTION

C LOUD computing [1] has evolved from a set of
promising virtualization and data center technolo-

gies to a consolidated paradigm for delivery of comput-
ing as a service to end customers, which pay for such
services according to its use, likewise utilities such as
electricity, gas, and water. Adoption of the technology
by enterprises is growing fast, and so is the number of
Cloud-based companies offering Cloud-based solutions
for end users.

The shift from desktop applications to public Cloud
hosted Software as a Service (SaaS) business model has
intensified the competition for Cloud providers. This
is due to the presence of multiple providers in the
current Cloud computing landscape that offer services
under heterogeneous configurations. Selecting particular
Cloud service configuration (e.g., VM type, VM cores,
VM speed, cost, and location) translates to a certain
level of Quality of Service (QoS) in terms of response
time, acceptance rate, reliability, etc. In order to survive
in such a competitive market, Cloud providers must
deliver acceptable QoS to end-users of the hosted SaaS
applications, or risk losing them.

However, one issue that arises from the transition to
a SaaS model is the fact that the pattern of access to the
application varies according to the time of the day, day

• R. N. Calheiros and R. Buyya are with the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory, Department of Computing
and Information Systems, The University of Melbourne, Australia

• R. Ranjan is with the Commonwealth Scientific and Industrial Research
Organisation (CSIRO), Information and Communication Technologies
(ICT) Centre, Acton, ACT, Australia

of the week, and part of the year. It means that in some
periods there are many users trying to use the service
at the same time, whereas in others only a few users
are concurrently accessing the servers. This makes static
allocation of resources to the SaaS application ineffective,
as during a period of low demand there will be excess
of resources available, incurring unnecessary cost for the
application provider, whereas during high utilization pe-
riods the available resources may be insufficient, leading
to poor QoS and loss of costumers and revenue.

Clouds can circumvent the above problem by enabling
dynamic provisioning of resources to applications based
on workload behavior patterns such as request arrival
rate and service time distributions. This means that extra
resources can be allocated for peak periods and can
be released during the low demand periods, increasing
utilization of deployed resources and minimizing the
investment in Cloud resources without loss of QoS to
end users [2].

The challenge of dynamic provisioning is the determi-
nation of the correct amount of resources to be deployed
in a given time in order to meet QoS expectations in
the presence of variable workloads like what is observed
by Cloud applications. This challenge has been tackled
mainly via reactive approaches [3], [4], [5]—which in-
crease or decrease resources when predefined thresholds
are reached—or via proactive approaches [6], [7], [8]—
which react to future load variations before their occur-
rence. The latter is typically achieved with techniques
that can monitor, predict (e.g. estimating QoS parameters
in advance), adapt according to these prediction models,
and capture the relationship between application QoS
targets, current Cloud resource allocation, and changes
in workload patterns, to adjust resource allocation con-

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, MONTH 2014

figuration on-the-fly.
In previous work [9], we introduced an architec-

ture for proactive dynamic provisioning via workload
prediction—which determines how many requests per
second are expected in the near future—combined with
analytical models to determine the optimal number of
resources in the presence of the predicted load. Although
the proposed architecture recognized the need for work-
load prediction, it did not propose a concrete method for
workload prediction. Thus, in this paper we present the
design and evaluation of a realization of its workload
prediction model using the Autoregressive Integrated
Moving Average (ARIMA) model [10]. ARIMA is a
method for non-stationary time series prediction that is
composed of an autoregressive and a moving average
model, and was successfully utilized for time series
prediction in different domains such as finance. The key
contributions of this paper are:

• We propose, design, and develop a workload pre-
diction module using the ARIMA model. Our work
applies feedback from latest observed loads to up-
date the model on the run. The predicted load is
used to dynamically provision VMs in an elastic
Cloud environment for serving the predicted re-
quests taking into consideration QoS parameters
such as response time and rejection rate;

• We conduct an evaluation of the impact of the
achieved accuracy in terms of efficiency in resource
utilization and QoS of user requests.

Results show that our module achieves accuracy of up
to 91%, which leads to efficiency in resource utilization
with minimal impact in QoS for users.

The rest of this paper is organized as follows. Section 2
presents related work. Section 3 introduces the applica-
tion and system models that support our workload pre-
diction architecture, which is detailed in Section 4. Sec-
tion 5 contains experiments evaluating the accuracy of
our proposed prediction architecture. Section 6 presents
the simulation experiments evaluating the impact of
the prediction in the efficiency of utilization of Cloud
resources. Finally, Section 7 presents the conclusions and
future work.

2 RELATED WORK

The approaches for workload prediction in Clouds can
be classified as reactive methods and proactive methods.
Among reactive methods, Zhu and Agrawal [3] propose
a method based on control theory to vertically scale
resource configurations such as VM types, VM cores, VM
speed, and VM memory. Vertical scaling is the process
of increasing the resources available to each VM, rather
than increasing the number of VMs (which is known as
horizontal scaling). Their approach also addresses the
budget constraints related to the workload execution.
They apply the ARMAX model to predict CPU cycle
and memory configurations required for hosting an ap-
plication component. In contrast to this approach, we

apply the ARIMA model to predict the future application
workload behavior, which is fed into the queueing model
for calculating the required VM configuration.

Bonvin et al. [4] propose a reactive method that scales
servers based on the expected performance and profit
generated by changes in the provisioning. This method
is able to perform both horizontal and vertical scaling.

Similar to Bonvin et al., Yang et al. [5] propose a
reactive method for changing the resource configuration
of cluster resources driven by the load incurred by the
hosted application. It is based on user-defined thresh-
old conditions and scaling rules that are automatically
enacted over a virtualized cluster.

