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Abstract

Academic and corporate communities have been
dedicating considerable effort to World Wide Web
caching, When correctly deployed, web caching
systems can lead to significant bandwidth savings,
server load balancing, perceived network latency
reduction, and higher content availability. In this paper,
we survey the state-of-the-art in caching designs,
presenting a taxonomy of architectures and describing
a variety of specific trends and techniques.
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1 Introduction

As the Internet continues to grow in popularity and
size, so have the scalability demands on its
infrastructure. Exponential growth without scalability
solutions will eventually result in prohibitive network
load and unacceptable service response times.

It is well known that the primary reason why Internet
traffic has increased is due to the surge in popularity of
the World Wide Web, specifically the high percentage
of HTTP traffic. To better understand this growth rate,
consider that studies conducted in the early 90s
revealed that 44% of Internet traffic originated from
FTP requests [4]. However, within the last year, it was
shown that HTTP activity had grown to account for
somewhere between 75-80% of all Internet traffic [19].

1.1 The Appeal of Web Caching

The unparalleled growth of the Internet in terms of
total bytes transferred among hosts, coupled with the
sudden dominance of the HTTP protocol suggest much
can be leveraged through World Wide Web caching
(hereafter referred to as web caching) technology.
Specifically, web caching becomes an attractive
solution because it represents an effective means for
reducing bandwidth demands, improving web server
availability, and reducing network latencies.

Deploying caches close to clients can reduce overall
backbone traffic considerably. Cache hits eliminate the
need to contact the originating server. Thus, additional
network communication can be avoided.

To improve web server availability, caching systems
can also be deployed in a "reverse" fashion (e.g, the
reverse proxy server approach), where caches are
managed on behalf of content providers who want to
improve the scalability of their site under existing or
anticipated demand. In these cases, caches not only
improve the availability and fault-tolerance of their
associated web servers, but also act as load balancers.

Caching can improve user perceptions about network
performance in two ways. First, when serving clients
locally, caches hide wide-area network latencies. On a
local cache miss, the original content provider will
serve client requests. However, in this case, server-side
(reverse) caches can still play a role, by reducing actual
request serving time, as described above.

Second, temporary unavailability of the network can be
hidden from users, thus making the network appear to
be more reliable. Network outages will typically not be
as severe to clients of a caching system, since local
caches can be leveraged regardless of network
availability.  This will especially hold true for objects1

that are temporal in nature (for example, the
isochronous delivery of multimedia data such as video
and/or audio), where consistent bandwidth and
response times are particularly important.

Though web caching offers much hope for better
performance and improved scalability, there remain a
number of ongoing issues. Perhaps primary among
these is object integrity: if an object is cached, is the
user guaranteed that the cached copy is up-to-date with
the version on the originating server? Other issues
include use of HTTP "cookies" to personalize versions
of identically named URLs, content security, and the
legal ethics of caching. Open issues are not the focus of
this paper; rather, we simply provide a taxonomy of
designs and techniques that are available today.

1.2 The Need for a Survey

Web caching is a rapidly evolving field, which is one
of the key factors that motivated us to produce this
survey. It is difficult to keep up with recent advances,
since there are a number of ongoing efforts (both
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industrial and academic), many containing solutions
based on emerging web standards (such as persistent
connections [16] and XML). Web caching is also a
young industry, with a number of commercial vendors
pushing new solutions either have direct ties to
research systems or are architected by individuals with
notable research backgrounds. Thus, commercial
solutions often contain aggressive and unique
architectures.

The survey presented here serves to capture a snapshot
of current design trends and techniques. Its purpose is
not to compare one solution against another, but rather
to identify common designs and put them in context.

1.3 Outline

This paper is organized as follows. The next section
describes several distinct web caching architectures. In
Section 3, we summarize various cache deployment
options; some deployments go hand-in-hand with the
caching system architecture, whereas some
architectures allow for a variety of deployment options.
Section 4 focuses on common design techniques found
in many existing architectures. In Appendix A, we
briefly discuss the difficulty in identifying metrics of
cache effectiveness and specifically address recent
work on benchmarking tools. Finally, in Appendix B,
we elaborate on related networking components that
can augment existing cache deployment strategies to
improve scalability.

