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We develop the formalism to do worldline calculations relevant for the Standard Model. For that, we 
rst 
gure out the worldline
representations for the free propagators of massless chiral fermions of a single generation and gauge bosons of the StandardModel.
	en we extend the formalism to the massive and dressed cases for the fermions and compute the QED vertex. We then go over
fermionic one-loop e�ective actions and anomalies. To our knowledge, in the places where there has been an attempt at deriving the
gauge boson propagator, the derivation is somewhat contrived, and we believe our derivation is more straightforward. Moreover,
our incorporation of internal degrees of freedom is novel and sports some new features. 	e derivation of the QED vertex is also
new.	e treatment of the fermionic one-loop e�ective actions leads to a particularly economical derivation of chiral anomalies and
the gauge anomaly freedom in the Standard Model, improving upon the state of the art in the literature. 	e appropriate worldline
formalism developed thus sets the stage for StandardModel calculations beyond the tree and one-loop cases that incorporate Bern-
Kosower type formulae for multiloop amplitudes, relevant for processes at the LHC.

1. Introduction

	at second quantization is equivalent to 
rst quantization
when formulated on singular 1D manifolds/graphs instead

of R1 has been known for quite some time, beginning with
Feynman [1]. In fact this has been the main raison d’etre for
the formulation of string theory in its present form, where
one uses all possible super-Riemann surfaces in place of 1D
manifolds. However, for 
eld theories, it had been mainly
existing as a curiosity and a testing ground for ideas to be
applied to string theory, until Bern and Kosower ventured
to show [2–4] that certain 
eld theory computations were
amenable to simpli
cations when looked upon as in
nite
tension/
eld theory limits of certain 4D heterotic string
amplitudes. Strassler then proved [5] that the rules that
Bern and Kosower had unearthed had a much simpler
genesis in worldline formulations of the one-loop e�ective
actions of 
eld theory. 	at unleashed a whole industry
of worldline computations, with generalizations to higher
loops [6] and constant external backgrounds [7] among other
things, culminating in a review article by Schubert [8], which

contains an almost exhaustive list of references up to that
point and which much of the subsequent literature also cites.
A more recent and pedagogical review is [9].

However most of the literature focussed on worldline
path-integral representations of one-loop e�ective actions

for spinning particles, which are formulated on S
1, and

their close cousins, the worldline representations for dressed
propagators, that are formulated on segments of R

1, did
not receive as much attention, mainly because of their lack
of utility in relevant computations but also because it was
harder to formulate. In fact some of the latter’s avatars
[10–16] existed even before the Bern-Kosower revolution,
and some were formulated later on [17–23]. Particularly,
[13, 19, 21–23] also handled the dressed propagators for the
Abelian backgrounds. In any case it remains a relatively
less researched subject to this day, compared to the e�ort
devoted to the worldline path-integral representations of
e�ective actions and its derivatives, like loop-level scattering
amplitudes, and computations of higher loop beta-functions,
whose original references are mostly found in [8].
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Moreover, most of the derivations for propagators were
concerned only with pure spin-half particles, without any
internal symmetries of any kind (with the exception of [12]
which presciently anticipates some of what is done here).
Also, the propagators were o�en derived not only from
the worldline path-integrals per se, but from complicated
derivatives thereof. Spin higher than 1/2was treated in papers
like [7, 24], but the results were not fully satisfactory in
the sense that the connection to the path-integral was not
immediate, and arrived at only a�er certain manipulations.
Wewill see that the connection ismore direct thanwhat these
papers would have us believe. And again, we will also see how
internal symmetries can be incorporated more directly.

	e method for incorporating internal symmetries at the

rst quantized level had been well known for quite some
time, starting with [25] and further elaborated upon in [26,
27]. However, their incorporation in worldline path-integrals
for propagators [28, 29] and e�ective actions [30] did not
somehow seem appealing until only recently. Moreover,
these papers considered only scalar particles with internal
symmetries and only included spin-half for the one-loop
e�ective action [30].

Here 
rst of all we demonstrate how to incorporate spin
as well as internal symmetries for both fermions and gauge
bosons for general ��(�) gauge groups (see [31, 32] for related
work) and we specialize to the case of ��(10) for the chiral
fermions of the SM, for the 16 fermions of the SM in a
single generation transform as a spinorial representation of��(10), upon including a right-handed antineutrino (see [33,
34] for related work). We derive the worldline path-integral
representation of the propagators for the chiral fermions of
the SM and the appropriate worldline Lagrangian includes
worldline fermions pertaining to spin-half, as well as others
pertaining to the ��(10) group.

We also work out the path-integral representation for
the ��(�) gauge boson propagator. 	e ��(3) gauge boson
propagator can be derived from the ��(6) one, of which it is
a subgroup (with certain caveats, cf. end of Section 5), and
the ��(2) one can be obtained from the ��(3) one, of which
it is a double cover. Or if one wishes to derive everything
starting from ��(10), one can simply choose � = 10.All these
propagators are derived in the so-called coherent state bases,
to be explained below, and it is straightforward to transform
them to the index bases as we will see.

	e worldline actions involved for both spin-half and
spin-one have local reparametrization symmetries and super-
symmetries, which have to be 
xed by choosing gauges,
and that necessarily entails Faddeev-Popov ghosts. Here, in
the initial derivations we simply gauge-
x and throw away
the gauge volumes without any justi
cations, reserving the
proper derivation for later, wherein we do a full Hamiltonian
BRST analysis. In any case, as is well known and we 
nd
ourselves, the ghosts decouple trivially for the case of the open
worldline.

It is easy to see how to extend the analysis for the case
of the graviton, but we do not do that here. 	roughout, we
make use of a technique outlined in [29], adapting the anal-
ysis there in terms of internal symmetry worldline fermions,
to the spinning case here. We show that the propagators are

related directly to the worldline path-integrals and not to any
derivatives of it, albeit in the coherent state bases.

A�er working out the free massless propagators, we
concentrate on the dressed massive propagators and as an
application derive the QED vertex by dressing the elec-
tron propagator by one photon. 	is simple result proves
formidable to derive and it is gratifying that the various terms
cancel subtly among each other to give the right result.

Our next quest becomes derivation of fermionic one-loop
e�ective actions and anomalies, both chiral and gauge, and
we demonstrate gauge anomaly freedom in the SM in an
especially economic fashion. Since the Atiyah-Singer index
theorem is related to the chiral anomaly, the methods used
here can be looked upon as yet another derivation of the
theorem, when the background is nongravitational. 	ese
anomalies were 
rst formulated in terms of worldline path-
integrals in [35] and were put on more rigorous footing
in [36] and the analysis 
nally culminated in a book [37].
One can compare the methods in these references with the
methods here to appreciate the economy of arguments and
calculational steps.

One of themain aims of this paper is getting the quantum
mechanical models whose wave-functions are the 
elds of
the SM. Since the internal symmetry worldline fermions
get transformed into fermionic creation and annihilation
operators upon quantization (cf. Sections 5 and 6) the
di�erent states in a spin-half or spin-one sector can simply
be seen as excitations over ground states. Taking the cue
from here, one might suppose that the other generations
of the SM also have a similar genesis; namely, they too
might be built upon the states of the 
rst generation via
the action of even more creation operators. We have been
exploring this issue and have found that 6 more creation and
annihilation operators are needed, which can bemade to lead
to 3 chiral and one vector-like generations upon imposition
of GSO-like projection conditions. 	is necessarily enlarges
the symmetry group from ��(10) to ��(16) and this then
has rami
cations for the scalar sector. 	e scalar sector in
an ��(10) GUT is extremely rich, and there are certain
advantages inmaking it even richer, like reducing the number
of Yukawa couplings to just one with the ��(10) Yukawa
couplings arising from spontaneous symmetry breaking from��(16) to ��(10). A major problem for ��(16) is that its
representations are known to be vector-like; however, that
can be taken care of by the GSO-like projection operators
on the spectrum of states, which enforces the condition that
di�erently handed states that are exactly similar otherwise
cannot both survive the projection.

What we do here is mainly developing a formalism, to be
applied to more involved processes than the ones considered
here. So though there is no new physical result, we would
like to stress that the formalism uncovered is novel, as is
evident from the economy of arguments and calculational
steps mentioned before, among other things. In particular,
the thing that is primarily uncovered is the immediacy and
simplicity of the coherent state formalism when interpreted
in the way we have followed here.

	e rest of the paper is organized as follows. In Sections 2
and 3, we derive the worldline representations of themassless



Advances in High Energy Physics 3

propagators for bare spin-half and spin-one particles, respec-
tively, which we believe are novel in themselves as they di�er
and improve upon the derivations present in the literature.
We then do a full Hamiltonian BRST treatment for the spin-
one case in Section 4. In Sections 5 and 6, we show how to
incorporate internal symmetries into the mix, deriving the
propagators for the SM gauge bosons and chiral fermions,
respectively. In Section 7 we extend the formalism to massive
dressed propagators for the spin-half cases and in Section 8,
we use the formalism developed to compute the QED vertex.
	en we launch into the topic of fermionic one-loop e�ective
actions in Section 9, specializing to the case of QCD in
Section 10, and derive the chiral anomaly and prove gauge
anomaly freedomof the SM in Section 11. Finally we conclude
in Section 12. 	ere are three appendices that elaborate upon
certain calculational steps.

2. Propagator for the Spin-Half Particle

A spin-half particle is in reality a 1 | 1-dimensional object
parametrized by a bosonic parameter � and a fermionic
parameter �, and the embedding of these coordinates in
spacetime is given, instead of ��(�), by 	�(�, �), which
embeds as 	� (�, �) = �� (�) + �
� (�) (1)

which in other words means that the electron sees a 4 | 4-
dimensional super-spacetime. 	e fermionic coordinates 
�
are nilpotent, so the fermionic submanifold is in
nitesimal
and compact; however, it is 
bered over spacetime and,
together, they form what is known as the Cli�ord-bundle,
once the theory is quantized and 
� become the Dirac
matrices, ��.

	e Lagrangian for a single massless electron is given by
[38–41] � = ��̇� + �2
�
̇� − 12��� − ��
��. (2)

We are working in the metric conventions (+ − −−). 	is
Lagrangian has local reparametrization symmetry, generated

by (1/2)2, and local worldline supersymmetry, generated by
��. It is convenient to transform the “Majorana” fermions
� in the kinetic term to “Dirac” fermions as follows:� = ��̇� − 12��� − ��
�� + �
�
̇�, (3)

where, by the doubling trick,
0 = 1√2 (
1 + 
1) ,
3 = 1√2 (
1 − 
1) ,
2 = �√2 (
2 + 
2) ,
1 = 1√2 (
2 − 
2) .
(4)

	eMajorana indices on the LHS are the ones in (2) and those
on the right are the Dirac ones in (3). Upon Dirac quantiza-
tion the barred objects in (3) become creation operators while
the unbarred ones become annihilation operators, satisfying
the commutation relations{
�, 
�} = ���. (5)

	e creation operators act on a common vacuum to produce
the fermionic subspace of the physical states that are precisely
the spin-1/2 states. 	ey are of the form|0⟩ ,
̂1 |0⟩ ,
̂2 |0⟩ ,
̂1
̂2 |0⟩ ,

(6)

where |0⟩ collectively denotes the vacua of species 1 and 2.
Now, if one assigns the following indices to the above states,�1 �→ |0⟩ ,�1 �→ 
̂1 |0⟩ ,�2 �→ 
̂2 |0⟩ ,�2 �→ 
̂1
̂2 |0⟩ ,

(7)

where � and � denote right- and le�-handed, the matrix

elements of √2
̂� with respect to the above states yield just
the matrix elements of the Dirac matrices �� in the chiral
representation; namely,�� = ( 0 ���� 0 ) . (8)

	e above stems from converting √2
̂� to the Dirac basis
and treating them as creation annihilation operators.	e full
wave-function is a direct product of elements of the bosonic
Hilbert space and the fermionic Hilbert space above and
together they form the components of a Dirac spinor.

Now the theory has constraints, obtained from (3) by
varying with respect to the auxiliary 
elds � and � and they

are2 = 0 and
�� = 0.	e representation of aDirac spinor
is

| ⟩ = ("""" �,1⟩"""" �,2⟩"""" �,1⟩"""" �,2⟩)= """" �,1⟩ |0⟩ + """" �,1⟩ 
̂1 |0⟩ + """" �,2⟩ 
̂2 |0⟩+ """" �,2⟩ 
̂1
̂2 |0⟩ .
(9)
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As a consequence of the above facts the constraint √2
̂��
acting on the above state yields the Dirac equation⟨�| ��� | ⟩ = −���&� (�) = 0. (10)

	ere is an alternate basis of states, formed by the fermionic
coherent states, which satisfy
̂� """"
1⟩ = 
1� """"
1⟩ , (11)

where
1� is a Grassmann number.	ismeans the above state
is of the form """"
1⟩ = ��̂��1� |0⟩ (12)

because of the anticommutation relations between 
̂� and 
̂�.
Bra states ⟨
2| are of the form⟨
2"""" = ⟨0| ��2��̂� , (13)

where they satisfy ⟨
2"""" 
2� = ⟨
2"""" 
̂�. (14)

	is in particular means⟨
2 | 
1⟩ = �(�2��1�). (15)

	ey also satisfy the properties⟨
2"""" 
̂� = &&
2� ⟨
2"""" ,
̂� """"
1⟩ = − &&
1� """"
1⟩ . (16)

Let us now see whether the path-integral of the action
(3) reproduces the Dirac propagator. One starts with the
following path-integral form:∫	�(1)=	��

	�(0)=	�
D�∫��(1)=�2�

��(0)=�1�
D
D


⋅ ∫ D�D�
Vol (Sym)D�� ∫10 ��(�	̇�−(1/2)���−�����+����̇�)+����(1), (17)

where the gauge volumes of the reparametrization symmetry
and supersymmetry of the action have been divided and we
have set certain boundary conditions for �’s and 
’s and
the choice of the boundary conditions will become clearer
later. � and � are like gauge 
elds that transform under
these symmetries and one has to gauge-
x them to avoid
overcounting by restricting them to single gauge slices. 	e
integral over the gauge-orbits would then cancel the volume
factor. 	is would necessarily entail Faddeev-Popov ghosts,
and we address the issue in Section 4, albeit in the context
of the spin-1 particle. As we will see there, the dependence
on the ghosts becomes trivial and this is related to the fact
that, for an open line, the FP determinant becomes trivial on
gauge 
xing � to a constant and so does it for �. A similar
analysis is applicable to the spin-half case as well. For the

present we simply assume that, upon gauge 
xation, one can
simply throw away the gauge volumes. 	e boundary term
is necessary in order for the 
eld equation for 
� to be given
by (5/57)
� = 0 without incurring extra boundary terms1.
First we simultaneously 
x � to 28 and � to �. 	en upon
integrating out � one gets∫585�∫	�(1)=	��

	�(0)=	�
D�

⋅ ∫��(1)=�2�

��(0)=�1�
D
D
�� ∫10 ��((1/4�) ̇	2+����̇�−�(�/2�)(�� ̇	�+��	̇�))+����(1), (18)

where we have used 
��̇� = 
��̇� + 
��̇�, (19)

where ��(��) have the same relations to �� as 
�(
�) have to
� (cf. (4)).
Upon Wick rotating 7, one gets∫585�∫	�(1)=	��

	�(0)=	�
D�

⋅ ∫��(1)=�2�

��(0)=�1�
D
D
�∫10 ��(−(1/4�) ̇	2−���̇�+(�/2�)(�� ̇	�+��	̇�))+����(1). (20)

Now, let us perform the integral over �. We get∫58∫	�(1)=	��

	�(0)=	�
D�∫��(1)=�2�

��(0)=�1�
D
D


⋅ ∫ 57 128 (
��̇� + 
��̇�) �∫10 ��(−(1/4�) ̇	2−���̇�)+����(1). (21)

Let us then concentrate on the fermionic integral. 	e free
fermionic path-integral becomes [29]∫��(1)=�2�

��(0)=�1�
D
D
�∫10 ��(−���̇�)+����(1) = ��2��1� . (22)

When one evaluates the correlators in (21), this part would
be omnipresent, as is usual, as the normalization factor (cf.
Appendix A). Now in evaluating the fermionic correlators in
(21), we 
rst split the 
elds into background and �uctuations
� (7�) = 
1� + ;� (7�) , ;� (0) = 0,
� (7) = 
2� + ;� (7) , ;� (1) = 0. (23)

	e kinetic action for the �uctuations ∫10 58;�;̇� can be

inverted to give the propagator⟨;� (7) ;� (7�)⟩ = ���� (7 − 7�) . (24)

	e fermionic part can thus be written as128��2��1� ⟨∫57 [(
2� + ;� (7)) �̇�+ �̇� (
1� + ;� (7�))]⟩ , (25)
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where the one-point functions are with respect to the action
for the �uctuations. Now the one-point functions for ;’s and;’s vanish and using∫��(1)=0

��(0)=0
D;D;�∫10 ��(−���̇�) = 1 (26)

one is le� with∫∞

0
58 128��2��1� ⟨∫57 [(
2�) �̇� + �̇� (
1�)]⟩ , (27)

where now the one-point functions are of �̇’s and are with
respect to the action for � (cf. (18)). Again, �’s can be
separated into background and �uctuations�� (7) = �� (0) + (�� (1) − �� (0)) 7 + D� (7) (28)

with a similar expansion for �’s, where D(0) = D(1) = 0, and
one has �̇� (7) = (�� (1) − �� (0)) + ̇D� (7) (29)

and the � action becomes− ∫57 148 [(� (1) − � (0))2 + 2 (� (1) − � (0))� ̇D�+ ̇D2] = −∫57 148 [(� (1) − � (0))2 + ̇D2] . (30)

Again, the ̇D one-point function vanishes and upon substitut-
ing the values for �(1) and �(0), and taking into account the
contribution from the free integral over D’s, we get that the �̇
one-point function is⟨�̇� (7)⟩ = 1(4E8)2 (��� − ��) �−(	�−	)2/4�. (31)

	us (27) becomes, upon incorporating similar e�ects for the� part and performing the 8 integral,�(�2��1�) ((��� − ��) 
1� + (��� − ��) 
2�)2E2 (�� − �)4 , (32)

where one has used( 12E)2 ∫∞

0

5828 ( 128)2 �−(	�−	)2/4�= 12E2 ∫∞

0
5���−�(	�−	)2 (33)

upon transforming 48 → �−1, which 
nally becomes= 12E2 (�� − �)4 . (34)

	roughout, up to Section 6, we are working with (�� −�)2 ≥ 0, since, otherwise, integrals such as in (33) blow up as� → ∞. In Sections 7 and 8 we will be working with (�� −�)2 ≤ 0, as will be clari
ed there. Beyond Section 8, where we

are working with one-loop amplitudes, such considerations
do not apply. But now notice that (32) is precisely

⟨
2"""" (��� − ��) 
̂� + (��� − ��) 
̂�2E2 (�� − �)4 """"
1⟩ , (35)

where |
1⟩ and ⟨
2| are the coherent states de
ned above.
Now expression (35) is equal to

⟨
2"""" ((��� − ��) 
̂�)2E2 (�� − �)4 """"
1⟩ (36)

because of (19). 	is can be written as− ⟨
2"""" 
̂�&�� 14E2 (�� − �)2 """"
1⟩ , (37)

where the prime on the derivative denotes di�erentiation
with respect to ��. But as we saw above, the operator 
̂�
is precisely ��/√2 when acting on the basis (7), which is a
complementary basis to the overcomplete coherent state one,
and, transforming to this basis, one has− 1√2 ⟨�| ��&�� 14E2 (�� − �)2 """"K⟩ , (38)

where � and K stand for the four components of (7). But this
is precisely equal to�√2 ⟨��, �""""" � ⋅ 2 """"�, K⟩ = �√2 ⟨��, �""""" 1� ⋅  """"�, K⟩ . (39)

Summarizing,�√2 ⟨��, 
2""""" 1� ⋅  """"�, 
1⟩ = ∫	�(1)=	��

	�(0)=	�
D�∫��(1)=�2�

��(0)=�1�
D
D


⋅ ∫ D�D�
Vol (Sym)D�� ∫10 ��(� ̇	�−(1/2)���−�����+����̇�)+����(1), (40)

where � means the usual gamma matrix when acting on the
Dirac basis and an oscillation operator when acting on the
coherent state basis.

	us we see that the massless Dirac propagator can
be given a path-integral representation given by the above
expression. Now we claim that this entire derivation essen-
tially boils down to the above expression being equivalent to∫∞

0
58∫5� ⟨	�""""" �−��−��� |	⟩ , (41)

whereL = 2 and M = 
̂ ⋅  and where each of these is now
an operator. |	⟩ and ⟨	�| stand for|�⟩ ⊗ """"
1⟩ ,⟨��""""" ⊗ ⟨
2"""" , (42)
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respectively. Upon integrating over the 8 and �, one gets
� ⟨	�""""" ML |	⟩ = � ⟨	�""""" 
̂ ⋅ 2 |	⟩

= �√2 ⟨��, 
2""""" 1� ⋅  """"�, 
1⟩ , (43)

where � has the samemeaning as that above, thus vindicating
our claim. We will make use of similar equivalences later. In
fact (41) has been the starting point for many of the earlier

treatments [11–16, 19–23] and they have proceeded in the
opposite route from this to the path-integral form. Here we
have shown how to arrive at the above starting from the path-
integral.

We would like to remark that our treatment is closest
in spirit to [12, 14], and we will see how to extend the
formalism to the massive and dressed case in Section 7, with
its vindication in Section 8, where we derive the QED vertex.

3. Propagator for the Spin-One Particle

Let us now come to the spin-1 particle. It is a 1 | 2-
dimensional object with embedding in spacetime given by	�(�, �, �). Each �� has two fermionic superpartners,
� and
�. 	e expansion is	� (�, �, �) = �� (�) + �
� (�) + �
� (�) + ��O� (�) . (44)

O� can be eliminated by its equation of motion as it appears in
the actionwithout a kinetic term.	e locally supersymmetric
N = 2 worldline Lagrangian is given by [42, 43]� = ��̇� + �
�
̇� − 12��� − ��
�� − ��
��− P
�
� + QP, (45)

where there are additional terms in comparison to theN = 1
Lagrangian in (2), whose signi
cance is that they project the
physical state space onto a subspace of speci
c R�̂ [42, 43],

whose meaning will become clearer below.P is a worldline �(1) gauge 
eld and 
�
� generates
a �(1) R-symmetry. In particular, choosing Q = 0 projects
to the R�̂ = 2 sector, the one relevant for two-forms,

the antisymmetric tensor corresponding to S�]
�
]
in this

case. 	is is because once the 
elds are quantized, 
’s
become operators, and a term like 
̂�
̂� becomes ambiguous
with respect to its ordering. To resolve this, one has to

antisymmetrize it and de
ne it as (1/2)(
̂�
̂�−
̂�
̂�), so that
it picks up a normal ordering constant, upon being normal
ordered, of value 2. So the operator that acts on physical statesΦ(�, 
) is of the form 
̂�
̂� − 2 = 
�(&/&
�) − 2, and it
projects onto 2-forms, when Q = 0. 	e QP term is evidently a
Chern-Simmons term, appropriate for a 1D action.

Now it is well known that quantization of the above
Lagrangian gives rise to the free Maxwell equations for S�]
[42, 43]. 	us the path-integral ought to give rise to the
correlator for it. Upon Euclideanisation of the action, one gets
the following path-integral form:

∫	�(1)=	��

	�(0)=	�
D�∫��(1)=��2

��(0)=��1
D
D
 × ∫ DPD�D�D�

Vol (Sym) D�∫10 ��(��	̇�−���̇�−(1/2)���−�����−�����−������)+����(1). (46)

First we simultaneously 
x � to 28, � to �, and � to � andP to a constant which ranges from 0 to 2E, since it is a �(1)
gauge 
eld and hence compact (large gauge transformations

lead us to identify U with U + 2�E, where U = ∫10 57P(7) [43]).
	is constantwe continue to callP and its associated Faddeev-
Popov determinant is a constant independent of P which can

be taken as (2E)−1. 	en as before, we 
rst integrate out �. It
begets

∫585� 5� 5P(2E) ∫	�(1)=	��

	�(0)=	�
D�∫��(1)=��2

��(0)=��1
D
D
�∫10 ��(−(1/4�) ̇	2−���̇�+(�/2�)�

� ̇	�+(�/2�)�� ̇	�−�(�−�(��/2�))�
���)+����(1). (47)

We will now evaluate this using the methods of [29]. First of

all let us perform the integrals over � and �. We get

∫58 5P(2E) ∫	�(1)=	��

	�(0)=	�
D�

⋅ ∫��(1)=��2

��(0)=��1
D
D
(∫57 57� 1482
��̇� (7) 
]�̇] (7�)

− ∫57 128
�
�)× (�∫10 ��(−(1/4�) ̇	2−���̇�−���
���)+����(1)) .

(48)

Let us concentrate on the fermionic integral. First of all it is
convenient to twist the fermions in the following manner:
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 (7) �→ 
 (7) ����,
 (7) �→ 
 (7) �−���, (49)

so that the free part of the fermionic path-integral becomes
[29] (see Appendix B)∫��(1)=�−����2

��(0)=��1
D
D
�∫10 ��(−���̇�)+����(1)= ��−����2��1+2��. (50)

As before, when one evaluates the correlators in (48), this part
would be omnipresent, as the normalization factor.	e extra
factor of 2�P is generated because, in particular, the values ofV and �/2 in (B.2) are both 2 in this case. Now in evaluating
the fermionic part in (48), again we 
rst split the 
elds into
background and �uctuations
� (7�) = 
�1 + ;� (7�) , ; (0) = 0,
� (7) = �−��
�2 + ;� (7) , ;� (1) = 0. (51)

	e kinetic action for the �uctuations ∫10 58;�;̇� can be

inverted to give the propagator⟨;� (7) ;] (7�)⟩ = W�]� (7 − 7�) . (52)

	e fermionic part can thus be written as∫2�

0

5P2E�2��+�−���2 ⋅�1 ⟨∫57 57� [(�−��
�2 + ;� (7))⋅ ( 1482 �̇� (7) �̇] (7�)) (
]

1 + ;] (7�))]− ∫57 128 [(�−��
�2 + ;� (7)) W�] ( 
]

1 + ;] (7)]⟩ , (53)

where the correlators are with respect to the action for the
�uctuations. 	e P integral can be done as follows:∫2�

0

5P2E����+�−���2 ⋅�1 = ∫2�

0

5P2E���� 4∑
�=0

1�! (�−��
2 ⋅ 
1)�
= {{{ 1_! (
2 ⋅ 
1)� , _ ≥ 00, _ < 0. (54)

	us (53) becomes, upon substituting _ = 2 and using �(0) =1/2,∫57 57� 1482
2 ⋅ 
1
�2 �̇� (7) �̇] (7�) 
]

1 + 12⋅ ∫ 57 57� (
2 ⋅ 
1)2 ( 1482 �̇� (7) �̇] (7�) � (7 − 7�)) W�]− 18 ∫57 (
2 ⋅ 
1)2
(55)

since the one-point functions of ;’s vanish. Now, we must
evaluate the rest of the integrals. Let us 
rst do the � path-
integral. Again, �’s can be separated into background and
�uctuations�� (7) = �� (0) + (�� (1) − �� (0)) 7 + D� (7) , (56)

where D(0) = D(1) = 0 so that�̇� (7) �̇] (7�) = (�� (1) − �� (0)) (�] (1) − �] (0))+ (�� (1) − �� (0)) ̇D] (7�)+ (�] (1) − �] (0)) ̇D� (7)+ ̇D� (7) ̇D] (7�)
(57)

and the � action becomes∫57 148 ((� (1) − � (0))2 + 2 (� (1) − � (0)) ⋅ ̇D + ̇D2)= ∫57 148 ((� (1) − � (0))2 + ̇D2) . (58)

	us the �̇ correlator yields, upon substituting the values for�(1) and �(0) and again taking into account the contribution
from the free integral over D’s,⟨�̇� (7) �̇] (7�)⟩ = 1(4E8)2 [(��� − ��) (��] − �])+ W�] (−28 (1 − � (7 − 7�)))] �−(	�−	)2/4�, (59)

where we have taken the ̇D correlator from [36] and used the
fact that one-point functions vanish.	us doing the 7 integral
in (55), one gets, upon using ∫10 57 57�(1 − �(7 − 7�)) = 0,∫10 57 57��(7−7�) = 1/2, and ∫10 57 57�(1−�(7−7�))�(7−7�) = 0,1(4E8)2 [ 1482 ((��� − ��) (��] − �]) 
�2
]

1
2 ⋅ 
1+ 14 (
2 ⋅ 
1)2 (�� − �)2) − 18 (
2 ⋅ 
1)2]⋅ �−(	�−	)2/4�
(60)

which, upon doing the 8 integral, reduces to= (
�2
]

1
2 ⋅ 
1) &��&�] 14E2 (�� − �)2 (61)

since ∫∞

0
58 1(4E8)2 18�−(	�−	)2/4� = 1E2 (�� − �)4 ,∫∞

0
58 1(4E8)2 1482 �−(	�−	)2/4� = 2E2 (�� − �)6 . (62)
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We will now prove that (61) can be reexpressed as∫2�

0

5P2E ⟨
2"""" 
̂�
̂] (�−��(�̂��̂�−2)) """"
1⟩ &�]&�� 14E2 (�� − �)2 . (63)

First of all the latter is equal, due to the property of coherent
states, ⟨
2|
̂] = (&/&
2])⟨
2|, to∫2�

0

5P2E
�2 &&
2] ⟨
2"""" (�−��(�̂��̂�−2)) """"
1⟩ &�]&�� 14E2 (�� − �)2 (64)

which, from Appendix B, is= ∫2�

0

5P2E
�2 &&
2] ��−���2⋅�1+2��&�]&�� 14E2 (�� − �)2 (65)

= ∫2�

0

5P2E
�2 &&
2] 4∑
�=0

1�! (�−��
2 ⋅ 
1)� �2��&�]&�� 14E2 (�� − �)2 (66)

from which only � = 2 will survive the P integration, leading
to = 
�2 &&
2] 12! (
2 ⋅ 
1)2 &�]&�� 14E2 (�� − �)2= (
�2
]

