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One of the most fundamental properties that single-server multi-class service systems may possess is the 
property of work conservation. Under certain restrictions, the work conservation property gives rise to a 
conservation law for mean waiting times, i.e., a linear relation between the mean waiting times of the vari
ous classes of customers. This paper is devoted to single-server multi-class service systems in which work 
conservation is violated in the sense that the server's activities may be interrupted although work is still 
present. For a large/class of such systems with interruptions, a decomposition of the amount of work into 
two independent components is obtained; one of these components is the amount of work in the 
corresponding system without interruptions. The work decomposition gives rise to a (pseudo)conservation 
law for mean waiting times, just as work conservation did for the system without interruptions. 
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1. INTRODUCTION 

One of the most fundamental properties that single-server multi-class service systems may possess is 
the property of work conservation. Suppose that the server serves at constant rate, and that he serves 
if and only if at least one customer is present. Also suppose that the scheduling discipline, the pro
cedure for deciding which customer(s) should be in service at any time, has the following property: it 
does not affect the amount of service given to a customer, or the arrival time of any customer. Then 
a sample path consideration shows that the amount of work in the system is the same, whatever 
scheduling discipline with the above-mentioned property is chosen. A pleasant consequence is that the 
analysis of the workload process in some system with complex priority structure can be reduced to the 
analysis of the workload process in a system with a more convenient scheduling discipline, like FCFS 
or LCFS. 

Heyman and Sobel [27, p. 383) use the term.'system properties' for such properties as work conser
vation, Little's theorem, and 'Poisson arrivals see time averages' (PASTA): they are global properties, 
shared by a large number of specific models. These system properties are mostly based on sample 
path observations. They can be used in structured models to obtain more specific conclusions. For 
example, under certain assumptions the mean workload of a particular class of customers can be 
expressed in the mean number of those customers, and then, via Little's theorem, in their mean 
sojourn time. Thus the principle of work conservation may lead to the so-called conservation law, 
which states a certain linear relation between the mean waiting (or sojourn) times of customers of all 
classes in a single-server, multi-class service system: 
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N 

~PnEWn = C; (1.1) 
n=I 

here Pn and EW n are the traffic load and mean waiting time of class n customers, and C is a function 
of the traffic characteristics of the system but not of the scheduling discipline. The implication of the 
conservation law is that, if a change in the scheduling discipline causes one of the mean waiting times 
to decrease, this must happen at the expense of other mean waiting times. 

It should be noted that Little's theorem L=l\W, PASTA and the conservation law have in common 
that they relate a time average and a customer average. For thorough discussions of these system 
properties and their interrelations we refer to Chapter 11 of Heyman and Sobel [27], and to the fun
damental papers of Brumelle [10] and Wolff [49]. In particular, Heyman and Sobel [27, p. 432] 
present a proof of the conservation law that is based on a generalization of L=l\W, viz. Brumelle's 
[10] formula H=l\G; here Hand G are respectively time and customer averages of quantities which 
bear a certain relationship to each other but are otherwise unspecified. 

The present paper is mainly devoted to single-server multi-class service systems in which the princi
ple of work conservation is violated in the sense that the service process may be interrupted although 
work is still present. A prime example is the 'polling' system in which the server visits the classes in 
cyclic order, requiring switchover times (interruptions) between classes. For such cyclic-service sys
tems, it has recently been shown [3] that, under the additional assumption of Poisson arrivals, a sim
ple work decompositioiyresult is valid: the amount of work in the system is distributed as the sum of 
two independent quantities, viz. (i) the amount of work in the corresponding system with identical 
traffic characteristics but without switchover times (hence with work conservation), and (ii) the amount 
of work in the original system at some epoch covered by a switching interval. 

The main purposes of the present paper are (i) to extend the validity of the decomposition result 
beyond cyclic-service systems with switchover times, and (ii) to explore the possibilities to derive a 
conservation law for mean ~waiting times in single-server multi-class systems with interruptions, hence 
without work conservation. Indeed, such a (pseudo)conservation law is shown to hold, under rather 
restrictive assumptions regarding the scheduling discipline and the interruption process (e.g., none of 
them should preempt a service in progress). We use the affix 'pseudo', because the resulting expres
sion for 2:N _ PnEWn (cf. (l.l)) now generally does depend on the scheduling discipline. 

The paper-fs organized in the following way. Section 2 is devoted to the concept of work. After a 
brief discussion of work conservation (§ 2.1 ), the above-mentioned work decomposition result is 
shown to hold for a rather general single-server multi-class system with interruptions of the service 
process(§ 2.2). (Pseudo)conservation laws for mean waiting times form the main topic of Section 3. 
First the classical conservation laws for mean sojourn and waiting times are reviewed (§ 3.1 ). Subse
quently the extension to systems with interruptions is made(§ 3.2), after which some special cases are 
considered for which the pseudoconservation law can be worked out in more detail: the cyclic-service 
system with switchover times (§ 3.3), a polling system with more general (not strictly cyclic) service 
order of the classes (§ 3.4), a polling system in which the server visits the classes according to a Mar
kov routing chain (§ 3.5), and a network with a single server in which both server and customers 
move from queue to queue (§ 3.6). . 

Conservation laws for mean waiting times serve several useful purposes. In many complex systems 
they are the only meaningful exact results that can be obtained. Thus they provide important qualita
tive insight into the behavior of such systems. They can also serve as a test for approximations, and 
be instrumental in constructing approximations for individual mean waiting times. Section 4 illus
trates the latter point. Section 5 presents some conclusions and a list of a few challenging open prob
lems in this area of queueing theory. 
· The paper partly has the character of a survey. Subsections 2.1 and 3.1, which respectively discuss 

the principle of work conservation and the conservation law for systems without interruptions, con
tain hardly any new material; for more fundamental discussions the reader is referred to the books of 
Gelenbe and Mitrani [22} and Heyman and Sobel [27]. These subsections mainly serve as introduction 
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to the Subsections 2.2 and 3.2, where the extension to systems with interruptions is made. Much of 
the material in the latter subsections is a generalization of results recently obtained for polling systems 
with cyclic service. A survey of the analysis of polling systems with cyclic service (without the particu
lar emphasis on conservation laws) is given by Takagi [45]. We also refer to Takagi [44,45] for exam
ples of polling systems from a wide range of computer-, communication- and production networks. 

Recently several decomposition results for queue lengths and for waiting times have been obtained 
for single-server queues with vacations of the server. A server vacation is also a form of interruption, 
and waiting time decomposition is clearly related to workload decomposition, in particular in the case 
of Poisson arrivals - who see time averages. The paper of Doshi [11] is an extensive survey of decom
position results for queueing systems with vacations. 

2. WORK 

This section is devoted to a discussion of the amount of work in a single-server service system with 
multiple classes of customers. The speed of the server is supposed to be constant. Assume, without 
loss of generality, that the speed of the server is 1. The amount of work in the system at time t is 
defined to be the sum of the remaining required service times of all customers who are present at that 
time. 

In Subsection 2.1 we consider the case in which no work is created or destroyed in the system, i.e., 
the server works as long as there is work and customers do not leave the system before their service 
has been completed. Next we tum to the case where work may be created in the sense that the ser
vice process may be interrupted although work is still present. In Subsection 2.2 it will be shown that, 
under mild assumptions, the work in system can be decomposed into the work in the corresponding 
system without such interruptions, plus an additional term. 

2.1. WORK CONSERVATION 

A scheduling discipline is a procedure for deciding which customer(s), if any, should be in service at 
any moment of time [22]. In single-server multi-class service systems there is a wide range of possible 
scheduling disciplines. The server, S, may serve all customers according to a global discipline like 
FCFS, LCFS, Processor Sharing or Shortest Remaining Processing Time First; or he may visit the 
classes in some order (fixed, or random, or following a static or dynamic priority rule) and serve cus
tomers within each class according to a global discipline - and this does not yet exhaust all possibili
ties. 

