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Abstract

The ecological impacts of alien species invasion are a major threat to global biodiversity.

The increasing number of invasion events by alien species and the high cost and difficulty

of eradicating invasive species once established require the development of new methods

and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose

serious threats to biodiversity and human activity due to their close relationship with many

plants (including crop species) and high potential competitiveness for resources with native

pollinators. Although at an early stage of expansion, the bumblebee species Bombus ter-

restris is becoming a representative case of pollinator invasion at a global scale, particularly

given its high velocity of invasive spread and the increasing number of reports of its impacts

on native bees and crops in many countries. We present here a methodological framework

of habitat suitability modeling that integrates new approaches for detecting habitats that are

susceptible to Bombus terrestris invasion at a global scale. Our approach did not include

reported invaded locations in the modeling procedure; instead, those locations were used

exclusively to evaluate the accuracy of the models in predicting suitability over regions

already invaded. Moreover, a new and more intuitive approach was developed to select the

models and evaluate different algorithms based on their performance and predictive conver-

gence. Finally, we present a comprehensive global map of susceptibility to Bombus terres-

tris invasion that highlights priority areas for monitoring.

Introduction

The ecological impacts of species invasion area major threat to global biodiversity [1, 2], with

widespread effects on humanity [3, 4]. An alien invasive species is defined as a taxon intro-

duced outside its native range, either deliberately or accidentally, presenting a high growth rate

and fast range expansion, with noticeable environmental impacts [5–8].
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The number of invasion events by alien speciesis rapidly increasing around the globe [1, 9].

Thus, the development and application of new methods and tools that allows predict the most

susceptible areas to invasion are needed.

Species distribution modeling (SDM) has been applied to forecast the potential occupancy

of a wide range of invasive species. Examples include plants (e.g., [10–12]), insects (e.g., [13–

16]), mollusks (e.g., [17]) and amphibians (e.g., [18, 19]).

According to Lavergne et al.(2010) [20], SDMs have been largely influenced by Hutchin-

son’s concept of the ecological niche [21]. Currently, this type of ecological modeling is also

considered able to estimate habitat suitability, as it uses reported occurrences to identify other

places with similar suitable conditions [22]. In this work, we choose Habitat Suitability Model-

ing (HSM) as a standard denomination of an analytical procedure that encompasses methods

and concepts described by other researchers and authors as Species Distribution Modeling

(SDM) or Ecological Niche Modeling (ENM).

Abiotic factors are considered the initial environmental barrier that an invasive species

must overcome when it is introduced or when it invades a non-native environment [23–27]

sincemost individuals cannot survive on an environment where abiotic factors exceed their

physiological limits [22, 27]. At large scale, climatic factors can be considered among the most

influential types of abiotic factors that limit or, in some cases, promote the expansion process

of an invasive species [11, 25, 28, 29].

Several HSMmethodological approaches have been proposed to improve their application.

For example, some studies have compared the performance of different algorithms (e.g., [30])

or sample sizes (e.g., [31]); or examined how to fit models (e.g., [32]); ensemble multiple pro-

jections (e.g., [33]); included biotic interactions (e.g., [34]); or evaluated model performance

(e.g., [35]). Additionally, some studies have used HSMs to assess information on invasive spe-

cies at many spatial scales (e.g., [11, 36–39]). However, as far as we know, there is no methodo-

logical approach for predicting areas that are susceptible to bee invasion on a worldwide scale.

The bumblebee Bombus terrestris (L.)(Hymenoptera: Apidae) may become one of the most

representative cases of bee invasion at global scale [40], especially considering its velocity of

spread (e.g., 200 Km per year in Chile and Argentina [41]).

Bombus terrestrisis a eusocial bee with a relatively large and hairy body of high thermoregu-

latory capacity. This species exhibits a generalist feeding habits, being able to explore a wide

range of floral resources. The wild, native distributional range of Bombus terrestris covers

almost the whole of Europe, mainly the temperate and Mediterranean zones, and encompasses

surrounding areas of Asia and Africa [40, 42, 43].

Bombus terrestris (hereafter referred to as Bt) is able to perform buzz pollination [40, 44,45],

which improves the pollination success of plants with poricidal anthers. Bt provides this

important ecosystem service to wild plants and crop species with high economic value such as

tomato, pumpkin, eggplant, potato and pepper [44, 46, 47]. Bt is well adapted to artificial con-

ditions, and because of its ease of handling and breeding, colonies have been developed in cap-

tivity and commercialized for over 20 years to improve crop pollination, mainly in the

greenhouse [40, 47–49].

These Bt´s commercial colonies are delivered to many countries, including some places

located outside their natural range. This international trade is reported as the main cause of Bt

invasion in Chile, China, Israel, Japan, Mexico, South Africa, South Korea and Taiwan [40–42,

48–58]. Bt is also invasive species in New Zealand and Tasmania (AUS). In New Zealand, Bt

was introduced around 1884 for crop pollination purposes and currently is widely spread over

the islands [59, 60]. There is no precise information on when Bt was first introduced in Tasma-

nia. Semmens et al., (1993) [61] suggest that Bt individuals were brought to Tasmania from

New Zealand in 1992.

Forecasting the Spread of a Highly Invasive Pollinator

PLOS ONE | DOI:10.1371/journal.pone.0148295 February 16, 2016 2 / 25

Competing Interests: The authors have declared

that no competing interests exist.



Currently, the invasive distribution of Bt is increasing in addition to direct human interven-

tion, by means of its own dispersal capabilities (e.g. [50, 62]). Invasive Bt was reported as pre-

senting some negative effects on native bees; for instance, competing for nesting sites [63],

floral resources [64], as a potential vector of exotic diseases and parasites [65, 66] and changing

plant-pollinator interactions in non-native environments, impacting crops, native plants and

pollinators [67, 68].

Therefore, we consider Bt as a representative case study of an incipient worldwide alien

invasion, undergoing rapid expansion in many countries outside its native range.

We present here a methodological framework with new analytical and geospatial strategies

to evaluate, select and ensemble the habitat suitability models based on a multi-algorithm

approach, aiming to increase the overall predictive accuracy for invasive species studies.