1
2 ⋅ 
1) &��&�] 14E2 (�� − �)2 (67)

which is the same as (61).
But (63) can also be written as2∫2�

0

5P2E ⟨��, 
2""""" 
̂��
̂]] 12 (�−��(�̂��̂�−2)) """"�, 
1⟩ (68)= ⟨��, 
2""""" 
̂��
̂]] 12 ��̂,2 """"�, 
1⟩ . (69)

Now again, this form could have been arrived atmore directly
by starting out with∫∞

0
58∫5�∫5�∫5P ⟨	�""""" �−��−���−���−��(�̂−2) |	⟩ . (70)

And again, as in the previous section, the usual path that one
traverses is from the above expression to the path-integral
form in (46). 	e above equation yields∫∞

0
58∫5�∫5� ⟨	�; b, �"""""⋅ �−�� [1 − ��M − ��M − (�M�M)] """"	; c, ]⟩ (71)

= −∫∞

0
58⟨	�; b, �""""" �−�� (MM) """"	; c, ]⟩= −⟨	�; b, �""""" (MM)L """"	; c, ]⟩ , (72)

where """"	; c, ]⟩ = |�⟩ ⊗ 
�
] |0⟩ (73)

and we have made a change of basis from that of the coherent
states to theMaxwell one, which because of the delta function��̂,2 arising from (70) upon integrating over P is of the form
̂�
̂] |0⟩ = """"c, ]⟩ ; (74)

that is, the number of 
̂ operators is restricted to 2. 	is
gels well with the 2-form (gauge boson 
eld strength) wave-
function which is S�] (�) 
̂�
̂] |0⟩ . (75)

In this basis, one has, from (72),− [⟨��""""" ⊗ ⟨0| 
̂�
̂ ] [[
̂!!
̂��2 ]][|�⟩ ⊗ 
̂�
̂] |0⟩] . (76)

Notice that this is the same as (69) where the delta function��̂,2 acts on the ket there to reduce it to the above form,

and then since the operator in the middle contains 
̂! and
̂� the only bras which can have meaningful inner products
are of the above form. We emphasize this because later we
will see that, for the case of the le�-handed spin-half particle
in Section 5, the kets and bras will have di�erent operator
contents, since the operator in the middle will be of the form
̂��. Now,[
̂!!
̂��] [|�⟩ ⊗ 
̂�
̂] |0⟩]= !� |�⟩ ⊗ [W��
̂!
̂] − W]�
̂!
̂�] |0⟩ . (77)

	us taking the overlap−⟨��; ;, j""""" (
̂!!
̂��) """"�; c, ]⟩ (78)

one gets− [⟨��""""" ⊗ ⟨0|] [
̂�
̂ !� [W��
̂!
̂] − W]�
̂!
̂�]]⋅ [|0⟩ ⊗ |�⟩]= − ⟨��""""" !� [W�� {W !W�] − W ]W�!}− W]� {W !W�� − W �W�!}] |�⟩= − ⟨��""""" [ �W�] − ��W ] −  ]W�� + �]W �]⋅ |�⟩
(79)

and hence the propagator that is obtained from (76) in this
basis is− ⟨��"""""⋅ [ �W�] − ��W ] −  ]W�� + �]W �]2 |�⟩ . (80)

But this is precisely the propagator⟨& s�&�s] − &�s &�s] − & s�&]s� + &�s &]s�⟩ (81)
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or ⟨S � (��) S�] (�)⟩ (82)

if the propagator ⟨s�(��)s](�)⟩ is⟨��""""" W�] − (1 − t) (�]/2)2 |�⟩ (83)

which is the gauge boson correlator in an arbitrary gauge;
the freedom to choose t follows from the symmetry of
(81) under interchange of the Lorentz indices3. 	us the
appropriate path-integral representation of the gauge boson
(
eld strength) propagator in the coherent state basis is (46),
which in the light of all this is the same as (69), which in turn
gives rise to the above propagator, when one transforms to the
Maxwell basis, via (76).	e derivation here can be compared
with that in [24] to see the advantages of this method.

4. The Hamiltonian BRST Treatment

In the above two derivations, we skirted the issue of ghosts
that naturally arise when gauge-
xing a set of 
elds, and we
will remedy the situation here by doing a full Hamiltonian
BRST analysis. In particular, we will deal only with the spin-
1 case and that too with a di�erent choice of the Chern-
Simmons parameter Q from the above section, which will lead
us directly to the propagator in the Feynman-’t Hoo� gauge.
	is is somewhat puzzling and we are yet to 
gure out a
method that would yield (83) directly.

	e action that we will take is the same as before and is
given by∫1

0
58 [��̇� + �
�
̇� − 12��� − ��
�� − ��
��− P
�
� + QP] , (84)

where Q is an integer that takes value 1, instead of zero as in
the above section.

	ere are two bosonic gauge symmetries,�� and
�
�,
and two fermionic ones,
�� and
��, and for each of them
we need to de
ne ghost 
eldsC" = (C,C�,C�,C��) and ghost

momentaP" = (P,P�,P�,P��) such that [P",C#} = −��#".(C�,C�) are bosonic ghosts and correspond to 
�� and
��, respectively, while the rest are fermionic ghosts and

correspond to �� and 
�
�, respectively.
We will now adapt the treatment of [44] to the case at

hand. 	e treatment there deals with particles of any spin,
corresponding to which there are many more ghosts C��
corresponding to the more generalized R-symmetry 
�� 
��
instead of just 
�
� and hence a more complicated analysis.
	e starting action is∫58 [��̇� + �
�� 
̇�� − 12��� − ���
�� �− �2P��
�� 
��] . (85)

Firstly, the quantumBRSToperator can bewritten as a graded
sum Ω = ∑

≥0
Ω. (86)

	en starting fromΩ0 = C
"v" = CL +C�M� +C��w��, (87)

where L = 2, M� = 
� ⋅ , and w�� = �
� ⋅ 
�,
and imposing the nilpotency of the BRST charge, one can
recursively obtain the higher operators. 	en the quantum
gauge-
xed Hamiltonian operator can be written asL%& = LBRST − � {x,Ω} , (88)

where the 
rst term is the BRST-invariant Hamiltonian andx a gauge 
xing fermion, the latter being BRST-invariant for
any choice of x thanks to the nilpotency of Ω. Now sinceL
itself enters as a constraint in (87) one can setLBRST = 0 and
thus have L%& = −� {x,Ω} . (89)

	en one can use the gauge 
xing fermionx = −ŷ"P", (90)

where ŷ" = (28, 0, ���) are the gauge 
xations of (�, ��, P��)
in the action in (85), where ��� is a R × R skew diagonal
matrix, dependent on R/2 = � angular variables ��, with_ = 1, . . . , �. R/2 is the spin of the particle. Note that there
is no term akin to QP in (84) and it is only for R = 2 that it
manifests itself [42, 43]. In any case with these choices for ŷ",
the Hamiltonian operator becomesL%& = 82 + 12���w�� − ���C�P� − 2���C�'P�' (91)

and, subsequently, the modi
ed version of the above path-
integral can be rewritten in terms of these variables.

In the case at hand, since 
� and 
� are related to 
�� in
the following manner
� = 1√2 (
1� + �
2�) ,
� = 1√2 (
1� − �
2�) (92)

one has 12���w�� = �2 (�12
1 ⋅ 
2 + �21
2 ⋅ 
1)= −�z2 (
1 ⋅ 
2 − 
2 ⋅ 
1) = z
 ⋅ 
, (93)

where we have used the fact that, due to the skew diagonal

nature of z’s, �12 = −�21 = −z. Also (C�,C�
) are related toC�

via

C
� = 1√2 (C1 − �C2) ,

C
� = 1√2 (C1 + �C2) (94)

so that
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���C�P� = −z (C1P2 −C2P1) = − �2z [(C� +C
�) (P� −P

�) − (C� −C
�) (P� +P

�)]= −�z (C�
P

� −C
�
P

�) = z(C� &&C� −C
� &&C�) . (95)

	us this is the di�erence of the bosonic ghost num-
ber operators, multiplied by z (we have used z instead
of �, in order to not confuse it with the gauge-
xed
form of � of previous sections, and in fact it is ratherP of the previous section). 	e last term 2���C�'P�'
in (91) is equal to zero for R = 2, because of the

antisymmetry of the indices for each factor in the term.L%&
thus becomesL%& = 8�� + z (
�
� + RC

� − RC�) − Qz, (96)

where we have incorporated the gauge-
xed form of QP that
is present in our case. 	e path-integral then becomes

∫∞

0
58∫2�

0
5z∫DC∫DP∫D∫	(1)=	�

	(0)=	
D�

⋅ ∫�(1)=�2

�(0)=�1
D
D
�� ∫10 ��[� ̇	�+��

��̇�+Ċ�P�−���−*(�
���+�

C
�−�

C
� )+-*]+����(1)+�C�P�(1). (97)

Now, uponWick rotation, where one also rotatesP" → �P"
and z → �z one gets

∫∞

0
58∫2�

0
5z∫DC∫DP∫D∫	(1)=	�

	(0)=	
D�

⋅ ∫�(1)=�2

�(0)=�1
D
D
�∫10 ��[�� ̇	�−�

��̇�−Ċ�P�−���+�*(�
���+�

C
�−�

C
� )−�-*]+����(1)+C�P�(1). (98)

In general, one should also impose boundary conditions on
the ghosts as well and a set of BRST-invariant boundary
conditions is to set all the ghosts to zero at the boundaries
[24]. Since the path-integrals for the ghosts all contribute
unity (the contributions from the determinantal pieces are all
powers of (81 − 80) [24], which is 1 here, and the boundary-
value dependent pieces vanish in the exponent again leading
to 1), doing the above integral, one again gets (Appendix B)∫∞

0
58∫2�

0

5z2E��−���2⋅�1−�(-−2)* ⟨��""""" �−�2 |�⟩ , (99)

where the extra (−2) is again a normal ordering constant.
	e normal ordering constants from the other two number
operators in (98) cancel each other out. Upon doing the z
integral one gets as before⟨��, 
2""""" 12 ��̂,1 """"�, 
1⟩ (100)

upon setting Q = 1, which upon reverting to the index basis
yields ⟨��""""" ⊗ ⟨0| 
̂� 12 
̂]

|0⟩ ⊗ |�⟩
= ⟨��""""" W�]2 |�⟩ . (101)

	us as noted above, one gets the propagator in the
Feynman-’t Hoo� gauge, and it would be nice to 
gure out
a method that gives (83) directly.

5. Propagator for the ��(�) Gauge Boson

Let us now come to the case of the non-Abelian gauge boson
for gauge group ��(�). For it, on top of the ingredients
necessary for spin, one has to incorporate those necessary for
“color.” 	us the action (45) has to be supplemented in the
following fashion:
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� = ��̇� + �
�
̇� + �~�~̇� − 12��� − ��
��− ��
�� − P
�
� − O~�~� + (V − �2) O, (102)

where � runs over � values andV = 2. We have again set Q = 0
in a possible QP term since we want to project to the two-form
sector. Of course we could also set Q to one, as in the previous
section, in order to get the gauge boson propagator directly.
Again, upon quantization, when ~’s become operators, the

number operator ~�~� becomes ambiguous and has to be
antisymmetrized, so that upon normal ordering it picks up a
factor of �/2.	us choosingV−�/2 essentially projects to theV-form sector in the internal space. In the path-integral, the
only extra ingredient would come from the ~ and O integrals
and the entire previous integral (47) would get supplemented
by (Appendix B)∫2�

0

5O2E⋅ ∫.(1)=.2

.(0)=.1
D~D~�� ∫10 ��(�.�.̇�−.�5.�+5('−(�/2)))+.�.�(1) (103)

= ∫2�

0

5O2E��'5��−��.�2.�1= ∫2�

0

5O2E ⟨~�2""""" �−�5(.̂�.̂�−') """"~�1⟩ = ⟨~�2""""" ��̂,2 """"~�1⟩ (104)

for V = 2. 	e usual route in the literature is to proceed
from the second term in the above equation to the path-
integral in (103) but as we have proven in Appendix B, with
help from Appendix A, the 
rst term in (104) follows directly
from the path-integral. So for us Eq. (103) is the starting point,
hence the inversion of the usual route. Again, since the delta

function projects to states of the form ~̂�~̂5|0⟩, so that the full
wave-function is nowS�]�5 (�) 
̂�
̂]

~̂�~̂5 |0⟩ , (105)

the entire expression for the gauge boson propagator gets
supplemented by terms of the form, when one transforms
from the coherent state basis to the gauge-index basis,⟨0| ~̂�~̂7~̂5~̂� |0⟩ = − (��5�7� − ����75) . (106)

Hence the previous expression for the propagator simply gets
augmented as follows:− (��5�7� − ����75) (&�&]W!� − &�&�W!] − c ←→ b)⋅ 14E2 (�� − �)2 = ⟨S�!�7 (��) S]�5� (�)⟩ (107)

so that the gauge boson propagator is simply⟨s��7 (��)s]5� (�)⟩ = −⟨��"""""⋅ W�] − (1 − t) (�]/2)2 |�⟩ (��5�7� − ����75) (108)

which is the correct expression for the ��(�) gauge boson
propagator.

In order to get the ��(�) propagator, one can consider��(2�) 
rst and then restrict it to its ��(�) subgroup. 	us��(3) can be obtained by starting with ��(6) and restricting
it to its ��(3) subgroup. ��(2) on the other hand does not
need this, as it is the double cover of ��(3), and there is
no need to restrict it to any subgroup. One would however
need to take appropriate linear combinations of ��(3) ~’s, in
order to get the ��(2)worldline fermions,with a concomitant
change in the expression for the propagator. On the other
hand if onewants to arrive at these gauge groups starting from
some GUT gauge group, say ��(10), it can be implemented
by choosing � = 10. However, this is not entirely satisfactory,
since when considering ��(3) one wants to have solely ��(3)
gauge bosons propagating, and considering ��(6) would be
super�uous. For this, one has to then take recourse to the
analysis in [31], wherein how to get the 
rst quantized theory
for any arbitrary mixed symmetry tensor multiplet, and in
particular the adjoint representations, has been shown.

