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In this work, we intend to explore wormhole geometries in the framework of f (R, Lm) gravity.
We derive the field equations for the generic f (R, Lm) function by assuming the static and spheri-
cally symmetric Morris-Thorne wormhole metric. Then we consider two non-linear f (R, Lm) model,
specifically, f (R, Lm) = R

2 + Lα
m and f (R, Lm) = R

2 + (1 + λR)Lm, where α and λ are free model
parameters. We obtain the wormhole solutions by assuming three cases, namely, a linear barotropic
EoS, anisotropic EoS, and isotropic EoS corresponding to model I. We observe that for both barotropic
and anisotropic cases, the corresponding wormhole solutions obey the flaring-out condition under
asymptotic background, while for the isotropic case, the shape function does not follow the flatness
condition. Also, we find that the null energy condition exhibits negative behavior in the vicinity of
the throat. Further, we consider two different shape functions to investigate the behavior of model II.
We find some constraints on the model parameter for which the violation of the null energy condition
exhibits. Finally, we employ the volume integral quantifier to calculate the amount of exotic matter
required near the wormhole throat for both models. We conclude that the modification of standard
GR can efficiently minimize the use of exotic matter and provide stable traversable wormhole solu-
tions.
Keywords: Wormholes, f (R, Lm) gravity, barotropic EoS, anisotropic EoS, VIQ.

I. INTRODUCTION

In 1916, the idea of a wormhole was first suggested
by L. Flamm [1]. Later on, Einstein and Rosen inves-
tigated the precise nature of a wormhole and made a
hypothetical bridge by taking into account the idea of
Flamm, known as the Einstein-Rosen bridge [2]. Worm-
holes are topologically framed hypothetical structures
that supply a subway for distinct space-times apart from
each other. A wormhole is supposed to be a tube-like
structure that is asymptotically flat on both ends and
connected by a throat. Wormholes are classified into
two categories depending on the nature of the throat,
namely static and non-static wormholes. A wormhole
with a constant radius of the throat is referred to as a
static wormhole, whereas a non-static wormhole rep-
resents a variable radius. Fuller and Wheeler demon-
strated that one could not traverse through the Einstein-
Rosen bridge, even a photon, since it would collapse in-
stantly upon formation [3]. Further, Morris et al. [4]
proposed that exotic forms of matter threaded through
a wormhole might hold it open; nevertheless, it remains
to be seen whether such requirements are physically
viable. Finally, in [5], Morris and Thorne presented
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the static traversable wormholes that define interstel-
lar travel and exact solutions of general relativity (GR).
The authors show that a wormhole could be traversable
if it exhibits exotic matter with a minimal surface area
satisfying the flare-out condition. The matter content
that violates null energy conditions (NEC) and defined
by Tµνkµkν ≥ 0 for any null vector kµ (where Tµν is
the stress-energy tensor) is called the exotic matter, and
hence it is an essential ingredient to construct a worm-
hole in GR; Indeed, in classical GR, wormhole solu-
tions violate all energy conditions [6]. Regardless, this
type of hypothetical matter expresses unusuality in GR,
whereas from the perspective of quantum gravity, it can
be found as a natural consequence of fluctuations in the
space-time topology [7]. Thus, minimizing the violation
of the energy conditions or reducing the quantity of ex-
otic matter at the throat is essential. In scalar-tensor the-
ories, wormhole solutions can be found for the scalar
fields representing the function of phantom fluid [8–10].
To bypass the undetected exotic matter, several mod-
ified gravity theories have appeared in the literature,
such as f (R) gravity [11–13], brane-world [14–16], and
curvature matter coupling [17, 18]. The effective stress-
energy tensor involving the components of the geome-
try of space-time is now responsible for the violation of
energy conditions.
An extension of the f (R) modified gravity that incor-
porates an explicit coupling of the arbitrary function
of the Ricci curvature R with the matter Lagrangian
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term Lm proposed in [19]. Harko and Lobo further
generalized this case to arbitrary matter-geometry cou-
plings [20]. The cosmological models with non-minimal
curvature-matter couplings have significant astrophys-
ical and cosmological applications [21–25]. Recently,
Harko and Lobo proposed [26] f (R, Lm) modified grav-
ity that incorporates all curvature-matter coupling the-
ories, where f (R, Lm) is a generic function of the Ricci
curvature R and the Lagrangian term Lm. In the
f (R, Lm) modified gravity, the covariant divergence of
the energy-momentum tensor does not vanishes, an ex-
tra force orthogonal to four velocities arises, and the mo-
tion of the test particle is non-geodesic. Further, the cos-
mological models with f (R, Lm) gravity do not obey the
equivalence principle, and that is constrained by the so-
lar system experimental tests [27, 28]. Recently, several
interesting cosmological and astrophysical works have
been done in f (R, Lm) gravity theory; for instance, one
can check references [29–33].
The equation of state (EoS) parameter plays a vital role
in cosmology and astrophysics to describe the nature of
the cosmic fluid. The fluid characterized by the linear
barotropic EoS (p = ωρ) with positive energy density is
found to be a viable candidate to describe cosmic evo-
lution. In the context of GR, wormhole geometry with
phantom energy background has been widely discussed
[16, 34, 35]. Further, in the context of modified grav-
ity, such as f (R), f (R, T), and f (Q) gravity, finding the
exact solutions of the corresponding field equations is
quite tricky compared to GR.
This paper studies wormhole geometry in the context of
f (R, Lm) gravity. We developed the corresponding field
equations for the presence of the redshift function under
the generic form of f (R, Lm) gravity. Then we assumed
two different f (R, Lm) models and investigated worm-
hole solutions with various EoS relations and shape
functions. This work is organized as follows: In sec
II, we present the fundamental formulations of f (R, Lm)
gravity theory. In sec III, we derive the field equations
for the generic f (R, Lm) function corresponding to the
static and spherically symmetric Morris-Thorne worm-
hole metric. Further in sec IV, we consider a specific
f (R, Lm) model, namely, f (R, Lm) =