Following Heyman and Sobel [27, p. 418] we introduce, for multi-server multi-class service systems: 

DEFINITION 2.1 

A scheduling discipline is called work-conserving if 
(i) no server is free when at least one customer is waiting, and 
(ii) the discipline does not affect the amount of service time given to a customer or the arrival time of 

any customer. 

Definition 2.1 excludes the creation and destruction of work. In a single-server system, the work in 
the system obviously follows the same sample path for any work-conserving discipline. This is not 
true in multi-server systems, even if all servers have the same speed, unless assumption (i) in 
Definition 2.1 is changed into 'no server is free when at least one customer is present'. In the follow
ing we restrict ourself to single-server systems. 

Let vsD(t) denote the amount of work in a single-server multi-class system at time t for a schedul
ing discipline SD. Assume that the stochastic process {VSD(t),t;;;o.O} has an equilibrium distribution 
and let vsD denote a s.v. with distribution this equilibrium distribution. The above observation, that 
all work-conserving disciplines applied to a certain realization of the arrival and service demand 
processes lead to exactly the same realization of the work process, implies the following weaker state
ment which suffices for most purposes: 



4 

D 
ySD = yFCFS, 

(2.1) 
D 

where = stands for equality in distribution. 
Gelenbe and Mitrani [22, p. 174] present the work-conserving principle in terms of means, using the 

following formulation: 

For any single-server queueing system in equilibrium there exists a constant EV, determined only by the 
parameters of the arrival and service demand processes, such that 

EVSD = EV, 

for all work-conserving scheduling disciplines SD. 

Rewrite (2.2) as 

N 

~EV~D = EV, 
n=l 

(2.2) 

(2.3) 

where EV~D is the expected steady-state amount of work due to customers of class n (the sum of the 
expected remaining service times of all class n customers in the system at a random epoch in the 
steady state). The implication is [22] that the vector (EVfD, ... , EV!jf) always varies with the 
scheduling discipline in ,,such a way that the sum of its elements remains constant. 

Under certain assumptions concerning the scheduling discipline and the arrival and service demand 
processes, the mean amount of work due to class n can be expressed in the mean number of class n 
customers in the system and hence, via Little's theorem, in the mean sojourn time of class n custo
mers. Therefore (2.3) might lead to a relation between the various sojourn times. We turn to this 
topic in Section 3. First we investigate, in Subsection 2.2, the extent to which the fundamental pro
perty (2.1) can be generalized when the work-conserving property is violated by allowing a specific 
form of work creation. 

2.2. WORK DECOMPOSITION 

Again consider the single-server multi-class service system, but extend the set of states in which server 
S can be from {jree,serving} to {free,interrupted,serving }. S is in the state 'interrupted' when he is 
not serving customers although at least one customer is in the queue; he is in the state 'free' i1f there 
are no customers present. Generally, we shall lump the states 'free' and 'interrupted' into the state 
'non-serving'. Interruptions may occur in various forms: 

the server takes a vacation; 
the server requires switchover times between classes, or between customers, or even between ser
vice intervals of one and the same customer; 
the server experiences a breakdown. 

Accordingly, the process of service interruptions is a stochastic process which may be intricately 
interwoven with the arrival and service processes and the scheduling discipline. 

Interruptions destroy the work-conserving property of the system; in Kleinrock's terminology [32], 
work is created when interruptions take place.· To be still able to make general and useful statements 
about the work in the system, we restrict the generality of the arrival process: in the following we con
sider a batch Poisson arrival process with a correlation structure, as introduced in Levy and Sidi [36) 
in their recent study of cyclic polling systems. This arrival process is defined below. 

DEFINITION 2.2 
Arrival epochs occur according to a Poisson process with rate A. At each arrival epoch, batches of 
size K=(K1, ••. ,KN) of customers of the classes 1, ... ,N arrive with some arbitrary joint batch size distri
bution. The elements of the vector K are assumed to have the same joint distribution at each arrival 
epoch, and this distribution is independent of previous or future arrival epochs. The arrival rate of 
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customers of class n is denoted by An : = A.EK,,. Finally 

Kn,n : = EK~ - EK,,, Km,n : = EKmK,,, m=/=n. (2.4) 

Note that this arrival process offers the possibility to model the synchronization of several arrival 
streams. 

Let vsn,1(t) denote the amount of work in the system at time t for a scheduling discipline SD and 
interruption process I. We introduce the following 

ASSUMPTION 2.1 
l. The stochastic process {VSDJ(t),t ;;a>O} possesses an equilibrium distribution. 
2. The scheduling discipline SD is work-conserving. 
3. The interruption process does not affect the amount of service time given to a customer or the 

arrival time of any customer. 
4. The arrival process is the Poisson process introduced in Definition 2.2. 

It should be noted that the third assumption does not exclude the possibility that lengths of service 
interruptions depend on the class of customer whose service was interrupted, or the class of customer 
to be served next, or on numbers of customers being present. It is not accidental that the second and 
third assumptions put similar restrictions on the scheduling discipline and the interruption process: an 
interruption could also be viewed as the service of class N + l customers, which at the start of such an 
interruption have higher priority than all other customer classes, but whose work is not counted in 
VSD,l(t). 

From now on, we restrict ourself to the consideration of steady-state distributions (see also the first 
part of Assumption 2.1). V sD,1 denotes a s.v. with distribution the equilibrium distribution of 
{Vsn,1(t),t;;a>O}. In the sequel, the 'corresponding' M/G/l system indicates a single-server multi-class 
system with exactly the same arrival and service demand process and scheduling discipline as the sys
tem under consideration, but without service interruptions. According to (2.1), the amount of work in 
that corresponding M/G/l system is the same for all work-conserving scheduling disciplines. We 
denote the steady-state amount of work in that system by V. The main result of this section is the 
following work decomposition result: 

'THEOREM 2.1 
Consider a single-server multi-class service system under Assumption 2.1. The steady-state amount of 
work in the system, ysn,1, is distributed as the sum of the steady-state amount of work in the correspond
ing MIG! 1 system, V, and the steady-state amount of work, Y, present in the original system at a non
serving interval: 

D 
vsD,J = v + Y. (2.5) 

Furthermore, V and Y are independent. 

PROOF 

In [3] we have formulated and proved the same decomposition result for the special case of a cyclic 
polling system with single Poisson arrivals and switchover times (i.e., interruptions) of the server in 
moving from one class (queue) to the next on the cycle. That proof can almost literally be used in the 
present more general setting. To make the paper self-contained, we repeat the main line of the argu
ment below. 

In the proof we need the concepts of 'ancestral line' and 'offspring' of a customer (cf. Fuhrmann 
and Cooper [20]). Let CA be a customer who arrives during a non-serving interval. The customers 
who arrive during the service of CA are called the first generation offspring of CA. The customers who 
arrive during the service of customers of the first generation offspring are called the second generation 
offspring of CA, etc. The set of all customers who belong to the offspring of CA, including CA, is 
called the ancestral line of CA, and CA is called the ancestor of all customers in this ancestral line. 
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Adapting an idea of Fuhrmann and Cooper [20], we consider an M/G/l system With a last-come
first-served (LCFS) service discipline and with identically the same traffic process offered as the sys
tem with interruptions, in which the server takes vacations exactly during the non-serving periods of 
the system with interruptions. The LCFS discipline is assumed to be nonpreemptive, with one excep
tion: if a service is interrupted by a vacation, forced upon the LCFS system by the system with 
interruptions, and if during this vacation new customers arrive, then the interrupted service is 
resumed when all new customers (and offspring of these customers) have left. 

