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Real-time operator workload assessment and state classification may be useful for
decisions about when and how to dynamically apply automation to information pro-
cessing functions in aviation systems. This research examined multiple cognitive
workload measures, including secondary task performance and physiological (car-
diac) measures, as inputs to a neural network for operator functional state classifica-
tion during a simulated air traffic control (ATC) task. Twenty-five participants per-
formed a low-fidelity simulation under manual control or 1 of 4 different forms of
automation. Traffic volume was either low (3 aircraft) or high (7 aircraft). Partici-
pants also performed a secondary (gauge) monitoring task. Results demonstrated sig-
nificant effects of traffic volume (workload) on aircraft clearances (p < .01) and tra-
jectory conflicts (p < .01), secondary task performance (p < .01), and subjective
ratings of task workload (p < .01). The form of ATC automation affected the number
of aircraft collisions (p < .05), secondary task performance (p < .01), and heart rate
(HR; p < .01). However, heart rate and heart rate variability measures were not sensi-
tive to the traffic manipulation. Neural network models of controller workload (de-
fined in terms of traffic volume) were developed using the secondary task perfor-
mance and simple heart rate measure as inputs. The best workload classification
accuracy using a genetic algorithm (across all forms of ATC automation) was 64%,
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comparable to prior work. Additional neural network models of workload for each
mode of ATC automation revealed substantial variability in predictive accuracy,
based on the characteristics of the automation. Secondary task performance was a
highly sensitive indicator of ATC workload, whereas the heart rate measure appeared
to operate as a more global indicator of workload. A limited range of cardiac re-
sponse might be sufficient for the demands of the brain in ATC. The results have ap-
plicability to design of future adaptive systems integrating neural-network-based
workload state classifiers for multiple forms of automation.

In cognitively complex tasks, such as air traffic control (ATC), changes in work-
load can have significant impacts on operator performance. Increases in future air
traffic volume and, consequently, individual air traffic controller workload, have
been projected in the human factors literature (e.g., Parasuraman, Sheridan, &
Wickens, 2000). As a result, various forms of advanced automation have been de-
signed for ATC to reduce controller load and support improved performance. Un-
fortunately, high-level, static automation (e.g., fully autonomous systems) has his-
torically been found to negatively affect performance as a result of operators being
removed from system control loops (Endsley & Kaber, 1999) and experiencing
complacency, vigilance decrements (Parasuraman, Molloy, & Singh, 1993), and
loss of situation awareness (SA; Endsley & Kaber, 1999). Consequently, automa-
tion research has identified a need to monitor operator functional states in real time
as a basis for determining the type and level of automated (computer) assistance
that may be most appropriate for operators to complete tasks (e.g., Wilson, Monett,
& Russell, 1997). Specific continuous measures of operator functional state, such
as physiological and task performance variables, may have benefits for determin-
ing when flexible forms of automation, or adaptive automation (AA), should be
applied to particular information processing (IP) functions of ATC to facilitate
workload management and maintain operator familiarity with the current system
control situation.

Historical studies of AA have demonstrated the utility of dynamic system func-
tion allocations for managing operator workload or maintaining levels of operator
involvement in control loops to promote SA (Bennett, Cress, Hettinger, Stautberg,
& Haas, 2001; Hilburn, Jorna, Byrne, & Parasuraman, 1997; Kaber & Riley,
1999). These studies have compared high-level static automation or completely
manual control conditions with AA in laboratory simulations of real-world tasks.
Approaches to AA used in these studies (i.e., “what” and “when” to automate)
were based on predetermined control allocation schedules, secondary task perfor-
mance measures, and electroencephalographic (EEG) indexes of workload. Other
research has investigated the use of cardiocirculatory measures (e.g., heart rate
[HR] and heart rate variability [HRV]) for assessing operator workload in real time
and to serve as a basis for dynamic task allocation to automation or manual control
(Scerbo et al., 2001; Wilson, 2001; Wilson, Lambert, & Russell, 2000). These
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studies have revealed that cardiac measures may also be useful for both purposes.
Using peripheral physiologic variables for real-time workload measurement is
also more practical than direct measures of arousal, including EEG, because of the
complexity and lack of portability of measurement systems. There remains a re-
search need for identification of effective and practical means of real-time operator
workload assessment for AA systems. Related studies have provided evidence that
a combination of physiological variables (e.g., EEG, electro-oculographic [EOG],
and electrocardiographic [ECG]) may improve the accuracy of workload classifi-
cation over the use of one type of variable (Wilson, 2001; Wilson et al., 1997).
However, such approaches are very complex from a measurement perspective and
may be impractical for actual applications in aircraft cockpits or ATC work-
stations. To our knowledge, there have been no real applications of EEG-based AA
in aviation systems. More practical approaches may involve using simple physio-
logical measures in combination with, for example, secondary task performance
measures, for describing operator functional states.