6. Propagators for the Chiral Fermions of the
Standard Model

	e strange hypercharge quantum numbers of the fermions
of the Standard Model have natural geneses if one assumes
that they stem from an ��(5) or ��(10) GUT. 	us the
sixteen chiral fermions of a single generation can be broken
up into sets that transform as totally antisymmetric tensors
of rank � of the ��(5) subgroup of the ��(10) gauge group.
For the 16 of ��(10), � would take values 0, 2, and 4,
corresponding to the 1, 10, and 5 of ��(5). We believe nature
is telling us something important here and it might prove to
be productive if one tries to explore the possible microscopic
genesis of such a pattern. Let us 
rst consider the fermions to
be Dirac spinors. Choosing the above values of � essentially
restricts the states toΨ�,�1�2 ⋅⋅⋅�	 (�) ~̂�1 ~̂�2 ⋅ ⋅ ⋅ ~̂�	 |0⟩ , (109)Ψ...(�) being the position space wave-function, which for � =0 forms the 1, for � = 2, forms the 10, and for � = 4 forms
the 5 of ��(5) [33, 34, 45]. 	e beauty of it is that all the
delicate hypercharge assignments come about precisely (see
end of section), upon assuming� = 12 (~̂4~̂4 + ~̂5~̂5) − 13 (~̂1~̂1 + ~̂2~̂2 + ~̂3~̂3) , (110)

where ~̂�, for � = 1 to 3, encode color while the rest encode
�avor. In fact, this would precisely be the oscillator basis
representation of a diagonal generator of the ��(5) group,
another tantalizing hint that this group might have to do
something with nature.

	e 
rst index � in (109) is the Dirac index and is
associated with the states in (7), which we have suppressed
for simplicity. 	e relevant action would have to be supple-
mented as follows:
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� = ��̇� + �
�
̇� + �~�~̇� − 12��� + ��
��− P~�~� + (� − 52) P, (111)

where ~’s are worldline fermions for internal symmetries and� runs over 1 to 5. P is an auxiliary 
eld that imposes the
restriction that the rank of the tensor be �. 	e relevant path-
integral would be

∫	�(1)=	��

	�(0)=	�
D�∫��(1)=�2�

��(0)=�1�
D
D
∫.
(1)=.
2

.
(0)=.
1
D~D~∫DP

× ∫ D�D�
Vol (Sym)D�∫10 ��(�� ̇	�−���̇�−.�.̇�−(1/2)���−�����−��.�.�+�(�−5/2)�)+.�.�(1)+����(1). (112)

As before, the result of the ~ and P path-integrals is∫ 5P(2E)������−��.
2.
1 = ⟨~�2""""" ��̂,� """"~�1⟩ (113)

which, upon reverting from the coherent state basis to that in
(109) (since the delta function restricts it to states of that form
only), yields⟨0| ~̂�1 ~̂�2 ⋅ ⋅ ⋅ ~̂�	 ~̂�1 ~̂�2 ⋅ ⋅ ⋅ ~̂�	 |0⟩ = �[�1�2 ⋅⋅⋅�	]�1�2 ⋅⋅⋅�	

(114)

which in turn yields the following form of the propagator:�√2 ⟨��, �""""" 1� ⋅  """"�, K⟩ �[�1�2⋅⋅⋅�	]�1�2 ⋅⋅⋅�	 , (115)

where [�1�2 ⋅ ⋅ ⋅ ��] denotes complete antisymmetrization with
respect to the indices, which is the correct expression for⟨Ψ�1�2 ⋅⋅⋅�	

� (��)Ψ�,�1�2⋅⋅⋅�	 (�)⟩ . (116)

Now if one considers that the SM fermions consist only of le�-
handed ones, then one has to factor in a term that e�ectively
projects to the le�-handed states. From (7), it is evident that

if one imposes that the number of 
̂� operators be one, one is
done. 	us the action has to be modi
ed as follows:��̇� + �
�
̇� + �~�~̇� − 12��� − ��
�� − P~�~�+ (� − 52) P − O
�
�, (117)

where O is the auxiliary 
eld as before that imposes the said
condition. In this case the normal ordering constant is 1 sinceK runs over 2 values, and hence, in the absence of any Chern-

Simmons-like pure O term, the projection is to the R̂� = 1
sector. Using the same strategy as in Sections 2 and 3, it can
easily be seen that, upon integrating over
’s and�’s, the path-
integral corresponding to the above Lagrangian would 
nally
boil down to (sans the ~ part)� ⟨��
2""""" 
̂�� 12 ��̂,1 """"�, 
1⟩ (118)

and as before, transforming to the Dirac basis, one essentially
gets either� [⟨��""""" ⊗ ⟨0| 
̂2
̂1] [
̂��2 ] [|�⟩ ⊗ 
̂� |0⟩] (119)

or � [⟨��""""" ⊗ ⟨0|] [ 
̂��2 ] [|�⟩ ⊗ 
̂� |0⟩] (120)

as the surviving inner products, since the delta function
essentially projects the ket to the R = 1 sector, which is
the sector of the le�-handed states, and the operator in the
middle has only a single 
̂� which mandates that the bras are
either twofold in 
̂� operator content or zero, implying that
they are right-handed states (cf. (7)). 	ese can be combined

and generated in terms of le�-handed states by inserting 
̂0,
taking the form� [⟨��""""" ⊗ ⟨0| 
̂�] [
̂0 
̂��2 ] [|�⟩ ⊗ 
̂� |0⟩] (121)

which can easily be veri
ed by using (7). Since this is the same
as �2 ⟨��, �""""" �0���2 """"�, K⟩ , (122)

where both the states are le�-handed, one can write this as�2 ⟨��, �""""" ���2 """"�, K⟩ (123)

which is the propagator forWeyl fermions. Upon augmenting
with the internal symmetry part as in (115), it has the form�2 ⟨��, �""""" ���2 """"�, K⟩ �[�1�2 ⋅⋅⋅�	]�1�2 ⋅⋅⋅�	 . (124)

	is thus has the following path-integral representation in the
coherent state basis:
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∫	�(1)=	��

	�(0)=	�
D�∫��(1)=�2�

��(0)=�1�
D
D
∫.
(1)=.
2

.
(0)=.
1
D~D~∫DP∫DO

× ∫ D�D�
Vol (Sym)D�∫10 ��(��	̇�−���̇�−.�.̇�−(1/2)���+�����−��.�.�−�5����+�(�−5/2)�)+.�.�(1)+����(1). (125)

which di�ers from (112) in the −�O
�
� term.
For completeness we give the representations of the SM

fermions in Table 1, where �1 and �2 stand for ~4 and ~5
above.

We have written them in terms of bras to avoid putting
bars over all the creation operators. We have also made
explicit only the 
rst component of theWeyl fermions, hence
the index 1 on all of them, and the second components
can be obtained simply by replacing 
̂1 with 
̂2. Factors
of 1/2 associated with each � tensor are assumed to be
implicit. 	e states are written in terms of direct products
of the bosonic and fermionic parts, with the bosonic parts
forming the position space wave-functions upon conjugating
them with ⟨�|’s. 	us, it is evident that all these states are
the result of a set of fermionic creation operators acting
on the vacuum and are superpartners of each other in the
sense of ordinary spacetime supersymmetry. Akin to the

elds in the latter, which can be expanded in terms of the
Grassmann parameters �� belonging to a super
eldΨ(��, ��),
the fermionic multiplets here too form a supermultiplet that

results from expanding Φ(��, 
�, ~�) and retaining terms

even in ~ and odd in 
. In a di�erent way of looking at it,Φ(��, 
�, ~�) can be understood to arise as follows:Φ(��, 
�, ~�)= ⟨�, 
, ~"""""∑� Ψ�,�1�2 ⋅⋅⋅�	 (�) ~̂�1 ~̂�2 ⋅ ⋅ ⋅ ~̂�	 
̂� |0⟩ , (126)

where the di�erent Ψ’s, which are the wave-functions of
fermions of the SM, are seen to belong in a single supermul-
tiplet Φ.

Let us now come to the issue of the various charges of the
SM.	e hypercharge operator is� = −13 ~̂�~̂� + 12 �̂��̂� (127)

and the isospin operator is83� = 12 (�̂1�̂1 − �̂2�̂2) . (128)

Hence the charge operator isM = � + 83� = −13 ~̂�~̂� + �̂1�̂1. (129)

Also, � − � = 1 − 23 ~̂�~̂�. (130)

It is straightforward to check that all the charge and hyper-
charge assignments for the chiral generations are correct
and, as we said, can be regarded as an explanation of the
strange hypercharge assignments and the fractional charge
assignments in the Standard Model. 	e way these compu-
tations are done is by noting that each of the bilinears above
is actually a number operator for the di�erent species of
worldline fermions. So, for instance,� = −13∑� R.� + 12∑� R:� , (131)

and hence the action on say ~̂'�̂1
̂1|0⟩ ⊗ |�',�,1⟩ would give−(1/3)(1)+(1/2)(1) = 1/6. In a similar spirit, the rest of them
can be easily computed to be(� − �)]�� = 1,(� − �)]� = −1,(� − �)�+� = 1,(� − �)�−� = −1,(� − �)&��� = −13 ,(� − �)&�� = 13 ,(� − �)���� = −13 ,(� − �)��� = 13 ,(83�)]�� = 0,(83�)]� = 12 ,(83�)�+� = 0,(83�)�−� = −12 ,(83�)&��� = 0,(83�)&�� = 12 ,(83�)���� = 0,
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Table 1: Fermionic states of the 1st chiral generation of the SM. In our indication of the ��(5)multiplet to which each state belongs we use
the notation n; where � is the dimension of the ��(5) representation in which the state transforms and � is the (��(5)) �(1); hypercharge.⟨0|
̂1 ⊗ ⟨]7�,1| ⊂ 10 ⟨0|
̂1�̂1~̂1~̂2~̂3 ⊗ ⟨]�,1| ⊂ 5−1/2⟨0|
̂1�̂1�̂2 ⊗ ⟨�7�,1| ⊂ 101 ⟨0|
̂1�̂2~̂1~̂2~̂3 ⊗ ⟨��,1| ⊂ 5−1/2⟨0|
̂1�'��~̂�~̂� ⊗ ⟨�7',�,1| ⊂ 10−2/3 ⟨0|
̂1�̂1~̂' ⊗ ⟨�',�,1| ⊂ 101/6⟨0|
̂1�̂1�̂2�'��~̂�~̂� ⊗ ⟨57',�,1| ⊂ 51/3 ⟨0|
̂1�̂2~̂' ⊗ ⟨5',�,1| ⊂ 101/6

(83�)��� = −12 ,(�)]�� = 0,(�)]� = −12 ,(�)�+� = 1,(�)�−� = −12 ,(�)&��� = −23 ,(�)&�� = 16 ,(�)���� = 13 ,(�)��� = 16 ,(M)]�� = 0,(M)]� = 0,(M)�+� = 1,(M)�−� = −1,(M)&��� = −23 ,(M)&�� = 23 ,(M)���� = 13 ,(M)��� = −13 .
(132)

7. The Massive Fermion Propagator in a Gauge
Field Background

Let us now extend our methods to the case of the dressed
and massive fermion propagator. 	is is given by simply
incorporating masses and backgrounds in (43):�√2 ⟨��, 
2, ~2"""""⋅ 1(� ⋅ ( − �A��~̂�~̂�) − V) """"�, 
1, ~1⟩ , (133)

where � has the same meaning as before, when acting on

coherent states andA��
� = (s�

�8�)��. Again, this can be written
as �√2 ⟨��, 
2, ~2"""""

⋅ � ⋅ ( − �A��~̂�~̂�) + V(( − �A��~̂�~̂�)2 − 12���]F���]~̂�~̂� − V2) """"�, 
1,
~1⟩ ,

(134)

where��] = (�/2)[��, �]] andF�] is the full non-Abelian gauge
boson. First of all there is no need to introduce any 
5 in the
worldline representation as is usual for the case of themassive
fermion, since the identity that multiplies the mass in the
above expression is identity in the Dirac index basis as well
and would automatically place the mass in the right place in
the numerator when the transformation to that basis is done.
One can then call the numerator M and the denominator L
and as before exponentiate both (cf. (41))∫58∫5� ⟨	�, ~2""""" �−��−��� """"	, ~1⟩ . (135)

	is can be cast in the (Wick-rotated) path-integral form (for
a fermion that is an ��(�) tensor of rank , cf. (125))

∫	�(1)=	��

	�(0)=	�
D�∫��(1)=�2�

��(0)=�1�
D
D
∫.
(1)=.
2

.
(0)=.
1
D~D~∫DP

⋅ ∫ D�D�
Vol (Sym)D exp [∫1

0
57 (���̇� − 
�
̇� − ~�~̇� − 12� (E�E� − V2) − �� (√2
�E� + V) + �2��
�F���]~�~�
] − �P~�~� + � ( − �2) P)+ ~�~� (1) + 
�
� (1)] ,

(136)
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where E� = � − �A��
�~�~�. See [13, 19, 21–23] for the

pioneering treatment of the dressed propagator for the
Abelian case and [12] for the non-Abelian one, the details
here being somewhat akin to the latter reference, modulo
the projection to the ��(�) tensor and the explicit use of the
formalism made in the next section.

	e point might be raised that the � term breaks super-
symmetry since there is no 
5, but as long as no use is made

of supersymmetry, it is ok to work without a 
5. Also the
entire approach’s vindication lies in the analysis in the next
section, which gives the right form for the QED vertex, when
restricted to the Abelian case and considering dressing by

a single photon. Upon absorbing the factor of √2 into �
and calling V/√2 V� (only in the term multiplying �) and
integrating out the , one ends up with

∫	�(1)=	��

	�(0)=	�
D�∫��(1)=�2�

��(0)=�1�
D
D
∫.
(1)=.
2

.
(0)=.
1
D~D~∫DP

⋅ ∫ D�D�
Vol (Sym) exp [∫1

0
57 (− 12� (�̇� − �
�)2 − ��V� + 12�V2 − 
�
̇� − ~�~̇� + ���̇�A��

�~�~� + �2��
�F���]~�~�
] − �P~�~� + � ( − �2) P)+ ~�~� (1) + 
�
� (1)]
(137)

as the worldline representation of the massive dressed
fermionic propagator.

8. Applications to QED

Herewe derive theQEDvertex using theworldline formalism
developed in the previous section, adapted to the case of
an Abelian gauge boson. It has to be formulated, like the
propagator, on the open line, since one has an incoming
and an outgoing propagator, with one photon insertion. One
has to take the Fourier transform of the resultant expression
with respect to the propagator endpoints to arrive at the
momentum space expression. Since the path-integral that we
start with, (156), corresponds to the propagator in position
space with photon insertions (onces� are converted to plane
waves), the momentum space expression in general would
involve external leg factors which have to be amputated in
order to arrive at the expression for the vertex.