2 Caching Architectures

2.1 Proxy Caching

A proxy cache server intercepts HTTP requests from
clients, and if it finds the requested object in its cache,
it returns the object to the user. If the object is not
found, the cache goes to the object’s home server - the
originating server on behalf of the user, gets the object,
possibly deposits it in its cache, and finally returns the
object to the user.

Proxy caches are usually deployed at the edges of a
network (i.e., at company or institutional gateway or
firewall hosts) so that they can serve a large number of
internal users. The use of proxy caches typically results
in wide-area bandwidth savings, improved response
time, and increased availability of static web-based
data and objects.

Standalone proxy configuration is shown in Figure 1a.
Notice that one disadvantage to this design is that the
cache represents a single point of failure in the
network. When the cache is unavailable, the network
also appears unavailable to users. Also, this approach
requires that all user web browsers be manually
configured to use the appropriate proxy cache.

Subsequently, if the server is unavailable (due to a long
term outage or other administrative reason), all of the
users must reconfigure their browsers in order to use a
different cache.

Browser auto-configuration is a recent trend that may
alleviate this problem. The IETF recently reviewed a
proposal for a Web Proxy Auto-discovery Protocol2

(WPAD), a means for locating nearby proxy caches.
WPAD relies on resource discovery mechanisms,
including DNS records and DHCP, to locate an
Automatic Proxy Configuration (APC) file.

A final issue related to the standalone approach has to
do with scalability. As demand rises, one cache must
continue to handle all requests. There is no way to
dynamically add more caches when needed, as is
possible with transparent proxy caching.

2.1.1 Reverse Proxy Caching

An interesting twist to the proxy cache approach is the
notion of reverse proxy caching, in which caches are
deployed near the origin of the content, instead of near
clients. This is an attractive solution for servers that
expect a high number of requests and want to assure a
high level of quality of service. Reverse proxy caching
is also a useful mechanism when supporting web
hosting farms (virtual domains mapped to a single
physical site), an increasingly common service for
many Internet service providers (ISPs).

Note that reverse proxy caching is totally independent
of client-side proxy caching. In fact, they may co-exist
and collectively improve overall performance.

2.1.2 Transparent Caching

Transparent proxy caching eliminates one of the big
drawbacks of the proxy server approach: the
requirement to configure web browsers. Transparent
caches work by intercepting HTTP requests and
redirecting them to web cache servers or cache clusters.
This style of caching establishes a point at which
different kinds of administrative control are possible,
for example, deciding how to load balance requests
across multiple caches.

The strength of transparent caching is also its main
weakness: it violates the end-to-end argument by not
maintaining constant the end points of the connection.
This is a problem when an application requires that
state is maintained throughout successive requests or
during a logical request involving multiple objects.

The filtering of HTTP requests from all outbound
Internet traffic adds additional latency. For example,
caches deployed in conjunction with Layer 4 (L4)
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switches rely on the fact that these switches intercept
TCP traffic that is directed at port 80 and send all other
traffic directly to the WAN router.

There are two ways to deploy transparent proxy
caching: at the switch level and at the router level.
Router-based transparent proxy caching (Figure 1b)
uses policy-based routing to direct requests to the
appropriate cache(s). For example, requests from
certain clients can be associated with a particular
cache.

In switch-based transparent proxy caching (Figure 1c),
the switch acts as a dedicated load balancer. This
approach is attractive because it reduces the overhead
normally incurred by policy-based routing.  Although it
adds extra cost to the deployment, switches are
generally less expensive than routers.

Using L4 switches for transparent caching is an
example of how other network components play a role
in the effectiveness of a web caching solution. For
transparent caching, these switches provide a form of
local load balancing. There are other switches and
solutions for local load balancing as well as solutions
for global load balancing. The use of related network
components for this purpose is covered further in
Appendix B.

2.2 Adaptive Web Caching

Adaptive web caching [15] views the caching problem
as one of optimizing global data dissemination. A key
problem adaptive caching targets is the "hot spot"
phenomenon, where various, short-lived Internet
content can, overnight, become massively popular and
in high demand.

