
Worldsheet: Wrapping the World in a 3D Sheet

for View Synthesis from a Single Image

Ronghang Hu1 Nikhila Ravi1 Alexander C. Berg1 Deepak Pathak2

1Facebook AI Research (FAIR) 2Carnegie Mellon University

input view novel view 1 novel view 2 input view novel view 1 novel view 2

(a) input view (b) scene mesh in a sheet (c) novel view 1 (d) novel view 2 (e) novel view 3

input view novel view 1 novel view 2 input view novel view 1 novel view 2

Figure 1: We synthesize novel views from large viewpoint changes given a single input RGB image (shown in a) by wrapping

a mesh sheet (shown in b) onto the image, and rendering it from novel viewpoints (shown in c, d, e). Plausible novel views

are generated for outdoor scenes, outdoor objects, indoor scenes, indoor objects and even paintings with high resolution

(960× 960) input. Please see continuously synthesized views at worldsheet.github.io (Image sources: [49, 13, 25, 28]).

Abstract

We present Worldsheet, a method for novel view synthe-

sis using just a single RGB image as input. The main insight

is that simply shrink-wrapping a planar mesh sheet onto

the input image, consistent with the learned intermediate

depth, captures underlying geometry sufficient to generate

photorealistic unseen views with large viewpoint changes.

To operationalize this, we propose a novel differentiable

texture sampler that allows our wrapped mesh sheet to be

textured and rendered differentiably into an image from a

target viewpoint. Our approach is category-agnostic, end-

to-end trainable without using any 3D supervision, and re-

quires a single image at test time. We also explore a sim-

ple extension by stacking multiple layers of Worldsheets to

better handle occlusions. Worldsheet consistently outper-

forms prior state-of-the-art methods on single-image view

synthesis across several datasets. Furthermore, this simple

idea captures novel views surprisingly well on a wide range

of high-resolution in-the-wild images, converting them into

navigable 3D pop-ups. Video results and code are available

at https://worldsheet.github.io.

1. Introduction

A 2D image is the projection of an underlying 3D world,

but as humans, we have no trouble in understanding this

structure and imagining how an image will look from other

views. Consider the train shown in Figure 1, we can seam-

lessly predict other views from a single image based on the

abstractions we have learned from past experience of see-

ing several trains, or similar shaped objects from different

views. Enabling machines with such an ability to reason

about 3D from a single image will bring trillions of still

photos to life, with wide applications in virtual reality, ani-

mation, image editing, and robotics.

112528

https://worldsheet.github.io
https://worldsheet.github.io

The goal of synthesizing novel views from 2D images

has been pursued for decades, from early efforts relying

completely on multi-view geometry [7, 61, 38], to more re-

cent learning based approaches [59, 43, 45, 1, 9, 30, 26,

35, 23, 51, 54]. Over the years, significant progress has

been made in this direction. However, despite impressive

photorealistic output renderings, most of these previous ap-

proaches require multiple images or ground-truth depth at

test time, which severely hinders their practicality. To com-

pensate for the lack of multiple views or 3D models at test

time, methods for single-image 3D rely on statistical learn-

ing from data. This line of work can be traced back to

classic works of Hoiem et al. [13], followed by Saxena et

al. [37], that obtain ‘qualitative 3D’ from a single image by

fitting a collection of planes onto the image.

An ideal approach to general-purpose view synthesis

should not only rely on a single image at test time, but also

learn from easy-to-collect supervision signal during train-

ing. In the deep learning era, there is growing interest in

end-to-end methods with intermediate 3D representations

supervised by multiple images and no explicit 3D infor-

mation during training. However, they are mostly applied

to objects [20, 47, 55, 15, 43], and are either category-

specific, restricted to synthetic scenes, or both. Recent

works [5, 53, 48] address these issues by training with mul-

tiple views of real-world scenes, relying on point cloud or

multiplane images as intermediate representations. How-

ever, multiplane images only perform well with relatively

small viewpoint changes as each plane is at a constant

depth; for point clouds, one needs to represent each point in

a scene individually, making it inefficient to scale to high-

resolution data or large viewpoint changes. In contrast,

meshes can provide a sparser scene representation, e.g., two

triangular mesh faces can theoretically represent the entire

flat surface of a wall, making it ideal for single-image view

synthesis. However, mesh recovery from single images has

been studied mostly for object images and in a category-

specific manner [2, 15, 19] and not for scenes.

In this paper, we present an end-to-end approach for

novel view synthesis from a single image of a scene via an

intermediate mesh representation. Unlike mesh reconstruc-

tion for objects of specific categories, generating meshes

for a scene is challenging as there is no notion of mean

or canonical shape to start from, or silhouette from seg-

mentation for supervision. We circumvent this problem

by wrapping a deformable mesh sheet over the 3D world

– much like wrapping a 2D tinfoil onto a 3D pan before

baking! We name this shrink-wrapped mesh Worldsheet, a

term borrowed from physics for the 2D manifold of high-

dimensional strings. After generating this Worldsheet for a

given view, novel views are obtained by moving the camera

in 3D space (Figure 2), which allows us to train from just

two views of a scene using only rendering losses without

any 3D or depth supervision.

To train our model end-to-end, both reconstruction of the

mesh texture from input view and rendering from a novel

camera view need to be differentiable. The latter is easily

handled thanks to recent differentiable mesh renderers [16,

27, 33]. To address the former, we propose a differentiable

texture sampler over projected 2D views, enabling gradient

computation of the reconstructed texture map over the 3D

mesh geometry. Furthermore, to better handle occlusions

and depth discontinuities, we propose a simple extension

by stacking multiple layers of Worldsheets onto the scene.