One way to collectively consider a number of real-time measures of operator
states in decisions about adaptive aiding is to use an artificial neural network (NN)
for establishing nonlinear relations among multiple state variables with actual task
workload conditions. Previous AA research has developed NNs for operator work-
load classifications (e.g., Prinzel, Freeman, Scerbo, Mikulka, & Pope, 2003; Wil-
son & Russell, 2003a, 2003b). The manner in which AA has been implemented in
these studies is that specific tasks in a multitask scenario are either turned on or off.
They are assigned to the human operator or automation depending on the opera-
tor’s current workload condition. For example, Wilson et al. (2000) successfully
used a NN to integrate observations on EEG signals, blink rate, and heart period to
classify (with 85% accuracy) the task workload levels to which operators were ex-
posed in the Multi-Attribute Task Battery (MAT–B; Comstock & Arnegard, 1992).
This research also demonstrated that NN-based AA systems might be effective for
managing operator workload.

Unfortunately, there has only been limited research examining the potential
benefits of flexibly applying automation to specific IP functions in complex con-
trol tasks (Kaber, Perry, Segall, McClernon, & Prinzel, 2006; Kaber, Wright,
Prinzel, & Clamann, 2006). This work has also been limited to investigation of AA
driven by operator workload assessments using secondary task performance mea-
sures. There remains a need to establish the effectiveness of using specific physio-
logical indicators of cognitive states and other secondary task measures of work-
load for triggering dynamic allocations of specific forms of IP assistance in
adaptive systems, including information acquisition, information analysis, deci-
sion making, and action implementation, in real time. Prior research has demon-
strated differential effects of these forms of automation on operator performance
and workload (Kaber, Wright, et al., 2006). Information acquisition and action im-
plementation automation target psychomotor tasks and appear to have a more di-
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rect impact on operator workload responses, and lead to higher SA and levels of
performance, than information analysis and decision-making automation. Based
on the characteristics of the adaptive aiding (e.g., summarizing information for op-
erators, recommending decision alternatives, implementing system control ac-
tions), certain measures of operator workload may be more or less sensitive to spe-
cific automation manipulations. For example, operator workload fluctuations, as a
result of decision-making automation, may best be revealed by HRV measures,
which have been demonstrated to be sensitive indicators of high-level cognitive
task demands. Aasman, Mulder, and Mulder (1987) and Byrne and Parasuraman
(1996) found that HRV measures were sensitive to high levels of effortful process-
ing, such as those required during information acquisition, with suppression of
HRV under high workload. Consequently, the predictive accuracy of any workload
classifier tool, like a NN, may vary depending on the characteristics of the AA sys-
tem to which it is applied.

There is a need for further investigation of the use of HR and HRV measures of
cognitive load in approaches to AA in laboratory simulations and in real-world
systems. Furthermore, no studies have looked at combinations of HR and HRV
with secondary task performance measures, as inputs to a NN for workload state
classification, and to use the output of the model as a basis for triggering dynamic
control allocations in an adaptive system. It is desirable for real-world applications
of adaptive systems to identify a small, but powerful, set of variables, like HR and
secondary task performance (Kaber & Riley, 1999), that can be easily captured for
input into a NN classification tool during pilot or controller performance to accel-
erate prediction of workload states. This may also promote system responsiveness
in applying AA. Of course, the accuracy of workload state prediction is critical as
well, and novel combinations of simple physiological and secondary task perfor-
mance measures may prove useful relative to complex EEG-based approaches.
From an applications perspective, measurement implementation and accuracy is-
sues may need to be considered tantamount.

With these research needs in mind, the objectives of the present project were to
(a) develop an artificial NN for classifying operator functional states in an ATC-re-
lated task simulation on the basis of cardiovascular activity and secondary task
performance data; (b) train the network for classifying operator states in terms of
levels of workload in the ATC task (given specific modes of automation); (c) vali-
date the network; and (d) make assessment of the potential utility of the NN for
driving AA in the simulation under different modes of automation. We sought to
quantify the differential effectiveness of the NN tool for workload classification,
depending on the ATC IP functions to which automation is applied.

As a first step, an experiment was conducted to generate a data set for use in
training and validating the NN to classify operator workload in the ATC simula-
tion. We assessed the effects of static automation of various ATC IP functions on
operator performance and workload using a battery of measures. An ancillary goal
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of the experiment was to validate heart measures as reliable indicators of mental
workload in the specific task by comparing HR and HRV to the secondary task,
and subjective measures of workload across different ATC workload settings
(numbers of aircraft). Some prior research (e.g., Jorna, 1992) has found HRV (par-
ticularly the midband frequency) to be sensitive to cognitive load manipulations.
Other work has proposed that HR may be more of a global measure of load (Wilson
et al., 2000) reflecting both physical and mental demands. On the contrary, re-
search (Scerbo et al., 2001) reviewing a large body of evidence on the efficacy of
psychophysiological measures for implementing AA has concluded that HR may
be more diagnostic than HRV. Our own review of the literature has lead to the same
conclusion.