Adaptive caching consists of multiple, distributed
caches which dynamically join and leave cache groups
(referred to as cache meshes) based on content demand.
Adaptivity and the self-organizing property of meshes
is a response to those scenarios in which demand for
objects gradually evolves and those in which demand
spikes or is otherwise unpredictably high or low.

Adaptive caching uses the Cache Group Management
Protocol (CGMP) and the Content Routing Protocol
(CRP). CGMP specifies how meshes are formed and
how individual caches join and leave those meshes. In
general, caches are organized into overlapping

multicast groups which use voting and feedback
techniques to estimate the usefulness of admitting or
excluding members from that group. The ongoing
negotiation of mesh formation and membership results
in a virtual topology.

CRP is used to locate cached content from within the
existing meshes. It can be said that CRP is a more
deterministic form of hierarchical caching, which takes
advantage of the overlapping nature of the meshes as a
means for propagating object queries between groups,
as well as propagating popular objects throughout the
mesh. This technique relies on multicast
communication between cache group members and
makes use of URL tables to intelligently determine to
which overlapping meshes requests should be
forwarded.

One of the key assumptions of the adaptive caching
approach is that the deployment of cache clusters
across administrative boundaries is not an issue. If the
virtual topologies are to be the most flexible and have
the highest chance of optimizing content access, then
administrative boundaries must be relaxed so that
groups form naturally at proper points in the network.

2.3 Push Caching

As described in [12], the key idea behind push caching
is to keep cached data close to those clients requesting
that information. Data is dynamically mirrored as the
originating server identifies where requests originate.
For example, if traffic to a west coast based site started
to rise because of increasing requests from the east
coast (typical of what happens on weekdays at 9am
EST), the west coast site would respond by initiating
an east coast based cache.

As with adaptive caching, one main assumption of
push caching is the ability to launch caches that may
cross administrative boundaries. However, push
caching is targeted mostly at content providers, which
will most likely control the potential sites at which the
caches could be deployed. Unlike adaptive caching, it
does not attempt to provide a general solution for
improving content access for all types of content, from
all providers.

One study [18] regarding the effectiveness of cache
hierarchies noted that well-constructed push-based

(a) (c)(b)

Figure 1: (a) standalone, (b) router-transparent, and (c) switch transparent proxy caching



algorithms can lead to a performance improvement of
up to 1.25%. This study also notes the general dilemma
that push caching encounters: forwarding local copies
of objects incurs costs (storage, transmission) while
overall performance and scalability are only seen as
improved if those objects are indeed accessed.

2.4 Active Caching

The WisWeb project at the University of Wisconsin,
Madison, is exploring how caching can be applied to
dynamic documents [7]. Their motivation is that the
increasing amount of personalized content makes
caching such information difficult and not practical
with current proxy designs.

Indeed, a recent study [5] of a large ISP trace revealed
that over 30% of client HTTP requests contained
cookies, which are HTTP header elements typically
indicating that a request be personalized. As web
servers become more sophisticated and customizable,
and as one-to-one marketing e-commerce strategies
proliferate the Internet, the level of personalization is
anticipated to rise.

Active caching uses applets, located in the cache, to
customize objects that could otherwise not be cached.
When a request for personalized content is first issued,
the originating server provides the objects and any
associated cache applets. When subsequent requests are
made for that same content, the cache applets perform
functions locally (at the cache) that would otherwise
(more expensively) be performed at the originating
server. Thus, applets enable customization while
retaining the benefits of caching.

3 Cache Deployment Options

There are three main cache deployment choices: those
which are deployed near the content consumer
(consumer-oriented), near the content provider
(provider-oriented), and those which are deployed at
strategic points in the network, based on user access
patterns and network topology and conditions. Below
we discuss each of these options’ advantages and
disadvantages.

Positioning caches near the client, as is done in proxy
caching (including transparent proxy caching) has the
advantage of leveraging one or more caches to a user
community. If those users tend to access the same kind
of content, this placement strategy improves response
time by being able to serve requests locally.

Caches positioned near the content provider, on the
other hand, which is what is done in reverse proxy
caching and push caching, improve access to a logical
set of content. This type of cache deployment can be
critical to delay-sensitive content such as audio or

video. Positioning caches near or on behalf of the
content provider allows the provider to improve the
scalability and availability of content, but is obviously
only useful for that specific provider. Any other
content provider must do the same thing.