We used the framework to detect susceptible areas to Bt invasion in a worldwide scale and

to detect the potential range of invasive spread from already invaded areas. In this work we use

exclusively global high-resolution topoclimatic variables in order to provide a method with

wide applicability for invasive species and large-scale events of invasions; but the method is not

limited to these variables and can be integrated with other bionomic data if necessary.

The global map of susceptibility to Bt invasion delineates areas that should be monitored to

avoid new deliberated introduction of colonies and can be used to guide the development of

precautionary measures and policies in order to avoid or mitigate future impacts on natural

environments and human activities.

Materials and Methods

Environmental variables
We obtained 20 layers of environmental topoclimatic data (19 bioclimatic and altitude) from

Worldclim [69], with a spatial resolution of 5 minutes of arc (cell size approximately 10 km)

over a global range (with the exception of southern latitudes greater than 60°). These layers

present data on altitude and annual trends of seasonality, temperature extremes and average

precipitation over the last 50 years.

To reduce co-linearity among predictors, we performed a Pearson’s pairwise correlation

procedure using R v.3.0.3 [70] and selected those layers with Pearson's correlation coefficients

less than 0.75. When two layers were highly correlated, we chose the one least correlated, yield-

ing a total of nine layers: Mean Temperature Diurnal Range, Maximum Temperature of the

Warmest Month, Temperature Annual Range, Precipitation of the Wettest Month, Precipita-

tion of the Driest Month, Precipitation Seasonality, Precipitation of the Warmest Quarter, Pre-

cipitation of the Coldest Quarter, and Altitude.

We did not include additional environmental variables in the modeling procedure due to

the lack of available knowledge about the relationship of Bt with other abiotic and biotic vari-

ables in non-native environments. Rather, because climate and altitude have several similar

conditions and combinations around the globe, we considered the extrapolation of ecological

considerations based solely on topoclimatic variables to be more reliable.

Bombus terrestris data
We used presence records for Bt surveyed from two main sources (for source details, see S1

File): 1) presence data extracted from published literature and 2) presence data obtained from

collections and museums and compiled in internet biodiversity databases (mainly from GBIF–

Global Biodiversity Information Facility). For the published data, when Bt presence was geore-

ferenced by city or other place name, the geographical coordinates were extracted using the

toponyms from the Global Administrative Areas Database [71]. If occurrences were exhibited
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on a map only, we plotted the map into ArcGIS 10 [72] to estimate the geographical coordi-

nates for each point using the Georeferencing Tool.

The complete dataset was divided into two subsets based on published data (see S1 File): 1)

presence within the native Bt range, referred to as Native Presence and 2) reported alien inva-

sive presence, referred as Invasive Presence (see S1 File). Although some publications have sug-

gested the presence of invasive Bt in China, Israel, Mexico, South Africa, South Korea, and

Taiwan, we have found no recorded locations. Thus, we only considered as invaded those

places with reports of sightings of individuals or colonies of Bt. Both subsets were plotted in

ArcGIS10 [72].

First, we used the sample function and visual inspections to detect unreliable or erroneous

records. Any record located in a water body class (e.g., oceans, rivers, lakes) according to Glob-

Cover 2009 land cover (cell size of approximately 0.0028° = ~300 m) [73] was excluded. Further-

more, we excluded presence records from outside the range of the environmental layers selected

for modeling or from countries lacking previous reports of native or invasive occurrences.

To reduce statistical overfitting due to a large number of native presence records (over

10,000 raw data records) and to avoid redundancy [74–76], we built a fishnet composed of

square cells with the same spatial extent and grid cell size of the environmental layers (~10x10

km). Subsequently, we joined the fishnet with the native Bt presence dataset in ArcGIS. To do

so, we treated each respective location as a unique presence, using the centroid of fishnet cells

as the geographic coordinate of species presence. This procedure transformed Bt presence into

a binary variable; i.e., we attributed a value of 1 to cells with one or more geospatially coinci-

dent presence records and a value of 0 to cells without presence records. The same procedure

was then conducted with invasive Bt presence records.

Pseudo-absence datasets
All the modeling algorithms used in this work required the input of pseudo-absences when

true absences were not available (in the case of MAXENT, background points) [77–81].

Because we cannot identify the true absence data for Bt, we generated two types of pseudo-

absence datasets, as follows.

The first type of pseudo-absence dataset was generated by surveying the GBIF data provider

to obtain presence records of Bombus species other than Bt, inside countries with reported

native Bt presence. This dataset is hereafter referred as BOPA (Bombus Other than Bt- Pseudo-

Absences). Based on studies of foraging distance in Bt and the maximum distance a worker bee

can travel before returning to its nest (e.g., [43, 82, 83]), we determined that Bt workers usually

forage close to their nests, generally within 1 km [83]. However, under extreme circumstances

(e.g., a scarcity of resources), a worker bee can travel greater distances; the furthest distance

reported to date is 9.8 km [82]. We used the largest distance (10 km) as the maximum displace-

ment distance of individual Bt from their nests, and we assumed that most Bt sightings could

be positioned within this maximum range during the field surveys, which provided each record

in our presence dataset.

Considering the previous assumption, we plotted both the BOPA and native Bt presence

datasets into ArcGIS 10 [72], and using the function select by location, we detected and

excluded those BOPA records located less than 10 km from a Bt presence record. This proce-

dure removed any pseudo-absence record (BOPA) located within the maximum spatial range

of each Bt record. The remaining BOPA locations, i.e., field surveys reporting no Bt but report-

ing other Bombus spp., were considered as reliable pseudo-absence locations. As performed

previously with the native and invasive dataset, we used the fishnet to remove repeated BOPA

locations per grid cell.

Forecasting the Spread of a Highly Invasive Pollinator

PLOS ONE | DOI:10.1371/journal.pone.0148295 February 16, 2016 4 / 25



The second type of pseudo-absence dataset was randomly generated following two steps.