In summary, Worldsheet generates novel views by learn-

ing to predict scene geometry from a single image. Al-

though 3D mesh reconstruction via differentiable rendering

is common for objects, to our best knowledge, this is the

first work to show mesh recovery for scenes just from multi-

view supervision. Our model consistently outperforms prior

state-of-the-art by a significant margin on three benchmark

datasets (Matterport [3], Replica [46], and RealEstate10K

[59]), and is applicable to very high-resolution images in-

the-wild as shown in Figure 1.

2. Related work

Novel view synthesis from multiple images. Traditional

novel view synthesis methods use multiple input views at

test time [4, 22, 11], and are often based on different repre-

sentations. Among recent works, Waechter et al. [50] build

scene meshes with diffuse appearance. StereoMag [59] pro-

poses multiplane images (MPIs) from a stereo image pair

as a layered scene representation. NPBG [1] captures the

scene as a point cloud with neural descriptors. NeRF [30]

proposes a neural radiance field representation for scene ap-

pearance, and is followed by many extensions (see [8] for a

summary). NSVF [26] adopts sparse voxel octrees as scene

representations. FVS [34] and SVS [35] blend multiple

source images based on a geometric scaffold. Yoon et al.

[56] combine depth from both single and multiple views to

generate novel views of dynamic scenes. Access to mul-

tiple input views greatly simplifies the task, allowing the

scene geometry to be recovered via multi-view stereo [38].

Novel view synthesis from a single image. In early works,

Debevec et al. [7] recover 3D scene models and Horry

et al. [14] fit a regular mesh to generate novel views.

Liebowitz et al. [24] and Criminsi et al. [6] generate meshes

via projective geometry constraints but these methods came

at the expense of manual editing. Hoiem et al. [13] gen-

erate automatic 3D pop-up by fitting vertical and ground

planes onto the 2D image, unlike our mesh representa-

tion. More recently in [31, 18, 40], layered depth images

are used for single image view synthesis based on a pre-

trained depth estimator. In [48], online videos are used to

train a scale-invariant MPI representation for view synthe-

12529

novel view 𝐼!"#

𝑉 =
𝒛 ⋅ %𝑥 + Δ)𝒙 ⋅ tan 𝜃!/2

𝒛 ⋅ %𝑦 + Δ)𝒚 ⋅ tan 𝜃!/2

𝒛

scene mesh 𝑀

differentiable texture sampling

input view 𝐼$%

depth 𝒛 grid offsets Δ%𝒙, Δ%𝒚

sheet warping

target camera

pose 𝜃#&#

mesh with texture)𝑇

Figure 2: An overview of our Worldsheet approach. Given an input view Iin, we build a scene mesh by warping a Wm×Hm

grid sheet onto the scene geometry via grid offset (∆x̂,∆ŷ) and depth z (Sec. 3.1). Then, we sample the UV texture map T̂
of the scene mesh differentiably (Sec. 3.2) and render it from the target camera pose to output a novel view Iout. Our mesh

warping is learned end-to-end using the losses on the novel view (Sec. 3.3). We further apply an inpainting network over Iout
(not shown above; see Sec. 3.4) to inpaint invisible regions and refine image details, outputting a refined novel view Ipaint.
We train with two views without any 3D or depth supervision and require just a single RGB image at test time.

sis. SynSin [53] synthesizes novel views from a single im-

age with a feature point cloud. In contrast, we learn to con-

struct scene meshes instead of point clouds and directly map

image texture instead of feature vectors to generate novel

views from large viewpoint changes.

Differentiable mesh rendering. Recent work on differen-

tiable mesh renders [16, 27, 33] allow learning 3D struc-

tures through synthesis. NMR [16] and SoftRas [27] recon-

struct the 3D object shape as a mesh by rendering it, com-

paring it with the input image, and back-propagating losses

to refine the mesh geometry. CMR [15], CSM [19] and U-

CMR [10] build category-specific object meshes from im-

ages by deforming from a mean or template category shape

through silhouette (and keypoints in [15]) supervision.

Our method is aligned with the analysis-by-synthesis

paradigm above. However, unlike most previous works

that apply differentiable mesh rendering to objects, we learn

the 3D geometry of scenes through the rendering losses on

the novel view. Moreover, instead of predicting a texture

flow as in [15, 10], we propose to analytically sample the

mesh texture from the input view with a differentiable tex-

ture sampler. Unlike [32], our differentiable texture sampler

considers multiple mesh faces in the z-buffer (soft rasteriza-

tion instead of only the closest one), and assumes perspec-

tive (instead of orthographic) camera projection.

3. Worldsheet: Rendering the World in a Sheet

In this work, we propose Worldsheet to synthesize novel

views from a single image, as shown in Figure 2. Our model

build a 3D scene mesh M by warping a lattice grid (i.e. a

“sheet”) onto the scene geometry, and is trained with only

2D rendering losses without any 3D or depth supervision.

3.1. Scene mesh prediction by warping a sheet

From the input view image Iin of size Wim ×Him, we

build a scene mesh by warping aWm×Hm lattice grid (i.e.

a sheet) onto the scene, as shown in Figure 2. We first ex-

tract aWm×Hm visual feature map {qw,h} from Iin with a

convolutional neural network. Each qw,h is a feature vector

at spatial location (w, h) on the Wm ×Hm network output.

In our implementation, we use ResNet-50 [12] (pretrained

on ImageNet) with dilation [57] to output features {qw,h}.