Now consider the system with interruptions at the arrival epoch of an arbitrary customer, say C. 
Obviously, the amounts of work in the system with interruptions and in the corresponding LCFS sys
tem with vacations are identical at any time, so we can concentrate on the amount of work in the 
LCFS system at a batch arrival epoch. Because of the 'Poisson arrivals see time averages' property 
[50], this amount of work has the same distribution as the steady-state amount of work. 

Cs ancestor is called CA. Note that C could be CA himself. By definition, CA has arrived during a 
non-serving period (or, in this LCFS case: a vacation). Another application of the PASTA property 
implies that the amount of work found by CA's batch upon arrival, Ye,, is distributed like Y. Note 
that, because of the LCFS service discipline, Ye, will still be present when C arrives. Also note that 
it is possible that other customers have arrived after CA 's batch, in the same non-serving period (vaca
tion). They do not belong to his ancestral line, they are served before CA and so are their offspring -
so they are of no interest to us. 

The rest of the work, present at Cs arrival epoch, is distributed as the amount of work in the 
corresponding M/G/l -System with batch arrivals, at an arrival (or arbitrary) epoch. Consider the 
epoch at which the service of CA's batch starts (see Fig. 2.1). Apart from Ye, no further work is 
present; and we ignore Y c,. The residual amount of work now evolves just as in the corresponding 
MIG/I system, with one exception: during the vacation periods, forced upon the LCFS system by the 
system with interruptions, the work remains constant or may increase because of new arrivals. But 
these new arrivals, and their offspring, are served first (and do not belong to the ancestral line of CA), 
and finally the work level 1s back again at the level immediately before the vacation started. Note 
that, due to the memoryless property, the arrival process also starts afresh and that, once more, only 
Ye, and work required by the offspring of CA's batch is present. 

i 
work 

service 

request 

of CA's 

batch 

ignored interval 

:N I I 

I 

~ 
I : I :~ 

................................................... ::·::::::::::::::.:·::::::: ... : .... ~ ........ . 

time -

Figure 2.1 
Amount of work in the LCFS system during service of the ancestral line of C 
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This reasoning shows that, at the arrival epoch of Cs batch, the amount of work present is com
posed of two independent parts: an amount of work Y c. that is distributed like Y, and an amount of 
work that is distributed like the amount of work in the corresponding M/G/l queue with batch 
arrivals. As observed above, the PASTA property implies that the amount of work present at the 
arrival epoch of Cs batch has the same distribution as the steady-state amount of work. 
This proves the theorem. 

REMARK 2.1 
For the case of the cyclic polling system with single Poisson arrivals and switchover times [3], B.T. 
Doshi kindly showed us a different proof of the decomposition result. That proof is based on a level 
crossing argument. We present it below; its extension to the present model is straightforward. 

Let>.. denote the rate of the Poisson arrival process. Let B(.) denote the service time distribution of 
an arbitrary customer (averaged over the classes), with mean f3 and Laplace-Stieltjes transform /3(.). 
The traffic intensity equals p : = >..p. Let V(.) and Y(.) denote the distributions of ysD,1 and Y in 
the cyclic system with switchover times. Assume for simplicity that their densities exist; denote them 
by v(.) and y(.), and denote the Laplace transforms of these densities by#_.) and 11(.). Equating the 
downcrossing and upcrossing rates of level x >0 yields: 

x 

v(x)-(1-~(x) = >.. J (1-B(x -y))v(y)c{y. 
0-

Combining this relation with 

v(O) = (1-p)y(O), 

and taking Laplace transforms leads to: 

#_s) = (l -p)11(s) + >..#_s) I -{3(s). 
s 

Hence 

Ms) = (I-p)s ( ) 
'I'"\ s->..+A{l(s) 11 s' 

which proves the decomposition into two independent components. The same argument has been 
used by Doshi in [11], p. 58, to give a new proof of another work decomposition result: a result of Ott 
[39] for a model with a single server and two customer classes, with class I customers arriving accord
ing to a Poisson process and class 2 customers arriving according to a very general process. 

REMARK 2.2 

The paper of Doshi [l l] mentioned above is a survey on queueing systems with vacations. It presents 
a beautiful methodological overview of decomposition results for queueing systems in which the server 
works on primary and secondary customers (vacations). The paper concentrates on (decompositions 
for) waiting time distributions. Doshi [12] cou.siders the decomposition of the steady-state amount of 
work in a single-server single-class system with vacations. The arrival process is allowed to be a 
semi-Markov process. The form of the work decomposition in [12] differs from ours in the sense that 
the vacations in [12] are considered as additional work. Another recent paper devoted to decomposi
tions for the M/G/l queue with vacations is Fuhrmann and Cooper [20]. Their study concentrates on 
queue length distributions (at departure epochs). The proof of Theorem 2.1 is based on an idea of 
[20]; but work decomposition appears to be more natural than queue length decomposition, and 
indeed our assumptions are less restrictive than those needed in [20]. In particular, when amounts of 
work are considered instead of queue lengths, Assumptions 3 and 4 of [20] may be replaced by the 
assumption that the service discipline is work-conserving. 
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REMARK 2.3 
In [4] we have formulated and proved a decomposition result for a cyclic polling system with switch
over times in a discrete-time setting. In this setting, time is divided into slots, and numbers of arrivals 
in successive slots are independent, identically distributed s.v. Letting the slot size tend to zero leads 
to continuous-time results, with batches arising in a natural way. One of the few subtleties required in 
proving Theorem 2.1 in discrete time is the replacement of the PASTA property by the BASTA pro
perty, 'Bernoulli Arrivals See Time Averages'; cf. [4] and [26]. 

3. CONSERVATION LAWS FOR MEAN SOJOURN AND WAITING TIMES 

As remarked at the end of § 2.1, under certain restrictions the mean amount of work due to custo
mers of class n can be related to the mean number of class n customers in the system, and hence also 
to the mean sojourn time of class n customers. Thus (2.3) leads to a relation between the various 
mean sojourn times, the prime performance measures in most service systems. Such a relation is some
times referred to as a conservation law (K.leinrock [30-32]). In § 3.1 a conservation law is presented 
for various examples of the single-server multi-class system without interruptions. In § 3.2 the same is 
done for the case with interruptions. In §§ 3.3-3.6 particular attention is paid to polling systems with 
either a fixed (e.g., cyclic) or random service order, and with switchover times. 

/ 
3.1. NO INTERRUPTIONS - A CONSERVATION LAW FOR MEAN SOJOURN AND WAITING TIMES 

Starting point is Relation (2.3): 

N 

~EV~D = EV. 
n=I 

This relation for mean aniounts of work is generally valid for single-server multi-class systems in 
equilibrium, with a work-conserving scheduling discipline. In order to go from here to mean sojourn 
times, and arrive at useful relations between them, one has to impose several restrictions. The discus
sion below is mainly based on Gelenbe and Mitrani [22]. Following [22, p. 175], we first introduce 

ASSUMPTION 3.1 

Only information about the current state and the past of the queueing process is used in making 
scheduling decisions; thus, it is possible to discriminate among customers on the basis of their 
expected remaining service times (since their classes and attained service are known), but not on the 
basis of exact remaining service times. 

The purpose of the restriction is to exclude scheduling disciplines, like Shortest Remaining Processing 
Time First, for which the mean service time of a customer, who is still present, differs from an arbi
trary mean service time. Further we introduce the following 

ASSUMPTION 3.2 
L Successive interarrival times of class n customers are independent, identically distributed s.v. with 

mean 111\n. 
2. Successive required service times of class n customers are independent, identically distributed s.v. 

with distribution Bn(.), with mean f3n and second moment {3~ 2 >, n = l,. .. ,N. 
3. The arrival processes and the service demand processes are independent stochastic processes. 