R
2 + Lα

m, where α is
a free model parameter. Then, we study wormhole so-
lutions for a linear barotropic EoS, an anisotropic EoS,
and isotropic relation. In addition, we consider another
non-linear f (R, Lm) model, specifically, f (R, Lm) =

R
2 +

(1 + λR)Lm with two different shape functions b(r) =

r0 + γ2r0

(
1 − r0

r

)
and b(r) = r er0−r, and then we an-

alyzed energy conditions. Further, in sec V, we have
discussed VIQ to check the amount of exotic matter re-
quired for a traversable wormhole. Finally, in the last

section, we discuss our findings.

II. f (R, Lm) GRAVITY THEORY

The generic action governing the dynamics of the uni-
verse in f (R, Lm) gravity read as

S =
∫

f (R, Lm)
√
−gd4x, (1)

where R is the Ricci scalar corresponding to the metric
gµν with determinant g and Lm represents the matter La-
grangian.
The Ricci scalar curvature term R can be obtained by the
contraction of the Ricci tensor Rµν as

R = gµνRµν, (2)

where,

Rµν = ∂λΓλ
µν − ∂νΓλ

λµ + Γσ
µνΓλ

σλ − Γλ
νσΓσ

µλ, (3)

with Γα
βγ denoting the components of the Levi-Civita

connection and can be calculated as

Γα
βγ =

1
2

gαλ

(
∂gγλ

∂xβ
+

∂gλβ

∂xγ
− ∂gβγ

∂xλ

)
. (4)

The following field equation acquired by varying the
generic action (1) corresponding to the metric tensor gµν,

fRRµν + (gµν□−∇µ∇ν) fR − 1
2
( f − fLm Lm)gµν

=
1
2

fLm Tµν. (5)

Here fR ≡ ∂ f
∂R , fLm ≡ ∂ f

∂Lm
, and Tµν is the energy-

momentum tensor for the cosmic fluid, given by

Tµν =
−2√−g

δ(
√−gLm)

δgµν . (6)

Further, contraction of the field equation (4) gives fol-
lowing relation between the energy-momentum scalar
T, the Lagrangian term Lm, and the Ricci scalar R as

R fR + 3□ fR − 2( f − fLm Lm) =
1
2

fLm T, (7)

where □F = 1√−g ∂α(
√−ggαβ∂βF) for any scalar func-

tion F .
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III. WORMHOLE GEOMETRIES IN f (R, Lm) GRAVITY

We consider the static and spherically symmetric
Morris-Thorne wormhole metric [5, 6], given by

ds2 = −U(r)dt2 + V(r)dr2 + r2dΩ2, (8)

Here, dΩ2 = dθ2 + sin2θdϕ2, U(r) = e2Φ(r) and V(r) =(
1 − b(r)

r

)−1
. The functions b(r) and Φ(r) of the radial

coordinate encode the information about the shape of
the wormhole and the gravitational redshift, and hence
it is known as the shape function and the redshift func-
tion, respectively. To avoid the event horizon, Φ(r) must
be finite everywhere. Moreover, to have traversable
wormhole geometry, the shape function b(r) should
obey the following well-known constraints; specifically,
the flaring-out condition given by (b − b′r)/b2 > 0 [5],
throat condition given by b(r0) = r0 (r0 is the throat ra-
dius) with b ′(r0) < 1, and the asymptotic flatness con-
dition, that is given by b(r)

r → 0 as r → ∞. Also, an-
other significant criterion is the proper radial distance
l(r), represented as

l(r) = ±
∫ r

r0

dr√
1 − b(r)

r

, (9)

is needed to be finite everywhere. Here, the ± symbols
indicate the upper and lower portions of the wormhole,
which are linked by the throat. Also, the proper distance
decreases from the upper universe l = +∞ to the throat
and then from l = 0 to −∞ in the lower universe. More-
over, l should be greater than or equal to the coordinate
distance | l(r) |≥ r − r0. The embedding surface of
the wormhole can be obeyed by defining the embedding
surface z(r) at a fixed θ = π/2 and time t = constant.
Hence, equation (8) reduces to

ds2 =

(
1 − b(r)

r

)−1

dr2 + r2dϕ2. (10)