From each qw,h on the feature map, we predict the grid

offset ∆x̂w,h and ∆ŷw,h to decide how much the vertex

(w, h) on the grid should move away from its anchor posi-

tions within the image plane (we output ∆x̂w,h and ∆ŷw,h

in NDC space [41] between −1 to 1). We also predict how

far each vertex is from the camera, i.e. its depth zw,h. These

values are predicted using learned mappings as

∆x̂w,h = tanh (W1qw,h + b1) /(Wm − 1) (1)

∆ŷw,h = tanh (W2qw,h + b2) /(Hm − 1) (2)

zw,h = g (W3qw,h + b3) (3)

where division by (Wm − 1) and (Hm − 1) ensures that

the vertices can only move within a certain range. g(·) is

a scalar nonlinear function to scale the network prediction

into depth values. We use g(ψ) = αg/(σ(ψ) + ǫg) + βg in

our implementation, where σ(·) is the sigmoid function and

αg , βg and ǫg are fixed hyper-parameters.

Building the 3D scene mesh. We first build the mesh ver-

tices {Vw,h} from the grid offset and depth as

Vw,h =

zw,h · (x̂w,h +∆x̂w,h) · tan(θF /2)
zw,h · (ŷw,h +∆ŷw,h) · tan(θF /2)

zw,h

 (4)

for w = 1, · · · ,Wm and h = 1, · · · , Hm. Here θF is the

camera field-of-view, and x̂w,h and ŷw,h are anchor posi-

tions on the grid equally spaced from −1 to 1.

Then, we connect the mesh vertices {Vw,h} along the

edges on the grid to form mesh faces {F} as shown in Fig-

ure 2 and obtain a 3D mesh M = ({Vw,h}, {F}). A vertex

in the mesh is connected to its 4 or 8 neighbours on the grid.

12530

To encourage the mesh surface to be smooth unless it

needs to bend to fit the scene geometry, we apply a Lapla-

cian term Lm =
∑

w,h

∥

∥

∥

∑

(w̄,h̄)∈N(w,h)

(

Vw̄,h̄ − Vw,h

)

∥

∥

∥

1
on the mesh vertices, where N(w, h) are the adjacent ver-

tices to (w, h). In addition, we also apply an L2 regulariza-

tion term Lg =
∑

w,h

(

∆x̂2w,h +∆ŷ2w,h

)

to the grid offset.

3.2. Differentiable texture sampler

To render the input scene in another camera pose for

novel view synthesis, we need to project image texture from

the input view to the target view in a differentiable man-

ner. While existing renderers [16, 27, 33] can render an

image from a scene mesh based on its texture map, they

cannot directly transform image pixels in screen space be-

tween two different camera poses. In our model, we ac-

complish differentiable projection between two views by

first reconstructing the scene mesh’s texture map from the

input view (which involves inverting the texture-map-to-

image perspective transform in a differentiable manner) so

that it can be later rendered with the scene mesh in novel

views using existing mesh renderers.

While a few approaches [15, 10] build a mesh texture

map with a learned texture flow on objects, it is hard to ap-

ply the same to scenes, which do not have canonical shapes.

Here, we take an alternative route and propose a differen-

tiable texture sampler. We analytically sample the mesh

texture T̂ as a UV texture map [41] from the input view

Iin, where gradients ∂T̂ /∂V and ∂T̂ /∂Iin over the vertex

coordinates and the input image respectively can be com-

puted.

To implement this texture sampler, we project the mesh

faces onto the image plane to build a buffer (sorted in as-

cending z-order) containing the z values and 2D euclidean

distance of points on the closest K mesh faces whose pro-

jection overlaps image pixel pi,j as in PyTorch3D [33].

Then, we splat the RGB pixel intensities from the image

Iin onto the UV texture map T̂ . Specifically, we first com-

pute the weight wk
i,j denoting the contribution of the k-th

face color on pixel pi,j based on the softmax blending for-

mulation in [33, 27]. We then decompose the input image

Iin intoK images Ikin, where Ikin(i, j) = Iin ·w
k
i,j , and splat

the RGB pixels from each Ikin to a texture map layer T̂ k as

T̂ k = splat(Ikin, f
k) (5)

where the flow (u, v) = fk(i, j) maps image coordinates

(i, j) to UV coordinates (u, v) on the k-th mesh face in the

z-buffer. Here splat is a differentiable splatting operation

from the image space Ikin to the texture space T̂ k. Finally,

we sum all the K texture maps as the final UV texture map

T̂ =
∑

k T̂
k. Please see supplemental for more details.

In summary, the image pixels are splatted onto the tex-

ture space via each rasterized mesh face, and blended to-

(a) input view

2D image 𝐼!"

(b) mesh output

target view 𝐼#$%

(c) inpainting on

target view 𝐼&'!"%

(d) ground-truth

target view 𝐼%(%

Figure 3: Parts of the target view (the grey area in b) are

often invisible from the input and must be imagined based

on prior knowledge. We make plausible predictions over

the invisible regions with an inpainting network (c). How-

ever, this task is inherently uncertain (e.g. one cannot be

sure about the rightmost cabinet in d).

gether to obtain the final texture map. The entire pro-

cess is differentiable with respect to both Iin and the mesh

vertex coordinates {V }, as one can analytically compute

∂T̂ k/∂Ikin, ∂T̂ k/∂fk, ∂fk/∂V , and ∂wk
i,j/∂V .

3.3. Learning scene geometry by view synthesis

To synthesize a novel view, we project the mesh vertex

coordinates {V } from the input camera pose θin to {V tgt}
in the camera coordinate space of the target viewpoint θtgt.
Then, we render the mesh M tgt = ({V tgt}, {F}) in the

target camera pose along with its texture map T̂ to output a

2D image Iout of size Wim ×Him as the target view:

Iout = render mesh({V tgt}, {F}, T̂). (6)

We use the differentiable mesh renderer in [33] so that

we can compute the gradients ∂Iout/∂V
tgt and ∂Iout/∂T̂ .