First, in ArcGIS 10 [72], we created a spatial buffer using the geographic locations of both data-

sets: BOPA and the native presence dataset (not the invasive one). In addition, we considered

the 10 km distance to define the buffer radius per record for both datasets, and the area jointly

covered by all buffers was used as a restriction zone in the next step. Second, we used the func-

tion create random points of ArcGIS to generate a random pseudo-absence dataset with three

spatial constraints. Random points were generated exclusively inside the extent of the climatic

layers, outside the restriction zone defined in the previous step, and outside the water bodies

class of land cover GlobCover 2009 [73]. Additionally, we prevented the creation of points in

repeated locations per grid cell, attributing a minimum distance of 15km between points. The

total number of random points was calculated as follows:

RPA ¼ ½ð10 � Native PresencesðtotalÞÞ � 5ðPA replicationsÞ� � ð5ðPA replicationsÞ � BOPAðtotalÞÞ

Incorporating the obtained results (see below) yields the following:

RPA ¼ ½ð10 � 4; 209Þ � 5� � ð5 � 3; 422Þ ¼ 193; 340

The total number of Random Pseudo-Absence Points (RPA) generated (193,340) was ran-

domly fractionated into five subsets without replacement (38,668 per subset), such that each

subset held only exclusive locations, with no duplicates. Subsequently, for each of the five ran-

dom pseudo-absence subsets, we added the BOPA records, totaling 42,090 records per subset.

This yielded a total 10 times the number of native presence data points per subset (as recom-

mended by Chefaoui and Lobo, 2008) [84].

Modeling Procedure
Bt native presence was randomly partitioned such that 75% of the data was used for training

the model and the remainder (25%) was used for mathematical evaluation using True Skill Sta-

tistic (TSS) [85]. This random partitioning was repeated five times to obtain a robust estimate

of the algorithms' performance [86].

To generate the habitat suitability models, we used the Biomod2 package version 3.1.48 [80,

81] in R language [70] with all available algorithms in the package (details can be found on S2

File).

To achieve comparability among algorithm results and considering the most frequently

used parameters, we maintained the default settings in Biomod2 following the parameters rec-

ommended by the authors [80, 81]. The MAXENT algorithm was used in the same way, with

default settings recommended by the authors [87], but with a different memory allocation size.

These default parameters are described on S2 File.

Twenty-five models were fitted per algorithm (ALGO1 to ALGO10); this was accomplished

by combining five native presence partitioning (RUN1 to RUN5) and five pseudo-absence

datasets (PA1 to PA5). The same pairwise combination was repeated in each round with each

algorithm [ALGO1&RUN1&PA1; ALGO1&RUN1&PA2 (. . .); ALGO1&RUN2&PA1 (. . .);

ALGO2&RUN1&PA1 (. . .)]. We obtained 250 models, considering all possible combinations

of ALGOs (10), RUNs (5) and PAs (5).

Model Selection
We developed a sequence of three evaluation criteria to select from the obtained models, as

follows:

Forecasting the Spread of a Highly Invasive Pollinator
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Stage 1. TSS� 0.8: First, we used a TSS evaluation index (True Skill Statistics; [85]) greater

than or equal to |0.8|. We chose TSS instead of AUC (Area Under the Curve of Receiver-Oper-

ating Characteristics) because a threshold-dependent measure was necessary to define the spa-

tial cutting point before delineating each respective suitable (binary value = 1) and unsuitable

area (binary value = 0) per model. TSS values range between -1 and 1; positive values near one

indicate high predictive accuracy. Negative values and zero proximity indicate that the model

performs no better than chance, consequently, the models are not useful for detecting habitat

suitability [88, 89]. There are no precise threshold TSS scores defined for model evaluation; we

chose a more conservative value (TSS� 0.8) than the threshold values frequently used

(TSS� 0.75; e.g., [39, 90–92]).

Stage 2. Based on invasive presence hit rate: In the second stage, we evaluated the accuracy

of each remaining model (those with TSS� 0.8) to infer suitability predictions over areas other

than the proximal native range of Bt. This method takes into account the rating of the geospa-

tial coincidence of the suitable areas detected by each model (binary value = 1) with the known

locations of invasive Bt presence. In this context, the invasive dataset acts as a “validation data-

set” for evaluating model accuracy by quantifying the accuracy of suitability detection of each

model over the known distribution of invasive Bt.

To calculate this, we used the sensitivity component of TSS metrics. Thus, we calculated the

probability of detection or hit rate (HR) according to the formula:

Invasive Hit Rate (IHR) = Hits(binary one) / (Hits(binary one) + Misses(binary zero))

The procedure of intersection between the Stage 1 models and the invasive presence dataset

was developed in R [70] using the function extract of the Raster package [93].

We assumed that the most accurate models would be those that predicted the records of the

validation dataset with higher precision, i.e., the models with higher Invasive Hit Rate (IHR)

values. The minimum accuracy threshold for selecting the most precise models was defined by

the overall average IHR value, meaning that each individual model that yielded an IHR value

equal to or higher than the average IHR of all models was selected to proceed to Stage 3.

The procedure of intersection was replicated using the native Bt presence data, building a

dataset used exclusively to compare stage performance in the final evaluation. Each value of

this dataset was considered a measure of the Native Hit Rate (NHR).

Stage 3. Convergence of suitability predictions: The third stage was applied aiming to filter

models with statistical biases related to under- and over-fitting. These undesirable statistical

effects have to be considered mainly when a massive number of presence data points and wide-

extent, high-resolution environmental variables are used. The extensive amount of information

incorporated into each environmental layer (worldwide extent: totaling 2,287,025 cells with

information per layer) can jeopardizethe specificity component of the TSS evaluation metrics,

even when a large number of pseudo-absences per modeling rounds are used. Another impor-

tant advantage of this criterion is the detection and exclusion of high divergent predictions.

Metaphorically, when facing multiple points of view provided by various experts about on a

subject, it is usually desirable to consider the opinion shared by the majority rather than the

divergent opinion(s) provided by a minority. Therefore, only the models with considerable dif-

ferences were filtered at this stage, i.e., those strongly diverging in the shape and size of suitable

areas detected and differing from a large number of other models generated. We emphasize

that the small-scale differences among models are of great importance in a multi-modeling

approach; these small differences increase the quality of the result and were not filtered by this

procedure.