Zhang et al. [11] propose a reactive workload factoring
architecture for hybrid Clouds that decomposes incom-
ing workload in base workload and trespassing work-
load. The first one is derived from ARIMA-based pre-
diction and handled by the local infrastructure, whereas
the second is handled by a public Cloud.

The limitation of reactive platforms is that they react to
changes in workload only after the change in utilization
and throughput is observed in the system. Therefore, if
the change is quicker than the reconfiguration time, end-
users will observe poor QoS until the extra resources
are available. Considering that changes in the workload
typically follow patterns that are time-dependent, pre-
diction techniques can avoid the above problem by trig-
gering the reconfiguration before the expected increase
of demand, so when the situation arises, the system is
already prepared to handle it. Caron et al. [6] propose
a method based on pattern matching for prediction of
grid-like workloads in public Clouds. Gong et al. [12]
propose a method for predicting resource demand of
VMs based on predicted application workload. Islam
et al. [8] apply Artificial Neural Networks (ANN) and
linear regression for prediction of resources required for
applications. Sladescu et al. [7] presents a system based
on ANN to predict the workload to be experienced by
an online auction in terms of intensity and location of
the peaks.

Although techniques such as linear regression can
generate predictions quicker than ARIMA, they also de-
mand workloads that have simpler behavior than those
that time series and ANN-based methods can accurately
predict. Furthermore, studies [13], [14] show that web
and data center workloads tend to present behavior that
can be effectively captured by time series-based mod-
els. Thus, to increase the applicability of the proposed
architecture, we adopt ARIMA-based prediction for our
proposed architecture.

Tran et al. [14] applied the ARIMA model for predic-
tion of server workloads. It targets long-time prediction
(up to 168 hours), whereas we target short timespans to
achieve timely reaction to workload changes. Our pre-
diction, which is designed to be short-term and therefore
quicker to be performed, is suitable for Clouds because
Cloud platforms can quickly react to requests for more or
less VMs. Our work also goes further ahead by applying

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

CALHEIROS ET AL.: WORKLOAD PREDICTION USING ARIMA MODEL AND ITS IMPACT ON CLOUD APPLICATIONS’ QOS 3

feedback from latest observed loads to update the model
on the run. Furthermore, in our work the predicted load
is used for dynamically provisioning VMs for serving
the predicted requests, and the impact of the prediction
and provisioning is evaluated in regards to their effect
on the QoS observed by end users.

Other domain-specific proactive approaches that are
related to Clouds include the approach by Nae et al.
for Massively Multiplayer Online Games [15]. Pacheco-
Sanchez et al. [16] apply a Markovian model to predict
server performance in Clouds. Roy et al. [13] apply the
ARMA model for workload prediction in Clouds with
the goal of minimizing cost, whereas the main objective
of our approach is meeting QoS target of applications
such as minimizing the request rejection rate, or maxi-
mizing resource utilization.

3 SYSTEM AND APPLICATION MODELS

The target system model of the architecture proposed
in this paper consists of a public Cloud provider that
offers to end users SaaS services backed by a PaaS
layer (Figure 1) [9]. The PaaS in turn interacts with an
IaaS provider that can be a third party provider. The
target SaaS provider receives web requests, which are
processed by the machines that are located at the IaaS
layer.

For scaling up the infrastructure, the target provider
deploys a number of Virtual Machines (VM) that pro-
cess end user requests. To simplify the management of
the infrastructure and to take advantage of profiling
information, a single VM configuration, consisting of
CPU power, amount of memory, and amount of storage
is utilized by the SaaS provider. We also assume that
the application has been profiled in the chosen VM
configuration, so the provider has information about the
VM’s expected performance.

A single application instance executes on each VM,
and since current Cloud providers do not support dy-
namic changes in the VM’s specifications without down-
time, increasing and decreasing the total number of VMs
running the application is the most suitable option for
utilization of elastic computing infrastructures1, as it
brings additional benefits such as higher fault tolerance
and higher resilience to performance degradation caused
by VM failures (as the crash of one of the VMs will not
affect the others, enabling the application to continue
serving customers using the VMs that are running).

The target application is web applications. Client re-
quests consist of http requests that are processed by a
web server running on the VMs. QoS targets of rele-
vance to the system are response time Ts, defined as
the maximum negotiated time in the SLA for serving a

1. Although CloudSigma claims to support dynamic changes in
the hardware specifications of running VMs, such alterations require
the VM to be stopped and restarted again, which imposes the same
not-negligible setup time as starting new VMs in conventional IaaS
providers.

user’s request and rejection rate Rej(Gs), which is the
proportion of incoming requests that cannot be served
without violating Ts [9].

4 SYSTEM ARCHITECTURE

One of the key characteristics of Clouds is elasticity,
which enables the infrastructure to be scaled or down to
meet the demand of applications. However, instantiation
of new VMs is not an immediate operation. Depending
on Cloud providers’ infrastructure architecture and their
hypervisor policies, launching a new VM involves a
non-negligible start-up time. The start-up time is long
enough to be noticed by the clients and dramatically
decreases the users’ experience, which may result in
abandonment of the application. Apart from potential
financial losses due to decline in the number of users, the
software provider may also be liable for not delivering
the minimum required QoS.

Although standby VM instances may be helpful for
tolerating sudden increases in number of requests, those
standby VMs are more likely to be idle most of the times
reducing the overall system utilization while increasing
the operational cost. Furthermore, if the increase in the
number of requests exceeds the load that standby VMs
can handle, the problem of poor QoS arises again. Thus,
a different approach must be sought for the Cloud
provisioning problem.

