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WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for
genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its
beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now
represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for
around 20 nematodes. In this article, we focus on WormBase’s role of genome sequence annotation, describing how we
annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches
to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as
modENCODE.

Introduction

WormBase seeks to present an integrative view of nematode
biology by in-depth curation of the research on C. elegans and
other members of this animal family. To this end we integrate
genomic sequences and annotations with curated data from
genetic, developmental, physiological, behavioral and evolutionary
studies. We provide multiple streams of access to the data,
including the main website portal (www.wormbase.org), genome
browsers, sequence search services, and application pro-
gramming interfaces. WormBase aims to be the central repository
and portal for nematode genomic data.

The activities of the WormBase consortium can be broadly
classified into three groups: (1) curation of C. elegans literature
and associated research and development; (2) user interface
design, development and maintenance and (3) genome sequence
annotation, analysis and comparative genomics. The volume of
nematode data has exploded in recent years, and WormBase has
had to respond accordingly in all three of these areas.1,2 For
example, as the volume and variety of information has increased,
its presentation to the community in a clear and accessible way
requires new forms of display. We have responded to this
challenge by completely redesigning the WormBase web-interface
(Harris et al., manuscript in preparation). In this article, we focus

on our remit to provide integrated, coherent genome annotation for
a large (and growing) collection of nematode genome sequences and
strains. We also summarize our release production cycle and analysis
pipelines, and describe how they affect the timeline between data
submission and its subsequent public release.

Integrating and Annotating Multiple
Nematode Genomes

WormBase now hosts genomic data for nearly 20 nematodes
(see Table 1, and refs. 3–14), representing species of evolutionary,
biomedical and agricultural interest. Recent additions include
the parasitic nematodes Trichinella spiralis,3 Ascaris suum4 and
Bursaphelenchus xylophilus.5 The maturity of genome sequence
and annotation in WormBase varies widely between species. At
one end of the spectrum is the C. elegans genome, which was
completed over a number of years using traditional physical
mapping and clone-by-clone sequencing and finishing,6 and
which has highly curated annotation. More recently we have
seen a number of genome sequences generated by new high-
throughput low-cost technologies and many of these genomes
are inevitably fragmented and incomplete; additionally, there is
relatively little published functional information about many of
these species.
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WormBase undertakes different responsibilities for each of
these species, which can include (1) administration of the genome
sequence; (2) curation of gene models and other sequence
features; (3) curation of non-sequence-based data from the
literature and (4) tracking of identifiers forward through different
versions of the genome sequence and annotation. The specific way
in which we manage the data for a species depends (primarily)
on whether we curate gene models and other features for it. It is
therefore useful for the sake of discussion to classify the species
into two groups: core (WormBase curated gene models) and
non-core. As of release WS230, the core species are C. elegans,
C. briggsae, C. remanei, C.brenneri and C. japonica.

Analyzing and presenting data for an ever-increasing number
of nematode genomes requires methods that scale well. We deploy
a standard automatic analysis pipeline to annotate all the species
we house (core and non-core), including repeat prediction, cDNA
alignments, the determination of homology relationships, and
protein domain identification. If a genome sequence for a non-
core species is submitted without a gene-set, we also run an
in-house gene prediction pipeline that uses CEGMA26 to accurately
identify a small, universally conserved set of gene models. These
are then used to train parameters for AUGUSTUS,27 which we
then apply using protein homologies and any available RNASeq
and other transcript data as supporting evidence. In some cases,
these internally-produced gene predictions are later replaced by a
canonical set of models provided by the submitters.

Updating an existing species in WormBase with a new
assembly and/or gene-set presents additional challenges, because
users rely on stable identifiers to track their entities of interest,
which must be propagated forward to corresponding features
in subsequent releases. For core species, identifiers are actively
managed and tracked using our own curation software infrastruc-
ture. For non-core species, we use the Ensembl28 stable-identifier
mapping software for this task.