To evaluate the level of concordance among models, we calculated a similarity index using

Pearson´s pairwise correlation coefficients in R [94], as highly correlated model pairs are pre-

sumably more similar in terms of habitat suitability and unsuitability prediction. For the

Forecasting the Spread of a Highly Invasive Pollinator
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models remaining after the previous selection stage, we estimated Pearson´s correlation coeffi-

cients between model pairs. For each model, we averaged the coefficients over all paired coeffi-

cient values with the other models (except with the model itself; value = 1). These averages

(hereafter referred as PCCs—Pearson´s correlation coefficient) were used to rank the similarity

of each model in relation to the others. Thus, a model with a high average PCC is more similar

in its suitability predictions with the majority of models in the set than models with lower

PCCs and vice versa (the lower the PCC average, the less similar).

We predefined an ascending sequence of minimum average PCC thresholds from 0.5 to 1 in

increments of 0.01, totaling 51 PCC thresholds. We used this threshold sequence to generate

sets of models with average PCC scores equal to or higher than each respective value. For each

set generated, we projected an Ensemble Model termed the Overall Predictions Model (OPM;

description provided in the next topic). Subsequently, we assessed the quality of each generated

OPM to correctly predict suitability where the native (NHR) and invasive Bt presence (IHR)

records were located. Moreover, we verified the ratio between the number of suitable grid cells

predicted and the total number of grid cells per OPM (suitable + unsuitable cells) and termed

this ratio the Suitable Cells Ratio (SCR), which was calculated as follows:

SCR ¼ OPMi ðbinary value 1 cellsÞ=ðOPMi ðbinary value 1 cellsÞ þ OPMi ðbinary value 0 cellsÞÞ

We also captured and calculated the minimum, maximum and average TSS values from the

set of models that composed each OPM using the TSS values obtained from the Biomod2

output.

Ensemble forecast
Ensemble forecast models are mathematical methods that combine multiple simulations (fore-

casts) of a complex system into a unique and more robust result. We developed our ensemble

forecast model based on the committee averagingmethod of Biomod2, in which the probabili-

ties of habitat suitability from different models are not averaged but are transformed into

binary results [33, 39, 80]. We used each respective model threshold that maximizes both sensi-

tivity and specificity to define the spatial cut-off, before converting each model in binary pre-

dictions. This threshold parameter is considered to produce the most accurate results [39, 88,

95]. Another advantage of the committee averaging method is the ease of comparing outputs

(binary = 1 = presence; binary = 0 = absence) relative to the raw algorithm outputs (continuous

probabilities) that do not necessarily have the same meaning or same range of variation (for

further details, see [33] and [39]). Using binary models from each selection criterion (Stages 1,

2 and 3) and the Biomod2 output models, i.e., models without selection (hereinafter referred as

Stage 0 models), we developed ensemble forecasts in two steps as follows:

Step 1) Agreement Level Ensemble Model (ALM). This model is based on the sum of binary

values of each set of models, resulting in maps with geospatial classes ranging from zero (all

models agree with the unsuitability of the area) to the total number of geospatial coincidences

of suitable habitats detected by all models (a spatialized frequency histogram). Therefore, the

class with value = 1 indicates that only one model in the set indicated suitability in the area, the

class with value = 2 indicates that two models agreed, and so on. Note that this range is not

related to probabilistic or suitability level but to the level of agreement among models in each

set. We used ALMs twice. First, they were used to build the next ensemble model type. Second,

they were used to build ensembles from each evaluation stage per algorithm, providing a way

to compare and evaluate algorithm performance.

Step 2) Overall Prediction Ensemble Model (OPM). This model constitutes a binary map

that considers every suitable habitat area predicted by the overall models of each set.

Forecasting the Spread of a Highly Invasive Pollinator
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Essentially, all classes exhibiting values equal to or higher than 1 in the Agreement Level

Ensemble Model (previous step) were reclassified as a unique binary value = 1. In contrast, the

unsuitable areas retained the binary value = 0. Each OPM was evaluated with respect to its pre-

dictive quality, and the selected OPMs were used to build the main ensemble model result, as

described below.

Evaluating and selecting ensemble forecast models
To generate a global map of susceptibility to Bombus terrestris invasion, we first selected the

most accurate set of models that were, subsequently, combined into a single model using tech-

niques of ensemble forecast. Selection was performed by visual inspection of plotted curves

and analysis of changes in four evaluation indices (TSS, Invasive and Native Hit Rates, and

Suitable Cells Ratio).We emphasized Invasive Hit Rate (IHR), which compares the obtained

model to known invaded areas, a distinctive method of our work.

Among all Overall Prediction Models (OPMs) generated across the predefined Pearson´s

Correlation Coefficients (PCC) in Stage 3, we prioritized the selection of those positioned just

before marked shifts in the evaluation indices, paying particular attention to IHR changes.

When we detected a sequence of changes in the evaluation indices across the PCC range, show-

ing a clear trend, we selected the OPM immediately preceding this sequence.

We also paid attention to the relationship between IHR and the SCR, as well as the relation-

ship of IHR with shifts in the NHR and TSS values (minimum, mean and maximum) across

the PCC range. We avoided choosing the last OPMs of the full PCC range because each of the

previous OPMs in the range contains the suitable prediction of the next one, and the last

OPMs tend to exhibit higher error than previous ones (as detected in the analysis). We selected

the minimum possible number of OPMs, considering the highest representativeness of each

selection to encompass the main changes across the PCC range.

Once the PCC thresholds were selected, the main ensemble model was produced by the sum

of the respective OPMs using the raster package [93] in the R platform [70]. We considered the

highest class value resulting from the maximum geospatial coincidence of shared suitability

prediction as the "Susceptible at Maximum". To the class value = 1 (only one OPM indicated

suitability), we attributed the name "Susceptible". To the intermediate class values, we attrib-

uted denominations related to their levels of susceptibility. To the class value = 0 (all OPMs

agree with unsuitability of the area), we attributed the denomination of “Very Low Susceptibil-

ity or Insusceptible”.

Results

At the end of our filtering process, the final dataset was composed of 4,209 native locations,

547 invaded locations (Fig 1) and 3,422 other Bombus spp. (i.e., Bombus spp. other than Bt)

pseudo-absences (BOPA).