One approach that has been explored is based on
workload prediction: accurate predictions of the number
of end-users’ future service requests enable SLA’s QoS
targets to be met with reduced utilization of Cloud
resources. As requests pattern vary depending on the
application type, this paper focuses on request patterns
that exhibit seasonal behavior, such as requests to Web
or online gaming servers [15] [17]. To overcome the
uncertainty in workload patterns in Cloud environments
and minimize the estimation error in predicting future
requests while maintaining optimal system utilization, in
previous work [9] we proposed an adaptive provisioning
mechanism in order to achieve the following QoS targets:

• Automation: The whole process of provisioning
should be transparent to users;

• Adaptation: The provisioner should be aware of
dynamic and uncertain changes in the workload and
react to them accordingly;

• Performance assurance: In order to meet QoS tar-
gets, resource allocation in the system must be
dynamic.

The key components of the proposed provisioning
system, depicted in Figure 1 are [9]:

1) Application Provisioner: Receives accepted requests
from the Admission Control module and forwards
them to VMs that have enough capacity to process
them. It also keeps track of the performance of
the VMs. This information is passed to the Load
Predictor and Performance Modeler. The Application
Provisioner also receives from such module the

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, MONTH 2014

Users

 Workload Analyzer

Load Predictor &

Performance Modeler

Predicted Arrival

Rate

Estimated

number of VMs

Historical Workload

Information

Cloud Service Provider

IaaS

layer/provider

Virtual Machines

Accepted

user

requests

S
a

a
S

 l
a

y
e

r
P

a
a

S
 l
a

y
e

r

R1

R2
R3

Requests scheduling + VM management

Application

Provisioner

Admission

Control

Fig. 1. Architecture for adaptive Cloud provisioning [9].

The key component of this paper, the Workload analyzer,

is highlighted in the figure.

expected number of VMs required by the applica-
tion. If the expected number of VMs differs from
the number of provisioned VMs, the number is
adjusted accordingly (by either provisioning new
VMs or decommissioning unnecessary VMs).

2) Load Predictor and Performance Modeler: Decides the
number of VMs to be allocated, based on the
predicted demand by the Workload Analyzer module
and on the observed performance of running VMs
by the Application Provisioner. The performance
is modeled via queueing networks, which, based
on the predicted arrival rate of requests, return the
minimum number of VMs that is able to meet the
QoS metrics.

3) Workload Analyzer: Generates an estimation of fu-
ture demand for the application. This information
is then passed to the Load Predictor and Performance
Modeler module.

To make the proposed architecture effective, a strong
knowledge about the application workload behavior is
required by the system so the performance model can be
accurate. Therefore, the most suitable deployment model
for the architecture is Software as a Service, where a
queueing model can be built for each application offered
to end users as a service. In the SaaS layer, the admission
control module ensures that no application instance will
get further requests if the capacity of the queue is
exhausted. In this case, all the upcoming requests are
rejected, because otherwise it is most likely that Ts would
be violated. Accepted requests are forwarded to the
Cloud provider’s PaaS layer where the proposed system
is implemented.

In our previous work [9], the system architecture was
presented in a high-level view, without presenting a con-
crete implementation of each of its components. In this
paper, we present a realization of the Workload Analyzer
component of the architecture. The prediction method

uses the Auto-Regressive Integrated Moving Average
(ARIMA) model. The prediction gives the Application
Provisioner enough time to react against any precipitous
increase in workload by starting new VMs without
compromising Ts while maintaining the overall system
utilization above a given threshold.

4.1 Workload Analyzer

The Workload Analyzer realization we propose in this
paper implements workload prediction using the gen-
eral ARIMA time series process [10]. ARIMA has been
chosen for the implementation of our module because
the underlying workload fits well in the model: previous
research observed that web workloads tend to present
strong auto-correlation [17], [18].

At the start of the execution, in a preliminary step,
the historical workload data is fed into the Workload
Analyzer, where it fits the ARIMA model on them. When
the system is operational, it delivers an estimation of the
workload with one time-interval in advance. The length
of the time interval can be adjusted to better fit the
specific application. The only requirement for efficient
system utilization is that the time interval should be long
enough to allow extra VMs to be deployed. Therefore,
time windows as short as 10 minutes could be suitable
depending on the selected Cloud provider [19].

The request time series contains the number of ob-
served requests at each time interval. It is implemented
as a cyclic buffer so that at the next prediction cycle, the
actual number of requests (obtained from the original
dataset) is added to the time series used in prediction
while discarding the oldest value. After constructing the
request time series, the process of fitting the ARIMA
model is initiated based on the Box-Jenkins method [10].

According to this method, the time series must be
transformed into a stationary time series, that is, for each
(Xt, Xt+τ), τ being the time difference (lag) between
two data points, the mean and variance of the process
must be constant and independent of t. In addition,
the auto-covariance between Xt and Xt+τ should be
affected only by τ . This transformation is achieved by
differencing the original time series. The number of times
the original time series has to be differenced until it
becomes stationary constitutes the d parameter of the
ARIMA(p, d, q) model.

The values of q and p are determined by analyzing
the autocorrelation and partial autocorrelation plots of the
historical data, respectively. In the context of this work,
historical data means the observed number of requests
per second received by the system in some past time
interval.

The autocorrelation plot is used to determine how
random a dataset is. In the case of random data, the
autocorrelation values approach zero for all time-lagged
values, otherwise, one or more autocorrelation values
approach 1 or -1. In the autocorrelation plot, the horizon-
tal axis represents the time lags. Values on the vertical

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

CALHEIROS ET AL.: WORKLOAD PREDICTION USING ARIMA MODEL AND ITS IMPACT ON CLOUD APPLICATIONS’ QOS 5

axis are calculated using the autocorrelation coefficient
Rh:

Rh =
Ch

C0

, (1)

where Ch is the auto-covariance function defined as:

Ch =
1

N

N−τ∑

t=1

(Xt − X̄)(Xt+τ − X̄), (2)

where N is the number of samples and X̄ is the average
of samples Xt, t = 1...N . C0 is the variance function:

C0 =
1

N

N∑

t=1

(Xt − X̄)2 (3)

The partial autocorrelation at τ is the autocorrelation
between Xt and Xt−τ that is accounted only by lags
above τ − 1. If a stationary time series has an auto-
regression component of order p, its partial autocorrela-
tion plot falls below the significant level at τ = p + 1.
The number of lags before the autocorrelation values
drop below the significant level is the value of q for the
moving average component of the ARIMA model.