METHOD

Tasks

The Multitask© Simulation (North Carolina State University, Raleigh, NC) is a
PC-based simulation of an ATC-related task developed for studying workload-
matched AA of various IP functions (see, e.g., Clamann, Wright, & Kaber, 2002).
The task display (presented in Figure 1) includes a radarscope, an aircraft data box,
a command and control box, an automation status box, and a menu bar. Near the
center of the radarscope are two airports. During simulation run time, aircraft
(white triangular icons) appear toward the perimeter of the display on one of eight
approach trajectories and move toward one of the airports, destined for one of the
two runways at an airport. The objective of the controller is to contact aircraft and
make any necessary changes to preexisting clearances (based on their potential to
cause a trajectory conflict) while maintaining landing efficiency.

The simulation is capable of operating under one of the following five modes of
control:

1. Manual control. No automated assistance is provided to controllers. They
must establish a communication link with each aircraft; query (virtual) pilots for
aircraft flight information; decide whether to issue a revised clearance (e.g., reduce
speed, hold, change runway); and implement the clearance using various interface
controls.

2. Information acquisition automation. A scan line rotates around the radar dis-
play. As it passes over an aircraft icon, a trajectory projection aid (TPA) for that air-
craft is presented for 2 sec. The TPA shows the aircraft destination and route, as
well as its speed and destination airport and runway identifiers. The automation as-
sists operators with acquisition of data on aircraft that would otherwise come from
communication with pilots under manual control.
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3. Information analysis automation. Information on each aircraft on the radar-
scope is displayed in a table, including the aircraft’s call sign, destination airport,
destination runway, speed, and distance from the airport. An additional column
presents the call signs of aircraft that are in conflict with each other. This form of
automation assists operators with integration of aircraft information they would
otherwise need to gather using working memory to make clearance revision deci-
sions.

4. Decision-making automation. In addition to the conflict alerting capability
provided under the information analysis mode, recommendations for conflict reso-
lution are provided. Information on conflicting aircraft, the recommended clear-
ance change, and which aircraft to advise of the change are displayed in the auto-
mation aid box as part of the Multitask interface. This form of automation assists
operators with decision and response selection aspects of the task. It gives them
some idea of what might be the most important actions to take to prevent colli-
sions, but this advice only comes after conflicts have been detected.

5. Action implementation automation. This form of automation simulates the
handoff of aircraft control from approach control to local-tower control, and the
tower automatically maintains full responsibility for aircraft within 20 nm of the
center of the radarscope. This type of automation prevents any conflicts after
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handoff to tower control. It assists operators with the requirement of response exe-
cution as part of the ATC simulation. Operators do not need to monitor aircraft on
final approach or make last-minute clearance revisions.

Performance in the Multitask simulation was measured in terms of the number
of aircraft cleared, the number of trajectory conflicts, and actual collisions. Work-
load in the task was measured using a battery of objective and subjective responses
discussed in the following sections.

In our experiment, at the same time participants performed the Multitask simu-
lation, they also performed a gauge-monitoring task to serve as an objective index
of workload in the ATC task. The gauge task included a fixed-scale, moving
pointer display with a central acceptable region bordered on either side by two un-
acceptable regions. The user’s goal was to detect and correct pointer deviations
into either unacceptable region by using a keyboard. Gauge task performance was
recorded as a hit-to-signal ratio (the number of unacceptable pointer deviations de-
tected/the total number of deviations).

Participants

Twenty-five participants were recruited for the experiment. All were required to
have 20/20, or corrected to normal, vision, to be physically fit (a body mass index
less than 29), and to have personal computer experience. Additionally, all partici-
pants were required to be between the ages of 18 and 23 to limit substantial varia-
tions in heart function due to age. Participants were compensated at a rate of $7.50
per hr for their participation. According to physiological experiment procedures
defined by Jorna (1992) and Porges and Byrne (1992), the participants were asked
to refrain from smoking and taking caffeine for at least 1 hr preceding their experi-
mental session.