Evaluation processes
The initial set of 250 models generated by 10 algorithms (Stage 0) was reduced in Stage 1

(TSS� 0.8) to 195 models generated by 9 algorithms. All models from SRE were excluded, and

there was a high reduction of FDA models, of which 23 were discarded (Fig 2 and Fig 3). Some

small losses also occurred with ANN (loss of 3 models) and MARS (loss of 4).

In Stage 2 (Invasive Hit Rate), an extreme reduction of models occurred (loss of 64 models

from Stage 1) compared to the loss in the previous stage (loss of 55 from Stage 0); thus, 131

models remained from the initial number. With the exception of FDA, GAM, GLM and
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MARS, all algorithms lost models: ANN lost 17; CTA, 16; GBM, 4; MAXENT, 2; and RF, all 25

models.

In Stage 3 (convergence of suitability predictions), the Pearson´s Correlation Coefficients

(PCC) range had an upper bound of 0.79, as no model pair yielded values higher than this.

Thus, 30 Overall Predictions Models (OPMs) were selected.

Throughout the entire evaluation range, i.e., from Stage 0 to the last PCC threshold in Stage

3, the minimum TSS increased at four points (Fig 2 and Fig 4). However, two increases were

marked. The first occurred in Stage 1, when models with TSS� 0.8 were excluded from the

Biomod2 output models. The second occurred at the 0.62 PCC threshold (Stage 3) and was

related to the marked reduction in the area of predicted suitable habitat from PCC 0.61 to 0.62

(minimum TSS from 0.800 to 0.858; Fig 2 and Fig 4) and the small SCR sequential reduction in

the previous PCC thresholds, beginning beyond PCC 0.59 (Fig 4).

Across the evaluation range, the maximum TSS had one marked decrease event in Stage 2

(falling from ~0.931 in Stage 1 to ~0.904 in Stage 2; Fig 2) due to the exclusion of some high-

scored models that correctly detected the native distribution of Bt (based on TSS values). How-

ever, the same excluded models only weakly detected suitability in locations of reported inva-

sive Bt presence (based on Invasive Hit Rate values). For example, all 25 RF models yielded

high TSS values and passed through Stage 1 (TSS� 0.8) without model losses (Stage 0 mini-

mum and maximum RF TSS values of 0.907 and 0.931, respectively; Fig 2). However, after

Stage 2, no RF models remained (Fig 2 and Fig 3). Subsequent to this decrease, the maximum

TSS remained constant over almost the entire evaluation range until the last PCC threshold

(Stage 3—PCC 0.79), where a small decrease occurred. The stabilization of the maximum TSS

over almost the entire PCC range is due to the permanency of a single high-TSS evaluated

model since Stage 2 (MAXENT, PA 4, RUN 3; S1 Fig) that was only excluded from the set after

PCC 0.78.

As expected, the mean TSS was influenced by variation in its extreme values (minimum and

maximum TSS) but provided an indication of the variation in TSS central tendency of models

Fig 1. Native and invasive presence records ofBombus terrestris at a global scale.

doi:10.1371/journal.pone.0148295.g001
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in each set across the evaluation range. The mid-range TSS variation became evident from the

absent relationship between the observed interval of mean TSS variation and the changes in

extreme TSS values. For example, from Stage 2 to 0.61 (PCC, Stage3) there were small but pro-

gressive increases in the mean TSS (Fig 2 and Fig 4) that were unrelated to maximum and min-

imum TSS variation but instead related to the exclusion of some lower-evaluated models in the

TSS mid-range. This emphasizes the overall improvement in model accuracy across the evalua-

tion range within the most central range of TSS values.

Decreases in the Native Hit Rate (NHR) were relatively minimal across the entire evaluation

range (Fig 4 and Fig 2), the total decrease reaching only approximately 2.5%. This indicates

that, from the initial number of 4,209 Bt native presence records used, 4,208 intersect suitable

areas predicted by at least one model in Stage 0 (S2 Fig). From this value (Stage 0), only 104

hits were lost before the last PCC threshold (PCC 0.79, Stage 3; S2 Fig). Small NHR changes

Fig 2. Stages (y-axis) and the respective numbers of models per algorithm, as well the respective changes in the evaluation indices.

doi:10.1371/journal.pone.0148295.g002
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were observed at many points across the evaluation range (Fig 2), but only four were relatively

marked: one in Stage 2 and three in the final PCCs of Stage 3 (PCCs 0.77, 0.78 and 0.79)(Fig 4

and Fig 2).

The Suitable Cells Ratio (SCR) exhibited the highest variability among all evaluation indices

except in the range from PCC 0.62 to 0.72, where we observed a pattern of SCR stability (Fig

2). The SCR scale (Fig 4 and Fig 2) does not provide a clear representation of the spatial scale

contraction; for example, from Stage 1 to 2, a decrease of approximately 7.5 million km2 of suit-

able area was estimated (grid cell size at equator)(S2 Fig).

We observed positive and negative influences in the evaluation indices related to the reduc-

tion of OPMs suitable areas (SCR) across the PCC range (Stage 3)(S3 Fig). The SCR variation

exhibited a strong linear relationship (Pearson´s r) with IHR (r:~ +0.965; p = 6.9E-18) as well

as strong, but negative, relationships with the mean TSS (r:~ -0.929; p = 1.1E-13) and the mini-

mum TSS (r:~-0.884; p = 9.6E-11). The SCR exhibited a weak relationship with NHR (r: ~

+0.621; p = 0.00024) and a non-significant relationship with maximum TSS (r: ~ +0.299;

p = 0.1).

Invasive Hit Rate (IHR) variation and its relationships with other indices are depicted in Fig

5, where each evaluation index value was subtracted from the previous one across the evalua-

tion range (Valuei+1—Valuei).