Using the above method to determine the terms p,
d, and q of the ARIMA model, the historical workload
information is fit to the model to be used for prediction
of future workload values.

4.2 System Design

The class diagram of the ARIMA-based workload pre-
diction system is shown on Figure 2. The ARIMAWork-
loadAnalyzer is the core component of the system and
realizes the WorkloadAnalyzer component of Figure 1. By
implementing the IFeedbackable interface, it is capable of
taking feedbacks. In our system, current workload infor-
mation, received from external components is modeled
as a feedback signals and fed into the ARIMAWorkload-
Analyzer to make it aware of the most recent workload
changes.

ARIMAWorkloadAnalyzer stores the given feedback
signals into a cyclic buffer. The length of this buffer,
which corresponds to the number of time intervals in
past affecting the current prediction value, is configured
at the start of the system based on characteristics of the
application workload (number of received requests per
second).

ARIMAWorkload accomplishes the workload predic-
tion through the Forecaster class. This class has a con-
nection to a statistical backend (the R forecast pack-
age [20], which for simplicity is not presented on the
diagram). It accepts a time series from the ARIMA-
WorkloadAnalizer and prepares it for submission to the
statistic engine, where ARIMA model is fitted on them.
For a given time series, the statistical back-end replies
with a predicted value, along with its corresponding
80% and 95% confidence levels. The Forecaster class then
parses and encapsulates this reply into an instance of

ForecastEntity class and passes it back to the ARIMA-
WorkloadAnalyzer. The accuracy of the ARIMA-based
workload prediction is evaluated in the next section.

The steps of the prediction procedure and its compo-
nents are shown on Figure 3.

4.3 Modeling and Forecast Complexity

There are many different methods that can be applied
for ARIMA fitting. We adopted the fitting process from
R, which implements the Hyndman-Khandakar algo-
rithm [20]. This method is broadly composed of three
sequential stages [21]: (i) determination of the number
of differencing steps of the model (parameter d); (ii)
actual differentiation of the time series d times; and (iii)
selection of the best fit model.

The method used by R for the first stage applies
successive Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
tests [22] to determine d. This method has complexity
O(n2), where n is the number of points in the workload
used for prediction. The second stage applies d differ-
entiations over the data, what makes this stage O(n).
The third stage evaluates a fixed number of variations
of the ARIMA model and selects the one that better fits
the input data [20]. The fitting process can be accom-
plished with complexity O(n2) [23]. For k repetitions,
the complexity of this stage is O(kn2). Given that k is
finite and does not grow with the size of the input, the
complexity of this stage can also be estimated as O(n2).
Because each of these steps is executed sequentially, the
complexity of the fitting method can be established as
O(n2). Although the complexity is determined by the
number of observations, in our application this value is
constant because of the use of a cyclic buffer. Also, the
number is reduced because of the use of lags to operate
only with data from relevant time periods for the period
being predicted.

The prediction procedure is straightforward once the
ARIMA has been determined and values from previous
observations are available. Because the propose method
predicts one time interval ahead, it has complexity O(p),
where p is the order of the autoregressive component of
the ARIMA model.

5 PERFORMANCE EVALUATION

The system was evaluated with real traces of requests to
the web servers from the Wikimedia Foundation2. These
traces contain the number of http requests received for
each of the project’s resources (static pages, images,
etc) aggregated in 1-hour intervals and are publicly
available for download3. It also contains the project
name associated with each resource being requested and
the language of each accessed resource. We consider
only requests to English Wikipedia resources in these

2. http://www.wikimedia.org
3. http://dumps.wikimedia.org/other/pagecounts-raw

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, MONTH 2014

+AddKnownDataLoadEntry()

«interface»

IFeedbackable

+getEstimatedArrivalRate() : double

WorkloadAnalyzer

+ReadHistoricalData()

+OnPredictionInterval()

+Train()

-predictInterval : int

-predictDepth : int

-workload : float[]

ARIMAWorkloadAnalyzer

+Forecast(in depth : int) : ForecastEntity[]

Forecaster

+Insert(in newValue : T)

+GetData() : T[]

-dataBuffer : T[]

-size : int

CyclicBuffer

T

CyclicBuffer<float>

«bind»()

-forecastValue : float

-low_80Conf : float

-high_80Conf : float

-low_95Conf : float

-high_95Conf : float

ForecastEntity

Fig. 2. Class diagram for ARIMA-based workload prediction.

ARIMA‐
WorkloadAnalizer

Load Predictor &
Performance Modeler

SaaS provider’s

historical workload data
Statistic engine

1: Obtaining historical

workload data

2: Fitting the model on

historical data

3: Predicted workload values

4: Actual workload valued

form VM management

5: Updating internal buffer

6: Fitting the model the buffer

Fig. 3. Workload prediction steps and its involving com-

ponents.

experiments. An analysis of patterns of web requests to
Wikipedia servers was presented by Urdaneta et al. [17].

In order to observe weekly patterns, we use four
weeks of the traces, dated from midnight, 01 January
2011 to 5 pm, 04 February 2011. The first three weeks are
used for training purposes. The requests corresponding
to such a period are transformed to a time series process
(i.e. the values p, d and q of the ARIMA model are
defined). At runtime, the model is constantly updated:
whenever new requests arrive, they are incorporated to
the time series and older data is removed from the time
series in the same amount. The fitting process is then
repeated, what may lead to changes in the values of p, d,
and q.