Of course, there are compromises between provider-
oriented and consumer-oriented cache deployments.
For example, resource sharing and security constraints
permitting, is may be possible for multiple corporations
to share the same client-side caches through a common
ISP. Also, one can envision media hubs such as
Broadcast.com providing content-based caching on
behalf of the actual media providers. Finally, the use of
both consumer-oriented and provider-oriented caching
techniques is perhaps the most powerful and effective
approach, since it combines the advantages of both
while lowering the disadvantages of each.

The last approach, dynamic deployment of caches at
network choke points, is a strategy embraced by the
adaptive caching approach. Although it would seem to
provide the most flexible type of cache coverage, it still
work in progress and, to the best of the author’s
knowledge, there have not been any performance
studies demonstrating its benefits. The dynamic
deployment technique also raises important questions
about the administrative control of these caches; what
impact would network boundaries have on cache mesh
formation?

Finally, a discussion about cache deployment would
not be complete without noting the capabilities of
browsers to do caching on a per-user basis, using the
local file system. Obviously, while browser caching is
useful for a given user, it does not aid in the global
reduction of bandwidth or decline in average network
latency for common web objects.

4 Design Techniques

Caching systems are generally evaluated according to
three metrics: speed, scalability, and reliability. There
are a variety of design techniques on which many
commercial and academic systems rely in order to
improve performance in these respects.

4.1 Hierarchical Caching

Hierarchical caching was pioneered in the Harvest
Cache [8]. The basic idea is to have a series of caches
hierarchically arranged in a tree-like structure and to
allow those caches to leverage from each other when
an object request arrived and the receiving cache did
not have that object.

Usually, in hierarchical designs, child caches can query
parent caches and children can query each other, but
parents never query children. This promotes an



architecture where information gradually filters down
to the leaves of the hierarchy. In a sense, the adaptive
caching approach also uses cache hierarchies (in the
form of cache groups) to diffuse information from
dynamic hotspots to the outlying cache clusters, but
these hierarchies are peer-based: the parent/child
relationships are established per information object.
Thus, in one case, a cache group might act as a parent
for a set of information object X but also act as a child
(or intermediary) node for information object Y.

With hierarchical caches, it has been observed that
parent nodes can become heavily swamped during
child query processing. Commercial caches, such as
Network Appliances NetCache, employ clustering to
avoid this swamping effect.

4.2 Intercache Communication

Web caching systems tend to be composed of multiple,
distributed caches to improve system scalability,
availability, or to leverage physical locality.  In terms
of scalability and availability, the existence of multiple,
distributed caches permits a system to deal with a high
degree of concurrent client requests as well as survive
the failure of some caches during normal operation. In
terms of physical locality, assuming that bandwidth is
constant, simply having caches closer in proximity to
certain groups of users may be an effective way to
reduce average network latencies, since there is often a
correlation between the location of a user and the
objects requested.

Regardless of why a logical cache system is composed
of multiple, distributed caches, it often desirable to
allow these caches to query each other. Distributing
objects among caches also allows load balancing, and
permitting subsequent intercache communication
allows the overall logical system to efficiently resolve
requests internally.

There are five well-known protocols [14] for intercache
communication: ICP, cache digests, CRP, CARP, and
WCCP. Among these, ICP has the longest history and
is the most mature. It evolved from the cache
communication in Harvest and was explored in more
detail within Squid. With ICP, caches issue queries to
other caches to determine the best location from which
to retrieve the requested object. The ICP model
consists of a request-reply paradigm, and is commonly
implemented with unicast over UDP.

Although it was mentioned earlier that multiple
distributed caches can improve scalability, they can
also impede it, as ICP later revealed. One issue was
raised by [2], which identified desirable limits to the
depth of the cache hierarchy. For example, trees deeper
than four levels provided noticeable delays. Another
scalability concern was the number of ICP messages

that could be generated as the number of cache peers
increased. As noted in [9], there is a direct relationship
between the number of peer caches and the number of
ICP messages sent.