It will be seen later that this assumption is unnecessarily restrictive (cf. Schrage [41)). 
Denote the traffic intensity of class n by Pn = An/3n, n = I,. .. ,N, and the total traffic intensity by 

p = p1 + ... + PN < l. Under the above assumptions, mean amount of work can be easily related to 
mean numbers of customers, in the following two cases: (i) all required service times are exponentially 
distributed, and (ii) the scheduling discipline is nonpreemptive. 
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In case (i), 

EV~D = /JnEX~D, n =1, ... ,N, (3.1) 

with EX~D the mean number of class n customers in the system under scheduling discipline SD. 
In case (ii), 

/1(2) 
SD - /J -SD n 3 2) EV n - nEXn + Pn 2/3,, ' ( . 

with EX~D the mean number of waiting class n customers in the system under scheduling discipline 
SD (because SD is nonpreemptive, service of those customers has not yet been started), and with 
/3~ 2 ) I 2/3n the mean residual service time of a class n service in progress. 

In both cases, application of Little's formula leads to a conservation law. The results are formulated 
in the following theorem. In the sequel, ES~D (EW~D) denotes the mean sojourn (waiting) time of a 
class n customer, n = l, ... ,N, under scheduling discipline SD. 

THEOREM 3.1 
Consider a single-server multi-class service system with work-conserving scheduling discipline SD, under 
the Assumptions 3.1 and 3.2. 
(i) When the required service times are exponentially distributed there exists a constant EV, determined 
only by the interarrival time distributions and the mean service times, such that 

N / 
2; PnES~D = EV. (3.3) 

n=I 

(ii) When SD is nonpreemptive there exists a constant EV, determined only by the interarrival and service 
time distributions, such that 

N SD - ~ N /J~2) 
n ;PnESn - EV + n ;p,,(/3,. - 2/3n ), (3.4) 

and 

N J N 
"ii:"lp EWSD = EV - -"ii:"i)I. 13<2) 
~n n z~nn· 

n =I n =I 

(3.5) 

EV is generally unknown; in case (ii), it equals the - unknown - mean amount of work in the GI/G/1 
queue. When all arrival processes are independent Poisson processes, EV can be determined by con
sidering an M/G/l queue with SD = FCFS, in which all customer classes are lumped together into 
one customer class with arrival rate A=A.1 + ... +AN and service time distribution 2;(Anl A)BnO· The 
Pollaczek-Khintchine formula then yields in case (i): 

N 

EV = 2;Pn/3n 1(1-p), 
n=I 

and in case (ii): 

N 
EV = 2;A,,{3~ 2 ) /(2(1-p)). 

n=I 

(3.3)-(3.5) now reduce to simple explicit expressions for a weighted sum of mean sojourn (waiting) 
times. These expressions were first obtained by Kleinrock [30,31 ]. As observed by him, their implica
tion is that, if a change in the scheduling discipline causes one of the mean sojourn (waiting) times to 
decrease, this must happen at the expense of other mean sojourn (waiting) times. This justifies the use 
of the word conservation. Formula (3.5) for a general arrival process is due to Schrage [41]; Schrage 
in fact made no assumptions about independence of the interarrival times and of the service times, see 
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also [27, p. 432]. 
After having established that the mean sojourn times must satisfy a certain linear relation, Gelenbe 

and Mitrani [22] proceed to narrow the possibilities further by showing that a certain inequality con
straint holds for ~ PnESf,D, for all subsets g of {l, ... ,N}. To illustrate the concept we state their nEg 
Theorem 6.5 for case (ii): 

THEOREM 3.2 
In a'!Y N-class MIG/ 1 system in equilibrium, for every non-empty subset g of customer class indices, and 
for any work-conserving nonpreemptive scheduling discipline SD for which Assumption 3.1 holds, the mean 
sojourn times satis.fY the inequality 

~PnESf,D ~ ~ f)1.kf3~ 2 ) ~Pn !(I- .2:Pn) + .2:i\nf3~. (3.6) 
nEg k=I nEg nEg nEg 

Moreover, (3.6) becomes an equality if SD gives nonpreemptive priority tog-customers. 

The proof is based on the following considerations. In order to minimize 2: PnESf,D, the custo-
n Eg 

mers from g should receive nonpreemptive priority over the non-g customers. Now the sojourn time of 
a customer from g can only be influenced by non-g customers if he finds one of those in service. With 
Poisson arrivals, the probability of this event is not influenced by the scheduling strategy. This rea
soning implies that the minimal value of .2: PnESf,D can be obtained by lumping all customers ./. nEg 
from g into one class, all other customers into a second class, and giving head-of-the-line priority to 
the customers from g. The theorem now follows. 

Subsequently Gelenbe and Mitrani [22] present so-called characterization results, which state that 
all mean sojourn time vectors which satisfy the constraints, can indeed be realized by choosing a 
specific scheduling discipline. We omit discussion of this topic, but refer the reader to Chapter 6 of 
[22] for some interesting res1!1ts and further references. 

REMARK 3.1 
Heyman and Sobel [27, p. 432] extend (3.5) to a multi-server multi-class queue. For this extension 
they require that all customer classes have the same service time distribution. See also Lemma I of 
Federgruen and Groenevelt [16]. The latter authors subsequently extend Theorem 3.2 above to a 
multi-server queue. They show that the performance space, the set of mean waiting time vectors 
which are achievable under some nonpreemptive work-conserving scheduling discipline, is a 
polyhedron described by 2N - 1 inequalities. The special structure of this polyhedron allows for 
efficient (O(N2logN)) procedures to minimize any convex (separable) function of the vector of mean 
waiting times. 

REMARK 3.2 
A minor but interesting extension of case (ii) of Theorem 3.1 is the following. Consider a network of 
service stations Q 1 , ••• , QN. Customers of class n arrive at Qn; after having been served in Qn they 
move to some queue Qm with transition probability Pnm• n,m = 1, ... ,N, becoming class m customers, 

N 

etc. With probability 1- .2:Pnm• a class n cust?mer leaves the system. There is one server in the net-
m =I 

work, who moves from queue to queue. For the moment, we assume that switchover times of the 
server between queues are negligible (and we assume the same for customer switchover times). Each 
service is assumed to be nonpreemptive. The conditions given in case (ii) of Theorem 3.1 are 
satisfied; the extension lies in the fact that customers may change class. Formula (3.2) must be 
replaced by: 

VSD - -;SD f3 ~ ~ (k)/3 /3~ 2 ) ~ ~ (k)/3 
E n - EXn [ n + m 6;:lk 7::i.Pnm mJ + Pn[ 2/3n + m 6;:lk f;;{"m m], (3.7) 

with p~~ the k-step transition probability from Qn to Qm, and Pn the total traffic intensity of class n 



customers. 
Networks of queues with one single server arise in various models of computer-communication sys
tems. Klimov [34] has studied the problem of moving the server in such a way as to minimize some 
objective function. Foss [18] relaxes Klimov's assumption of Poisson arrivals. Several papers have 
been devoted to an exact queue-length analysis for the special case of tandem configurations with one 
moving server, cf. Nair [38], Taube-Netto [46] and the recent study of Katayama [28), to which we 
also refer for further references. 