Experimental Design and Dependent Measures

A mixed factorial design was used with the five levels of ATC task automation
(LOAs) manipulated as a between-subject variable. The participants were ran-
domly assigned to one of the modes, including completely manual control, infor-
mation acquisition automation, information analysis automation, decision-making
automation, or action implementation automation, to form five groups of five per-
sons. Each participant trained on the ATC task for 20 min under the manual control
setting. This was followed by training under the assigned mode of automation for
15 min. Participants then practiced the gauge-monitoring task for 5 min., followed
by dual-task practice, under a low workload condition, lasting for 30 min. Our
training trial times were based on the procedures of prior research (Endsley &
Kaber, 1999) yielding Multitask performance data absent of learning effects. Dur-
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ing experimental testing, the ATC task traffic volume (LOAD) was manipulated as
a within-subjects variable with two levels, low and high. All participants com-
pleted a 30-min trial under each LOAD condition. The order of presentation of
LOAD settings was balanced across all participants. Three aircraft appeared on the
display at any given time for the low load and seven aircraft appeared on the dis-
play for the high load. Each trial consisted of all automated minutes (if a partici-
pant was assigned to one of the four automated conditions) or all manual minutes
(if a participants was assigned to the manual control condition). There was no ad-
aptation of the automation to operator workload states or cycling between manual
and automated control modes because the objective was to quantify operator work-
load under the various LOAs and traffic volumes in terms of physiological re-
sponses and secondary task performance. This information was then to be used to
train the NN for classification of operator functional states under specific task cir-
cumstances.

In addition to gauge-monitoring performance serving as an indicator of work-
load, participant heart interbeat interval (IBI) was continuously measured during
trials. Data were collected using a Polar S810i Heart Rate Monitoring system (Po-
lar Electro Oy, Finland). A wristwatch (receiver) was integrated with a chest strap
containing an electrode (transmitter) to sense and record cardiac activity. The
watch communicated data from the electrodes to a PC via an infrared connection.
These data formed the basis for aggregate HR and HRV measures (low = 0.00–
0.04 Hz, mid = 0.04–0.15 Hz, and high = 0.15–0.4 Hz frequency band HRV). The
measures were calculated and filtered using the Polar Precision Performance Soft-
ware and Microsoft Excel. All performance and continuous workload variables
were averaged over 1-min periods for the duration of the 30-min trials. (The fixed
recording period for the secondary task, as coded in the software application, was 1
min and the period for averaging the IBI data was synchronized with the secondary
task.) Finally, the NASA-Task Load IndeX (NASA–TLX) was collected at the end
of each experimental trial, as a subjective measure of workload for validating the
heart measures (Hart & Staveland, 1988).

Three different baseline measures of HR were collected for each participant at
three different times using slightly different procedures, including one prior to ex-
periment trials, when participants were in a resting state; one prior to testing, when
participants had been instructed on the tasks and were asked to sit and watch the
displays; and one baseline measure after all experiment trials were completed. Of
these baselines, the HR measures collected after test trials produced the lowest
mean cardiac response and the observations on individual participants were more
stable than those recorded at the times of the other two baselines. Relevant to this,
Obrist (1981) and Turner and Carroll (1985) contended that, “immediately pre-
stress cardiovascular measurements” might be inappropriate for baseline measure-
ment purposes. For these reasons, only the postexperimental baseline HR mea-
surements were used for our analyses.
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Hypotheses

It was expected based on Perry, Segall, and Kaber’s (2005) research that specific
LOAs, including information acquisition and action implementation, would pro-
vide workload relief for operators, leading to primary and secondary task perfor-
mance increases, as compared to the information analysis and decision-making
modes. It was also expected that HR, HRV, and subjective workload measures
would be sensitive to the automation manipulations. In general, it was expected
that automation would significantly improve primary and secondary task perfor-
mance, as compared to manual control. Clamann et al. (2002) presented findings
that any form of AA of the Multitask simulation proved to be superior to manual
control.

With respect to the traffic volume manipulation, it was expected that all
workload and performance measures would be sensitive, with higher HR and
subjective workload under the high traffic volume, as well as lower primary and
secondary task performance and suppressed HRV for this condition, as com-
pared to the low-traffic condition. Our expectations for the cardiocirculatory
measures were based on similar findings in historical work (e.g., Veltman &
Gaillard, 1996) using a high-fidelity flight simulation. Based on Scerbo et al.
(2001), we did expect the simple HR measure to be more diagnostic than HRV
measures.

In regard to the interaction of the automation and workload manipulations, it
was expected that automation conditions providing assistance with psychomotor
behaviors, including information acquisition and action implementation, would be
the most effective in terms of supporting controllers in dealing with the high traffic
volume. However, previous research did not provide insight into the sensitivity of
ATC performance and workload measures to this type of interaction.