Through mesh rendering, we also obtain a foreground mask

Fout with the same size as Iout, indicating which pixels in

the rendered image Iout are covered by the mesh and which

pixels are from background color, as shown by the grey area

in Figure 3 (b).

Our model is supervised with paired input and target

views of a scene (along with their camera poses). We use

a pixel L1 loss Lrgb
out = ‖Iout − Itgt‖1/(Wim ·Him) and a

perceptual loss [52, 53] Lpc
out = P (Iout, Itgt), where Itgt is

the ground-truth target view image. The model then needs

just a single image at test time.

3.4. Inpainting and image refinement

The target view image consists of two parts: things that

can be directly seen from the input view Iin, and things that

need to be imagined based on our prior knowledge of the

visual world, as illustrated in Figure 3. As our mesh warp-

ing and rendering procedure in Sec. 3.1, 3.2 and 3.3 builds

a pixel-to-pixel correspondence between the input and the

target view, it only renders pixels that are visible from the

input view. To obtain a plausible imagination of the invisi-

ble image regions, we apply an inpainting networkG on the

rendered mesh Iout to fill the missing regions and output a

new image Ipaint = G(Iout) as the final target view.

12531

Matterport [3] Replica [46]

PSNR ↑ SSIM ↑ Perc Sim ↓ PSNR ↑ SSIM ↑ Perc Sim ↓

Method Both InVis Vis Both InVis Vis Both InVis Vis

1 Im2Im [60] 15.87 16.20 15.97 0.53 0.60 0.48 2.99 0.58 2.05 17.42 0.66 2.29

2 Tatarchenko et al. [47] 14.79 14.83 15.05 0.57 0.62 0.53 3.73 0.74 2.50 14.36 0.68 3.36

3 Vox [42] w/ UNet 18.52 17.85 19.05 0.57 0.57 0.57 2.98 0.77 1.96 18.69 0.71 2.68

4 Vox [42] w/ ResNet 20.62 19.64 21.22 0.70 0.69 0.68 1.97 0.47 1.19 19.77 0.75 2.24

5 SynSin [53] 20.91 19.80 21.62 0.71 0.71 0.70 1.68 0.43 0.99 21.94 0.81 1.55

6 ours w/o inpainting – – 25.42 – – 0.80 – – 0.68 – – –

7 ours 24.67 22.90 26.00 0.82 0.77 0.82 1.05 0.35 0.54 23.51 0.85 1.32

Table 1: Novel View Synthesis: Performance of our and previous approaches on the Matterport dataset and the Replica

dataset. All models are trained on Matterport and evaluated on both datasets. See Sec. 4.1 for details.

We build our inpainting network based on the generator

in pix2pixHD [52], which translates a 4-channel input (the

rendered image Iout and its foreground mask Fout) into a

3-channel output image Ipaint. Our inpainting network out-

puts an entire image – it not only fills the invisible regions

but also refines the image details in the visible regions. We

apply the same RGB pixel L1 loss Lrgb
paint and perceptual

loss Lpc
paint as in Sec. 3.3 on the inpainting output Ipaint.

Training. We train our model using the Adam opti-

mizer [17] with a weighted combination of losses as L =
λ1L

rgb
out + λ2L

pc
out + λ3L

rgb
paint + λ4L

pc
paint + λ5Lg + λ6Lm

with λ1 = λ3 = 8, λ2 = λ4 = 2, λ5 = 0.2, and

λ6 = 10−4. Our model is trained for a total of 50000 it-

erations with batch size 64 and 10−4 learning rate.

We use a grid mesh with size Wm×Hm = 33×33 (and

also 65 × 65 in Sec. 4.2). Following SynSin [53], we use

Wim×Him = 256×256 as the input and output image size.

Our mesh implementation is based on PyTorch3D [33].

3.5. Extension: multilayered Worldsheets

Although shrink-wrapping a single mesh sheet onto im-

ages works well on a wide range of scenes, one limitation

is that it assumes that the foreground objects are connected

to the background by mesh faces, which sometimes causes

artifacts near object boundaries or depth discontinuities.

We propose an extension to address this limitation: pre-

dicting and warping multiple layers of Worldsheet onto the

scene, where each sheet has a transparency channel in its

texture map, loosely inspired by layered-depth images [39].

This allows some layers to fit the foreground object and oth-

ers to capture the background. Specifically, we predict grid

offset and depth for each mesh sheet from the feature map

{qw,h} following Eqn. 1 to 3 with separate parameters. We

also predict an Him ×Wim alpha map for each sheet using

a deconvolution layer on {qw,h}, which is then projected to

the transparency channel in the UV texture map of the asso-

ciated sheet. Finally, the multiple mesh sheets are rendered

in the novel view using alpha compositing [44]. The whole

model can be trained end-to-end under the same supervi-

sion. In Sec. 4.4, we find that, qualitatively, this extension

leads to better handling of occlusions and parallax effect

than a single mesh sheet.

4. Experiments

We evaluate our model on three datasets: Matterport [3],

Replica [46], and RealEstate10K [59], following the exper-

imental setup and details from [53]. We then provide anal-

ysis on in-the-wild images and multi-layered sheets.

4.1. Evaluation on Matterport and Replica

We first train and evaluate our approach on the Matter-

port dataset [3], which contains 3D scans of homes. We

load the Matterport dataset in the Habitat simulator [36],

following the same training, validation, and test splits as in

SynSin [53]. During training, we supervise our model with

paired 2D images of the input and the target views. We em-

pirically find that it works slightly better to first train the

scene mesh predictor (Sec. 3.1) and then freeze the scene

mesh to further train the inpainting network (Sec. 3.4),

rather than training both components jointly from scratch.