The fourth week is used for evaluation purposes.
Based on the training dataset, the demand for each

hour of the fourth week is predicted. The output of the
prediction procedure is a number, accompanied by two
confidence ranges, covering the 80% and 95% bands,
for each hour of the fourth week. Figure 4 presents the
predicted and actual values (i.e., the value observed in
the traces) and corresponding confidence ranges, for the
fourth week of the workload.

The accuracy of the prediction is evaluated using var-
ious error metrics. The results are presented in Table 1.
The Predicted column contains the accuracy according to
different metrics. The Low 80% and High 80% contain the
limits for the 80% confidence interval for the prediction.
The table also reports the same for the 95% confidence
interval. The output of the confidence intervals can be
used when one is willing to sacrifice SLA in favor
of utilization (by choosing the lower 80% or 95%) or
decreasing utilization in order to provide better response
times (by choosing the higher 80% and 95%).

Figures 4(b) and (c) show that, although utilization
of the high edges of the confidence intervals minimize
the occurrences of underestimations, it also decreases
the prediction accuracy down to an average of 78%
in the high 95% case. If high to very high system
utilization, which minimizes the operational cost, is the
main priority the number of VMs should be selected
based on either low 80% or 95% values. As a side
effect, this decision increases the underestimation cases,
which leads to an average of 85% prediction accuracy in
the low 95% case. Results from the column Predicted of
Table 1 show the accuracy for different metrics when the
optimal number of VMs for increasing the performance
and user experience, while decreasing underutilization
cases (Figure 4(a)), is selected. In this case, the average

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

CALHEIROS ET AL.: WORKLOAD PREDICTION USING ARIMA MODEL AND ITS IMPACT ON CLOUD APPLICATIONS’ QOS 7

TABLE 1

Prediction accuracy by various metrics. Predicted: use of the actual output of the prediction. Low and High 80%: use

of one of the edges of the 80% confidence interval as the predicted value. Low and High 95%: use of one of the

edges of the 95% confidence interval as the predicted value.

Accuracy metric Predicted Low 80% High 80% Low 95% High 95%

Root mean square
deviation (RMSD)

1146.26 1570.16 1959.95 2136.40 2582.36

Normalized root
mean square
deviation (NRMSD)

0.15 0.20 0.25 0.27 0.33

Mean absolute devi-
ation (MAD)

876.98 1151.56 1461.03 1680.13 2038.47

Mean absolute
percentage error
(MAPE)

0.09 0.10 0.16 0.15 0.22

prediction accuracy increases to 91%.
These results show general trends expected to be

achieved by our approach when it is applied for work-
loads that contain auto-regressive and moving average
components on its composition, regardless of the par-
ticular Cloud deployment model (e.g., public Cloud or
private Cloud). As suggested in previous work [13], [14],
this is expected in requests for web servers and Cloud
data centers, and such a behavior in the Wikipedia traces
has been firstly identified by Urdaneta et al. [17]. For this
type of workloads, similar results to those presented in
this section can be expected. The particularities of the
workload is one factor to be considered when selecting a
prediction technique, as different techniques can present
different performance depending on the characteristic
of each workload. For example, Sladescu et al. [7] suc-
cessfully utilized artificial neural networks to predict
workloads bursts in auction websites.

6 IMPACT OF PREDICTION ACCURACY ON AP-
PLICATION’S QOS

Although the proposed method can generate predictions
all the times, and the achieved accuracy indicate that our
proposed method achieves good accuracy, it does not say
too much about how the obtained accuracy impacts the
QoS of applications and data center utilization, which
are the metrics of interest for Cloud providers willing
to apply the method. Thus, in this section we present
experiments aiming at evaluating how these important
metrics are impacted by the accuracy of the prediction
mechanism.

The experiment was performed via simulation using
the CloudSim [24] toolkit. CloudSim is a toolkit that
contains a discrete event simulator and classes that en-
able users to model Cloud environments, from providers
and their resources (physical machines, virtual machines,
and networking) to customers and requests. During the
simulation execution, user requests for resources and ap-
plication execution trigger provisioning and scheduling
decisions in the data center that affects the execution
time of the simulated application, and thus it enables the

evaluation of effects of policies for scheduling and pro-
visioning in the performance of applications, ultimately
resulting in the observed response time of requests at
the user side.

The simulated environment is composed of a data cen-
ter implementing the architecture described in Section
4. The data center contains 1000 hosts, each of which
having 8 cores and 16GB of RAM. At the start of the
simulation, the data center hosts 50 VMs for processing
incoming requests.

The prediction method using the ARIMA model—
described and evaluated in the previous section—is im-
plemented in the Workload Analyzer component. The
expected number of upcoming requests for the next hour
is predicted based on the number of previously observed
requests, and when the actual value is available, it
replaces the predicted value, and is used in the next
round of prediction.

The Load Predictor and Performance Modeler oper-
ates as in our previous work [9]. It consists of a network
of n M/M/1/k queues, where n is the number of VMs
in the system. The module operates over a single type
of virtual machine, whose average response time of the
application is assumed to be known (for example, based
on historic information). The queue size k is inferred
from the expected response time of requests on the VM
and the maximum response time that is the QoS attribute
agreed between provider and customers. For these ex-
periments, VMs have the following configuration: 1 CPU
core with 1 ECU, 2GB of RAM and 10GB of storage. If
a different VM type was chosen, the execution time of
requests would need to be estimated, resulting in a new
value for k.