Let us 
rst work with the worldline expression for the
scalar case since it would be present as a part of the spinor
case. It has its genesis in the Fourier transform of the
expression below∫	�(1)=	�

	�(0)=	��
D�

⋅ ∫ D�
Vol (Sym) exp [∫1

0
57 (− 12� (�̇�)2 + 12�V2 + ���̇�s�)] . (138)

	e external s legs are to be represented by the plane-wave
expansion of thes, leading to vertex operators. Explicitly, one
has ���̇�s� = �� [� ⋅ �̇ (7)] ���⋅	(�). (139)

	is can be evaluated by exponentiating the � part and the
resultant expression for an �-photon amplitude can bewritten

as ⟨�∫��<(�)⋅	(�)⟩ with
w� (7) = �∑

�=1
(�_�� + ���&��) � (7 − 7�) . (140)

It is given by (upon 
xing � to 28)
∫∞

0
58∫	�(1)=	�

	�(0)=	��
D��∫10 ��(−(1/4�) ̇	2+'2�+<⋅	). (141)

We 
rst separate � into background and quantum parts as
follows:

�� (7) = ��� + (�� − ���) 7 + D� (7) (142)

so that the above expression takes the form

∫∞

0
58�'2�
⋅ ∫>�(1)=0

>�(0)=0
DD�∫10 ��[( −(1/4�)( ̇>2+(	−	�)2)+<(�)⋅(	+(	−	�)�+>(�))]. (143)

Integrating out D, one gets
∫∞

0
58 �'2�(4E8)2 �∫10 ��(−(1/4�)(	−	�)2+<(�)⋅(	+(	−	�)�))−�∫10 �� ���(<�(�)?�]Δ(�,��)<](��)), (144)
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In the above equation we see that since we have �'2�, the
integrand is divergent as 8 → ∞. 	is has its genesis in
implementing (cf. (134))

12 − V2 = ∫∞

0
58�−�(2−'2) (145)

and can be remedied by taking instead12 − V2 = −∫∞

0
58��(2−'2) (146)

which is equivalent to replacing 8 → −8 everywhere. 	en,

one is then necessarily working in the 2 ≤ 0 regime, in order
to make the above integral convergent. So now, one has

−∫∞

0
58 �−'2�(4E8)2 �∫10 ��((1/4�)(	−	�)2+<(�)⋅(	+(	−	�)�))+�∫10 �� ���(<�(�)?�]Δ(�,��)<](��)). (147)

As a result, it is implicit in our assumptions that (�−��)2 ≤0; that is, the spacetime interval can only be spacelike or null,

which is compatible with 2 ≤ 0.	us one is dealing with the
o�shell propagator, where [29, 46]

Δ (7, 7�) = 77� + 12 """""7 − 7�""""" − 12 (7 + 7�) . (148)

	e �-photon amplitude then becomes

A (��, �; �1, _1, . . . , ��, _�) = −∫∞

0
58 �−'2�(4E8)2 exp [∫1

0
57 148 (� − ��)2] × �∏

�=1
∫57� exp[[∫1

0
57

⋅ �∑
�=1

(�_�� + ���&��) � (7 − 7�) (�� + (� − ��)� 7)
⋅ ∫1

0
57 57�8( �∑

�=1
(�_�� + ���&��) � (7 − 7�) W�]Δ (7, 7�) �∑

�=1
(�_�] + ��]&��) � (7� − 7�))]]= −∫∞

0
58�−'2�+(1/4�)(	−	�)2(4E8)2⋅ �∏

�=1
∫57� [[exp[ �∑

�=1
(�_� ⋅ (�� + (� − ��) 7�) + �� ⋅ (� − ��))] exp[[−8 �∑

�,��=1
(_� ⋅ _��Δ ��� − �2�� ⋅ _�� ∙Δ ��� − �� ⋅ ��� ∙Δ∙���)]]""""""""""""m.l.]] ,

(149)

where Δ ��� = Δ(7�, 7��) and where the dot on the LHS implies
derivative with respect to the 
rst argument and that on the
right implies with respect to the second one

∙Δ (7, 7�) = 7� − � (7� − 7) ,
∙Δ∙ (7, 7�) = 1 − � (7 − 7�) . (150)

Now, as argued in [46], upon taking Fourier transforms

A (�, ; �1, _1, . . . , ��, _�) = ∫5B�⋅ ∫ 5B����(⋅	+� ⋅	�)A (��, �; �1, _1, . . . , ��, _�)

= ∫5B�+ ∫5B�−��(+�)⋅	++(�/2)(−�)⋅	−A(�+
− �−2 , �+ + �−2 ; �1, _1, . . . , ��, _�) ,

(151)

with �− fl � − �� and �+ fl (� + ��)/2, the integral
over the “center of mass” �+ yields the energy-momentum

conservation delta function (2E)B�(B)(+�+∑_�), whereas
the integral over the “distance” �− is Gaussian. Hence, a�er
some simple manipulations, the amplitude reduces to

A (�, ; �1, _1, . . . , ��, _�) = − (��)2 (2E)B �(B) ( + � +∑_�)∫∞

0
58��(2−'2)

⋅ 2∏
�=1

∫1

0
57� × exp

{{{−8 (2) ⋅ 2∑
�=1

(−_�7� + ���) − 8 �∑
�,�=1

(_� ⋅ _�("""""7� − 7�"""""2 − (7� + 7�)2 ) − ��� ⋅ _� (sign (7� − 7�) − 1) + �� ⋅ ��� (7� − 7�))}}}""""""""""""m.l.

, (152)
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since we are working in the spacelike/null region, 2 ≤ 0, and
hence ��(2−'2) is not divergent as 8 → ∞.

Let us now come to the case of the derivation of the vertex
in spinor QED. Let us 
rst state what we expect. Since the
vertex is just ��, when a plane-wave photon and two external
electron propagators couple to it, we in general expect the
momentum space expression�� (2E)B �(B) ( + � + _) 1(✁ − V)✁� 1(✁� − V) (153)= −�� (2E)B �(B) ( + � + _)⋅ (✁ + V)✁� (✁ + ✁_ − V)(2 − V2) (( + _)2 − V2) (154)

= �� (− ⋅ � (2✁ + ✁_) + ✁� (2 +  ⋅ _ − V2)+ ����5���]!��]_! + 2V� ⋅  − �V��]��_])× ∫1

0
57 1(2 − V2 + 2 ⋅ _7)2 , (155)

where in the last line we have used Feynman reparametriza-

tion to represent the denominator, with _2 = 0, assuming that
the photon is on-shell. Also we have used � ⋅ _ = 0 in the
numerator, implying that we areworking in the Lorentz gauge
and suppressed themomentum conserving delta function. As
we can see, this expression is formidable, and we claim that
the following is its worldline path-integral representation in
the coherent state basis:

∫	�(1)=	��

	�(0)=	�
D�∫��(1)=�2�

��(0)=�1�
D
D


⋅ ∫ D�D�
Vol (Sym) exp [∫1

0
57 ( − 12� (�̇� − �
�)2 − ��V� + 12�V2 − 
�
̇� − ���̇�s� + �2��
�S�]
] + 
�
� (1)]"""""""""lin , (156)

where, as in the previous section, V� = V/√2. 	e overall
subscript lin implies that only the linear order term in the
expansion of the exponent of the interaction term −���̇�s�+(�/2)��
�S�]
] is to be retained, as the dressing is only by a
single photon. It has all the right ingredients for reproducing
the above expression, as we will see, and it is essentially (137),
adapted to the case of the Abelian background. 	e new
vertex operators are (upon 
xing � to −28)

(���̇�s� + �2��
�S�]
])= �� [� ⋅ �̇ (7) − 2�8� ⋅ 
 (7) _ ⋅ 
 (7)] ���⋅	(�). (157)

	e relevant amplitude involving just one photon is (upon

xing � to � and integrating over it)

− ∫∞

0
58�−'2�∫1

0
571572 ⟨[− 128
 (71) ⋅ �̇ (71)

− �V�] [�� [� ⋅ �̇ (72) − 2�8� ⋅ 
 (72) _ ⋅ 
 (72)]⋅ ���⋅	(�2)]⟩ .
(158)

Let us 
rst work out the � parts.
	is would be given by− (��) ∫∞

0
58�−'2�∫5�

⋅ ∫1

0
572 ⟨�∫��(<(�)⋅	(�)−(�/2�) ∫ ��1�(�1)⋅	̇(�1))⟩"""""""""lin. (159)

with w� (7) = (�_� + ��&�2) � (7 − 72) . (160)

	e general amplitude involving multiple photons and the
susy charge operator 
(71) ⋅ �̇(71), upon Fourier transforming
to momentum space, is

A (�, ; �1, _1, . . . , ��, _�) = − (��)2 (2E)B �(B) ( + � +∑_�)∫∞

0
58��(2−'2)

⋅ �∏
�=1

∫1

0
57� × exp

{{{−8 (2) ⋅ �∑
�=1

(−_�7� + ���) − 8 �∑
�,�=1

(_� ⋅ _�("""""7� − 7�"""""2 − (7� + 7�)2 ) − ��� ⋅ _� (sign (7� − 7�) − 1) + �� ⋅ ��� (7� − 7�))}}}""""""""""""m.l.×⟨[�∫1

0
571
 (71) ⋅  + �∑

�
∫��

0
571
� (71) _�� +∑

�

� (7�) ��� ] ⋅ ⋅ ⋅⟩ ,

(161)
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where we have done the � integral and where the ellipses
denote other
 insertions thatmight be present. Here we have
simply adapted the analysis above for scalars to include the
e�ects of the additional source in (159).	e expectation value
in the last line is with respect to the
 path-integral. So at this
point we need to evaluate the
 correlators. As is evident from
(158), we would need 1, 2, and 3 point
 correlators.	e point
made is that we now need the correlators for the Majorana
fermions 
�, which we have to derive from the Dirac form of
the action, as it is the only form amenable for the coherent
state formalism. 	e relevant path-integral is given by∫��(1)=�2�

��(0)=�1�
D
D
�∫10 ��(−���̇�+:���+:���)+����(1). (162)

Again,
’s can be split into background and quantum parts as
follows:


� = 
2� + 
%�,
� = 
1� + 
%� (163)

and the resultant path-integral looks like

��2��1� ∫���(1)=0

���(0)=0
D
D
�∫10 ��(−����̇��+:�(�1�+���)+(�2�+���):�), (164)

where the prefactor is the usual normalization factor. Upon
integration, the above becomes (cf. Appendix A (see (A.18)))= ��2��1��−[∫10 �� ���(:�(�)�(�−��):�(��))−∫10 ��(:�(�)�1�+�2�:�(�))] (165)

and this can be written in the Majorana basis as

��2��1� exp [∫1

0
57 (� (7) ⋅ 
5) − 14 ∫1

0
57 57� (�� (7) [W�] [� (7� − 7) − � (7 − 7�)] + x�]] �] (7�))] . (166)

Here �� are precisely the sources for the Majorana fermions
�, where �� is related to �� and �� as�0 = 1√2 (�1 − �1) ,�3 = 1√2 (�1 + �1) ,�2 = �√2 (�2 − �2) ,�1 = 1√2 (�2 + �2)
(167)

and 
�5 is given by 
05 = 1√2 (
21 + 
11) ,
35 = 1√2 (
21 − 
11) ,
25 = �√2 (
12 + 
22) ,
15 = 1√2 (
22 − 
12) .
(168)

Also,

x =( 1−��−1 ). (169)

Let us 
rst tackle 3-point correlator. It is given by

⟨
C (71) 
� (72) 
D (72)⟩ = &&�C (71) &&�� (72) &&�D (72)��2��1� exp [∫1

0
57 (� (7) ⋅ 
5) + 14⋅ ∫1

0
57 57� (�� (7) [W�] [sign (7 − 7�)] − x�]] �] (7�))]""""""""":=0= ��2��1� [12x�D
C5 + 12 (WCD [sign (71 − 72)] − xCD) 
�5− 12
D5 (WC� [sign (71 − 72)] − xC�) − 
D5
�5
C5 ] .

(170)

It can be easily checked that, upon transforming to the Dirac
basis, it assumes the form

12√2 [(WCD [sign (71 − 72)]) ��− �D (WC� [sign (71 − 72)]) − �D���C] (171)

with �, �,  all di�erent in the last term, in which case it can
be written as

12√2 [(WCD [sign (71 − 72)]) ��− �D (WC� [sign (71 − 72)]) + ���D�C���5] . (172)
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In order to derive this, one has to use (168), (11) and (14), and
the following:


̂0 = 1√2 (
̂1 + 
̂1) ,
̂3 = 1√2 (
̂1 − 
̂1) ,
̂2 = �√2 (
̂2 + 
̂2) ,
̂1 = 1√2 (
̂2 − 
̂2) .
(173)

We also have to use the facts that, for instance,

⟨
2"""" 
̂�
̂� """"
1⟩ = ⟨
2"""" (��� − 
̂�
̂�) """"
1⟩= ��2��1� (��� − 
2�
1�)= ��2��1� (��� + 
1�
2�) (174)

and hence when three di�erent 
̂�’s are involved,⟨
2"""" 
̂D
̂�
̂C """"
1⟩ = ��2��1� (−12x�D
C5 + 12xCD
�5− 12
D5xC� + 
D5
�5
C5) (175)

with the expression vanishing if any of 
̂’s are the same,
thus automatically antisymmetrizing the expressions, leading

to (1/2√2)�D���C in the Dirac basis, since 
̂� in the Dirac

basis becomes (1/√2)��. Next, let us come to the 2-point
correlator. It is given by

⟨
� (72) 
D (72)⟩= &&�� (72) &&�D (72) ��2��1� exp [∫1

0
57 (� (7) ⋅ 
5) + 14 ∫1

0
57 57� (�� (7) [W�] [sign (7 − 7�)] − x�]] �] (7�))]""""""""":=0 (176)

= ��2��1� [12x�D − 
D5
�5 ] ≃ �2�D�. (177)

and the one-point function is simply⟨
� (7)⟩ ≃ 1√2��. (178)

So we are now ready to tackle (161) for one photon, which
corresponds to the following part of (158):

∫∞

0
58∫1

0
571572 ⟨[ 128
 (71) ⋅ �̇ (71)]⋅ [��� ⋅ �̇ (72) ���⋅	(�2)]⟩ (179)

and it would be

− (��) (2E)B �(B) ( + � + _)∫∞

0
58��(2−'2)

⋅ ∫1

0
572 × exp {(28 ⋅ _72 − �28 ⋅ �)} ⟨[� ∫1

0
571
 (71) ⋅  + � ∫�2

0
571
� (71) _� + 
� (72) ��]⟩"""""""""lin. , (180)

where lin means linear in ��. Using the one-point function
above, (178), we would get (upon extracting the part linear in�)
A (�, ; �, _) = − 1√2 (��) (2E)B �(B) ( + � + _)⋅ ∫∞

0
58��(2−'2)

⋅ ∫1

0
572 × exp (28 ⋅ _72) [28 ⋅ � (✁ + ✁_72) + ✁�] ,

(181)

= ��√2∫1

0
572 1(2 − V2 + 2 ⋅ _72)2⋅ [− ⋅ � (✁ + ✁_72) + 12✁� (2 − V2 + 2 ⋅ _72)] , (182)

where we have suppressed the delta function. Let us then
come to the 
rst mass term in (158), namely,

−�V� ∫∞

0
58∫1

0
571572 ⟨� ⋅ �̇ (72) ���⋅	(�2)⟩ . (183)
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Using the master formula (161), we have− (�V�) ∫∞

0
58��(2−'2)⋅ ∫1

0
572 exp {(28 ⋅ _72 + �28 ⋅ �)}""""lin. ��2��1� (184)

= ��V√2∫1

0
572 1(2 − V2 + 2 ⋅ _72)2 ⋅ ���2��1� , (185)

where ��2��1� is the ubiquitous part coming from the fermion
path-integral, which means that when one transforms to the
Dirac basis, it would yield identity for this term. Next let us
consider the following term in (158):− ��∫∞

0
58∫1

0
572571 ⟨[ 128
 (71) ⋅ �̇ (71)]⋅ [2�8� ⋅ 
 (72) _ ⋅ 
 (72) ���⋅	(�2)]⟩ . (186)

Again, using the master formula (161) for the �-part, we get− 2�∫∞

0
58��(2−'2)8∫1

0
572 exp (28 ⋅ _72)

⋅ ⟨[� ∫ 571
 (71) ⋅  + � ∫�2

0
571
� (71) _�]⋅ [� ⋅ 
 (72) _ ⋅ 
 (72)]⟩ .