Metrics. Following SynSin [53], we evaluate the predicted

novel view images Ipaint using three metrics: Peak Signal-

to-Noise Ratio (PSNR; higher is better), Structural Similar-

ity (SSIM; higher is better), and Perceptual Similarity dis-

tance (Perc Sim; lower is better). The Perc Sim metric is

based on the convolutional feature distance between the pre-

diction and the ground-truth, which is shown to be highly

correlated with human judgement [58, 53]. Since only a

part of the target view image can be seen from the input im-

age as illustrated in Figure 3, we separately evaluate these

metrics on visible regions (Vis, which can be seen from the

input view), invisible regions (InVis, which cannot be seen

and must be imagined), and the entire image (Both). Note

that the visible region masks are obtained from the ground-

truth scene geometry and camera frustum (available from

the Habitat simulator) instead of predicted by our mesh, and

are the same as in SynSin’s evaluation.

Baselines. We compare our method to several previous

approaches: Im2Im [60] is an image-to-image translation

method which predicts an appearance flow to warp an in-

put view to the target view based on an input camera trans-

12532

input view GT target view SynSin ours ourIm2Im ours w/o inpainting mesh

Figure 4: Novel views from our and previous methods on the Matterport dataset (scene mesh shown in the last column). The

first row have same viewpoint change as in [53] while the second row has 2× larger camera angle change.

Matterport [3] (2× cam. change) Replica [46] (2× cam. change)

PSNR ↑ SSIM ↑ Perc Sim ↓ PSNR ↑ SSIM ↑ Perc Sim ↓

Method Both InVis Vis Both InVis Vis Both InVis Vis

1 Im2Im [60] 14.93 15.16 15.28 0.51 0.56 0.46 3.26 0.93 1.91 15.91 0.63 2.63

2 Tatarchenko et al. [47] 14.71 14.77 15.08 0.56 0.61 0.52 3.74 1.04 2.14 14.19 0.68 3.37

3 SynSin [53] 19.15 17.76 20.69 0.67 0.66 0.66 2.06 0.78 0.96 19.63 0.77 1.94

4 ours w/o inpainting – – 24.20 – – 0.76 – – 0.69 – – –

5 ours 22.62 20.89 24.76 0.77 0.72 0.77 1.41 0.63 0.56 21.12 0.81 1.70

Table 2: Novel View Synthesis: Generalization performance to larger viewpoint changes of our model vs. previous ap-

proaches on the Matterport dataset and the Replica dataset. All models are trained on the Matterport dataset and evaluated

on both datasets with 2× larger camera angle changes than in the training data. See Sec. 4.1 for details.

formation. Tatarchenko et al. [47] is similar to Im2Im,

but directly predicts the target view image instead of an ap-

pearance flow. Vox w/ UNet and Vox w/ ResNet are two

variants of the deep voxel representation [42] with different

encoder-decoder architectures based on UNet, or ResNet as

implemented in [53]. SynSin [53] projects a dense feature

point cloud (extracted from every image pixel) to the target

camera pose and applies a refinement network on the point

cloud projection to output the target view image.

We also evaluate the prediction of our model before in-

painting (i.e. directly using the mesh rendering output Iout
as the target view) to analyze how well our method performs

with texture sampling and mesh rendering alone.

Results. The results are shown in Table 1. Even without in-

painting, the mesh rendering output Iout from our method

already outperforms previous approaches by a large mar-

gin under all the three metrics on the visible regions. With

the help of an inpainting network, our final output Ipaint
has significantly higher performance than previous work on

both invisible and visible regions, achieving a new state-of-

the-art performance on this dataset. Figure 4 shows view

synthesis examples from our method and previous work on

the Matterport dataset, where our method can paint things

such as doorframe or sofa at more precise locations.

input view GT target view prediction pred. w/o inpainting

Figure 5: Generalization of our model (trained on Matter-

port) to the Replica dataset without retraining (Sec. 4.1).

Generalization to the Replica dataset. Following [53],

we also evaluate how well our model generalizes to another

scene dataset, Replica [46], which contains high-quality

laser scans of both homes and offices. We take our model

trained on the Matterport dataset and directly evaluate on

the Replica dataset without re-training. The results are

shown in Table 1, where all methods are trained and evalu-

ated under the same setting. It can be seen that our method

achieves noticeably better generalization to this dataset and

outperforms previous approaches by a large margin. Fig-

ure 5 shows view synthesis examples on the Replica dataset.

Generalization to larger viewpoint changes. We further

analyze how well our and previous approaches generalize

to larger camera pose changes beyond their training data.

In this analysis, we sample new input-target view pairs on

the test scenes with 2× larger camera angle changes than

12533

input view GT target view SynSin ours ourIm2Im ours w/o inpainting mesh

Figure 6: Novel views from our and previous methods on the RealEstate10K dataset (scene mesh shown in the last column).

Method PSNR ↑ SSIM ↑ Perc Sim ↓

1 Im2Im [60] 17.05 0.56 2.19

2 Tatarchenko et al. [47] 11.35 0.33 3.95

3 Vox [42] w/ UNet 17.31 0.53 2.30

4 Vox [42] w/ ResNet 21.88 0.71 1.30

5 3DView (similar to [29]) 21.88 0.66 1.52

6 SynSin [53] 22.83 0.75 1.13

7 Single-View MPI [48] 24.03 0.78 1.18

8 StereoMag [59] 25.34 0.82 1.19

9 ours (33× 33 mesh) 26.24 0.82 0.83

10 ours (65× 65 mesh) 26.74 0.82 0.80

Table 3: Comparison of our model with previous work on

the RealEstate10K dataset [59]. See Sec. 4.2 for details.

in the training data, and directly evaluate all approaches on

these new viewpoints without retraining. The results are

shown in Table 2, where our method largely outperforms

other approaches under all metrics. Figure 4 (second row)

shows an example under 2× larger camera angle change.