The input received from the Workload Analyzer is
used by the Load Predictor and Performance Modeler as
the arrival rate for the queue systems. It then searches
for the optimal value of n that is compliant with QoS
expectation at the maximum possible utilization rate.
The search is conducted in a way that, at each iteration, it
narrows down the candidate answers, eliminating the re-
evaluation of values which already have been concluded
not to be appropriate. Once the optimal value of n is

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, MONTH 2014

2000

4000

6000

8000

10000

12000

14000

16000

18000

505 555 605 655 705 755 805

N
u

m
b

e
r

o
f

R
e
q

u
e
s
ts

 (
×

1
0

3
)

Time (hour)

Actual

Predicted

(a)

2000

4000

6000

8000

10000

12000

14000

16000

18000

505 555 605 655 705 755 805

N
u

m
b

e
r

o
f

R
e
q

u
e
s
ts

(×

1
0

3
)

Time (hour)

(b)

2000

4000

6000

8000

10000

12000

14000

16000

18000

505 555 605 655 705 755 805

N
u

m
b

e
r

o
f

R
e
q

u
e
s
ts

 (
×

1
0

3
)

Time (hour)

(c)

Fig. 4. Results of the ARIMA-based prediction for one

week period of the workload. (a) Predicted and actual

(obtained from the trace) values. (b) 80% confidence

interval and actual values. (c) 95% confidence interval

and actual values.

found, it is forwarded to the Application Provisioner as
the required number of VM for the next time interval.
This value is compared with the current number of VMs

so a decision can be made about creation of VMs (if the
current number of VM is smaller than n), decommission
of VMs (if the current number is bigger than n), or no
action (if the current number of VMs is equal to n).
Notice that, if decommission of VMs is necessary, it is not
triggered immediately. Instead, the exceeding machines
stop receiving new requests and are destroyed only
when all the requests they are processing are completed.

The Application Provisioner component of the adap-
tive Cloud provisioning architecture issues VM creation
and decommission commands. This action is based on
the calculated number of VMs—by the Load Predictor
and Performance Modeler module—necessary to serve
accepted requests. In this experiment, there was no
restriction on the maximum number of VMs, apart from
those imposed by the physical constraints of the simu-
lated date center infrastructure.

Finally, the Admission Control ensures the QoS of
already accepted requests by rejecting any upcoming
requests whenever all VM queues are full. The queues
are designed in a way that they only accept a number of
requests whose product of average execution time and
size is equal or smaller than the maximum response time
as defined by the QoS.

The simulation was performed for the fourth week
of the Wikipedia workload traces mentioned in Section
5. The input requests were generated as follows. The
base value for each hour of simulation was obtained
from the corresponding hour in the workload traces.
This value was divided by 60 to define the base number
of average requests per minute for that hour. Within
each hour, requests were submitted at each minute,
following a Poisson distribution using the base number
of requests/min for the hour as the average. Each request
is modeled to require 50 ms with a positive variation
of 10%, uniformly distributed. The maximum response
time defined by the QoS is 150 ms, rejection rate below
20%, and data center utilization above 80%. At the end
of each hour, the value for the next hour was read
from the trace and the process was repeated, with the
updated requests/min rate used as the average for the
Poisson-distributed arrivals. For CloudSim simulation
purposes, submissions were grouped in batches of 1000,
and as many batches as defined by the traces were
submitted on each 1 minute interval. The total number of
batches submitted during the one-week simulation was
3,139,260.

As the simulation runs, requests are submitted to the
system, and either are rejected (if queues are full) or
processed. If processed, execution times are collected and
averaged for each VM. This value is also used by the
Performance Modeler to estimate the number of required
VMs. The simulation runs for the same time interval
as the previous experiment (from midnight, 01 January
2011 to 5 pm, 04 February 2011). The Performance Mod-
eler is executed 15 minutes before the next hour. At the
end of the simulation, we collected the following metrics:
execution time of accepted requests; number of rejected

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

CALHEIROS ET AL.: WORKLOAD PREDICTION USING ARIMA MODEL AND ITS IMPACT ON CLOUD APPLICATIONS’ QOS 9

requests; total number of QoS violations; total utilization
of the infrastructure; minimum and maximum number
of VMs running at any moment; and total number of
hour of VMs required for the simulation.

The above process was executed five times. At each
execution, the Workload Analyzer was configured to
return a different value for the prediction, similarly to
the experiment in the previous section: (i) the exact
prediction value; (ii) the value of the lower 80% confi-
dence interval; (iii) the value of the lower 95% confidence
interval; (iv) the value of the higher 80% confidence
interval; and (v) the value of the 95% confidence interval.

6.1 Results and Discussion

Table 2 presents the results of the simulation. It contains
the value obtained for each output metric. It can be
observed that the assumption discussed in the previous
section about using the edges of the confidence intervals
or the predicted value holds: the more the prediction
overestimates the arrival rate of requests, smaller the
response time and rejection rate, at the cost of a smaller
utilization of the data center.

We can observe that all prediction values are able to
meet the QoS established for the simulation, with the
worst case scenario being 5% of rejected requests, below
the set target of 20%. The increase in average execution
time is explained by an increase in the time each requests
stays in the queue.

We also can notice that the rate of rejected requests
does not improve when the value of High 95% of
confidence interval is used. Improvements in this metric
saturated at the High 80% value. Moreover, the Low
95% is the only value where rejection rate is above
10%. Therefore, the 95% confidence interval values give
extreme results, with a marginal gain when the higher
band is used, and high rejection rate in the case of
the lower band. Thus they are likely to be unsuitable
for most practical applications. Thus, using an 80%
confidence interval value for the prediction is enough
for practical purposes. More accurate prediction does
not result in any benefit in the operation of the Cloud
infrastructure.

The consequences of underestimating the number of
incoming requests are twofold. First, since it causes less
VMs that required to be deployed, the response time
of the requests in the execution queues increase. This
increase, in turn, causes the queues to be full most of
the time, affecting the upcoming requests’ rejection rate.