RESULTS

Secondary Task (Gauge-Monitoring) Performance

Analysis of variance (ANOVA) results on gauge-monitoring performance revealed
a significant effect of the primary task LOAD manipulation, F(1, 20) = 47.63, p <
.0001, and LOA manipulation, F(4, 20) = 5.74, p = .0030. The mean hit-to-signal
ratios for the low and high traffic loads were 0.88 and 0.72, respectively. Duncan’s
Multiple Range (MR) tests on the LOA effect revealed that action implementation
automation (mean hit-to-signal ratio = 0.86) led to significant reductions in work-
load (increases in gauge performance) (p < .05) compared to the information anal-
ysis mode of automation (M = 0.73). There was no significant interaction effect of
the LOA and LOAD manipulations.
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Physiological and Subjective Workload Measures

ANOVA results indicated the increase in HR (beats per minute) from baseline
measurement to test trials was significantly affected by the LOA manipulation,
F(4, 20) = 7.81, p = .0006. However, counter to our expectation based on Scerbo et
al. (2001), neither the traffic load manipulation nor the interaction of the LOA and
LOAD settings proved to be significant in effect.

Figure 2 presents a graph of the increase in HR during test trials from the
postexperiment baseline for each mode of automation and the manual condition
under the low- and high-load conditions. (The interaction plot is presented to also
allow for inspection of the data relative to the lack of a LOAD main effect. The
means are presented in conventional physiological units.) As can be seen in the
plot, the response for information acquisition and action implementation automa-
tion was surprisingly higher across both traffic volume settings than all other
modes of control. Contrary to our hypothesis, Duncan’s MR test on the LOA effect
on increase in HR confirmed that information acquisition and action implementa-
tion automation, providing assistance with psychomotor subtasks in the ATC sim-
ulation, produced significantly higher HR responses (p < .05) than decision mak-
ing, information analysis, and manual control.

The HRV measures recorded during the experiment did prove to be less sensi-
tive to the ATC automation manipulation than the simple HR measure. In agree-
ment with Scerbo et al. (2001), both the low-frequency and high-frequency bands
of HRV lacked sensitivity in terms of discriminating one mode of ATC task auto-
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mation from another, or manual control. Furthermore, these frequency bands were
not sensitive to the traffic volume manipulations. However, in line with Jorna’s
(1992) research, the power for the midfrequency band HRV response did prove to
be marginally sensitive to the LOA manipulation, F(4, 20) = 2.68, p = .0612, but
not to the LOAD setting. Duncan’s MR tests revealed that the change in HRV
(msec2) under decision-making automation from the postexperiment baseline (M
= .0141 [increase]) was significantly greater than for all other modes of automation
(information acquisition = .0074 [decrease]; information analysis = .0071 [de-
crease]; action implementation = .0076 [decrease]) and manual control (M = .0064
[increase]). The interaction of the LOA and LOAD manipulations did not prove to
be significant for any band of HRV.

The ANOVA results on the overall NASA–TLX workload measure revealed a
significant effect of the traffic volume (LOAD) manipulation, F(1, 20) = 177.37, p
< .0001, with the high volume (M rating = 60.6) perceived as significantly more
difficult than the low volume (M = 35.5). The LOA setting and the interaction of
LOA and LOAD did not prove to be significant.

ATC Task Performance Measures

ANOVA results on the ATC task simulation performance revealed a significant ef-
fect of traffic volume (LOAD) on the number of aircraft cleared, F(1, 18) = 329.38,
p < .0001, and the number of conflicts, F(1, 18) = 47.08, p < .0001. Mean aircraft
cleared for low and high workloads were 5.2 and 10.9 per trial, respectively. Mean
conflicts for low and high workloads were 0.9 and 7.2 per trial, respectively. Air-
craft collisions were significantly influenced by the level of ATC task automation
(LOA), F(4, 18) = 3.47, p = .0286. Condition means included: manual control =
0.3/trial, information acquisition = 0.4, information analysis = 0; decision making
= 0.1; and action implementation = 0.2. Duncan’s MR tests revealed the informa-
tion acquisition mode of automation to produce significantly worse performance
(p < .05), compared to information analysis and decision making. Information ac-
quisition also did not prove to be superior to manual control (p > .05) in terms of
preventing aircraft collisions, nor did the other modes of automation. There was no
significant interaction of the LOA and LOAD manipulations on any of the ATC
performance measures.

DISCUSSION OF EXPERIMENT

Our results on workload in the ATC task simulation revealed agreement among the
secondary task performance measure and subjective ratings of cognitive load. The
high-traffic setting was perceived to be much more difficult. As more aircraft ap-
peared on the display screen and required greater visual attention and participant
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working memory, this may have increased mental and temporal stress, leading to
higher NASA–TLX ratings. Regarding the secondary task measure, there was also
evidence supporting our contention that specific modes of automation in the
ATC-related task would lead to workload relief. However, it was not apparent that
action implementation (or information acquisition automation) led to greater
gauge performance specifically under the high-traffic condition, as compared to
the other LOAs.