The principal way in which we draw information from multiple
species together is by connecting genes via orthology and paralogy
relationships to genes in other species (both nematode and other
model organisms such as human, mouse and fly). As of WS230,
we include relationships published by the following projects and
resources: InParanoid29 (version 7); TreeFam30 (version 7); the
Othologous Matrix Project31 (OMA, August 2009/08 version);
OrthoMCL;32 PantherDB33,34 (version 7); and Ensembl28,35

(version 65). In addition, we curate orthology calls from the
literature (e.g., Hillier et al., ref. 8) and direct submissions. We
also use data in eggNOG36 (version 3.0) to cluster genes into
functionally characterized homologous groups.

These resources are inevitably based on snapshots of the gene
models, taken at various times. For our core species however,
particularly C. elegans, the gene models are in a state of flux, being
revised and improved on the basis of the latest evidence. In order
to infer up-to-date nematode homology relationships for the
latest gene models, we run the Ensembl Compara GeneTree
pipeline35 as part of the preparation for every WormBase release.
The resulting gene trees are used to infer additional current
orthology relationships to those obtained by import from the
third-party resources and direct submission.

One way in which we use the orthology relationships internally
is to project WormBase-approved gene names37 onto orthologous
gene(s) of other nematode species. For this a conservative
approach is adopted: each proposed gene name is required to be
supported by an unambiguous one to one orthology connection
according to the majority of available source analyses.

We also use Ensembl Compara DNA pipeline38 to produce
whole-genome multiple alignments of all genomes in WormBase
and derived genome conservation tracks (using GERP39).
However, as the genetic diversity of the species collection in
WormBase continues to increase, a single multiple alignment for
all nematodes becomes less appropriate. We therefore propose
to replace it with a series of pairwise alignments, providing
multiple alignments only for selected subsets of species.

Sequence Curation

WormBase adopts an anomaly-driven approach to curation,
whereby discrepancies between current gene models and align-
ment data are identified and flagged as curation targets. We have
implemented a software application (CurationTool) that identi-
fies these discrepancies and scores them according to their degree
of discordance, presenting the results to the curator using a
graphical user interface. An in-depth discussion of CurationTool
and our anomaly-driven curation is presented elsewhere.40

For protein-coding genes, WormBase curates only the protein-
coding portion (CDS) of the full transcript. For our core species,
we use the high-confidence subset of cDNA alignments over-
laying the curated CDS models to infer a set of full-length
transcripts (including 5' and 3' untranslated regions), using a
custom algorithm (unpublished). In the past, the accuracy of this
process has been sensitive to artifacts such as alignment errors or
chimeric cDNAs, but we have recently improved the algorithm to
take these factors into account.

The primary line of evidence for gene model curation is
transcript data. In addition to cDNAs deposited in the nucleotide
archives, we draw data from numerous resources, publications
and direct submissions. We also align all RNASeq data deposited
in the Short Read Archive (SRA) to our core species using
TopHat,41 and infer gene expression estimates for a variety of life
stages and environmental conditions using Cufflinks.42

WormBase is committed to act as the ultimate repository for
data coming from the nematode half of the modENCODE43,44

project. Most data sets have been accessible via the genome
browser since the summer of 2010. To extract the maximum
utility from the data, it is integrated fully into our database, by
extending the data models where necessary and adding full cross-
referencing and connectivity with existing WormBase objects.
To date, the focus for full integration has been on data sets with
high impact on gene model and other sequence feature curation,
namely: trans-splice sites;45 poly-A cleavage sites and untranslated
regions;44,46 large-scale EST sets (P. Green; data retrieved from
nucleotide archives); mass-spectrometry peptide sequences;44 and
RNASeq transcripts, and derived gene-predictions.44

The data of highest impact for curation has been the RNASeq
transcriptome, and this has been used in a number of different

www.landesbioscience.com Worm 17



© 2012 Landes Bioscience.