That same study of ICP also raised the issue of
multicast, which is a key enabling technology of the
adaptive caching design. Its CRP protocol uses
multicast to query cache meshes. Overlapping nodes
are used to forward unresolved queries to other meshes
in the topology. To optimize the path of meshes to
query, adaptive caching uses CRP to determine the
likely direction of origin for the content. Although
multicast was a proposed solution suggested for use
with ICP when querying peer caches, the scalability
implications of this approach are still unclear.

Another technique related to cache-to-cache
communication is the notion of cache digests, such as
those implemented by Squid [9] and the Summary
Cache [11]. Digests can be used to reduce intercache
communication by summarizing the objects contained
in peer caches. Thus, request forwarding can be more
intelligent and more efficient. This is similar to the
notion of a URL routing table, which is used by the
adaptive caching approach, also as a way to more
intelligently forward a request.

Finally, there are two other proprietary protocols:
Cisco’s WCCP and Microsoft’s CARP method. When
used with devices such as the Cisco Cache Engine3,
WCCP enables HTTP traffic to be transparently
redirected to the Cache Engine from network routers.
WCCP has gradually been integrated into Cisco’s
Internet Operating System (IOS) which Cisco ships
with its routers. Recently, Cisco announced it was
licensing WCCP to vendors such as Network
Appliance and Inktomi.

In contrast to ICP-based approaches, where caches can
communicate with each other to locate requested
content, Microsoft’s CARP4 is deterministic: it uses a
hashing scheme to identify which proxy has the
requested information. When a request comes in from a
client, a proxy evaluates the hash of the requested URL
with the name of the proxies it knows about, and the
one with the highest value is realized to be the owner
of that content.

The CARP hash-routing scheme is proposed as a
means for avoiding the overhead and scalability issues
associated with intercache communication. In that
sense, it is very similar to the CRP protocol used by the
adaptive caching project, as well as the cache digest
approach championed by both Summary Cache and
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Squid-2. All of these efforts attempt to reduce
intercache communication.

4.3 Hash-Based Request Routing

Hash-based routing [17] is used to perform load
balancing in cache clusters. It uses a hash function to
map a key, such as the URL or domain name of
originating server, to a cache within a cluster. Good
hash functions are critical in partitioning workload
evenly among caches or clusters of caches. For
example, NetCache uses MD5-indexed URL hash
routing to access clusters of peer child caches that do
not have overlapping URLs.

Since hashing can be used as the basis for cache
selection during object retrieval, hash-based routing is
seen as an intercache communication solution. Its use
can reduce (or eliminate) the need for caches to query
each other. For example, in the Microsoft CARP
method, caches never query each other. Instead,
requests are made to caches as a function of the
hashing the URL key.

There are also scenarios in which hash-based routing is
used only to point the caller in the direction of the
content. This can be the case for very large caching
infrastructures, such as the type described by the
adaptive caching project. When locating remote
content, hash-based routing can be used as a means to
point the local cache in the direction of other caches (or
cache meshes) which either have the object or can get
it (from other caches or the originating server).

4.4 Optimized Disk I/O

Many systems, especially those that are commercial,
have spent substantial time tuning their disk I/O,
treating the object cache as one does a high
performance database. NetCache and Novell’s Internet
Caching System (ICS), for example, either use APIs
provided by their own custom microkernel or use low
overhead APIs provided by the host operating system.

Other disk I/O optimizations include improving the
spatial locality of objects and using in-memory data
structures to avoid disk I/O altogether, as in [20]. The
former technique leverages knowledge about logically
related content in order to determine where on the disk
to place that content. In-memory data structures (i.e.,
hash tables) can be used to quickly determine if an
object has been cached; if querying these data
structures finds that the object has indeed been cached,
disk operations can begin to actually locate the object
(if not already in RAM). Otherwise, disk access can be
avoided altogether and the object can be fetched from
the originating server. Thus, these data structures
summarize the contents of a cache so that, when
possible, costly I/O operations can be avoided.

4.5 Microkernel Operating Systems

Microkernel architectures have emerged as a technique
for optimizing cache performance, specifically in terms
of improving resource allocation, task execution, and
disk access and transfer times. The general motivation
for microkernel-based approaches has been that general
purpose operating systems, such as UNIX and
Windows NT, are not suitable for the specialized needs
of optimized web caching. These general purpose
operating systems handle resources such as processes
and file handles in a cooperative way, whereas caching
systems have specific needs related to how these
resources are managed.