We also investigated the use of cardio measures for cognitive workload assess-
ment because of the practicality of implementation for data collection and conflict-
ing results of historical studies (Scerbo et al., 2001; Veltman & Gaillard, 1996).
However, there appeared to be limited sensitivity of the HR and HRV responses.
Although participants perceived significant differences among traffic conditions,
the heart measures did not confirm this. Our HR measure proved to be more diag-
nostic in terms of indicating differences among the LOA conditions than the HRV
measures. This may be attributable to the specific characteristics of the automation
conditions, including assistance with psychomotor versus cognitive task perfor-
mance. Those modes of automation providing forms of decision aiding signifi-
cantly reduced higher order cognitive processing and led to decreases in HR. The
result on midband HRV also indicated decision aiding reduced cognitive load and
led to an increase in HRV power. In general, the limited sensitivity of the HRV
measure across frequency bands is in agreement with prior NN research (Wilson &
Russell, 2003b) demonstrating limited accuracy of networks for predicting human
workload based on ECG data. Through comparison of the pattern of results on the
HR and HRV measures with those on secondary task performance and subjective
ratings of workload, we concluded that the heart measures were less reliable indica-
tors of cognitive load, particularly in terms of the air traffic volume manipulation.

The results on ATC task performance were logical, as the greater the number of
vehicles in a sector, the greater the likelihood of conflicts. In agreement with our
hypothesis, it was easier for participants to prevent conflicts under the lower traffic
load condition. Based on the ANOVA results, there was support for our hypothesis
that the various forms of ATC task automation would lead to differences in primary
task performance. We expected that greater degrees of information aiding would
lead to improvements in performance, including collision prevention. In line with
the HRV results, it appeared that decision-making automation (and information
analysis automation) supported operator performance in terms of addressing po-
tential conflicts and preventing collisions. These modes of automation provided
participants with warnings of conflicts and recommendations for how to deal with
them, unlike the information acquisition mode.

With respect to the next step in our research, the experiment allowed us to de-
velop a data set on a battery of objective and subjective measures of simulated ATC
task workload and performance under various forms of automation and traffic vol-
umes. The data set was considered to be sufficient in terms of the resolution of the
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response measures and number of observations for the development of a NN solu-
tion for classification of operator functional states. We investigated NNs because
of the capability to develop models based on data unconstrained by rigid statistical
assumptions, such as those associated with ANOVAs and regression models.

DEVELOPMENT OF A FUNCTIONAL STATE
CLASSIFICATION TOOL

The objective of the NN model development was to create an operator functional
state classification tool that would determine when manual control of the ATC task
should be allocated to operators in the case of low-workload states (reduced task
engagement) under all forms of automation, or when automation should be in-
voked in the case of high-workload states under manual control. In the context of
the model, a low-workload classification represented the experimental condition
in which participants were required to manage three aircraft at any time, and a
high-workload classification represented the experiment condition in which oper-
ators were presented with seven aircraft.

We initially used multiple linear regression for selection of input variables for
the NN (see Chen, Kaber, & Dempsey, 2000, for a detailed example) among all
workload measures recorded during the ATC simulation. We sought to investigate
only those predictors that appeared to be significant in explaining objective work-
load states as inputs to the NN models. Results revealed both the secondary task
performance measure and the change in HR from baseline to be significant predic-
tors of actual controller workloads at an alpha criterion of .05. (None of the HRV
measures proved to be significant, based on this analysis.) Consequently, these
variables were used as inputs to all candidate NN models for classification of oper-
ator workload states across LOAs and traffic volumes. (It is important to note here
that additional regression models, including LOA as a predictor, were examined
and there appeared to be multicollinearity of LOA with the HR term in the models.
This suggested that the importance of the cardio measure in predicting operator
workload states may have been mediated by the LOA manipulation.) Subsequent
to the input variable selection, we used part of the physiological and secondary
task performance data to train the network for classifying controller states in terms
of actual levels of workload (the traffic volumes). Finally, we attempted to validate
the network for use in real-time prediction of workload states by using another por-
tion of the experimental data set (not used in the training process).

Based on the experimental data, a single network output node was used for clas-
sification of workload as low or high. The network included HR or secondary task
performance as inputs. A number of candidate networks were initially created and
trained using NeuroSolutions© software (NeuroDimension Inc., Gainesville, FL).
These candidates included networks in which inputs represented aggregate mea-
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sures over each minute of the 30-min trials, as well as networks where inputs were
aggregated over larger periods of time (2 min, 3 min, and 5 min) to investigate the
potential for longer term trends in the data. In all cases, the networks were trained
with 80% of the data for all participants, with the remaining 20% set aside for vali-
dation and testing. Genetic optimization (the Neural Expert module of the Neural
Solutions© package) was used to determine the optimal number of hidden network
layers, processing elements (PEs) in each layer, the network step size in processing
data, and the front- and back-side momentums for each PE in a hidden layer.