Some decreases in IHR occurred across the evaluation range, mainly related to SCR

decreases, but three extreme decrease events were apparent at PCC 0.53, 0.62 and 0.79. The lat-

ter PCC (0.79) is preceded by a sequence of decreases starting at PCC 0.75. We detected three

Fig 3. Progressive decrease of models per algorithm across stages (and across PCCs in Stage 3). Stage 0: the total number of models per algorithm
from the Biomod2 output before selection. Stage 1: Models that yielded TSS� 0.8. Stage 2: Models that yielded an Invasive Hit Rate (IHR)� the total IHR
average. Stage 3: Models that yielded a total average paired Pearson´s correlation coefficient (average of paired PCC values between itself and all others)
above each predefined threshold.

doi:10.1371/journal.pone.0148295.g003
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PCC thresholds that represent the main changes that occurred across the Stage 3 evaluation

range (Figs 4 and 5; Fig 2 and S2 Fig). The first one occurred at PCC 0.53, with a pronounced

decrease in IHR relative to the previous PCC threshold, indicating a reduction of 42 invasive

presences hitting suitable habitats (S2 Fig). Prior to this point, only 15 invasive hits were lost

(Stage 0 to PCC 0.52). This event was also associated with a strong decrease in the Suitable

Cells Ratio (SCR), an approximately 18.4% reduction in the global suitable area predicted from

the previous PCC (SCR from ~0.14 to ~0.11; Fig 2). Based on this pronounced shift event in

the evaluation indices, we chose the OPM positioned immediately preceding it to compose the

final ensemble model (PCC 0.52). The second threshold occurred at PCC 0.62 (Figs 4 and 5),

with an even more pronounced IHR decrease, resulting in a loss of 44 invasive hits from the

previous PCC, which was also followed by a greater suitable area (SCR) reduction than the last

event, approximately 22.3% from the previous PCC threshold (PCC 0.61; Fig 2). Thus, we also

chose the PCC 0.61 OPM to compose the final ensemble model. In the third case, we choose

the PCC 0.74 OPM, which is positioned in the evaluation range just before the beginning of

successive events of Invasive and Native Hit Rates (IHR and NHR) decreases, initiated at PCC

0.75 (Fig 2; Figs 4 and 5). For each respective selected threshold in Stage 3 (PCC 0.52, 0.61 and

0.74), the OPMs were composed by 127 models generated by 8 algorithms; 113 by 6 algorithms;

and 99 by 5 algorithms (Models per Algorithms in Fig 2 and Fig 3).

From the ten algorithms used in the modeling procedure, only four contributed at least 20

models (�80% of total models per algorithm) to all selected models (OPMs): GAM, GLM,

MAXENT and GBM (Fig 2). Considering also the algorithms that contributed more than 20

models for at least one selected OPM, we added MARS to this list, with 21 models only at PCC

0.52 (Fig 2 and Fig 3). Thus, we considered these five algorithms to be more reliable for

Fig 4. Shifts in the evaluation indices per model (IHR; NHR; SCR; minimum, mean andmaximum TSS) across stages. Each evaluation index was
recalculated at each step, but the TSS (minimum, maximum, mean) values were obtained at each step from the evaluation results of the Biomod2 output.

doi:10.1371/journal.pone.0148295.g004
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extrapolating habitat suitability predictions over more distant areas from the native distribu-

tion range of Bt, particularly the first four: GAM, GLM, MAXENT and GBM.

From OPMs to Global Susceptibility Map to Bombus terrestris Invasion
We used the three selected OPMs to ensemble our main model (D, E and F in Fig 6), which

was projected as a Global Susceptibility Map to Bombus terrestris Invasion (global view in Fig 7

and framed in the spatial range of native and invasive presences in Fig 8). The Agreement

Level Ensemble Models (ALMs), which were used to build the OPMs, were also projected (see

S4 Fig).

As each OPM contains the susceptible area predicted by the set of models of each subse-

quent OPM, the OPM from PCC 0.52 models predicted the largest susceptible area to Bt inva-

sion on a worldwide scale (Fig 6 D). This covered approximately 28 million km2 (cell size

estimated at the Equator; S2 Fig), and its susceptible area intersects 4,188 native (approximately

99.5%) and 520 invasive presence records (approximately 95%) of the initial total (Fig 2 and S2

Fig). However, the susceptible area identified exclusively by this OPM (class value = 1 after the

OPMs sum; green areas in Fig 7) is more spatially restricted and marginally distributed, cover-

ing approximately 9.9 million km2 and intersecting only 6 native (approximately 0.14%) and

47 invasive presence records (approximately 8.6%) of the initial total. We classified this area as

Susceptible for the Global Susceptibility Map to Bt Invasion (Fig 7).

The second largest susceptible area to Bt invasion was provided by the OPM PCC 0.62 (Fig

6 E), covering approximately 18 million km2 and intersecting 4,182 native (approximately

99.3%) and 473 invasive presence records (approximately 86.4%) of the initial total (Fig 2 and

Fig 5. Difference between the current value minus the preceding one (delta value) of each evaluation index across stages. This plot facilitated the
identification of three marked changes across the PCC range (PCC: 0.53, 0.62, 0.79) and the sequence of changes from PCC 0.75 to 0.79 used to select the
OPMs (PCC: 0.52; 0.61; 0.74) that built the final ensemble model.

doi:10.1371/journal.pone.0148295.g005
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S2 Fig). Additionally, in this case, the exclusive susceptible area identified by this OPM plus the

susceptible area from the previous one (class value = 2; blue areas in Fig 7) are even more spa-

tially restricted, covering approximately 4.4 million km2 and intersecting 4 native (approxi-

mately 0.09%) and 47 invasive presence records (approximately 8.6%) of the initial total. This

area was classified asHighly Susceptible (Fig 7).

The susceptible area shared by all OPMs together, represented by the OPM PCC 0.74 pre-

diction (class value = 3 after the OPMs sum; Fig 6 F; black areas in Fig 7), covers approximately

13.9 million km2 and contains the majority of the Bt presence records. This area exclusively

intersects 4,178 native (approximately 99.2%) and 426 invasive Bt records (approximately

77.9%) and was classified as Susceptible at Maximum (Fig 7).

The largest shared area among all selected OPMs, where all models agreed with no suitabil-

ity and consequently no or very low susceptibility to Bt invasion was classified as Very Low Sus-

ceptibility or Insusceptible to Bt invasion (white areas in Fig 7).