At least five notable vendors5 have embraced
microkernel architectures, and these systems share a
number of common features. In some, caches are
modeled as finite state machines. They are event
driven, allowing them to scale better than thread-based
approaches that are commonly used for deployment on
general purpose operating systems. Microkernels also
can optimize access to disk resources, by increasing the
number of file handles for each process as well as
creating very fast APIs for disk hardware access.

4.6 Content Prefetching

Prefetching refers to the retrieving data from remote
servers in anticipation of client requests. Prefetching
can be classified as either local-based or server-hint-
based [13]. The former relies on data such as reference
patterns to choose what to prefetch next. The latter uses
data accumulated by the server, such as historical
information about objects frequently requested by other
clients. One disadvantage of the server-hint approach is
that integration between client and server is more
complicated, since there needs to be some coordination
related to the communication of the hints from the
server to the client. Also, as noted by [7], there are
three distinct prefetching "scenarios": prefetching
between clients and servers, between clients and
proxies, and between proxies and servers. Several
studies [16, 13, 7] have attempted to quantify the
benefits of prefetching in these various scenarios.

Kroeger et al. [13] looked at prefetching between
proxies and servers. They found that, without
prefetching, proxy caching with an unlimited cache
size resulted in a 26% reduction in latency. With a
basic prefetching strategy in place, that reduction in
latency could be improved to 41%, and with a more
sophisticated prefetching strategy (server hints), that
number could be further improved to be 57%. As might
be expected, having a good prefetching algorithm and
higher prefetch lead times plays an important role in
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optimizing the profits associated with this technique.

Padmanabhan and Mogul [16] examined prefetching
between clients and servers and classified resulting
gains in terms of object access time, creating three
categories of such gains: zero, small, or large access
times. For example, that study found that, without
prefetching, these results were 20% (zero access time),
0% (small), and 80% (large). With prefetching, that
distribution improved to 42%, 6%, and 52%. That
study also found that, in addition to the significant
improvement in access time with prefetching, there
was not an increase in the variability of those
retrievals.

A study by Cao et. al. [7] explored scenarios in which
proxy caches pushed content out to clients connected
through low-bandwidth links (i.e., modem users). Thus,
this explored the issues of prefetching between clients
and proxies. That study showed that the average
latencies encountered by these types of clients could be
reduced by over 23%. Their design was based on a
proxy that predicted which documents a user might
access in the near future and then pushed those
documents out to the users local cache during periods
of idle network activity. This study acknowledged that
their results were based on simulations constructed
from actual modem trace logs, where the average
bandwidth between clients and proxies was 21K/sec.

4.7 Cache Consistency Methods

Cache consistency is concerned with ensuring that the
cached object does not reflect stale or defunct data.
For purposes of our discussion, "stale or defunct data"
refers to locally cached objects which are either (a) no
longer are equivalent to the object on the originating
server (a phenomenon discovered through comparison
of object checksums) or (b) have since become
obsolete. As identified by Dingle and Partl [10], there
are four well-known cache consistency maintenance
techniques to deal with detecting such instances: client
polling, invalidation callbacks, time-to-live, and if-
modified-since.

With client polling, caches timestamp each cached
object and periodically compare the cached object
timestamp with that of the original object (at the
originating server). Out of date objects are discarded
and newer versions are fetched when necessary. This
approach is very similar to the timestamp-based file
system cache consistency approach used by the Sun
Network File System (NFS).

Instead of having clients periodically check for
inconsistency, invalidation callbacks rely on the
originating server to identify stale objects. The server
must then keep track of the proxies that are caching its
objects and contact these proxies when objects change.

On one hand, callbacks improve cache consistency as
well as save network bandwidth by not requiring
clients to periodically poll servers. On the other hand,
there are clear scalability issues and privacy/security
concerns regarding this approach, since servers need to
track caches for each cached object.

Similar to the limited life of packets in transit on
communication networks, cached objects can also have
a time-to-live (TTL). When expired, these objects are
dumped and new copies are fetched. The TTL
approach does not guarantee that an object which never
changes will not be continually re-fetched, but it does
significantly limit the repeated retrieval. Adaptive TTL
is a technique whereby the TTL of an object is updated
within the cache, when a cache hit occurs.