4.2. Evaluation on RealEstate10K

The RealEstate10K dataset [59] consists of both in-

door and outdoor scenes extracted from YouTube videos of

houses. The input view and the target view are different

video frames within a time range, with camera poses esti-

mated using structure-from-motion.

On this dataset, we follow the experimental setup in

SynSin [53] and use the same training, validation, and test

data. In addition to using a 33× 33 mesh, we also train our

model with a higher resolution Wm×Hm = 65×65 mesh,

which is initialized from a trained 33×33 mesh model with

a new transposed convolution layer to upsample the feature

map {qw,h} in Sec. 3.1 to 65× 65 spatial dimensions.

We compare our method to several previous approaches.

In addition to the baselines in Sec. 4.1, we also compared to

three additional approaches. 3DView is a system similar to

the Facebook 3D Photo [29] based on layered depth images

and is also a baseline in [53]. Single-View MPI [48] and

StereoMag [59] both use multiplane images (MPIs), where

Ablation setting PSNR ↑ SSIM ↑ Perc Sim ↓

1
default (33× 33 mesh

26.24 0.82 0.83
reg. weight: 10−4)

2 reg. weight: 0 25.78 0.81 0.86

3 reg. weight: 10−5 26.18 0.82 0.83

4 reg. weight: 10−3 24.83 0.78 0.96

5 5× 5 mesh 24.39 0.79 0.99

6 9× 9 mesh 25.10 0.80 0.92

7 17× 17 mesh 25.91 0.81 0.84

8 65× 65 mesh† 26.74 0.82 0.80

Table 4: Ablations on the RealEstate10K dataset [59]. See

Sec. 4.2 for details. (†: initialized from the default model.)

Single-View MPI builds MPIs from a single input image

while StereoMag relies on a stereo pair using images from

two different views as input at test time. Except for Stereo-

Mag, all other methods use a single view at test time.

Results. We follow the evaluation protocol of [53] on

RealEstate10K, with results1 shown in Table 3. It can be

seen that our method achieves the highest performance, out-

performing previous approaches by a noticeable margin.

Besides, a higher resolution 65 × 65 mesh gives a further

performance boost. Figure 6 shows predicted novel views

on this dataset. In addition, we visualize the pixel-wise

squared error map on the prediction from our method and

SynSin [53] in Figure 7, where our method paints objects

at more precise locations compared to SynSin, resulting in

higher PSNR and better quality.

Ablations. Since our model relies on deforming a mesh

sheet, we first analyze the impact of geometric regulariza-

tion on the mesh deformation. In Table 4, line 2 to 4 vary the

weight of the mesh Laplacian regularization term Lm from

its default value 10−4. Comparing these variants to line 1,

1To compare with StereoMag [59] that uses two input views, in the

evaluation protocol of SynSin [53] on RealEstate10K, the best metrics of

two separate predictions based on each view were reported for single-view

methods. We follow this evaluation protocol for consistency with [53] on

RealEstate10K in Table 3 and 4. We also report averaged metrics over all

predictions in supplemental, where the trends are consistent.

12534

GT target view ours

sqr. error
(PSNR: 17.8)

input view

SynSin

sqr. error
(PSNR: 14.8)

GT target view ours

sqr. error
(PSNR: 24.4)

input view

SynSin

sqr. error
(PSNR: 18.7)

GT target view ours

sqr. error
(PSNR: 18.6)

input view

SynSin

sqr. error
(PSNR: 17.6)

Figure 7: Squared error maps in target view from our method and SynSin [53] on the RealEstate10K dataset (darker is higher

error). Our method paints things in the novel view at more precise locations, resulting in lower error and higher PSNR.

a higher regularization (10−3, line 4) restricts the model’s

capacity to precisely fit the scene geometry and hence hurts

the performance. Meanwhile, there is only a smaller drop

when decreasing this regularization weight to 10−5 or even

zero, suggesting that our differentiable rendering pipeline

provides robust wrapping of the mesh onto the scene.

We further study the impact of mesh resolution Wm ×
Hm in line 5 to 8. As expected, higher mesh resolution al-

lows fitting more fine-grained scene details and gives higher

view synthesis performance, with the final 65 × 65 mesh

giving the best performance. In addition, we find that with

enough mesh resolution (such as 65 × 65), one can restrict

the grid offset in Eqn. 1 and 2 to zero and only use the pre-

dicted depth in Eqn. 3 to deform the mesh, which gives only

−0.13 PSNR drop (however, the grid offset makes a larger

difference in lower-resolution meshes such as Figure 2).

4.3. Analysis: testing the limits of wrapping sheets

So far, we have shown that the idea of wrapping a mesh

sheet onto an image achieves strong performance across all

benchmarks. But one might wonder, how good is a pla-

nar sheet prior for novel view synthesis in any arbitrary

images? To test the limits of wrapping a mesh sheet, we

test it over a large variety of images including outdoor

scenes, outdoor objects, indoor scenes, indoor objects, and

even artistic paintings. We analyze our underlying mesh

data structure by pretraining depth [21] to fill in the z val-

ues, and examine how well it generates novel views in-the-

wild. As shown in Figure 1 (top row), although missing

a few details (such as tree branches), a scene mesh sheet

captures the geometric structures sufficient enough to ren-

der high-resolution (960×960) photorealistic novel views

even from very large viewpoint changes. Please see videos

at worldsheet.github.io for animation of continuously

generated views. This result confirms that our mesh sheet

data structure and warping procedure, despite being simple,

are flexible enough to handle the variety of the visual world.