3.2. INTERRUPTIONS - A PSEUDOCONSERVATION LAW FOR MEAN WAITING TIMES 

In this subsection we try to extend the conservation law results of the preceding subsection to the case 
with interruptions. Consider a single-server multi-class service system under the Assumption 2.1. 
Theorem 2.1 implies that 

N 
2,EV~DJ = EV + EY. (3.8) 

n=l 

EV is the mean amount of work in the corresponding M/G/1 system with batch arrival process as 
defined in Definition 2.2; viewing the batches as supercustomers, EV is also the mean amount of 
work in an M/G/ l system with single arrivals (with arrival rate A) and service time distribution the 
distribution of the total service time of a batch. In line with our earlier notation, individual service 
times of class n custome'rs have distribution Bn(.) with mean /3n and second moment /3~ 2 >; the arrival 
rate of class n customers is An = ABK,., with EK,. the mean batch size of class n arrivals; and 
Pn = An/3n, p = p1 + · · · +PN· Denoting the second moment of the service time of a supercustomer 
by b<2>, we can write [36]: 

N N N 
b(2) = 2, '2,/3m/3nKm,n + '2,/3~ 2 ) EK,., (3.9) 

and 

m=ln=I ~ 

Ab(2) 
EV= ---

2(1-p)" 

From (3.8) and (3.10), 

n =I 

N Ab(2) 
2,EV~n,1 = + EY. 

n=I 2(1-p) 

(3.10) 

(3.11) 

We are left with two problems. We have to relate EV~n,1 to ES~DJ (EW~DJ), the mean sojourn 
(waiting) time of a class n customer; and we have to determine EY, the mean amount of work present 
in some epoch covered by a non-serving interval. Solution of the first problem requires similar res
trictive assumptions as were made in § 3.1 for the case without interruptions. In particular, along with 
Assumption 3.1, we also impose: 

ASSUMPTION 3.3 
The interruption process uses only informatio'n about the current state and the past of the queueing 
process; thus, no information about exact remaining service times is used. 

Thus we exclude, e.g., the case that there is always an interruption when the residual service time of 
the customer in service equals d. 

One can now prove the following pseudoconservation laws, which are the counterparts of the con
servation laws in Theorem 3.1 (note the differences in the arrival processes): 

THEOREM 3.3 

Consider a single-server multi-class MIG/ 1 service system with scheduling discipline SD and interruption 
process I under the Assumptions 2.1, 3.1 and 3.3. 
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(i) If the required service times are exponentially distributed, then 

N SD,I - A!J(2) 
~PnESn - 2(l- ) + EY. 

n=I p 
(3.12) 

(ii) If the scheduling discipline and the interruption process are such that services are not preempted, then 
N A!J(2) N f3~2) 
~PnESsnD.I = + ""P ( 0 ) + EY (3 13) n-:-; 2(1 - p) n-:-; n /Jn - 2/3n ' . 

and 

(3.14) 

REMARK 3.3 
The reason for not allowing interruptions during a service time in case (ii) is the same as the one for 
not allowing preemptions by the scheduling discipline: we have to exclude that an arbitrary waiting 
customer already has received some service time. In case (i) the non-anticipating assumption 3.3 
suffices. 

REMARK 3.4 
With similar modificatioys as above, case (ii) can be extended to the Klimov network with a single 
server that was discussed in Remark 3.2. See also § 3.6 below. 

We now tum to the second problem that Equation (3.11) gave rise to, viz., the determination of EY. 
Since EV is completely independent of the scheduling discipline and interruption process, their whole 
influence on EVSDJ is concentrated in EY. Therefore we can hardly expect to make meaningful 
statements about EY without specifying the scheduling discipline and interruption process in detail. 

In the rest of this section~we concentrate on case (ii) of Theorem 3.3, while the only interruptions 
are switches of S between classes. § 3.3 is devoted to the case of cyclic service, i.e., S successively 
visits classes 1,2, .. .,N, 1,2, .. ., requiring switchover times between classes; in § 3.4 the cyclic order is 
generalized to an arbitrary fixed class visit order, and in § 3.5 to a random (in fact, Markovian) pol
ling order; finally in § 3.6 the Klimov network with a single server and switchover times of the server 
between classes (queues) is briefly considered. 

3.3. A PSEUDOCONSERVATION LAW FOR CYCLIC-SERVICE SYSTEMS 
Single-server multi-class service systems with cyclic service of the classes and switchover times fre
quently arise in the performance analysis of computer-communication networks. An important exam
ple is provided by local area networks with a token ring protocol. This example, along with several 
others, is discussed in more detail by Takagi [44); his study also contains a detailed analysis and 
extensive survey of cyclic-service models. 

In this subsection we are going to derive a pseudoconservation law for mean waiting times in a 
cyclic-service system, by working out an expression for EY in (3.14). The resulting pseudoconserva
tion law is an extension of the one in [3]. For some of the service strategies to be considered below, 
exact expressions for individual mean waiting times have been derived in the literature, usually as the 
solution of a large set of linear equations; for further details and references the reader is referred to 
the surveys of Takagi [44,45]. 

We still have to specify the switchover process. As we started from a very general model in Section 
2 and gradually restricted ourself more and more, it seems appropriate to give a concise 

Model description 

A single server S serves N classes of customers, or rather N queues Q 1, ••• , QN with infinite waiting 
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rooms, in cyclic order: Q1>Q2, · · · ,QN,Q 1,Q2, · · · . The switchover times of S between the nth 
and (n + l)th queue are independent, identically distributed s.v. with first moment sn and second 
moment s~ 2 l. The first moment of the total switchover time during a cycle of the server, s, is given by 
s = ~N _ 1 Sn; its second moment is denoted by s(2). When S finds a queue empty, he immediately 
begins u,-switch to the next queue. 
The arrival process of customers is the correlated Poisson process introduced in Definition 2.2. 
The service times of class n customers are independent, identically distributed s.v. with distribution 
Bn(.), with mean /3n and second moment /3~ 2 >. As before, the traffic intensities are denoted by p,,, 
n =1, ... ,N, and p = ~N_ 1 Pn· 
The interarrival, service" demand and switchover time processes are mutually independent, apart from 
the correlation between the sizes of simultaneously arriving batches (in fact, one might also relax the 
independence of successive switchover times). 

For the service strategies at the queues there are various possibilities, which differ in the numbers of 
customers who may be served in a queue during a visit of S to that queue. Before specifying a 
number of such strategies, let us see how far we can get from Theorem 3.3 with the above 
specification of the interruption (switchover) process. 

Assume that the queueing system under consideration is in equilibrium (the ergodicity conditions 
depend on the service strategies at the queues; obviously p< 1 is a necessary condition). The condi
tions of case (ii) of '91-eorem 3.3 are fulfilled, so (3.14) holds. To determine EY, we follow the 
approach in [3]. Denote by EYn the mean amount of work in the cyclic-service system at some epoch 
covered by a switchover from Qn to Qn + 1. So 

N Sn 
EY = ~-EYn. 

n=I S 
(3.15) 

EY,, is composed of three Jerms: 
l. EM~ 1 ): the mean amount of work in Q,, at a departure epoch of S from Qn; 
2. EM~ 2 ): the mean amount of work in the rest of the system at a departure epoch of S from Qn; 
3. p(s~ 2 ) 12sn): the mean amount of work that arrived in the system during the past part of the 

switching interval under consideration. 
To calculate EM~ 1 l and EM~ 2 ), we need the following two globally valid results for cyclic-service sys
tems (cf. Takagi [44]): 
The mean cycle time, i.e., the mean time between two successive visits of S to, say, Qn, is independent 
of n; it is given by 

EC= _s __ 
1-p (3.16) 

The mean visit time of Sat Qn, i.e., the mean time between the arrival and subsequent departure of S 
at Qn, is given by 

s 
EVIn = PnEC = p,,-1-, n = l, .. .,N. (3.17) -p 

(3.16) and (3.17) follow from general traffic balance arguments. Repeated use of (3.17) yields: 

p,,s p,, -JS PnS EM~ 2 ) = Pn-i(sn-1 +-1-) + Pn-2(sn-2 +-1--+sn-I +-1-) -p -p -p 

Pn +1S Pn +JS PnS + · · · + Pn+1(s,,+1 +-1--+s,,+2 +-1--+ ... +sn-I +--) 
-p -p I-p 

+ °""'EM(I). 
...(.., J ' (3.18) 

j=fan 
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and we find 

f !.!!.._EM<2> = ..e_2:2:shsk + -1 s 2:2:PhPk + f !.!!.._2:EM)'l. 
n =I S n S h <k - p h <k n =I S J=/=n 

(3.19) 

From (3.15), (3.18) and (3.19), 

N S(Z) S 2 N 2 
EY = 2;EM)1> + p- + 2(l- ) [p - 2:PnJ. 