If-modified-since is a recent, demand-driven variation
to TTL-based consistency (Squid migrated to this
approach). In this scenario, caches only invalidate
objects when they are requested and their expiration
date has been reached.

Despite the concerns listed above, [6] reported that
invalidation and adaptive TTL are comparable in terms
of network traffic, client response times, and server
CPU workload. These methods were found to be
preferable over the other two approaches, given
situations where consistency is important. Furthermore,
it was also found that choosing to support strong
consistency over weak consistency does not necessarily
result in increased network bandwidth.

5 Conclusions

Web caching is an important technology which can
improve content availability, reduce network latencies,
and address increasing bandwidth demands. In this
paper, we have presented several caching architectures,
deployment options, and specific design techniques.
We have shown that while there are different
approaches to designing and deploying caches, some
issues (such as intercache communication) remain
common among them.

There remain a number of open issues in web caching.
Among the technical issues are content security, the
practicality of handling dynamic and real-time data,
and dealing with complex functional objects (such as
Java programs). The next few years will likely be
exciting as both researchers and vendors address these
challenges.
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Appendix

A. Measuring Performance

Given all the existing caching solutions, how does one
decide which one is the best? Ultimately, the
effectiveness of a web caching system will be largely
dependent on the need and constraints of the deployer.
A given architecture might inherently be more suitable
(and thus perform) better for certain scenarios.

For example, corporations may have significant
success with basic proxy serving, and may not view
browser configuration as an issue (perhaps the
company enforces use of a particular browser which
supports auto-configuration). Other deployers, such as
ISPs, may profit more from router or switch-based
transparent caching approaches, deployed at the edges
of their networks. Finally, there are content providers
who have no control over how their content is cached
at the client side they merely want to deliver their
content in a scalable manner. Thus, reverse proxying or
push caching might be most suitable, given those
constraints.

Regardless of deployment needs, there still is a demand
to quantify the performance of various caching
systems. Similar to the standard SPEC benchmarks
used to measure the performance of multiprocessor
architectures and the TPC family of benchmarks used
with database systems, the cache developer and user
community recently recognized the need for standard
benchmarking tools to evaluate the performance of
cache systems. Cache-specific performance metrics
include amount of bandwidth saved, response time, hit
rate, and various scalability metrics.

In this section, we briefly describe two well-known
cache benchmarks: the Wisconsin Proxy Benchmark
and Polygraph.

A.1 The Wisconsin Proxy Benchmark

The Wisconsin Proxy Benchmark (WPB) [1] was one
of the first publicly available cache benchmarking
tools. Its distinguishing features include support for
studying the effect of adding disk arms and the effect
of handling low bandwidth (modem-based) clients.
One interesting finding through use of WPB was that
latency advantages due to caching were essentially
erased when considering the overall profit to modem-
based clients.

While WPB addresses a number of important
benchmarking requirements, such as initial support for
temporal locality and some ability to generate load on
web server processes, it has some limitations. These
include lack of support for modeling spatial locality,
persistent HTTP 1.1 connections, DNS lookups, and

realistic URLs. The WPB has been used to benchmark
several proxy caches, including some of the research
and commercial systems mentioned in [1].

A.2 Polygraph

Polygraph6 is a recently developed, publicly available
cache benchmarking tool developed by NLANR. It can
simulate web clients and servers as well as generate
workloads that model typical Web access patterns.

Polygraph has a client and a server component, each of
which uses multiple threads to generate or process
requests. This allows Polygraph to simulate concurrent
requests from multiple clients to multiple servers.
Polygraph can generate different types of workloads to
simulate various models of content popularity. For
example, Zipf-based [3] workloads (largely believed to
model average Web access patterns) can be created.

More recently, Polygraph has been playing an
increasing role in holding open benchmark Web
Caching Bakeoff’s as a way of inspiring the
development community and encouraging competition
towards good caching solutions. A summary of their
study comparing a number of commercial and
academic systems can be found online at
http://bakeoff.ircache.net/N01/.

B. Related Network Components

The effectiveness of web caching is, in part, affected
by the related network components which are deployed
in conjunction with a cache, cache cluster, or web
server. We now summarize a few types of local and
global load balancing solutions which augment existing
cache systems.