(187)

Now, upon using (172) and∫1

0
571572sign (71 − 72) ¥ (72)= ∫1

0
572 (272 − 1) ¥ (72) (188)

we get− 2��∫1

0
572 1(2 − V2 + 2 ⋅ _72)2⋅ 12√2 [✁� ( ⋅ _ (272 − 1)) −  ⋅ � (✁_ (272 − 1))+ ���D�C���5C��_D] ,

(189)

where we have used _ ⋅ � = _2 = ��D�C���5_C��_D = 0. 	is
when combined with (182) yields

�� 1√2 ∫1

0
572 1(2 − V2 + 2 ⋅ _72)2 [− ⋅ � (2✁ + ✁_) + ✁� (2 − V2 +  ⋅ _) − ���D�C���5C��_D] . (190)

Now we come to the remaining term in (158):

�V� ∫∞

0
58

⋅ ∫1

0
572571 ⟨[2�8� ⋅ 
 (72) _ ⋅ 
 (72)] ���⋅	(�2)⟩ (191)

which uponusing themaster formula for the�-part and using
(177) yields

− (�V�)∫∞

0
58��(2−'2)8∫1

0
572exp (28 ⋅ _72)

⋅ �D���_D (192)

= ��√2V∫1

0
572 1(2 − V2 + 2 ⋅ _72)2 �2�D���_D. (193)

	us collecting terms from (185), (190), and (193), we 
nally
end up with

�� 1√2 ∫1

0
572 1(2 − V2 + 2 ⋅ _72)2 [�V�D���_D − ⋅ � (2✁ + ✁_) + ✁� (2 − V2 +  ⋅ _)− ���D�C���5C��_D + 2V ⋅ �]

(194)

which is precisely the same as (155) up to a factor of 1/√2.
Now that we essentially have (153), we can amputate the
external legs and get ���� from which the vertex can be

obtained by taking derivative with respect to ��. We have thus
obtained the QED Feynman rule for the vertex starting from
the worldline formalism.

	e obvious next step would be computing the Compton
scattering amplitude, which is a repeat of the above calcula-
tion with two photon vertex operators instead of one in (158).
But since the single photon case is formidable enough, we are
currently investigating methods that can vastly simplify the
calculations, allowing us to tackle even more involved cases
like the Lamb-shi� calculation. One can then also venture
into the applications to the non-Abelian case.
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9. One-Loop Effective Actions

Let us now consider the analogous representations for one-
loop e�ective actions and anomalies. 	e usual one-loop
e�ective action for a fermionic 
eld in a gauge 
eld back-
ground is given by12 lnDet [− (� ⋅ ¦)2]= 12 lnDet [−¦2 − 12���]S��]8�]

= 12Tr ln [−¦2 − 12���]S��]8�] ,
(195)

where¦� = &� + ��s�
�8� and can be expressed as

= −12Tr∫∞

0

588 exp {−8 [−¦2 − 12���]S��]8�]} (196)

which has the following path-integral representation [5]:

−12 ∫ 588 ∫
E
D�∫

AP

D
D
�∫10 ��(−(1/4�) ̇	2−���̇�)Tr©�� ∫ ��(F ̇	�"����+�F��G��]���]), (197)

where the trace is over a super-Wilson loop that is the world-
line supersymmetric generalization of the normal Wilson
loop. © denotes periodic, while AP denotes antiperiodic.

Now it can be shown that the e�ective action of a Dirac
fermion that transforms as an ��(5) tensor of rank �would be
given by the following path-integral (see [29–34] for related
approaches):

∫
E
D�∫

AP

D
D
∫
AP

D~D~∫DP × ∫ D�
Vol (Sym)D�∫10 ��(��	̇�−���̇�−.�.̇�−(1/2)�����+(�/2)�F��F���].�.��]−��.�.�+�(�−5/2)�), (198)

where E� = � − �A��
�~�~� with A

��
� = (s�

�8�)�� and F
��
�]

is the full self-interacting 
eld strength with 8� belonging
to the Standard Model gauge group. ~’s are 5 in number, as
in the above section, in order to accommodate the full SM

gauge group. We have dropped the prefactor of −1/2, which
is understood to be implicit in what follows. �, the auxiliary

eld multiplying the susy generator, has been 
xed to zero,
since it is antiperiodic and an antiperiodic 
eld has no zero
modes. Integrating out � at 
rst yields

∫ 588 ∫
E
D�∫

AP

D
D
∫
AP

D~D~∫DP × (�∫10 ��(−(1/4�) ̇	2+�F ̇	�A���.�.�+��F��F���].�.��]−���̇�−.�.̇�−��.�.�+�(�−5/2)�)) , (199)

where we have 
xed � to 28 and for a circle the measure for
the modular integral is 1/8, which then tallies with (197).

Let us 
rst show that, for a fermion transforming in and
only in the fundamental representation of the gauge group

(� = 1), the integral over ~ and ~ gives rise precisely to the
trace of the super-Wilson loop in (197). We will compute the~ and ~ integrals for open intervals 
rst and then identify the
endpoints with a change in sign. 	ere is a subtlety involved
here in that, for instance, the integral over 8 for a closed loop
for the bosonic part involves a measure factor of 1/8 that
would be missing if one arrived at the closed loop by simply
sewing open lines which do not have such a term, and so one
must watch out for such factors here as well. However, in the
fermionic case at hand the measures involved are trivial for
both closed and open loops and there are no problems4.

Let us call −(��̇�A��
� + 8�
�F���]
]), ª��(7). Let us again

twist ~’s as in (49). 	en the open ended path-integral
becomes

∫.�(1)=.�2�−��

.�(0)=.�1
D~D~�−∫��(.�(�)(�/��+�H��(�)).�(�)), (200)

where the understanding is that, at the end, we will identify~�(0) = −~�(1) and integrate over it. Since this is quadratic
in ~, it can be evaluated. We 
rst make a transformationª��(7) → �−1

�� (7)ª�I(7)�I�(7) = ª�
��(7) and ~�(7) →�−1

�'(7)~'(7) = ~��(7), and ~�(7) → ~�(7)���(7) = ~�� (7).
Since ª’s are traceless and Hermitian, �’s are to be chosen
to be special unitary, to maintain these properties. 	en the
Lagrangian transforms as~� (7) ( 557 + �ª�� (7)) ~� (7) = ~�� (7)⋅ ( 557 + �−1

�� (7) 557��' (7) + ��−1
�� (7)ª�I�I' (7))⋅ ~�' (7) .

(201)
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We choose �(7) such that�−1
�� (7) 557��' (7) + ��−1

�� (7)ª�I�I' (7)= �ª�
� (7) ��', (202)

where ∑�ª�
� = 0, owing to the tracelessness property ofª

and the specialness of �’s. 	us we have557��−1 + �ª = ��ª��−1 (203)

or �ª = � 557�−1 + ��ª��−1. (204)

	en we have∫.� �(1)=.
�
�2�−��

.��(0)=.��1
D~�D~�Det−1 [� (7) �−1 (7)]⋅ �−∫��(.� �(�)(�/��+�H�

� (�)).��(�)). (205)

	e Jacobian determinant is 1. 	e path-integral becomes
(Appendix A) (cf. (A.26))8(�(�/2) ∫ ��∑�H�

� (�))∏
�
�.��2�−���(�−� ∫ ����� (�)).��1−.��2.��2 , (206)

where 8 implies time-ordering. Now this is equivalent to
(Appendix C) ��−��.�2(��−� ∫ ���)��.�1−.�2.�2 . (207)

Finally, let us identify the endpoint ~’s a�er incorporating a
minus sign, so that the above expression gets converted to,
upon reinstating the integrals over the boundary values,∫5~5~ 5P(2E)����−(�−��.�(��−� ∫ ���)��.�+.�.�), (208)

where one has 
xed P to a constant modulus that one
continues to call P and used � = 1. 	en doing the P integral
begets (since only the �−��~'(8�−� ∫ ��H)'~ term would
survive the integration with all higher and lower powers
dropping out)−∫5~5~~' (8�−� ∫ ��H)' ~�−.�.� (209)

which is nothing but

Tr (©�−� ∫ ��H) , (210)

where time-ordering has been replaced by path-ordering.
Hence, we have proved that, for fundamental fermions, the
integral over ~’s gives rise to the super-Wilson loop:

Tr (©�� ∫ ��(F	̇�A���+�F��F���]�])) (211)

thus establishing the connection between (198) and (197) for� = 1 that we set out to prove, and this has been considered as
a starting point for introducing the~ fermions in some places.

However, as is evident, this will no longer work for
fermions of higher rank representations requiring modi
ca-
tions such as those reported in [31]. But there is an economical
way of considering the one-loop e�ective actions for SM
fermions. And that is to treat them holistically, namely,
considering the loop-running of all the fermions together.
	e way to consider this is by imposing the condition(−1).�.� = 1 (212)

on the spectrum of states. Notice that this condition automat-
ically selects out the representations with even R., namely,
the 16 in Section 6. 	us imposing this condition essentially
allows all the fermions to run in the loops, except that the
right-handed antineutrino just goes along for a free ride as it
is a singlet of the SM and hence does not couple to the gauge

bosons. Now, inserting (1/2)(1 + (−1).�.�) in a trace over the

full state spectrum projects out the states satisfying (−1).�.� =−1, leaving the states satisfying the above condition only. In
the path-integral representation of the trace, this insertion is
equivalent to the taking of a sum of the unrestricted e�ective
actions with antiperiodic and periodic boundary conditions
for ~’s [8]. 	e expression to be considered is thus14 ∫ 588 ∫

E
D�(∫

AP

−∫
E
)D
D
 × (∫

AP

+∫
E
)⋅D~D~(�∫10 ��( −(1/4�) ̇	2+�F ̇	�A���.�.�+��F��F���].�.��]−���̇�−.�.̇�) , (213)

where we have in addition incorporated the fact that the
fermions are le�-handed leading one to insert (1/2)(1 − �5)
in the trace over states, which projects out the right-handed
states. 	is is equivalent to the taking of a di�erence of terms
with antiperiodic and periodic boundary conditions for
’s in
the path-integral, since �5 = (−1)���� , as can be easily seen by
the action of this operator on the states in (7). �5 in this basis
turns out to be

�5 = (−1 00 1) . (214)

Notice that there are no additional terms that impose restric-
tions to speci
c sectors, as in Section 6. We will again resort
to evaluating the integral for an open line and identifying the
endpoints at the end, with and without minus signs built in.

	us, for an open line, with ~'(1) = ~'2 and ~'(0) = ~'1,
one has �.�2(E�−� ∫ ���)��.�1−.�2.�2 , (215)

whereª has the same meaning as before, and hence adding
the boundary contribution and identifying the endpoints as
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+ ∫5~5~�−(−.�(E�−� ∫ ���)��.�+.�.�)

= det (©�� ∫ ��(F ̇	�"����+�F��G��]���]) + 1)+ det (1 − ©�� ∫ ��(F ̇	�"����+�F��G��]���])) .
(216)

	is expression is valid for the full ��(3)7 × ��(2)K × �(1);
background of the Standard Model. In particular, for ��(3)7
the electrons and neutrinos go for free rides in the loops, as
they are color singlets.

10. QCD

Let us concentrate on QCD. For it, one can consider that~�’s range over 3 values instead of 
ve, and one has the
representations ~�1 ⋅ ⋅ ⋅ ~�� |0⟩ , (217)

where  ranges from 0 to 3, with 0 and 3 corresponding to
color singlets and the other 2 values corresponding to the fun-
damental and bifundamental/antifundamental quarks. Now,

in general there are other ~’s also present that correspond to
�avor and we are suppressing those as they do not couple
to the color gauge bosons (cf. Table 1). 	e bifundamentals

have the fermionic operator content ~�~�|0⟩ and hence

correspond to (3 ⊗ 3)�- = 3. Since one is considering
all the representations, there is no need for a projection
operator, and hence the fermionic boundary conditions for~’s are only antiperiodic. However the fermions are still le�-
handed, so the other projection operator applies. QCD does
not distinguish between le�-handed and right-handed, but
on the other hand considering a le�-handed antiquark is
equivalent to considering a right-handed quark, which is why
one canworkwith only le�-handed fermions, even in the case
of QCD.	us the e�ective path-integral over ~’s is just∫5~5~�−(.�(E�−� ∫ ���)��.�+.�.�). (218)

	is can be easily evaluated by expanding the 
rst term and
realizing that the expansion terminates a�er the third order
term. 	us one has [33]∫5~5~(1 − ~' (©�−� ∫ ��H)' ~ + 12⋅ ~' (©�−� ∫ ��H)' ~~'� (©�−� ∫ ��H)'�� ~� − 16⋅ ~' (©�−� ∫ ��H)' ~~'� (©�−� ∫ ��H)'��⋅ ~�~'�� (©�−� ∫ ��H)'���� ~��) �−.�.� .

(219)

Let us call (©�−� ∫ ��H)', �'. Let us 
rst consider the third
term. For it, the contribution from the exponential is just 1
(since the terms apart from the exponent completely saturate

the measure as for ��(3) there are a total of 3~’s and 3~’s, and
hence only the 
rst term in the expansion of the exponent,
that is, 1, would contribute in this case) and hence, it is given
by −16�''�'������ (�'�'���'����) = − det�. (220)

	en the above expression becomes, upon using,∫5~5~ (⋅ ⋅ ⋅ ~�~� ⋅ ⋅ ⋅) �−.�.� = (⋅ ⋅ ⋅ ��� ⋅ ⋅ ⋅) (221)

and the expression (220) can be written51 + Tr� + 12 (Tr�)2 − 12Tr (�2) − det�. (222)

Note that the naive assumption of quarks transforming in the
fundamental representation only would have led to just the
second term, and the actual expression is richer. Now sinceª
are traceless and Hermitian, � belongs to the special unitary
group and hence det� = 1, and hence the full expression just
reduces to

Tr� + 12 (Tr�)2 − 12Tr (�2) . (223)

To check whether we have the right expression it might
be instructive to work out the trace terms for fundamen-
tals and bifundamentals separately. For fundamentals, one
already knows the answer; it is given by Tr� (cf. (210)). For
bifundamentals, the path-integral would be

12 ∫ 588 ∫
E
D�(∫

AP

−∫
E
)D
D
∫

AP

D~D~
⋅ ∫DP × (�∫10 ��(−(1/4�) ̇	2+�F ̇	�A���.�.�+��F��F���].�.��]−���̇�−.�.̇�−��.�.�+�(2−3/2)�)) . (224)
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Again, doing the ~ path-integral, one has

∫5~5~ 5P(2E)�2���−(�−��.�(��−� ∫ ���)��.�+.�.�) = 12!
⋅ ∫ 5~ 5~~' (8�−� ∫ ��H)' ~~'� (8�−� ∫ ��H)'��
⋅ ~��−.�.� = 12 (Tr�)2 − 12Tr (�2)

(225)

and hence we have essentially reproduced (223).

	e contributions from the singlets are trivial and cancel
each other out, since det� = 1.	e full e�ective action is thus12 ∫ 588⋅ ∫

E
D�(∫

AP

−∫
E
)D
D
�∫10 ��(−(1/4�) ̇	2−���̇�)

⋅ (Tr©�� ∫ ��(F ̇	�"����+�F��G��]���])

+ 12 (Tr©�� ∫ ��(F ̇	�"����+�F��G��]���]))2− 12Tr (©�� ∫ ��(F ̇	�"����+�F��G��]���]))2)
(226)

which can also be written, because of (218), as

12 ∫ 588 ∫
E
D�(∫

AP

−∫
E
)D
D
�∫10 ��(−(1/4�) ̇	2−���̇�) det [©�� ∫ ��(F	̇�"����+�F��G��]���]) + 1] , (227)

where 8� corresponds to the ��(3) group.
11. Anomalies and Anomaly Cancellations in

the Standard Model

	e chiral anomaly is well known to be given by Tr �5, the
trace being inclusive of the position and other internal coor-
dinates as well. Since the trace over the position coordinates
formally gives rise to in
nity while that over �5 gives rise to
zero, this object needs to be regularized. It is well known [47]
that when the regularized trace is performed, one gets

Tr �5 = − 132E2�2 ∫54���]!�Tr [F�]F!�] . (228)

Another avatar of the same thing is the anomaly in &�⟨w�5⟩,
with w�5 being given byΨ����5Ψ�, where � is the internal index
of the gauge group in question, and it is well known that the
anomaly is given by

&� ⟨w�5⟩ = − 116E2�2 ∫54���]!�Tr [F�]F!�] , (229)

where F�] is S�]� 8� and 8�’s are the gauge group generators.
Here the fermions transform in the fundamental of the gauge
group. Tr �5 is also well known as theAtiyah-Singer index (for
the nongravitational case considered here).