4.4. Analysis: multilayered Worldsheets

As described in Sec. 3.5, to better handle sharp depth

discontinuities, we explore the extension to stack multiple

novel view

(SynSin)

novel view (ours,

multiple sheets)

input view novel view (ours,

single sheet)

Figure 8: Using multiple mesh sheets (Sec. 4.4), our model

(rightmost) better handles occlusions and generates parallax

effect (e.g. sofa occluding the handrail when moving cam-

era to the right) compared to SynSin [53] or a single sheet.

mesh sheet layers, so that foreground objects and the back-

ground can be placed on different layers. Interestingly, we

observe that this extension does not make a noticeable im-

provement in RealEstate10K evaluation metrics compared

to a single sheet (26.62 vs. 26.74 in PSNR) suggesting that

single Worldsheet is sufficient enough for view synthesis

application. However, qualitatively speaking, we notice that

it allows better handling of occlusions and parallax effect in

our model under large viewpoint changes, as shown in Fig-

ure 8. Please see supplemental for more details.

5. Conclusion

In this work, we propose Worldsheet, which synthesizes

novel views from a single image by shrink-wrapping the

scene with a grid mesh. Our approach jointly learns the

scene geometry and generates novel views through differ-

entiable texture sampling and mesh rendering, supervised

with only 2D images of the input and the target views.

The approach is category-agnostic and end-to-end trainable,

resulting in state-of-the-art performance on single-image

view synthesis across three datasets by a large margin.

Acknowledgments. We are grateful to Alyosha Efros, Angjoo

Kanazawa, Shubham Goel, Devi Parikh, Ross Girshick, Georgia

Gkioxari, Justin Johnson, Brian Okorn and other colleagues at

FAIR and CMU for fruitful discussions. This work was supported

in part by DARPA Machine Common Sense grant (associated with

D. Pathak and not associated with Facebook Inc).

12535

https://worldsheet.github.io

References

[1] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-

ics. arXiv preprint arXiv:1906.08240, 2019. 2

[2] Volker Blanz and Thomas Vetter. A morphable model for

the synthesis of 3d faces. In Proceedings of the 26th an-

nual conference on Computer graphics and interactive tech-

niques, 1999. 2

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niebner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-

d data in indoor environments. In 2017 International Con-

ference on 3D Vision (3DV). IEEE, 2017, License for Mat-

terport dataset available at http://kaldir.vc.in.tum.de/

matterport/MP TOS.pdf. 2, 5, 6

[4] Shenchang Eric Chen. Quicktime vr: An image-based ap-

proach to virtual environment navigation. In Proceedings of

the 22nd annual conference on Computer graphics and in-

teractive techniques, 1995. 2

[5] Xu Chen, Jie Song, and Otmar Hilliges. Monocular neu-

ral image based rendering with continuous view control. In

ICCV, 2019. 2

[6] Antonio Criminisi, Ian Reid, and Andrew Zisserman. Single

view metrology. International Journal of Computer Vision,

2000. 2

[7] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Mod-

eling and rendering architecture from photographs: A hybrid

geometry-and image-based approach. In Proceedings of the

23rd annual conference on Computer graphics and interac-

tive techniques, 1996. 2

[8] Frank Dellaert. Nerf explosion 2020. https://dellaert.

github.io/NeRF. 2

[9] Ruofei Du, David Li, and Amitabh Varshney. Project ge-

ollery. com: Reconstructing a live mirrored world with geo-

tagged social media. In The 24th International Conference

on 3D Web Technology, pages 1–9, 2019. 2

[10] Shubham Goel, Angjoo Kanazawa, and Jitendra Malik.

Shape and viewpoint without keypoints. In ECCV, 2020. 3,

4

[11] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and

Michael F Cohen. The lumigraph. In Proceedings of the

23rd annual conference on Computer graphics and interac-

tive techniques, 1996. 2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 3

[13] Derek Hoiem, Alexei A Efros, and Martial Hebert. Au-

tomatic photo pop-up. In ACM SIGGRAPH 2005 Papers.

2005. 1, 2

[14] Youichi Horry, Ken-Ichi Anjyo, and Kiyoshi Arai. Tour into

the picture: using a spidery mesh interface to make anima-

tion from a single image. In Proceedings of the 24th an-

nual conference on Computer graphics and interactive tech-

niques, 1997. 2

[15] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and

Jitendra Malik. Learning category-specific mesh reconstruc-

tion from image collections. In ECCV, pages 371–386, 2018.

2, 3, 4

[16] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3d mesh renderer. In CVPR, 2018. 2, 3, 4

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[18] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean

Quigley, Francis Ge, Yangming Chong, Josh Patterson, Jan-

Michael Frahm, Shu Wu, Matthew Yu, et al. One shot 3d

photography. ACM Transactions on Graphics (TOG), 2020.

2

[19] Nilesh Kulkarni, Abhinav Gupta, and Shubham Tulsiani.

Canonical surface mapping via geometric cycle consistency.