J=I 2s p n=I 
(3.20) 

Finally, from (3.9), (3.14) and (3.20), suppressing the superscript SD,J: 

N n n 

2:"An/3~ 2 ) 2: 2:/3m/3nKm,n 
N 
"' EW n =I + A.m-~=~ln_=_I ___ _ /:tn n = p 2(1-p) 2(1-p) 

p> s 2 ~ 2 ~ (I) 
+ Pls + 2(1-p) [p ~~tnl + 1 ~EM 1 . (3.21) 

The last three terms, together constituting EY, reflect the influence of the presence of switchover 
times. The term ps<2> I 2s represents the mean amount of work that arrived at all queues during the 
switching intervals after the last visit of S to those queues. Note that s<2> I 2s equals the mean total past 
switching time from the,/(feparture of S from an arbitrary queue to the present random switching 
epoch. This interpretation explains why only s and s<2l occur, and no moments of individual switch
over times. The next term reflects the interaction between queues; it represents the mean amount of 
work that arrived at queues, after the last visit of S, during the subsequent service periods of other 
queues. Finally 2:N_ EM)1> represents the mean total amount of work left behind by Sat the vari
ous queues in one tycle. This is the only term that cannot be determined without specifying the ser
vice strategies at the various queues. A pleasing consequence of the global validity - irrespective of 
the service strategies - of the expressions (3.16) and (3.17) for, respectively, mean cycle time and mean 
visit times, is that EM)1> only depends on the service strategy at Q1, and not on the service strategies 
at the other queues. Another consequence is that the correlation between batch sizes also has no 
effect on EM)1l. 
We now turn to the 

Determination of EM)1> for various service strategies 

1. Exhaustive: S serves class j customers until Q1 is empty. 

EM)'l = 0. (3.22) 

2. Gated: S serves exactly those class j customers that were present upon his arrival at Q1. 

EM(!) = p-EVI- = p~-s-. (3.23) 
J J '} J 1-p 

3. Reserved gated (also called fully gated [2, Section 3.5.2]): S serves exactly those class j customers 
that were present upon his departure from Q1 _ j. Similarly as for gated service one obtains: 

(3.24) 

4. Binomial-gated: when S finds N1 customers present upon his arrival at Q1, he serves a number of 
customers that is binomially distributed with parameters N1 and p1, 0<p1,,;;;;; 1. Note that PJ = l 
corresponds to gated service. The binomial-gated strategy, which has been introduced and analyzed 
by Levy [35), allows assigning priorities to the queues of a cyclic service system by choosing the pro
babilities p1. It is easily seen [35) that 

EM(!) I-pi s 
1 = Pj{PJ + PJ ) l -p · (3.25) 
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5. Binomial-exhaustive: when S finds Ni customers present upon his arrival at Qi, he sets aside a 
number of customers that is binomially distributed with parameters Ni and Pi• O:s;;pi<l, and he 
serves the other customers and those arriving during their service, etc. Note that Pi =O corresponds to 
exhaustive service. This service strategy was suggested by W.P. Groenendijk [personal communica
tion]. A simple calculation yields: 

EM(l) _ _fj_ (l- )-s-
1 - 1 - Pi Pi PJ 1 - p . 

6. I-limited: S serves exactly one customer at Qi. 

_ ~ 2_s_ 
EM)1l - Pi l-pEWi +Pi I-p + 

(3.26) 

(3.27) 

This formula can be derived from (4.15) and (5.8) of [4]. The latter study only considers uncorrelated 
batch arrivals; but as has been observed above, the correlation of batch sizes has no effect on EM)1). 
Formula (3.27) can be written in the following way: 

(I) - -~ ~ -5L. EM; - (1 1 - P )0 + 1 - p [pi { EWi + pi} + pi 2EKi ], 

with as interpretation: i\is I (1- p) equals the fraction of visits of S to Qi that result in a service; 
Pi { EWi +Pi} equals the?ean amount of work that has arrived during the sojourn time of the depart
ing customer; and /3i~.i/(2EKi) equals the mean amount of work of the customers who arrived in 
the same batch as the departing customer but are served after him. 

7. Bernoulli: after each service which does not leave Qi empty, S serves another customer with proba
bility 1-pi and moves to the next queue with probability Pi· This discipline has been introduced by 
Keilson and Servi [29]. The~ expression for EM)1> is strongly related to its counterpart in the I-limited 
case (an explanation will be given at the end of § 3.5): 

_ ~ 2_s_ ~ 
EM)1> - Pi[Pi l-pEWi +Pi I-p + 2(l-p)/3iKi.iJ. (3.28) 

Tedijanto [47] has derived (3.28) for the case of single arrivals. 

8. Semi-exhaustive: S continues serving class j customers until the number present is one less than the 
number present upon his arrival. From (4.25) and (5.8) of [4]: 

{I) i\1s(I-pi) A.js (2) 
EM1 = Pi l-p EWi 2(l-p) Pif3; (3.29) 

It follows from (3.21) and the subsequent discussion that, in a cyclic-service system with a mixture of 
the above listed service strategies (e.g., exhaustive at one queue, I-limited at the next, etc.) one can 
easily determine an exact expression for a weighted sum of mean waiting times. Note that for the 1-
limited, Bernoulli and semi-exhaustive strategies the weight factor is not equal to the traffic intensity 
at the queue. 

If one of the queues has yet another service strategy, one only has to determine its corresponding 
EM)I). However, this may be a very difficult problem. Consider the G-limited and E-limited service 
strategies: S serves a queue according to the gated or the exhaustive service strategy, with the restric
tion that he serves at most, say, k customers. k = l reduces to I-limited service, whereas k = oo 
reduces to gated respectively exhaustive service. Everitt [ 14, 15] has derived a pseudoconservation law 
for G-limited respectively E-limited service, but his formulas still contain the unknown second fac
torial moment of the number of customers served in the queue at a visit of S. An exact expression for 
this term is probably hard to come by. Replacing the second factorial moment by zero immediately 
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yields Fuhrmann's bound [19] for the weighted sum of mean waiting times. 

REMARK 3.5 
In none of the above cases it is necessary to specify the order of service within a class. It suffices to 
make the restriction to work-conserving nonpreemptive service disciplines for which Assumption 3.1 
holds. 

REMARK 3.6 
For cyclic-service systems with switchover times and uncorrelated arrivals, a pseudoconservation law 
has first been obtained by Ferguson and Aminetzah [17] for the cases of exhaustive service at all 
queues and gated service at all queues, and by Watson [48] for the same two cases and also for !
limited service at all queues. The last result is particularly noteworthy, because the mean waiting 
times at the individual queues are not known apart from the two-queue case [5], for which singular 
integral expressions are obtained. In [3] these pseudoconservation laws have been unified and gen
eralized for a mixture of exhaustive, gated, I-limited and semi-exhaustive strategies at the queues. 
The probabilistic proof in [3] explains the validity of the pseudoconservation law, and allows an 
interpretation of the various terms. A discrete-time version of this pseudoconservation law, and an 
extension to batch arrivals, are presented in [4]. A discrete-time version for the case of gated service 
at all queues has also been obtained in [40]. Levy and Sidi [36] have further generalized the results of 
[3] to the case of the correlated batch Poisson arrival process of Definition 2.2. 