Results of Neural Network Development

Initially, NNs with only one input were developed with data on either secondary
task performance or HR being used to predict workload states. The predictive ac-
curacy of the NN with the HR input ranged from approximately 39% to 53% for
low- and high-workload states, respectively. The best candidate NN with second-
ary task performance as an input yielded prediction accuracies between 64% and
59% for low and high workload, respectively. As one might expect, based on the
regression analysis, the predictive accuracies of the models were less than those for
the best dual-input NN.

Table 1 presents the common confusion matrix (Johnson & Wichern, 1992) for
the training performance of the dual-input NN producing the highest predictive ac-
curacies among all candidate networks, ranging from approximately 66% for the
low-traffic condition down to 59% for the high-traffic load. As a result of the ge-
netic optimization procedure, two hidden neuron layers containing two and three
PEs characterized this network. The front- and back-side learning momentums for
the PEs across layers ranged from .70 to .86. The validation results for this network
were close to the training performance, with approximately 70% network accuracy
in predicting high-workload states and roughly 60% accuracy in predicting low-
workload states.

Based on the preceding NN results, and the multiple regression analysis, we
were concerned that the predictive accuracies of the NNs might be limited by sig-
nificant individual differences in physiological responses among the participant
groups used in the experiment, or among the forms of primary task automation. Al-
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TABLE 1
Confusion Matrix for Best Dual-Input NN

Predicted Workload

Actual Workload Low High

Low 63.74 36.26
High 41.13 58.87



though the cardio measure used as an input in our NN models was a relative mea-
sure (i.e., the difference between the test HR and baseline readings), it is possible
that between-group variability was substantially greater than within groups. With
this in mind, the experimental data set was parsed (with observations on HR and
secondary task performance aggregated over 1-min periods) into five subsets, with
each subset including only the observations on one LOA. Data sets were created
with physiological responses and secondary task performance observations for in-
formation acquisition, information analysis, decision making, and action imple-
mentation automation, as well as manual control, of the ATC task simulation. The
data sets were then used to train and test additional NNs to predict operator work-
load states under each specific mode of automation. This approach also allowed us
to address the objective of determining the sensitivity of the various workload
measures for revealing fluctuations under specific LOAs, and whether there was
differential effectiveness of our NN model depending on the automation condi-
tions.

The inputs for the LOA-specific NNs still consisted of HR and secondary task
performance. As in the previous network development, 80% of the experiment
data were used for training and 20% for validation and testing. With respect to op-
timization of the architecture, all candidate networks were defined based on the re-
sults of the genetic optimization routine used in the prior model development step,
with two hidden neuron layers containing two and three PEs, and front- and
back-side learning momentums for the PEs ranging from .70 to .86.

Table 2 presents a summary of the prediction accuracies for each LOA and
manual control in the validation step.
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TABLE 2
Neural Network Validation Performance in Classifying Workload (Number

of Aircraft) Under Each LOA

Primary Task LOA

Predicted

Actual 3 7

Manual 3 63.15 36.84
7 26.82 73.17

Information acquisition 3 55.55 44.44
7 50.00 50.00

Information analysis 3 47.05 52.94
7 59.52 40.47

Decision making 3 52.63 47.36
7 58.53 41.46

Action implementation 3 52.63 47.36
7 21.95 78.04



In general, several of the models produced higher prediction accuracies in
high-workload state classification than the NN developed for workload prediction
across all LOAs. Specifically, the networks for manual control and action imple-
mentation produced high workload classification accuracies between 73% and
78%. However, the accuracies of these networks in classifying low-workload
states was relatively poor, ranging from as low as 47% for the information analysis
mode of automation to about 63% for the manual control mode. These results are
interesting because the classification accuracies support the notion of differential
effectiveness of the workload measures for operator state classification under dif-
ferent modes of automation. More specifically, it appears that the simple HR mea-
sure and secondary task performance measure may have greater utility for estab-
lishing operator workload states under manual control or forms of automation in
which computer assistance is provided with lower order psychomotor functions, as
compared to networks for predicting operator states under information analysis or
decision-making automation.

Discussion of NN Results

Wilson and Russell (2003b) used a NN for operator workload classification in the
MAT–B under two levels of difficulty by considering several peripheral physiolog-
ical variables, including HR, eye blinks, and respiration interval as inputs. Their
classification accuracies are very similar to our results, with values ranging from
43.8% to 64.9%, using the three physiological inputs. We reported accuracies from
59% to 66% for an optimized network predicting controller workload based on HR
and secondary task performance measures across various forms of simulated ATC
task automation. We also observed workload classification accuracies of 47% to
78% for NNs developed based on data for specific modes of ATC task automation.
We believe the similarity of these results among studies suggests that the simple
HR measure (alone), or HR in combination with only a small number of other per-
formance or physiological measures, may not be sensitive enough to indicate vary-
ing levels of operator workload in ATC tasks. Our results suggest that a small range
of cardiocirculatory response may be sufficient for operators to deal with the vari-
ous forms of ATC automation presented during the experiment, and that changes in
HR induced by traffic volume manipulations may be even less pronounced. Our re-
sults support the contention that HR may be a more “global” measure of cognitive
demand (Russell & Wilson, 1998), as compared to a well-designed secondary task
or central physiological measures of workload (e.g., EEG).