In ICCV, 2019. 2, 3

[20] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and

Josh Tenenbaum. Deep convolutional inverse graphics net-

work. In NIPS, 2015. 2

[21] Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen

Koltun. Towards robust monocular depth estimation: Mixing

datasets for zero-shot cross-dataset transfer. arXiv preprint

arXiv:1907.01341, 2019. 8

[22] Marc Levoy and Pat Hanrahan. Light field rendering. In Pro-

ceedings of the 23rd annual conference on Computer graph-

ics and interactive techniques, 1996. 2

[23] Yikai Li, Jiayuan Mao, Xiuming Zhang, Bill Freeman, Josh

Tenenbaum, Noah Snavely, and Jiajun Wu. Multi-plane pro-

gram induction with 3d box priors. In Advances in Neural

Information Processing Systems, 2020. 2

[24] David Liebowitz, Antonio Criminisi, and Andrew Zisser-

man. Creating architectural models from images. In Com-

puter Graphics Forum. Wiley Online Library, 1999. 2

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 1

[26] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. NeurIPS,

2020. 2

[27] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-

terizer: A differentiable renderer for image-based 3d reason-

ing. In ICCV, 2019. 2, 3, 4

[28] Madara Lukjanovica. Italy alleyway sketch. https://www.

pinterest.com/pin/546342998522093232. 1

[29] Kevin Matzen, Matthew Yu, Jonathan Lehman, Peizhao

Zhang, Jan-Michael Frahm, Peter Vajda, Johannes

Kopf, and Matt Uyttendaele. Powered by ai: Turn-

ing any 2d photo into 3d using convolutional neu-

ral nets. https://ai.facebook.com/blog/powered

-by-ai-turning-any-2d-photo-into-3d-using

-convolutional-neural-nets. Feb 2020. 7

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. ECCV, 2020. 2

12536

http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
https://dellaert.github.io/NeRF
https://dellaert.github.io/NeRF
https://www.pinterest.com/pin/546342998522093232
https://www.pinterest.com/pin/546342998522093232

[31] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d

ken burns effect from a single image. ACM Transactions on

Graphics (TOG), 2019. 2

[32] Georgios Pavlakos, Nikos Kolotouros, and Kostas Daniilidis.

Texturepose: Supervising human mesh estimation with tex-

ture consistency. In ICCV, 2019. 3

[33] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-

lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia

Gkioxari. Accelerating 3d deep learning with pytorch3d.

arXiv preprint arXiv:2007.08501, 2020. 2, 3, 4, 5

[34] Gernot Riegler and Vladlen Koltun. Free view synthesis. In

ECCV, 2020. 2

[35] Gernot Riegler and Vladlen Koltun. Stable view synthesis.

arXiv preprint arXiv:2011.07233, 2020. 2

[36] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia

Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A plat-

form for embodied ai research. In ICCV, 2019. 5

[37] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d:

Learning 3d scene structure from a single still image. IEEE

transactions on pattern analysis and machine intelligence,

2008. 2

[38] Steven M Seitz, Brian Curless, James Diebel, Daniel

Scharstein, and Richard Szeliski. A comparison and eval-

uation of multi-view stereo reconstruction algorithms. In

CVPR, 2006. 2

[39] Jonathan Shade, Steven Gortler, Li-wei He, and Richard

Szeliski. Layered depth images. In Proceedings of the

25th annual conference on Computer graphics and interac-

tive techniques, pages 231–242, 1998. 5

[40] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin

Huang. 3d photography using context-aware layered depth

inpainting. In CVPR, 2020. 2

[41] Dave Shreiner, Bill The Khronos OpenGL ARB Working

Group, et al. OpenGL programming guide: the official guide

to learning OpenGL, versions 3.0 and 3.1. Pearson Educa-

tion, 2009. 3, 4

[42] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-

voxels: Learning persistent 3d feature embeddings. In

CVPR, 2019. 5, 6, 7

[43] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. In NeurIPS,

2019. 2

[44] Alvy Ray Smith. Image compositing fundamentals. Mi-

crosoft Corporation, 1995. 5

[45] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,

Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the

boundaries of view extrapolation with multiplane images. In

CVPR, 2019. 2

[46] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik

Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl

Ren, Shobhit Verma, et al. The replica dataset: A digital

replica of indoor spaces. arXiv preprint arXiv:1906.05797,

2019. 2, 5, 6

[47] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.

Multi-view 3d models from single images with a convolu-

tional network. In ECCV. Springer, 2016. 2, 5, 6, 7

[48] Richard Tucker and Noah Snavely. Single-view view syn-

thesis with multiplane images. In CVPR, 2020. 2, 7

[49] University of Oxford. Oxford New College. https://www.

biology.ox.ac.uk/applications. 1

[50] Michael Waechter, Nils Moehrle, and Michael Goesele. Let

there be color! large-scale texturing of 3d reconstructions. In

ECCV. Springer, 2014. 2

[51] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-

vasan, Howard Zhou, Jonathan T Barron, Ricardo Martin-

Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:

Learning multi-view image-based rendering. arXiv preprint

arXiv:2102.13090, 2021. 2

[52] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

CVPR, 2018. 4, 5

[53] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. Synsin: End-to-end view synthesis from a single

image. In CVPR, pages 7467–7477, 2020. 2, 3, 4, 5, 6, 7, 8

[54] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon

Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time

view synthesis with neural basis expansion. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2021. 2

[55] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-

betov, and Gabriel J Brostow. Interpretable transformations

with encoder-decoder networks. In ICCV, 2017. 2

[56] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,

and Jan Kautz. Novel view synthesis of dynamic scenes

with globally coherent depths from a monocular camera. In

CVPR, 2020. 2

[57] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-

tion by dilated convolutions. ICLR, 2016. 3

[58] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 5

[59] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,

and Noah Snavely. Stereo magnification: learning view

synthesis using multiplane images. ACM Transactions on

Graphics (TOG), 2018. 2, 5, 7

[60] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-

lik, and Alexei A Efros. View synthesis by appearance flow.

In ECCV. Springer, 2016. 5, 6, 7

[61] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,

Simon Winder, and Richard Szeliski. High-quality video

view interpolation using a layered representation. ACM

transactions on graphics (TOG), 2004. 2

12537

https://www.biology.ox.ac.uk/applications
https://www.biology.ox.ac.uk/applications