/ 

REMARK 3.7 
For N = 1 queue the above calculations yield some, mostly known, expressions for mean waiting times 
in MIG/ 1 queues with various kinds of vacations. 

REMARK 3.8 
For all listed strategies, aprui from the reserved gated one, EM)1) is linear in s; and so is EY, if 
s<2> I 2s is linear in s. The pseudoconservation law thus gives an interesting insight into the influence 
of the total mean switchover time, s, on workload and - to some extent - on the (weighted sum of the) 
mean waiting times. 

3.4. POLLING SYSTEMS WITH A GENERAL SERVICE ORDER TABLE 
A generalization of single-server multi-class systems with cyclic service is obtained by allowing the 
server to visit the queues according to a fixed - but not necessarily cyclic - pattern, like the star pat
tern: Q 1,Q2,Q 1,Q3, ... ,Q 1,QN, Qi.Q2, •.•. Polling systems with a general service order table arise 
naturally in many computer-communication networks; some examples are the token bus local area 
network, and a computer with multi-drop terminals in a star configuration. The possibility of using 
general service order tables is also interesting from the viewpoint of optimization; it gives one the 
opportunity to assign stations higher priority by listing them more often in the table. 

Baker and Rubin [I] have presented an exact analysis of waiting times for polling systems with a 
general service order table, with exhaustive service at all queues. In [6] a pseudoconservation law has 
been derived for such polling systems but with a mixture of various service disciplines (see also [23] 
for a related result). Following an idea of [I], the system with a service order table is reduced to a 
cyclic-service system by introducing pseudostations. We illustrate the concept using the star pattern 
example. The star pattern repeats itself after 2N - 2 queue visits. The introduction of 2N - 2 pseu
dostations PS 1, ••• ,PS2N-i leads to a cyclic-service system, with one complication: 
PS 1,PS3 , ••• ,PS2N-3 all refer to Q 1, and arrivals at these pseudostations really are arrivals at Q1• 
Determination of the mean visit times of these pseudostations is not as trivial as before. However, the 
pseudoconservation law (3.14) holds, and evaluation of an expression for EY is only slightly more 
complicated than for the strictly cyclic model. Formula (3.15) remains valid, with 2N -2 switchover 



17 

times; the decomposition of EYn into three terms EM~'l, EM~ 2 ) and p(s~ 2 ) 12sn) also goes through, 
but the first two terms now refer to pseudostations, and their determination requires a careful book
keeping of earlier visits to other pseudostations that refer to the same queue. 

3.5. POLLING SYSTEMS WITH MARKOVIAN ROUTING OF THE SERVER 

Another generalization of single-server multi-class systems with cyclic service is obtained by allowing 
the server to visit the queues according to a probabilistic routing scheme. Kleinrock and Levy [33] 
have introduced the random polling scheme in which, after a server visit period to a queue, the next 
queue to be served is Qi with probability Pi· In [8] the more general Markovian polling scheme is con
sidered where a visit to Q; is with probability Pii followed by a visit to Qi: S visits the queues accord
ing to a Markov chain. 

Again a pseudoconservation law can be formulated. Determination of EM)1l proceeds as in § 3.3. 
Determination of EM)2>, the mean amount of work in the rest of the system at a departure epoch of 
S from Qi, provides some difficulties; it requires a careful study of the mean time between a departure 
of S from Qi and the last previous departure from, say, Q;. 

The flexibility of the Markovian polling scheme is illustrated by the following example. Consider 
the case of I-limited service at all queues, with the following server routing probabilities: 

PiJ = 1 -p; if j = i, 

/if1' -_,· + l, PiJ =Pt 

PiJ = 0 else ; 

and with the following mean switchover times: 

S;; = 0, 

S;,i+I = S;; 

it is easily seen that this leads to cyclic service with a Bernoulli service strategy at all queues. This 
observation has been exploited in [8] to derive the pseudoconservation law (3.28) for the case of single 
arrivals. In fact, for the Markovian polling scheme, it is seen that the probability that a server visit to 
Qi results in a service equals ~pis I (l - p ), after which the reasoning below (3.27) can again be 
applied to determine EM)l). 

3.6. A QUEUEING NETWORK WITH A SINGLE SERVER 

Let us return to the network of service stations Q 1, •.• , QN with one single server, that was intro
duced in Remark 3.2. Assume that the conditions of case (ii) of Theorem 3.3 are fulfilled. Then we 
have (cf. (3.11) and (3.7)): 

N - N oo 

~ (p,. + An[ ~ ~p~~PmDEW~D,J = 
n=I m=lk=I 

(3.30) 
n=I m=lk=I 

with _p~~ the k-step trans1t10n probability from Qn to Qm, An the total arrival rate at Q,., and 
Pn =An/Jn the total traffic intensity of class n customers. 

EY still has to be determined. We consider a similar special case as in § 3.3. The interruption pro
cess is specified by assuming that the server, S, visits the queues in a cyclic order; the only interrup
tions are those caused by the switches of S between queues. The model description is identical to the 
model description in § 3.3, apart from the fact that customers may move from queue to queue 
(without switchover times), and change class accordingly. We claim that determination of EY 
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proceeds similarly as in § 3.3. In particular, (3.15)-(3.17) remain valid; (3.18) requires some adapta
tion because customers can reach a queue from another queue only during particular periods. As 
before, determination of EM)1l, the mean amount of work in Qi at a departure epoch of S from Qi, 
depends on the service strategy at Qi. 

Independent of the present study, Sidi and Levy [42] have analysed a network with one cyclically 
moving server and either exhaustive or gated service at all queues; for this case they have also 
obtained (3.30). 

4. CONSERVATION-LAW BASED MEAN WAITING TIME APPROXIMATIONS 

Exact expressions for mean waiting times in single-server multi-class service systems are known only 
in exceptional cases (see Takagi [44,45] for most of the references regarding cyclic-service models). In 
view of this, (pseudo)conservation laws for mean waiting times are extremely useful, if only as a tool 
to test approximations or to base approximations upon. As an illustration, we briefly discuss 
conservation-law based mean waiting time approximations for cyclic-service systems with switchover 
times (the model of § 3.3). We restrict ourself to single Poisson arrivals, and to FCFS service at all 
queues. 

Recently, several mean waiting time approximations for cyclic-service systems have been suggested 
in literature. Most of these approximations are based on the following idea, that has independently 
been developed in [13], j>r the two cases of exhaustive service and gated service at all queues, and in 
[7] for I-limited service at all queues. First obtain a linear relation between the mean waiting time 
EW n at queue Qn and the mean residual cycle time Ercn for a cycle starting with the arrival of server 
S at Qn. The first cycle time moment is the same for all queues; the residual cycle time moments gen
erally differ, but these differences are usually quite small (cf. the exact analysis of a special case in 
[5]). Now assume that the N mean residual cycle time moments are exactly the same: ErCn =Ere. 
Finally substitute the obtained N linear relations between EW n and Ere in the pseudoconservation 
law and solve for the one~ unknown, Ere. Groenendijk [24] has shown that this approach can be 
applied to cyclic-service systems with a mixture of exhaustive, gated and I-limited service strategies. 
We briefly indicate the main steps of his approximation. 