In order to measure the magnitude of execution time
violations, we calculated the amount of requests that
were executed within the required time, along with the
proportion of them missed the deadline by 5%, 10%,
15%, 20%, and more than 20%. As depicted in Figure 5,
for all cases, more than 80% of deadlines were misses
by a margin below 5%, and more than 99% of requests
were delayed by a margin up to 10%. All the missed
deadlines occur by a margin that was equal or less than

Fig. 5. Cumulative distribution of delayed requests in

function of delay size. It can be noticed that 80% of

requests were delayed by less than 5%, and 99% of

requests were delayed by less than 10%.

15% of the required execution time. This demonstrates
that our method is effective in meeting QoS expectations
in terms of execution time and rejection rate.

Regarding to data center utilization, all the predic-
tion values were able to achieve the target of keeping
utilization above 80%. As expected, the minimum and
maximum number of VMs is determined by the con-
fidence level of prediction in use, the higher the de-
gree of overestimation of incoming requests, the higher
the minimum and maximum allocated VMs and conse-
quently the higher the number of VM hours required
to process the workload. The savings in total VM hours
between the provisioned with the prediction and static
allocations based on the maximum VMs varies from
16.64% (High 80%) to 34.08% (Low 95%), demonstrating
the advantages of elasticity provided by Clouds against
provisioning for peak demands. Furthermore, achieving
the same number of VM hours with a static allocation
(i.e., the same number of VMs running at all times,
irrespective of the load) would allow in the best case
allocation of 172 machines (for High 95%), a value that
is 21% below the maximum number of VMs allocated in
the same case, and therefore still unable to meet the QoS
demands that our approach achieves.

About execution time of the prediction process, it
executed in an average of 1.1 s, with standard deviation
of 34.29 ms on a Intel CORE i7-2600 CPU4 with 8 GB
of RAM. This execution time is much smaller than the
typical deployment time of a virtual machine (which is
in the order of minutes) and thus it does not compromise
the whole operation of the system. Thus, for workloads
such as the one studied in the section, our proposed
method is able to deliver accurate prediction within a
small amount of time, enabling the data center to timely
react to changes in the incoming workload without
impacting applications’ QoS.

4. Quad core, 3.4 GHz and 8 MB of cache.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, MONTH 2014

TABLE 2

Results of the simulation showing how different prediction values affect the QoS of requests and utilization of the data

center.

Output metric Low 95% Low 80% Predicted High 80% High 95%

Average service time (ms) 110.51 99.39 85.48 73.19 65.42
Standard deviation of service time 27.83 31.68 33.05 28.49 23.27
% of rejected requests 13 8 4 1 1
% of QoS violations 5 3 2 1 0
Data center utilization (%) 98.74 96.67 91.00 86.44 83.31
Minimum number of VMs 37 70 89 101 95
Maximum number of VMs 193 184 197 198 218
VM Hours 40582.87 43985.14 48605.68 52678.68 55017.67

7 CONCLUSIONS AND FUTURE WORK

Together with the increasing shift from desktop-based
applications to SaaS-based applications hosted on
Clouds, there are growing concerns about the QoS of
such Cloud applications. Because of the raising competi-
tiveness in the SaaS market, application providers cannot
afford to lose their customers to the competitors as a
result of insufficient QoS.

One of the key factors affecting QoS is the dynam-
icity in the workload, which leads to variable resource
demands. If at any given moment the workload exceeds
resources’ capacity, QoS on that particular interval will
be poor, affecting customers’ experience with the appli-
cation.

In order to circumvent the above problem, we pro-
posed a proactive approach for dynamic provisioning
of resources for SaaS applications based on predictions
using the ARIMA model. The approach realizes the
Workload Analyzer component of the architecture pre-
sented in our previous work [9] and feeds the rest of
the components with accurate predictions that enable the
rest of the system to scale the resources without waste
of resources.

We introduced the prediction based on the ARIMA
model and evaluated its accuracy of future workload
prediction using real traces of requests to web servers
from the Wikimedia Foundation. We also evaluated the
impact of the achieved accuracy in terms of efficiency in
resource utilization and QoS. Simulation results showed
that our model is able to achieve an accuracy of up
to 91%, which leads to efficiency in resource utilization
with minimal impact in response time for users.

In future, we plan to integrate to the architecture a
reactive module that can act as a second line of defense
against poor QoS by compensating errors in the predic-
tion with ad hoc decision on dynamic provisioning. We
also plan to explore more robust techniques for workload
prediction, able to predict peak in resource utilization
that cannot be fit in the ARIMA model. With these
techniques available, we plan to investigate methods
for automatic selection of the best approach for work-
load modeling and load prediction given user-defined
accuracy and computational requirement trade-offs. We
will also apply the methods proposed in this paper in a

prototype private Cloud system.

ACKNOWLEDGMENTS

This work was partially supported through The Univer-
sity of Melbourne Early Career Research (ECR) grant and
Australian Research Council (ARC) Future Fellowship.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599–616, Jun. 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, Apr. 2010.

[3] Q. Zhu and G. Agrawal, “Resource provisioning with budget
constraints for adaptive applications in cloud environments,”
in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing (HPDC’10). Chicago, USA:
ACM, Jun. 2010.

[4] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic SLA-
driven provisioning for cloud applications,” in Proceedings of the
11th International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’11). Newport Beach, USA: IEEE Computer Society, May
2011, pp. 434–443.

[5] J. Yang, T. Yu, L. R. Jian, J. Qiu, and Y. Li, “An extreme automation
framework for scaling cloud applications,” IBM Journal of Research
and Development, vol. 55, no. 6, pp. 8:1–8:12, Nov. 2011.

[6] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and
cloud computing on-demand resources based on pattern match-
ing,” in Proceedings of the 2nd IEEE International Conference on Cloud
Computing Technology and Science (CloudCom’10). Indianapolis,
USA: IEEE Computer Society, Dec. 2010, pp. 456–463.