Discussion

Our methodological approach based in the three-stage selection criteria reduced the presence

of statistical artifacts and incoherent predictions, retaining models with high predictive accu-

racy and high extrapolative capacity, i.e., the best models for delineating the global map of

Fig 6. Overall Prediction Ensemble Models (OPMs) of Stages 0, 1, 2, and Stage 3 PCCs 0.52, 0.61, and 0.74. The OPM considers all suitability
predictions of every model from each selected set per Stage.

doi:10.1371/journal.pone.0148295.g006
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areas susceptible to Bt invasion. Moreover, it also showed that four algorithms (GAM, GLM,

MAXENT and GBM) provided the best results, yielding models with high predictive conver-

gence among them and high predictive and extrapolative capacity.

Overall performance of the methodological framework
The three-stage procedure resulted in an overall improvement of TSS values, with minor

decreases events in the maximum and mean TSS, as well some small losses in the native and

invasive hit rates. However, even the lowest hit rate exhibited by the most conservative level of

susceptibility can be considered a good score. In fact, the area classified as the maximum level

of susceptibility contains the largest number of invasive and native Bt presence records. More-

over, it can be considered the most reliable representation of global susceptibility to Bt inva-

sion, due to the highest prediction convergence among models and algorithms.

Stage 1 mainly excluded the models of lowest quality in terms of suitability prediction near

the native Bt distribution. However, TSS did not detect models that were unable to extrapolate

predictions to more distant areas nor did it detect some models with statistical artifacts and

incoherent predictions (see S1 Text). Thus, Stage 2 was able to detect and filter out the models

with low capacity to extrapolate suitability. However, we observed a small decrease in the Inva-

sive Hit Rate (IHR) when compared with the previous stage, this being an undesirable but

interesting result. This difference arises from the exclusion of some individual models in the

Stage 2 due to their below-average IHR that nonetheless correctly predicted some specific frag-

ments of suitable area covering invasive presence records. However, the selected models, i.e.,

those with scores greater than the total average IHR, were unable to predict suitability in those

same specific fragments. Despite predicting some specific suitable areas that others did not,

these models were correctly excluded at this stage due to their low overall capacity to extrapo-

late suitable areas. The main advantage of Stage 3 was the ability to detect and exclude models

with highly divergent predictions when considering the majority of model predictions. These

divergent predictions were mostly related to statistical artifacts and to under- and over-fitting.

Fig 7. Global Susceptibility Map to Bombus terrestris Invasion.

doi:10.1371/journal.pone.0148295.g007
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Fig 8. Frames extracted from the Global Susceptibility Map toBombus terrestris Invasion with both invasive and native presence records plotted.

doi:10.1371/journal.pone.0148295.g008
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Therefore, the progressive reduction in these undesired statistical effects was directly related to

the increase in the Pearson´s Correlation Coefficient (PCC) thresholds. However, a sequence

of decreasing accuracy (IHR and NHR) is initiated above PCC 0.75, related to the extreme suit-

able area contraction (SCR). This suggests that in our case, PCC 0.74 is the last acceptable

(accurate) threshold in the range.

Overall, our framework aggregated different mathematical logics (from ten algorithms) and

variable input data (PAs and Bt presence partitioning) that yielded convergent results in the

final sets of selected models. We consider the susceptibility levels of invasion obtained here to

be more robust and accurate than the categorization (into classes) of continuous probabilistic

approaches, even though we did not conduct a formal comparison. Additionally, we verify the

performance of each particular algorithm across the evaluation criteria; this information can be

consulted in S1 Text.

Global susceptibility to Bombus terrestris invasion
Areas susceptible to Bt invasion are almost entirely limited to the north and south temperate

climate zones, suggesting the possible restriction of Bt invasion to tropical environments. If we

consider exclusively the range of the native Bt zone, it is apparent that almost all suitable area is

restricted to the Europe continent and western Russia, and the Susceptible at Maximum level

covers almost exactly the entire native Bt distribution, emphasizing that Bt is predominantly a

temperate species.

Large suitable areas were predicted in the easternmost region of the area of native Bt records

used in the modeling, mainly from the northwest (Murmansk) to the southwest (Dagestan) of

the Russian Federation. There was also a big suitable area covering the region of Moscow city.

Nevertheless, we found no presence records there, despite the reporting of Russia as a native

environment for Bt [40].

In the southeastern region, suitable areas were predicted surrounding the continental seas

of Azov, Caspian and Marmara; the Black Sea; and areas in Georgia, Azerbaijan, Syria and Leb-

anon. We found no reports of native Bt presence in these countries. However, these areas are

close to Turkey, a country with many records and reports of native Bt presence [40, 96, 97].

In the southern area of native Bt records, specifically south of the Mediterranean Sea, most

of the relatively small suitable areas were identified in northern Algeria, northwest Morocco

and the Western Sahara, along with small areas in Tunisia, the Gaza Strip, Libya, Saudi Arabia,

Jordan and Egypt. Among these countries, Morocco, Tunisia, Saudi Arabia and Jordan are

reported as non-native areas for Bt, with evidence of Bt invasion [40]. Libya and Egypt have

been reported as countries without Bt [64].

Only a very low susceptibility was detected for Israel, a country that uses Bt colonies for

greenhouse pollination and where Bt is reported as invasive [40, 42, 49, 64, 98, 99]. Considering

that the reported invasion of Bt in Israel is in the north of the country, mainly in the region of

forest fires at Mt. Carmel [64], the resolution of variables may have been insufficient for detect-

ing the particular topoclimatical conditions of this upland zone.

Reported occurrences of invasive Bt in South America were predominantly distributed in

southern Chile and southwestern Argentina, but we detected large susceptible areas in eastern

and southern Argentina, in central and eastern Uruguay, and in southeastern Brazil. These sus-

ceptible areas are almost entirely connected to invaded regions. Additionally, a large coastal

corridor classified as Susceptible at Maximum connects the invaded regions to Uruguay and

Brazil.