Do not distribute.

ways. First, the modENCODE “genelets” (fragmentary gene
models constructed using RNASeq data from 14 life stages) have
been used to produce a new anomaly type for CurationTool that
highlights potential cases where adjacent genes could be merged.
To date, over three hundred cases displaying this anomaly have
been scrutinized, of which approximately 35% resulted in a
merge, and a further 10% some other change (for example the
movement of an exon from one gene to another). Second, we
have re-visited the source RNASeq data and analyzed it using
the Tophat/Cufflnks pipeline41,42 to identify candidate “RNASeq-
splice” features. These can be used both to confirm introns
already part of curated gene models, and also to suggest changes
to existing gene models or new isoforms. Third, the strand bias
characteristic of the modENCODE RNASeq alignments47 has
been extremely useful for curators to resolve ambiguities in
the definition of the 5' and 3' ends of genes. Finally, the
modENCODE RNASeq data has allowed us to make corrections
to the C. elegans reference genome itself. By taking proposed
errors and verifying them using data from a private submission
of high-throughput-sequencing (J. Ahringer and M. Berriman,
pers. comm.), we have been able to make 156 genome sequence
corrections (110 insertions, 44 deletions and 2 substitutions),
resulting in the correction of 100 gene models.

Additionally, since the data from modENCODE began to
become available from the project Data Co-ordination Centre,
the following data sets have been subjected to rigorous internal
quality control and fully integrated into the database: ~300
Highly Occupied Target (HOT) regions;44 ~7,000 non-coding
RNA genes;44 the probable parent for ~1,000 pseudogenes;44 and
~21,000 three-prime UTRs from the UTRome project.46 We will
prioritise the incorporation of the transcription-factor binding
site and chromatin accessibility data as soon as the final versions
of these data sets are made available.

We have also worked with groups performing their own
analysis of the modENCODE data. For example, a study of the
modENCODE RNASeq reads (T. Blumenthal, pers. comm.) has
resulted in significant improvements to the operon data set. This
has involved identifying cases where fewer than 5% of the trans-
splice leader reads for “internal” genes (i.e., genes other than the
first) were SL2 type, and modifying the gene content of the
operons accordingly.

In addition to modENCODE, we continue to draw in data
from the scientific literature and direct submissions, often com-
bining different data sources to assist in making correct
predictions. The modENCODE poly-A site data has been
supplemented with a corresponding data set from an independent
study.48 These two data sets have only 25% redundancy, and over
80% of coding genes now have an annotated polyA site in
WormBase. Gene predictions by genBlastG49 based on BLAST
homologies to C. elegans proteins have also proved valuable for
the curation of C. briggsae, C. brenneri, and C. remenei.

We can assess gene-model accuracy in the presence of
fragmentary transcript evidence by measuring the proportion of
curated introns that are confirmed by spliced cDNA evidence.
For WS230, the proportion of C. elegans curated CDS introns
confirmed by traditional cDNA, modENCODE RNASeq and

mass-spectrometry evidences is 83%, 88% and 14% respectively.
Overall, 93% of curated introns are confirmed and 82% of
CDS models have all of their introns confirmed by at least one
of these three lines of evidence; the corresponding measurements
for the final release prior to modENCODE (WS200, February
2009) were 74% and 56%, demonstrating the value of the pro-
ject in increasing the accuracy and confidence of C. elegans gene
models.

Intraspecies Variation

Similar to many other resources, WormBase captures within-
species variation as differences (insertions, deletions and substitu-
tions) with respect to the genome sequence of the reference
strain. We expect variation data for many nematode species in
the future, but at present almost all the data we house is for
C. elegans.

Historically, the majority of variation data we have processed
has been from laboratory-manipulated strains. We maintain close
working relationships and established data exchange protocols
with the Caenorhabditis Genetics Center (CGC; www.cbs.umn.
edu/CGC), the C. elegans Gene Knockout Consortium
(GKC; www.celeganskoconsortium.omrf.org), and the National
BioResource Project of Japan (NBRP; www.shigen.nig.ac.jp/c.
elegans/index.jsp). We also curate variation data from individual
user submissions; which although time-consuming, are often
biologically important.

There has recently been a rapid growth of C. elegans variation
data generated by whole genome sequencing projects (refs. 50–
54; Andersen et al., manuscript in preparation; Moerman and
Waterston, manuscript in preparation). These data sets include
an increasing number of variations from naturally-occurring
wild-isolate strains. Motivated by community feedback, we have
increased the clarity of our representation and display of this
information. Every variation object processed by WormBase is
assigned a unique, stable identifier with prefix “WBVar.” For
laboratory-induced variations, we also assign a more directly
informative public name comprised of a project/laboratory prefix
(supplied by J. Hodgkin, pers. comm.) and a numerical suffix.
For naturally occurring variations, the public name defaults to
the WBVar identifier, making the distinction between these
objects and the laboratory induced variations obvious and
immediate.