B.1 Local Load Balancers

Local load balancing is concerned with improving the
scalability, availability, and reliability of web servers
or web caches. Incoming requests are intercepted and
"redirected" to one member of a group of servers or
caches, all of which exist in a common geographic
location. By splitting the requests among members of a
group, one server or cache is not forced to handle all
incoming requests. Thus, such services can scale better
and are more robust (no single point of failure). Local
load balancing usually involves distributing requests
according to some load balancing algorithm, such as
round-robin or least-connections.

One way to achieve local load balancing is to use L4
switches in a transparent caching environment. In that
case, client outbound requests can be intercepted and
redirected towards members of a cache cluster.
Another type of local load balancing can be achieved

                                                          
6 http://polygraph.ircache.net



by using L5 switches, which perform a more semantic
style of load balancing.

The Alteon ACE-Director and CACHE-Director
switches represent examples of how L4 switching can
improve server and cache load balancing. Another
example switch is the LocalDirector, from Cisco,
which is typically deployed to distribute incoming load
upon multiple web servers or reverse proxy caches.

Recent alternatives to L4-based switching include L7-
switching and L2 switches that support L4 and L7
processing. The former type provides the same
functionality as an L4 switch but also includes
sophisticated partitioning support and comes with IP
filters that normally need to be added to L4 switches.

More recently, Layer 5 (L5) switching has emerged as
another load balancing alternative. This type of
switching approaches load-balancing from a more
semantic level. One example is the Arrowpoint Content
SmartSwitch (CSS). Like a standard L4 switch, the
CSS performs load balancing for both client-based or
server-based deployment strategies. However, CSS
operates above the transport layer and balances based
on requested content type.

For instance, on the client side, CSS can be configured
to redirect static HTTP requests to a local cache
cluster, and bypass caching for dynamic HTTP
requests. When balancing load among content servers,
CSS can distinguish among different "higher-level"
protocols like HTTP, SSH, and NTTP, and divert them
to the appropriate server or group of servers.
Furthermore, requests can be redirected based on
content-based quality-of-service. For example, as
Figure 2 shows, administrators can redirect SSH
requests files to different servers. Fulfillment of those
requests may per request type (i.e., requests for video
files may be slowly filled, whereas text files are
handled much quicker, since the latter is easier to
transmit than the former).

Distributed Web serving solutions may combine
caching, L4-, and L5switching. Take for example the
case of a ISP that also provides Web hosting services.
An L4 switch can be placed in front each group of
replicated servers, each of which serving different
content. An L5 switch can be placed at the entrance of
the ISP so as to divert different content to the
appropriate L4-replicated server group.

B.2 Global Load Balancers

Global load balancers are similar to local load
balancers in that they have the goal of improving
performance and scalability However, instead of
distributing requests among members of a group which
are geographically local to one another, global load

balancers usually distribute requests to servers or
caches which are near the client, to achieve lower
average network latencies, as well as to improve
scalability.

For example, if an organization has web servers
deployed throughout the world, a global load balancer
can determine the appropriate host (based on physical
location) for a given client request and return the IP
address of that server to the client. Since browsers
often cache DNS entries (local POPs also do this, etc),
repeated requests by a client to a given logical Internet
address will continue to result in those requests being
forwarded to the most local server.

Cisco’s Distributed Director is one example of a global
load balancer. When a client request is issued, it is
initially directed at a primary DNS server. This request
eventually reaches the local DNS server for that logical
site. At this point, the local DNS server contacts the
Distributed Director and determines the IP address of
the geographically appropriate server for handling the
request. This IP address is then sent back to the client,
and will most likely be cached for further use.

Radware’s Cache Server Director (CSD), is another
global load balancing solution, dedicated towards
improving cache fault tolerance. Consider the case of a
content provider whose replicated servers are located at
different Internet sites. A CSD is placed at each site as
a front-end to the local set of replicated servers. Each
CSD runs a local DNS server and exchanges network
proximity as well as server load information with the
other CSDs. A CSD maps a client request’s host name
to one of the ISP site’s IP address. It makes its decision
based on where the request originated and its current
network and server load information (about itself and
the other server clusters).

Figure 2: Request-based routing via L5 switching
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