On the other hand when considering the chiral non-
Abelian or gauge anomaly in the SM, instead of computing
piece by piece, one might try to look for a way of summing
over the entire SM spectrum of le�-handed states (i.e., the

16), and indeed one can do that, as we saw in the preceding
sections, by simply considering [35]�W� 14Tr �5 (1 − �5) ~̂�8���~̂� (1 + (−1).̂�.̂�)= �W� 14TrCS�5 (1 − �5) ~̂�8�i�~̂� (1 + (−1).̂�.̂�) , (230)

where the usual projection operators (1−�5) and (1+(−1).̂�.̂�)
have been introduced that project to a single generation SM
spectrum. CS denotes coherent states. Now to start with,
on the LHS the “internal” trace is over states of the form⟨0|~̂�~̂� ⋅ ⋅ ⋅ 
̂� in the spin and internal space (cf. Section 6) and
the various charges for the various generators 8� arise out of
the action on these states by ~̂�8���~̂� for ��(3)×��(2)×�(1).
So when, on the RHS, we pass over to the trace over the

coherent states ⟨~, 
|, it is ~̂�8���~̂� that we should continue

considering as the generators. Since we are summing over the
entire SM spectrum, this must turn out to be identically zero
if the SM is to be nonanomalous. In [35], the expression for
the gauge anomaly was taken to be computed piece by piece
by considering for a fermion transforming as an n�W�Tr �5Λ̂�8̃���Λ̂ �, (231)8̃’s being the �-dimensional representations of the generators
of the SM, with the understanding that one must take the

trace over states of the form Λ̂�|0⟩ only (with � running over 1
to �), namely, the �-dimensional fundamental representation.
	en the total anomaly was supposed to be obtained essen-
tially by summing over the contributions for the di�erent n’s
that form the states of the SM (cf. Section 6). But here we
demonstrate that there is no need to adopt such a piecemeal
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approach and incorporate the di�erent representations of the
SM gauge group at once and sum over the entire spectrum,
by making use of the GSO-like projectors above, and the
result turns out to be zero. In doing this, we are of course
committing to the fact that the representations of the SM are

given by (109), and this gives further vindication that that is
correct.

As is well known [47] the above expressions can be reg-
ularized by introducing regulators in the following manner
(ignoring the prefactor of 1/4 in the second expression for
the time being):

Tr �5 �→ lim
�→0

Tr �5�−�[−(M+�FA)2−(1/2)F��]F�]],
Tr �5 (1 − �5) ~̂�8���~̂� (1 + (−1).̂�.̂�) �→ lim

�→0
TrCS~̂�8���~̂� ((−1)�̂��̂� − 1) (1 + (−1).̂�.̂�) �−�[−(M+�FA)2−(�/2)F��]F�]], (232)

where in the 
rst expression the gauge group is ��(R) for
some R, while, in the second, it is the full SM gauge group.
	e trace in �’s means one has to again take path-integrals

with periodic boundary conditions in them.Analogous to the
previous expression (213), the path-integral representations
of the above expressions would be

lim
�→0

∫
E
D�∫DP∫

E
D
D
∫

AP

D~D~(�∫10 ��(−(1/4�) ̇	2+�F ̇	�A���.�.�+��F��F���].�.��]−���̇�−.�.̇�−��.�.�+�(1−�/2)�)) , (233)

lim
�→0

∫
E
D�(∫

AP

−∫
E
)D
D
(∫

AP

+∫
E
)D~D~ × (~�8���~��∫10 ��(−(1/4�) ̇	2+�F ̇	�A���.�.�+��F��F���].�.��]−���̇�−.�.̇�)) , (234)

respectively.
	e di�erence between the above two expressions is to

be noted. In the 
rst expression, one is considering Dirac
fermions Ψ� in the fundamental representation of the gauge
group and hence the extra P-dependent terms in it (as per
the above sections). In the second expression, one is sum-
ming over even-dimensional ��(5) representations, which
together form the 16 of ��(10), and that is taken care of by
the sum over periodic and antiperiodic boundary conditions,
and there is no necessity of introducing P dependent terms.

Now the above expressions can be evaluated by taking
advantage of the fact that 8 → 0 and scaling some of the
variables with respect to 8 in a manner that makes most of
the 0 + 1-dimensional 
eld theory amplitudes redundant.	e
details are as in [36, 37]. In particular, one scales
’s by setting
 = 
�/√28 and then dropping the prime but leaves ~’s and�’s invariant.

In this case, the ��(7) 
eld theory can be made redundant
by expanding it as �� + �(7), where �� is the “background”
and �(7) is the quantum �uctuation. �(7) Green’s functions
are proportional to 8 whereas the vertices are 8 independent
a�er the scalings and hence all the -dependent contribu-
tions coming from ̇(7) ⋅ A��

�(� + (7))~�~� and 
�F���](� +(7))~�~�
] to the path-integral would simply drop out when
the limit 8 → 0 is taken. All that the ��(7) part then

contributes to is the measure ∫54� coming from the integral

over the background ��, the (1/2)
 ⋅ F��(�) ⋅ 
~�~� factor,
and the free path-integral over �(7) which contributes a

factor (4E8)−2, the (28)−2 part of which is absorbed by the
 scalings.
	us the relevant expressions boil down to, ignoring the

factor of 1/(2E)2, and gauge-
xing P,
lim
�→0

∫54�∫ 5P(2E) ∫AP D~D~∫
E
D
D
�−∫10 ��[((1/2�)���̇�+.�.̇�)−�F.�[(1/2)�⋅F��(	)⋅�].�−��.�.�+�(1−�/2)�] (235)

and the corresponding expression for (234). Now the 

correlators also become proportional to 8 upon scaling
and the vertices become 8 independent, thereby making
its 
eld theory redundant as well, and in what follows
we will make heavy use of that. First of all the two dif-
ferent boundary conditions in (234) present two separate
ways of going about the problem. In the case of periodic
boundary conditions for 
�’s one can separate them into

background and quantum parts, as periodic boundary con-
ditions allow for zero modes, so that even if the quantum
part is rendered redundant by the scalings, there is a 
nite
nontrivial contribution coming from the zero modes or the
background part. 	is is essentially because in the measure
there are integrals over the zero modes and these need to
be saturated, and that comes from the zero modes in the
integrand.
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However for the antiperiodic boundary conditions there
are no zero modes and the whole 
�(7) 
eld is quantum
and hence rendered redundant by the scalings. And since in
expression (234) there are no terms independent of the 
�(7)
in the interaction term a�er the � dependent terms have been
eliminated, the entire path-integral vanishes. Hence we need
to bother only with the periodic case.

11.1. �e Chiral Anomaly. Here we will assume that the
quantum part of 
�(7) has been rendered redundant and all
that remains in the expression is the zeromode which we will
again call 
�. 	e ~ and P path-integrals can be written as

∫ 5P(2E)⋅ ∫
AP

D~D~�−∫10 ��[.�.̇�−�F.�[(1/2)�⋅F��(	)⋅�].�−��.�.�+�(1−�/2)�]. (236)
Going by (208) and (210), this would simply beget

Tr (©�−� ∫ ��H) , (237)

where in this case ∫10 57ª = (�/2)
 ⋅ F ⋅ 
. 	is then

reproduces precisely, upon restoring the factor of 1/(2E)2
above (235) and the integrals over the � and 
 zero modes,
the standard expression [35, 36] for the chiral anomaly for
fermions, namely,1(2E)2 ∫54�∫54
Tr (��(F/2)�⋅F⋅�) (238)

which simply yields− 132E2�2 ∫54���]!�Tr� [F�]F!�] (239)

thus tallying with (228). 	is can be compared with the
derivations in [36, 37], to appreciate the economy of argu-
ments and mathematical steps. Note that we hence have also
derived the formula for the Atiyah-Singer index for the case
at hand.

11.2. �e Gauge Anomaly. Let us now deal with the chiral
non-Abelian anomaly or gauge anomaly. 	e expression
corresponding to (234) is given by

�W� lim�→0
∫
E
D� (∫

AP

−∫
E
)D
D
(∫

AP

+∫
E
)D~D~ × (~�8���~��∫10 ��(−(1/4�) ̇	2+�F ̇	�A���.�.�+��F��F���].�.��]−���̇�−.�.̇�)) , (240)

where 8� belongs to the SM gauge group and � ranges over 5
values. 	e �W�~�8���~� term can be exponentiated as follows:

lim
�→0

∫
E
D�(∫

AP

−∫
E
)D
D
(∫

AP

+∫
E
)D~D~ × (�∫10 ��(−(1/4�) ̇	2+�F ̇	�A���.�.�+��F��F���].�.��]+�?�.�����.�−���̇�−.�.̇�)) , (241)

where the understanding is that the anomaly would be
given by the term linear in W�. 	e antiperiodic boundary
conditions for 
 would not contribute and we need to deal
only with the periodic case. And as before, it would boil down
to 
rst evaluating(∫

AP
+∫E )D~D~(�∫10 ��((�/2)F��F���].�.��]+�?�.�����.�−.�.̇�)) . (242)

We would have as in previous sections∫5~5~�−(.�(�(�/2)[��⋅F(�)⋅�+2����])��.�+.�.�)+ ∫5~5~�−(−.�(�(�/2)[��⋅F(�)⋅�+2����])��.�+.�.�) (243)

= 2∫5~5~ [1
+ 12 (~' (�(�/2)[F�⋅F(	)⋅�+2?���])' ~)2
+ 14! (~' (�(�/2)[F�⋅F(	)⋅�+2?���])' ~)4] �−.�.� .

(244)

So let us again call thematrix �(�/2)[F�⋅F(	)⋅�+2?���],�. As before,
one has ((Tr�)2−Tr(�2)) from the second term, and from the
fourth

112 ∫5~ 5~ (~'�'~~'��'��~�~'���'����~��~'����'������~���) �−.�.�= 112 ((Tr�)4 − 6Tr (�2) (Tr�)2 + 3 (Tr (�2))2 + 8Tr (�3)Tr� − 6Tr (�4)) . (245)
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And, since the trace of [�
 ⋅ F(�) ⋅ 
 + 2W�8�] would vanish,
the second term, for instance, in the above expression would
look like− 12Tr(1 − �3!3 (2W�8�) (�
 ⋅ F (�) ⋅ 
)2)⋅ Tr(1 − �3! 38 (2W�8�) (�
 ⋅ F (�) ⋅ 
)2)⋅ Tr(1 − �3! 38 (2W�8�) (�
 ⋅ F (�) ⋅ 
)2) , (246)

where one has kept terms that are linear in W� and quartic in
’s in each trace, and the overall coe�cient for this term looks
like � 58Tr (1)2 Tr ((W�8�) (�
 ⋅ F (�) ⋅ 
)2)= �1258 Tr ((W�8�) (�
 ⋅ F (�) ⋅ 
)2) (247)

since Tr(1) = 5, as the indices range over 5 values for ��(5)
(which is inherent in the assumptions, since ~’s and ~’s run
over 
ve values in order to generate the full SM fermion
spectrum).

Now the sum over the coe�cients of all such terms
in (244) simply vanishes. 	e 1 would not survive the 

integration. Doing the remaining integration over 
’s and
factoring out W�, one simply gets that the anomaly is, ignoring
prefactors involving E and other numerical coe�cients,(0) �2 ∫54�∫54
Tr (8� (
 ⋅ F (�) ⋅ 
)2)= (0) �2 ∫54���]!�Tr [8�F�]F!�] (248)

which is the correct expression for the gauge anomaly, with
a vanishing coe�cient which thus demonstrates the gauge
anomaly freedom of the SM, since 8� can be any of its
generators and one has summed over the full fermionic
spectrum. Note that 8� and F’s in the above expression are
in the fundamental representation. Note also that this gives
just the leading order term of the anomaly—in that F�] =&�A] − &]A� only—and not the consistent one [35], which
can however be computed via the Wess-Zumino consistency
conditions.

Notice that the above expressions could also have been
obtained by considering each n separately by simply incorpo-

rating terms of the form −�P~�~� + �(V − 5/2)P in the action,
where n = 5N� , and it is evident that the above automatically
represents the results of taking V = 0, 2 and 4 together, for
n = 1, 10, and 5, respectively.

	us we see that taking a holistic approach and treating
all the 16 states of the SM together by simply taking a sum
over the periodic and antiperiodic boundary conditions for~’s are a rather economical way of deriving the gauge anomaly
freedom of the SM.

12. Conclusions

We have thus given representations of propagators for the
gauge bosons and chiral fermions of a single generation of
the SM (both free and dressed, massless and massive for
the fermions) and its fermionic one-loop e�ective actions
and anomalies, based upon the worldline formalism of
quantum 
eld theory. Our approach relied upon the use of
fermionicworldline 
elds to represent the additional spin and
color information of the particle multiplets, and associated
worldline gauge 
elds to project onto appropriate sectors
of the Hilbert space. Such an approach had been initiated
in [13, 19, 21–23] in the context of dressed propagators
in the Abelian case and we have extended the formalism
to the non-Abelian case (Section 7) (see [12] for related
approaches) and made concrete use of the Abelian version
in deriving the QED vertex (Section 8). We also applied
BRST quantization to verify that the correct gauge 
xing
procedures had been adopted (Section 4). Since the various
SM 
elds arise as excitations of the quantized worldline
theories (Sections 5 and 6), this then gives one the quantum
mechanical models, whose wave-functions are the various

elds of the SM. String models that try to achieve the same
thing have the problem that the wave-functions that arise
out of its quantization encompass too many other 
elds apart
from the SM. However, unlike string theory, it is not out of a
unique singlemodel that the various 
elds of the SMarise (we
have considered only gauge bosons and fermions), but two
di�erent sets of models for the fermions and gauge bosons,
and that is a disadvantage.

Our approach also proved, as we said, amenable to the
determination of chiral anomalies and demonstrations of
part of the cancellations of the gauge ones (Section 11).

With the details discussed in this paper, it would seem
appropriate to consider application to speci
c physical prob-
lems; an example, building upon [48], would be to calculate
propagators in a constant (non-)Abelian background. One
might also contemplate extending the derivation of the QED
vertex to the non-Abelian case, as well as to higher point
functions, leading to, for instance, the derivation of the
Compton scattering amplitude in QED. And then, extending
from that point onward, one might think of applying the
formalism to compute amplitudes for processes at the LHC.