We now also collect non-sequence-based information for wild
isolate strains (http://tazendra.caltech.edu/~azurebrd/cgi-bin/
forms/wild_isolate.cgi). Compared with laboratory-manipulated
strains, there is additional information to capture about the wild
isolates, such as isolation location, the condition in which it was
found, and details of how it was isolated. Many wild isolates are
not stocked at the CGC, and WormBase acts as the central data
repository for these strains.

WormBase does not have a mandate to act as a permanent
repository for variation data, and as the volume of these data sets
continues to rapidly increase, we become less adequately resourced
to perform this function. Projects are therefore encouraged to
submit their data to the NCBI’s Database of Short Genetic
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Variations (dbSNP),55 an established archive for variation data.
We act as a submission broker in cases where a laboratory lacks
the technical resources to conform to the dbSNP submission
protocols. To date, data from six projects have been integrated
into WormBase and submitted to dbSNP. WormBase adds value
to these data sets by performing additional analysis and placing
them into context with other data types (e.g., Gene).

Variations are most often submitted to WormBase as a
molecular change at given location in a specific version of the
reference genome sequence. As part of the curation, we capture
and record a short flanking sequence either side of the variation
feature, disassociating it from a specific version of the reference
genome. Each release, we re-map all variations and re-calculate
potential consequences of the molecular changes (e.g., non-sense,
mis-sense or silent protein-coding mutation) on the latest gene
models.

Release Cycle and Database Build

WormBase is released every two months, with the preparation
for a release beginning three months in advance. This release
cycle can give rise to variability in the time between a curator
transaction (e.g., the update of a gene name, correction of an
error, or the import of a new data set) and its availability on the
WormBase website. The delay can be as short as three months
(if the change is made immediately before we start building the
release) and as long as five months (if made immediately after, in
which case it will not be public until the following release).

Building a WormBase database release is a complicated process,
the broad stages of which can be described as: (1) data freeze,
where each contributing consortium partner takes a snap-shot
of the database(s) in which their curation data are stored; (2)
data collation, where the curation database snap-shots are
brought together into a single database; (3) submission of
updated annotation on core species to the International Nucleo-
tide Sequence Database Collaboration,56 to ensure that the
representation of core nematode data in the nucleotide and
protein archives is up-to-date; (4) mapping of sequence data (e.g.,
cDNAs, microarray probes, sequence features, variations) to the
genome; (5) establishing connections between objects of different
types (e.g., RNAi to Gene), usually via genomic location; (6) the
large-scale computational analyses discussed earlier, such as

homology detection and whole-genome alignment; and (7)
quality control and assurance.

For the more complicated parts of the build process, we deploy
two components of the Ensembl system for the management and
tracking of computational pipelines: ensembl-pipeline57 for
homology analysis and eHive58 for comparative analysis. The
key features of these systems are (1) automatic re-run of tasks that
have failed; and (2) user-definition of a sub-task dependency
graph for a process, allowing complex pipelines to be run with
minimal user intervention. These systems are critical in enabling
us to produce the database in a regular and timely manner.

Each stage of the database production is subject to a suite of
integrity checks to ensure that it has completed cleanly and
without error. For example, we compare the number of objects in
each data class with the count at the corresponding stage in the
previous release. Major discrepancies are flagged for investigation.
This mechanism has proved to be extremely effective in catching
errors and process failures as soon as they occur.

Summary

WormBase is facing a deluge of data from many nematode
genome sequencing projects, and we have prepared for this by
putting into place annotation and integration pipelines and
workflows that will allow the data to be analyzed and presented in
a timely and consistent manner. As ever, we welcome feedback
and ideas from our user-base as part of the continued develop-
ment of the resource. We are currently particularly interested in
suggestions on how we can maximise the utility of housing a
broad representation of the nematode phylum, and what
comparative genomics services and views users would find most
useful. Users can contact the developers at help@wormbase.org
with their suggestions.
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