[7] M. Sladescu, A. Fekete, K. Lee, and A. Liu, “Event aware work-
load prediction: A study using auction events,” in Proceedings
of the 13th International Conference on Web Information Systems
Engineering (WISE’12), ser. Lecture Notes in Computer Science,
X. S. Wang, I. F. Cruz, A. Delis, and G. Huang, Eds. Berlin,
Germany: Springer, 2012, vol. 7651, pp. 368–381.

[8] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,” Future
Generation Computer Systems, vol. 28, no. 1, pp. 155–162, Jan. 2012.

[9] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual machine
provisioning based on analytical performance and QoS in cloud
computing environments,” in Proceedings of the 40th International
Conference on Parallel Processing (ICPP’11). Taipei, Taiwan: IEEE
Computer Society, Sept. 2011, pp. 295–304.

[10] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control, 4th ed. Hobokem, USA: Wiley, 2008.

[11] H. Zhang, G. Jiang, K. Kenji Yoshihira, H. Chen, and A. Saxena,
“Intelligent workload factoring for a hybrid cloud computing
model,” in Proceedings of the 2009 IEEE Congress on Services (SER-
VICES’09). Los Angeles, USA: IEEE Computer Society, Jul. 2009.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2014.2350475, IEEE Transactions on Cloud Computing

CALHEIROS ET AL.: WORKLOAD PREDICTION USING ARIMA MODEL AND ITS IMPACT ON CLOUD APPLICATIONS’ QOS 11

[12] Z. Gong, X. Gu, and J. Wilkes, “PRESS: PRedictive Elastic Re-
Source Scaling for cloud systems,” in Proceedings of the 6th Inter-
national Conference on Network and Service Management (CNSM’10).
Niagara Falls, Canada: IEEE, Oct. 2010, pp. 9–16.

[13] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in
the cloud using predictive models for workload forecasting,” in
Proceedings of the 4th International Conference on Cloud Computing
(CLOUD’11). Washington DC, USA: IEEE Computer Society, Jul.
2011, pp. 500–507.

[14] V. G. Tran, V. Debusschere, and S. Bacha, “Hourly server work-
load forecasting up to 168 hours ahead using seasonal ARIMA
model,” in Proceedings of the 13th International Conference on Indus-
trial Technology (ICIT’12). Athens, Greece: IEEE, Mar. 2012, pp.
1127–1131.

[15] V. Nae, A. Iosup, and R. Prodan, “Dynamic resource provisioning
in massively multiplayer online games,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 3, pp. 380–395, Mar.
2011.

[16] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr,
and S. Dawson, “Markovian workload characterization for QoS
prediction in the cloud,” in Proceedings of the 4th International
Conference on Cloud Computing (CLOUD’11). Washington DC,
USA: IEEE Computer Society, Jul. 2011, pp. 147–154.

[17] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Computer Networks, vol. 53,
no. 11, pp. 1830–1845, Jul. 2009.

[18] M. Arlitt and T. Jin, “A workload characterization study of the
1998 World Cup Web site,” IEEE Network, vol. 14, no. 3, pp. 30–37,
May 2000.

[19] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with dead-
line and budget constraints,” in Proceedings of the 11th International
Conference on Grid Computing (GRID’10). Brussels, Belgium: IEEE
Computer Society, Oct. 2010, pp. 41–48.

[20] R. J. Hyndman and Y. Khandakar, “Automatic time series fore-
casting: The forecast package for R,” Journal of Statistical Software,
vol. 27, no. 3, pp. 1–22, Jul. 2008.

[21] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2012. [Online]. Available: https://www.otexts.
org/fpp

[22] D. Kwiatkowski, P. C. Phillips, P. Schmidt, and Y. Shin, “Testing
the null hypothesis of stationarity against the alternative of a unit
root,” Journal of Econometrics, vol. 54, no. 1-3, pp. 159–178, Oct.
1992.

[23] F. Sowell, “Maximum likelihood estimation of stationary uni-
variate fractionally integrated time series models,” Journal of
Econometrics, vol. 53, no. 1–3, pp. 165–188, Jul. 1992.

[24] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, vol. 41,
no. 1, pp. 23–50, Jan. 2011.

Rodrigo N. Calheiros Rodrigo N. Calheiros is
a Post-Doctoral Research Fellow in the Cloud
Computing and Distributed Systems Laboratory
(CLOUDS Lab) in the Department of Computing
Information Systems, University of Melbourne,
Australia. His research interests include Cloud
and Grid computing and simulation and emula-
tion of distributed systems.

Enayat Masoumi Enayat Masoumi was a Re-
search Assistant with the Cloud Computing and
Distributed Systems Lab at the University of
Melbourne. His research interests include Cloud
computing, multi-agent systems, and distributed
systems.

Rajiv Ranjan Dr. Rajiv Ranjan is a Senior Re-
search Scientist (equivalent to Associate Pro-
fessor in North American University System)
and Julius Fellow in the CSIRO Computational
Informatics, Canberra, where he is working on
projects related to Cloud and big data comput-
ing. He has been conducting leading research
in the area of Cloud and big data computing
developing techniques for: (i) Quality of Service-
based management and processing of multime-
dia and big data analytics applications across

multiple Cloud data centers (e.g., CSIRO Cloud, Amazon and GoGrid);
and (ii) automated decision support for migrating applications to data
centers.

Rajkumar Buyya Dr. Rajkumar Buyya is Pro-
fessor of Computer Science and Software En-
gineering and Director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory
at the University of Melbourne, Australia. He is
also the founding CEO of Manjrasoft, a spin-
off company of the University, commercializing
its innovations in Cloud Computing. He has au-
thored 400 publications and four text books. He
is one of the highly cited authors in computer
science and software engineering worldwide.