These observations agree with other historical findings on cardiocirculatory
measures of ATC workload under various task load conditions (Brookings, Wil-
son, & Swain, 1996; Costa, 1993). These studies also pointed to a lack of sensitiv-
ity of HR and HRV measures of real and simulated workload in ATC operations. In
this study, the secondary task performance measure was more sensitive than the
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cardiac measures to ATC task load manipulations and was the most important in-
put in the NN models for predicting actual workload states.

CONCLUSIONS

In general, the cardio measures we examined as workload indexes appeared to be
limited in sensitivity for discriminating among the use of information acquisition,
information analysis, decision making, and action implementation automation in
the experimental ATC task or low and high air traffic volume conditions. By ex-
tending the investigation to examine the use of NNs to model nonlinear associa-
tions of physiological responses with actual ATC workload conditions, our conclu-
sion was that heart measures, although highly practical and relatively easy to
collect, would not be sufficient bases for accurate and reliable classification of op-
erator states and triggering dynamic allocations in adaptive systems. These find-
ings may have applicability to real-world ATC tasks as the simulation used in this
experiment was more realistic in representation of air traffic approach control op-
erations than prior laboratory simulations used to study NN-based approaches to
triggering AA in complex systems control.

Through the NN development effort, the effectiveness of using a combination of
different classes of human metrics as inputs to networks for controller workload
state classification was studied. The resulting NNs yielded classification accuracies
comparable to previous networks developed for simulated piloting tasks using in-
puts, including HR, EOG, and respiration measures. However, the prediction accu-
raciesof thenetworks in this studywerenotasgoodas those forpriorNNsdeveloped
to classify air traffic controller workload states using numerous EEG signal inputs
(Russell & Wilson, 1998; Wilson & Russell, 2003a). There appears to be a trade-off
between NN classification accuracy and the practicality of implementation of the
physiological measurement approaches leading to useful NN inputs. Russell and
Wilson’s (1998) average NN classification tool accuracy was ~83% when they used
between 8 and 88 physiological variables as inputs (specifically EEG signals). In
general, our combination of secondary task performance and physiology-based
measures of workload, which had not been previously explored, was not as effective
for producing an accurate NN-based workload state classifier as developing net-
works trained based on one general type of input, such as EEG signals.

Through our NN development, the differential effectiveness of using network
models for operator workload state classification for different modes of ATC auto-
mation was also established. The classification accuracies of networks trained on
data on controller performance under automation of psychomotor functions and
manual control of the ATC simulation for both low and high traffic volumes were
higher than those for networks when automation was applied to information analy-
sis and decision functions. It may be possible that the NN inputs investigated were
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more sensitive to operator workload changes in terms of psychomotor task perfor-
mance versus cognitive task performance. This is an important new finding as it
may be critical to carefully consider the types of workload measures for use with
specific forms of automation in attempting to do real-time operator state classifica-
tion in augmented cognitive systems of the future.

One caveat of this study is that in the experiment we did not recruit actual air
traffic controllers. We studied trained university students. It is possible that the
stress response of the student participants in operating the Multitask simulation
may not have approached that of actual controllers in approach control, who are
concerned with the potential for loss of life due to aircraft collisions or the impact
of the occurrence of aircraft trajectory conflicts on their careers.

Related to this, the Multitask simulation is only a limited fidelity representation
of air traffic approach control. There are a number of features that the simulation
lacks with respect to the actual real-world task. Specifically, in this study, partici-
pants were not responsible for providing aircraft with altitude clearances. They
were constrained to managing potential trajectory conflicts through other clear-
ances, including speed changes, holds, and redirects or airport changes.

One interesting direction for future research would be to consider the use of sec-
ondary task indicators of workload in combination with other physiological re-
sponses that have proved to be highly sensitive to changes in operator arousal
states in complex systems control. Substantial work has demonstrated the effec-
tiveness of, for example, EEG indexes of arousal as a basis for facilitating dynamic
function allocation in laboratory simulations of adaptive systems (Wilson & Rus-
sell, 2003a, 2003b). It would be interesting to explore combinations of EEG-based
measures of cognitive state and secondary task performance measures as inputs to
an NN workload classification tool for use in adaptive system control.
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