Mostly, the main purport of the paper is setting up a
formalism for doing more advanced calculations relevant for
high energy processes. To date, people have mostly dealt with
one and higher loop amplitudes in the worldline formalism,
skirting the issue of tree amplitudes as it proved to be more
formidable. We have taken the 
rst steps here towards the
latter program, uncovering the utility of coherent states in
possible future applications. However, as we said before,
we are currently engaged in building even more powerful
methods stemming from all this that give rise to these things
much more economically.

	e fact that the 3 generations of SM fermions organize
themselves as 3 distinct spinors of ��(10) as well as the fact
that the explanation of the hypercharge quantum numbers
is a natural explanation if the corresponding generator is a
diagonal one of ��(5) seem in our opinion, to be tantalizing
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hints that the structure of nature does indeed make use of
these groups, especially of ��(10) (��(5) being a subgroup).
From the structure of the excitations, arrived at through
the action of worldline fermionic creation operators, it is
tempting to propose that even the higher generations arise via
the action of more creation operators on the 
elds of the 
rst
generation. We are also working on such a model, through
which we 
nd that there are rami
cations on the scalar sector
as well, in the sense that the scalar sector is populated with a
panoply of scalar 
elds that couple to the fermions in such a
way that it leads to a particularly economical set of couplings
(4 or 5) from which everything in the SM could potentially
arise. 	at is, one can essentially trade the arbitrariness in
the number of parameters in the SM with a proliferation of
the number of scalar 
elds in an extension of it. However we
have to admit that such amodel is already hugely constrained
by nonoccurrences of such scalars at the LHC, and our
hope is that there might be some natural mechanism that
automatically renders these scalars much more massive than
the Higgs. We believe that the reduction in the arbitrariness
of the parameters in the SM is a feature interesting enough to
merit attention.

Appendix

A. Manipulations with
Fermionic Path-Integrals

Here we evaluate the expression∫.(1)=.2�−��

.(0)=.1
D~D~�� ∫10 ��(�..̇−.(�)H(�).(�)+<(�).(�)−<(�).(�)) (A.1)

by generalizing the methods of [49] from constant ª to a
time-dependent M(7). 	us we 
rst de
ne the intermediate
time points to be 7� = �� for � = 1, 2, . . . , R − 1, where the
in
nitesimal time interval is de
ned to be � = 1/R. We can
then write the path-integral to be

lim
�→∞

R̃ ∫ 5~1 ⋅ ⋅ ⋅ 5~�−15~1⋅ ⋅ ⋅ 5~�−1��O ∑�	=1(�.	((.	−.	−1)/O)−H	.	((.	+.	−1)/2)+<	.	−<	.	), (A.2)
where ~0 = ~1 and ~� = ~2�−��. Here one has used
the mid-point prescription of Weyl ordering as discussed

in [49], along with the fact that the variable ~ represents
the momentum conjugate to ~. 	e exponent in the above
equation can be written out in detail as− [�−1∑

�=1
(1 + (��ª�2 )) ~�~�+ (1 + (��ª�2 )) ~�~�− �−1∑

�=2
(1 − ��ª�2 ) ~�~�−1 − (1 − ��ª12 ) ~1~0− (1 − ��ª�2 ) ~�~�−1 + w�~� − w�~�] .

(A.3)

	us, de
ning (R − 1) component matrices

~ =( ~1~2...~�−1),
~ =(

(
~1~2...~�−1

)
)

,
w� = −(1 − ��ª12 )(~10...0),
w� = −(1 − ��ª�2 )(

(
00...~�
)
)

(A.4)

we can write the path-integral above as

lim
�→∞

R̃⋅ ∫ 5~ 5~�−(.�#.+(<��−�O<�).+.�(−�O<+<�)+(1+�OH�/2).�.�), (A.5)
where � is de
ned as

(((
(

�1 0 0 0 ⋅ ⋅ ⋅D1 �2 ⋅ ⋅ ⋅D2 �3 ⋅ ⋅ ⋅D3 �4 ⋅ ⋅ ⋅... ... ... ... d

)))
)

(A.6)

with �� = (1 + ��ª�2 ) ,D� = −(1 − ��ª�2 ) . (A.7)

	e path-integral in (A.5) can now be easily evaluated and the
result is
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lim
�→∞

R̃ det��((<��−�O<�)#−1(−�O<+<�)−(1+�OH�/2).�.�) (A.8)

lim
�→∞

R̃ det��(<��−1#−1�−1,1<�1−�O<��−1#−1�−1,�<�−�O<�#−1�,1<�1−O2<�#−1�,�<�−(1+�OH�/2).�.�). (A.9)

Now

det� = �−1∏
�=1

�� = �−1∏
�=1

(1 + ��ª�2 ) = �−1∏
�=1

�(�/2)OH	

= 8�(�/2) ∫ ��H(�). (A.10)

and it can be easily checked that�−1,% = (−1)−% �−1% D%�−1%+1D%+1 ⋅ ⋅ ⋅ D−1�−1= (1 + ��ª%2 )−1 (1 − ��ª%2 )(1 + ��ª%+12 )−1
⋅ (1 − ��ª%+12 ) ⋅ ⋅ ⋅ (1 − ��ª−12 )
⋅ (1 + ��ª2 )−1

(A.11)

for∑
�
�'��−1� = �','−1�−1'−1, + �','�−1',= D'−1 (−1)'−1− �−1 D�−1+1D+1 ⋅ ⋅ ⋅ D'−2�−1'−1+ �' (−1)'− �−1 D�−1+1D+1 ⋅ ⋅ ⋅ D'−1�−1'= �'.

(A.12)

	us,�−1�−1,1 = (−1)�−2 �−11 D1�−12 D2 ⋅ ⋅ ⋅ D�−2�−1�−1= (1 + ��ª12 )−1 (1 − ��ª12 ) (1 + ��ª22 )−1⋅ (1 − ��ª22 ) ⋅ ⋅ ⋅ (1 − ��ª�−22 )⋅ (1 + ��ª�−12 )−1 .
(A.13)

In the continuum limit of � → 0 andR →∞, one has�−1,% = � (7 − 7%) 8�−� ∫���� ��H(�), (A.14)

the theta function occurring because one has all the matrix

elements of �−1 lying in the triangular region below or on the

diagonal, and hence one has, upon substituting, w�1 = −(1 −��ª1/2)~1, w��−1 = −(1 − ��ª�/2)~�R̃8�(�/2) ∫ ��H(�) exp [~�8�−� ∫10 ��H(�)~1+ � ∫ 57~�8�−� ∫1� ���H(��)w (7)+ � ∫ 57w (7) 8�−� ∫�0 ���H(��)~1− ∫57∫57��w (7) � (7 − 7��) 8�−� ∫���� ���H(��)w (7��)− ~�~�]
(A.15)

which upon substituting the values for ~� isR̃8�(�/2) ∫ ��H(�) exp [~2�−��8�−� ∫10 ��H(�)~1+ � ∫ 57~2�−��8�−� ∫1� ���H(��)w (7)+ � ∫ 57w (7) 8�−� ∫�0 ���H(��)~1− ∫57∫57��w (7) � (7 − 7��) 8�−� ∫���� ���H(��)w (7��)− ~2~2] .
(A.16)

	us, to summarize, the above is equal to

∫.(1)=.2�−��

.(0)=.1
D~D~�� ∫10 ��(�..̇−.(�)H(�).(�)+<(�).(�)−<(�).(�)). (A.17)

In particular, when doing perturbation theory for the 

variables as in Section 8, if one wants to setª and P to zero,
then one has¸(w, w)= ∫�(1)=�2

�(0)=�1
D
D
�� ∫10 ��(���̇+<(�)�(�)−<(�)�(�))+�(1)�(1)

= R̃ exp [
2
1 + � ∫ 57
2w (7) + � ∫ 57w (7) 
1− ∫57∫57��w (7) � (7 − 7��) w (7��)] .
(A.18)
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	us if one is interested in the correlators for 
’s and 
’s, one
can take derivatives with respect to w’s and w’s and one gets⟨
 (7) 
 (7�)⟩ = ��w (7) ��w (7�)¸ (w, w)

= ��w (7) [�
1 − ∫57��� (7� − 7��) w (7��)]¸ (w, w)= [−� (7� − 7) − (�
1 − ∫57� (7� − 7) w (7))⋅ (−�
2 + ∫57�w (7�) � (7� − 7))]¸ (w, w)
(A.19)

which yields, upon setting w(w)’s to zero,⟨
 (7) 
 (7�)⟩ = − (� (7� − 7) + 
2
1) ��2�1 . (A.20)

When one has multiple 
elds labelled by � and K, one has⟨
� (7) 
� (7�)⟩ = − (���� (7� − 7) + 
2�
1�) ��2��1� . (A.21)

But in this case, one also has, for � ̸= K,⟨
� (7) 
� (7�)⟩ = − ��w� (7) ��w� (7�)¸ (w, w)
= (
1�
1�) ��2��1� ,⟨
� (7) 
� (7�)⟩ = − ��w� (7) ��w� (7�)¸ (w, w)= (
2�
2�) ��2��1� .

(A.22)

	ese correlators are the Dirac versions of the correlators
derived for the Majorana fermions in Section 8. Similarly,
when one has twisted 
elds like ~’s in Section 6, one gets∫.(1)=.2�−��

.(0)=.1
D~D~�� ∫10 ��(�..̇+<(�).(�)−<(�).(�)) = R̃⋅ exp [~2�−��~1 + � ∫ 57~2�−��w (7)+ � ∫ 57w (7) ~1− ∫57∫57��w (7) � (7 − 7��) w (7��)]

(A.23)

and, evidently, one would have⟨~� (7) ~� (7�)⟩= − (���� (7� − 7) + ~2��−��~1�) �.2��−��.1� ,⟨~� (7) ~� (7�)⟩ = (~1�~1�) �.2��−��.1� (A.24)

as well as⟨~� (7) ~� (7�)⟩ = (~2��−2��~2�) �.2��−��.1� (A.25)

and when w = w = 0, in (A.9), one essentially has∫.(1)=.2�−��

.(0)=.1
D~�� ∫10 ��(�..̇−.(�)H(�).(�))

= R̃8�(�/2) ∫ ��H(�)�.2�−����−� ∫10 ���(�).1−.2.2 . (A.26)

When one has multiple 
elds, the determinant in (A.10)
transforms to

�−1∏
�=1

�1��−1∏
�=1

�2� ⋅ ⋅ ⋅�−1∏
�=1

�'� = �−1∏
�=1

'∏
�=1
���

= �−1∏
�=1

(1 + ��∑'
�=1ª��2 ) = 8�(�/2)∑� ∫��H�(�). (A.27)

B. Computation of Normalization Factors

Here we specialize to the case ofª�(7) = O and consider the
path-integral∫.(1)=.2

.(0)=.1
D~D~�� ∫10 ��(�.�.̇�−.�5.�+5('−�/2))+.�.�(1) (B.1)

which going by (A.26) and (A.27) isR̃��5('−�/2)�(�/2)�5�.2��−��.1� = R̃��5'�.2��−��.1� (B.2)

which is the same as, modulo the normalization factor and
the integral over O, the expression in (104), thus vindicating
its derivation from (103).

Also (B.1) is equivalent to the expression [29]⟨~2""""" �−�5(.̂�.̂�−') """"~1⟩ . (B.3)

	is can be seen as follows. 	e above is equivalent to��5'�−�5.2�(M/M.2�) ⟨~2 | ~1⟩ = ��5'�−�5.2�(M/M.2�)�.2�.1� . (B.4)

But the operator �−�5.2�(M/M.2�) just generates a 
nite rescaling
of the coordinate ~2� → �−�5~2� in any function ¥(~2�).
Hence the above expression is equivalent to (B.2), modulo
the normalization factor. Hence it is also equal to (B.1).
	e equivalence can also be easily established by inserting

complete sets of coherent states ∫5~��5~��|~�⟩⟨~�|�−.	�.	� all
over the time interval from0 to 1 in (B.3). All this then justi
es
(65) and the 
rst equation in (104).

C. Some Calculational Details
Pertaining to Section 9

Here we prove8(�(�/2) ∫ ��∑�H�
� (�))∏

�
�.��2�−���(�−� ∫ ����� (�)).��1

= ��−��.�2(��−� ∫ ���)��.�1 . (C.1)

First of all (cf. (202))
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�
ª�

� (7)= ∑
�
(�−1

�� (7) 557��� (7) + ��−1
�� (7)ª�I�I� (7)) . (C.2)

Since the matrices �(7) are special unitary the trace of the
derivative term in the above equation vanishes, and so does
the other term, due to the cyclicity property of the trace and
the tracelessness ofª, and one is le� with

�∑	 .�	2(�−����−� ∫ ����	(�))		.�	1 = �∑	 .�2P(1)�	(�−����−� ∫ ����	(�))		P−1(0)	�.�1= ��−�� ∑	 .�2(P(1)(�−����	(1)P−1(1−O)P(1−O)�−����	(1−�)P−1(1−2O)P(1−2O)�−����	(1−2�) ⋅⋅⋅ )P−1(0))��.�1= ��−�� ∑	 .�2(P(1)(�−����	(1)(P−1(1)−O(�/��)P−1(1))P(1−O)�−����	(1−�)(P−1(1−O)−⋅⋅⋅ )P(1−2O)⋅⋅⋅ )P−1(0))��.�1= ��−�� ∑	 .�2(P(1)(�−����	(1)P−1(1)(1−OP(1)(�/��)P−1(1))P(1−O)�−����	(1−�)(P−1(1−O)−⋅⋅⋅ )P(1−2O)⋅⋅⋅ )P−1(0))��.�1= ��−�� ∑	 .�2((�−�� (1)��	(1) −1(1)−� (1)(�/��) −1(1))(�−�� (1−�)��	(1−�) −1(1−�)−� (1−�)(�/��) −1(1−�))⋅⋅⋅ )��.�1
(C.3)

which, using (204), is��−��.�2((�−���(1))(�−���(1−�))⋅⋅⋅ )��.�1 = ��−��.�2(��−� ∫ ���)��.�1 . (C.4)
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Endnotes

1. Note that 
�(7 = 0) = 
1� and 
�(7 = 1) = 
2�, and hence�
(7) vanishes at 7 = 0 but not at 7 = 1.
2. Consider the eigenstates of the number operator R̂|�⟩ =�|�⟩, where R̂ = 
̂�
̂�. 	en the operator

∫2�

0
5P���(�̂−-) = ∫2�

0

�∑
�=1
���(�̂−-) |�⟩ ⟨�|

= �∑
�=1

∫2�

0
���(�−-) |�⟩ ⟨�|

= �∑
�=1
��,- |�⟩ ⟨�| = ��̂,-,

(∗)

where we have assumed that Q is an integer and, of
course, that the number operator has integer eigenval-
ues; furthermore, the exchange of sum and integration
is guaranteed by the 
nite sum and compact interval.
	e last line follows because the previous line is the
operator ��̂,- written in the occupation number basis.
	anks to James Edwards for pointing this out.

3. 	anks to James Edwards for pointing this out.

4. 	e author would like to thank James Edwards for
pointing this out.

5. Note that this highlights one of the bene
ts of the
worldline formalism: in maintaining gauge invariance,
the result of the path integral has automatically been
organised into products of gauge invariant traces.
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