(i) Qn has gated service. Then 

EWn = (l +pn)Eren· (4.1) 

Indeed (Groenendijk [personal communication]), the mean waiting time of a tagged class n customer 
consists of two components. Firstly a mean residual cycle time ErCn, because with gated service a 
customer is never served in the cycle in which he arrives. Secondly, the mean time from the instant 
the server arrives at Qn until the service completion of all class n customers who arrived before the 
tagged customer, in the same cycle: 01.nEren)Pn· 

(ii) Qn has exhaustive service. Then one can prove [24] that 

EWn = (1-pn)Eicn, (4.2) 

where Ercn is the mean residual cycle time at Qn with a cycle starting at a departure epoch of S from 
Qn. The following simple argument of Doshi [personal communication] immediately leads to (4.2): 
Eicn consists of two components; firstly EWn, the mean waiting time of the hypothetical customer 
whose arrival marks the beginning of the residual cycle, and secondly PnEien, the mean work that 
arrives at Qn during the residual cycle. A minor variant of this argument is to write 

ErCn = EWn + (A.nEWn)(/3nl(l-pn)), 

the last term in the righthand side denoting the mean number of arrivals at Qn during EW 11 times the 
mean length of the busy period at Qn generated by such an arrival (note that the hypothetical custo
mer himself should not contribute to ErCn !). 



Formula (4.2) gives rise to the approximation 

EWn ~ (1-pn)Erc,.. 
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(4.3) 

(iii) Qn has I-limited service. No exact relation between EWn and Ercn is known in this case. 

Groenendijk [24] applies the following ide~ of [7). Denoting the number of waiting customers at Qn 

found by an arriving class n customer by Xn, and the length of a cycle at Qn which contains a class n 

service by cb,n• one has: 

EWn ~ Ere,. + EX,,ECb,n = Ercn + AnEWnECb,n• 

leading to 

(4.4) 

ECb,n is not exactly known, but for this term an accurate and simple approximation can be obtained. 

Finally, substitution of (4.1), (4.3) and (4.4), with Erc,.=Erc, into the pseudoconservation law (3.14) 

yields an expression for Ere, and hence an approximation for the individual mean waiting times. 

The resulting approximation has the following features. 

It is an explicit formula for EWn, which gives much qualitative insight into the behavior of cyclic

service systems; 

it is exact in the cdmpletely symmetric case (same traffic characteristics, switchover time distribu

tions and service strategies at all queues); 

it is an excellent approximation for low and medium traffic; 

it is not very accurate when traffic is high and asymmetric, in particular when the system contains 

I-limited service queues. 

The main source of the just mentioned inaccuracy is approximation ( 4.4) for queues with I-limited 

service. A more detailed study of cycle times, taking into account information about previous cycles, 

led Groenendijk [25] to replace ( 4.4) by 

Ere,. 
EW,, ~ + H,.. 

1-AnECb,n 
(4.5) 

Here H,. is a correction term that must be calculated iteratively. The resulting approximation is more 

accurate but less transparent than the one using (4.4). 

The ideas in [25] are partly based on those of Srinivasan [43]. For the case of I-limited service at all 

queues, Srinivasan had also improved upon [7] by taking a closer look at (conditional) cycle times 

before eventually applying the pseudoconservation law. 

Finally we mention two more studies which present mean waiting time approximations based on a 

pseudoconservation law. Fuhrmann and Wang [21] consider the difficult and important cases of G

limited and E-limited service, discussed below (3.29). They derive heuristic mean waiting time 

approximations, based on tight bounds [19] for the pseudoconservation law. These bounds reduce to 

the exact pseudoconservation law for exhaustive, gated and I-limited service in the corresponding lim-

iting cases. · 

Pang and Donaldson [40] suggest a very accurate mean waiting time approximation for discrete

time cyclic-service systems with gated service at all queues. They express the mean waiting time at 

Qn in the second moment Vn,n of the sum of Qn 's visit time and the subsequent switchover time; next 

they obtain a linear relation between Vn + 1,11 +1 and v11, 11 for all n; and finally they solve for the v11, 11 by 

deriving an extra linear relation between v1,i. ... , vN,N· At this last stage the conservation law is 

elegantly brought into the picture. 
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5. CONCLUSIONS 

This paper has been devoted to single-server multi-class service systems with interruptions. The main 
results are: 

Under rather weak restrictions, the steady-state amount of work in the system, ysD,1, is distributed 
as the sum of two independent quantities, viz. (i) V, the steady-state amount of work in the 
corresponding system with identical characteristics but without interruptions, and (ii) Y, the 
steady-state amount of work in the original system at an epoch at which the server is not serving. 
V does not depend on the scheduling discipline, nor on the interruption process; all the informa
tion provided by those two system entities is contained in Y. 
Under stronger restrictions, a pseudoconservation law holds for the mean waiting times of the 
classes of customers. 

The pseudoconservation law has already proved its usefulness in cyclic-service systems. In Section 4 
it has been shown how one can employ the pseudoconservation law to derive approximations for indi
vidual mean waiting times. 

The righthand side of the pseudoconservation law contains EY. Evaluation of EY has been dis
cussed in many special cases, mainly derived from polling systems. In view of the importance of such 
systems in computer-communication networks, a further study of EY for various service strategies at 
the queues is of interest. However, in relation to conservation principles in service systems there are 
several. more challenging and fundamental problems to be solved. We end this paper with a list of 
some of those problems. / 

l. Relaxation of the Poisson assumption 
The assumption of Poisson arrival processes is not always realistic. Extension of the work decomposi
tion in Theorem 2.1, and of the pseudoconservation law in Theorem 3.3, to more general arrival 
processes would be of considerable interest. It should be noted that some of the waiting time decom
positions for queues with vaGations hold for general interarrival time distributions (cf. Doshi [11,12]). 
Of course, when a work decomposition for such a case is obtained, there is still the problem that the 
mean amount of work in a G/G/l queue is not known. 

2. Multi-server queues 
As observed in Remark 3.1, extension of the conservation law to multi-server queues without interrup
tions has only been accomplished under the severe restriction of equal service time distributions for 
all classes. It would be interesting to study the concepts of work conservation, work decomposition 
and (pseudo)conservation law for multi-server multi-class systems. Thus new insight might be 
obtained into the behavior of cyclic-service systems with multiple servers, a subject which has received 
relatively little attention but for which several applications exist. Takagi [45] contains the references to 
the few papers that have appeared on this subject. 

3. Optimization 

Although the extensive research on cyclic-service systems has been useful for performance evaluation, 
it has not yet led to a clear ability to control the systems under consideration and to affect their 
design. Modem developments in computer and communication technology enable the use of more 
sophisticated scheduling disciplines, while the need to control complex networks makes the use of 
such disciplines imperative. Recently a few studies have appeared which open up possibilities for 
optimization; much more research is needed here. Levy's [35) binomial-gated strategy (cf. § 3.3) leads 
to a tractable mathematical model in which the choice of binomial probabilities of numbers of custo
mers served at the queues allows prioritization. Levy et al. [37] compare several service disciplines 
w.r.t. the total amount of work in the system. Using a sample path analysis they show that some pol
icies dominate other policies in the sense that, at any time, the total amount of unfinished work in the 
system under one policy is at most as large as under another policy. The analysis can be used to con
struct a hierarchy of several common service disciplines. 

Browne and Y echiali [9} present a semi-dynamic polling policy in which the server, at the beginning 
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of a cycle, determines a visiting order of the queues for this cycle so as to minimize some objective 
function. Finally, the use of a fixed service order table (cf. [1,6] and § 3.4) enables the assignment of 
priorities by listing a queue more often in the table, and a similar remark holds for polling systems in 
which the server visits the classes according to a Markov routing chain (cf. [33,8] and§ 3.5). 
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