The first report of invasive Bt presence in Argentina [62] suggested that this species reached

the zone of San Carlos of Bariloche (Argentina), crossing the Andean Mountains via low-
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altitude pathways from Chile, where Bt was first introduced in South America. Recently, it was

reported that Bt expanded rapidly (200 Km/year) and massively their range in the south of this

continent; remarkably, this species spread it invasion from the western–near the Pacific coast

of Chile—to the easternmost of the continent—reaching the Atlantic coast of Argentina [41].

This scenario demonstrates the well adaptation to the regional environment and the high dis-

persal capacity of Bt, which increases the probability of invasive expansion over these suscepti-

ble corridors detected. Furthermore, it is likely that colonies (or inseminated queens) could be

carried and released into these susceptible areas, accidentally or deliberately, by humans.

There is some evidence of the spontaneous spread of Bt in Uruguay after introduction [40];

however, we found no more information about sightings of Bt specimens or colonies in this

country. Recently (2013), a large survey conducted during the spring and bordering the frontier

between Brazil and Uruguay was made by the author (ALA) and collaborators, aiming to find

invasive Bt in the wild. We found a large number of native bee species (including other Bombus

spp.), but we did not find any Bt specimens. Until now, there is no strong evidence of Bt pres-

ence in either Uruguay or Brazil, but there is a strong possibility that Bt could use this suscepti-

ble pathway to reach both countries, increasing its invasive distribution from Chile and

Argentina.

Bt threat was also detected by our models in the temperate zone of southwestern Oceania;

notably, a large susceptible area was identified in Australia, where there is no reported invasion.

Although Bt invasion was reported in the islands of Tasmania (AUS), with approximately 200

km of oceanic barrier separating them from Australia, and Bt invasion reported in both main

islands of New Zealand, with approximately 1700 km of ocean between them and Australia,

the global model showed a large, connected susceptible area in Australia. Assuming trade and

transportation among these islands, the probability of Bt invasion into Australia could be con-

sidered high, as any inseminated queen hitchhiking via a commercial ship could start an inva-

sion in this country.

This possibility has been a concern for some time inside academic and governmental circles

[99–101]. This concern could be aggravated due to planned Bt importation by private agricul-

tural sectors for greenhouse pollination [40, 102] despite opposing initiatives (e.g., [42]).

Regardless of whether Bt has yet to occur in Australia (we found no scientific reports of such),

we strongly recommend monitoring and/or surveying in the susceptible area, particularly in

the area of Susceptible at Maximum Level.

The susceptible areas detected in New Zealand and Tasmania precisely covered all reported

invaded locations [13, 40, 42, 49, 51, 58, 99, 103, 104]. Recall that we did not include these inva-

sive presence records in the modeling procedure; thus, in both countries, the predictions of sus-

ceptible areas can be considered very accurate. The susceptible areas in these islands cover

almost all land except for the mountain ranges of highest altitude.

In Japan, the susceptible areas coincided with Bt invasions already reported on Hokkaido

Island [15, 105, 106], mainly in the north and northeast. However, the model failed to detect

the reported invasive presence on Honshu Island.

Companies that commercially produce Bt colonies for pollination in South Korea have been

reported [45, 49], and there is evidence of invasive spread [40]. However, the model detected

low susceptibility to Bt invasion in this area.

A large susceptible area without reports of invasive Bt presence was detected in eastern Can-

ada and the United States. This area has some environmental similarities with the native range

of Bt, but almost all of the susceptible area detected was through a single model (from ANN);

thus, we suggest that the classification for this area as suitable be considered with caution.

However, we cannot disregard this prediction because other models in the selected set also

identified some susceptible areas in these countries.
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A long strip of susceptibility in the southeast of China and a wide contour band of Suscepti-

ble at Maximum in South Africa were detected; both countries are reported as threatened by Bt

invasion [40, 42]. Bt has already been introduced into South Africa, but there is no evidence of

invasive spread [40]. Nevertheless, based on the model, spread is likely to occur, eventually

reaching southern Namibia. Companies developing industrial pollination have been reported

as commercializing Bt colonies in China [49] and according to our models, it is likely that inva-

sive Bt will spread through the susceptible area in the temperate zone, including Taiwan.

Many other susceptible areas were detected in countries and regions of temperate climate,

but we found no information on commercial Bt colonies or sightings of Bt individuals for these

areas. Examples include a narrow strip of high susceptibility in the west of the Himalaya Moun-

tain Range covered by the Kashmir Region in India and northeastern Pakistan; a large suscepti-

ble area covering Iceland, Greenland and Svalbard (Norway); small areas in Iran and in the

easternmost zone of Russia (Kamchatka Krai) and various small islands. In contrast, in tropical

zones, the potential for Bt invasion can be considered very low. However, we cannot discard

the possibility for some areas, especially if Bt colonies are introduced by humans. For example,

in the highlands region of Lake Eduard (Democratic Republic of Congo), where the tempera-

ture is mild and the precipitation is high, the models detected a maximum level of susceptibil-

ity. This also applies to South American areas and the tropical highlands of the Andes.

Conclusions

The framework developed here presents new insights into multi-modeling methodological

approaches of habitat suitability, mainly suggesting new criteria for pseudo-absences genera-

tion and model evaluation and selection to build a unique ensemble model with improved pre-

diction accuracy. This approach can be easily implemented in existing robust platforms of

Habitat Suitability Modeling.

The global map of susceptible areas can aid the design of more effective action plans for

monitoring Bt invasion. It is important to consider public campaigns involving local people,

which could contribute to a broader campaign for monitoring invasion over a large area. For

example, Australia, Brazil and Uruguay could use the map to develop monitoring and mitiga-

tion actions that prioritize the border regions of areas already invaded.

The modeling component of the framework is not limited to the use of topoclimaticvari-

ables; others bionomics factors can be added if necessary. However, the method is not fitted to

analyze rapid evolutionary process that species can potentially exhibit in the new invaded envi-

ronments, which can be relevant to estimate the invasive process at medium to long term.

Finally, the framework proposed here can readily be adapted to other invasive species for

predicting and monitoring spread. These actions could contribute to protect biodiversity and,

in the case of Bombus terrestris, helping to reduce and avoid further threats to native bees, safe-

guarding their indispensable services for ecosystems and human food security.
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