The above metric can be embedded into three-
dimensional Euclidean space with cylindrical coordi-
nates r, ϕ and z as

ds2 = dz2 + dr2 + r2dϕ2. (11)

Now, on comparing equations (10) and (11), we ob-
tained the following slope equation so that by integrat-
ing it, one can find the embedding surface z(r),

dz
dr

= ±
√

r
r − b(r)

− 1. (12)

Now corresponding to the metric (8), we obtained the
non-vanishing components of the Ricci tensor as

R00 = e2Φ



(

1 − b
r

){
Φ′′ + Φ′2 +

2Φ′

r

}

− (rb′ − b)
2r2 Φ′

]
, (13)

R11 = −Φ′′ − Φ′2 +
(rb′ − b)
2r(r − b)

(
Φ′ +

2
r

)
, (14)

R22 = (b − r)Φ′ +
b′

2
+

b
2r

, (15)

R33 = sin2 θ

{
(b − r)Φ′ +

b′

2
+

b
2r

}
, (16)

Then by using equation (2), we obtained the Ricci curva-
ture scalar R for the spherically symmetric configuration
(8) as

R =
2b′

r2 − 2
(

1 − b
r

){
Φ′′ + Φ′2 +

Φ′

r

}

+
Φ′

r2

(
rb′ + b − 2r

)
. (17)

The stress-energy tensor corresponding to anisotropic
fluid is defined by

Tµ ν =
(
ρ + Pt

)
uµ uν + Pt δµ ν + (Pr − Pt) vµ vν, (18)

where, uµ and vµ represent the four-velocity vector and
the unitary space-like vector, respectively and they sat-
isfy the conditions uµuν = −vµvν = −1. Here, ρ is the
energy density, Pr, and Pt are the radial and tangential
pressure, depending on the radial coordinate r only. In
the case of a stress-energy tensor of the form (18), the
NEC can be defined as ρ + pi ≥ 0 (where i is either r or
t).
Now, inserting the metric (8) and the anisotropic fluid
(18), into the equations of motion (5), we obtained the
following field equations, which read as

(
1 − b

r

)

{

Φ′′ + Φ′2 +
2Φ′

r
− (rb′ − b)

2r(r − b)
Φ′
}

F −
{

Φ′

+
2
r
− (rb′ − b)

2r(r − b)

}
F′ − F′′


+ 1

2
(

f − Lm fLm

)
=

1
2

fLm ρ,

(19)
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(
1 − b

r

)

{
−Φ′′ − Φ′2 +

(rb′ − b)
2r(r − b)

(
Φ′ +

2
r

)}
F

+

{
Φ′ +

2
r
− (rb′ − b)

2r(r − b)

}
F′


− 1

2
(

f − Lm fLm

)
=

1
2

fLm pr,

(20)

(
1 − b

r

)

{
−Φ′

r
+

(rb′ + b)
2r2(r − b)

}
F +

{
Φ′ +

2
r

− (rb′ − b)
2r(r − b)

}
F′ + F′′


− 1

2
(

f − Lm fLm

)
=

1
2

fLm pt.

(21)

where F = ∂ f
∂R . Finally, we end up with a set of

three equations (19-21) involving six unknown quan-
tities. Thus the above system of equations is under-
determined, and we need some extra constraints to con-
struct the wormhole solutions.

IV. WORMHOLE SOLUTIONS FOR SOME SPECIFIC
NON-LINEAR f (R, Lm) MODELS

The f (R, Lm) function that we have considered in our
study is motivated by the generic f (R, Lm) function;
specifically, f (R, Lm) = f1(R) + f2(R)G(Lm) that rep-
resents arbitrary curvature-matter coupling [36]. The
models with minimal and non-minimal couplings have
received great attention from cosmologists in the recent
past in the context of different modified gravities such
as f (R, T ), f (T, T ), and f (Q, T ) gravity. The above
generic f (R, Lm) functions are attractive since they con-
sist of minimal and non-minimal coupling cases. We
will explore wormhole geometry by incorporating both
minimal and non-minimal coupling cases.

A. Model I

We presume the following minimal f (R, Lm) function
to obtain the wormhole solutions[36, 37]. The type of
minimal coupling case we considered here is motivated
by an interesting work of Bose et al. [38] in the context
of f (R, T ) gravity.

f (R, Lm) =
R
2
+ Lα

m. (22)

where α is a free model parameter. In particular, for the
case α = 1, we retrieve the usual wormhole geometry of

GR.
Therefore, we obtain the following field equations cor-
responding to this specific f (R, Lm) function,

b′

r2 = (2α − 1)ρα, (23)

− b
r3 + 2

(
1 − b

r

)
Φ′

r
= ρα−1 {(1 − α)ρ + αpr

}
, (24)

(
1 − b

r

)
Φ′′ + Φ′2 +

{
1
r
− (rb′ − b)

2r(r − b)

}
Φ′

− (rb′ − b)
2r2(r − b)

]
= ρα−1 {(1 − α)ρ + αpt

}
. (25)

In this work, we incorporate the constant redshift func-
tion Φ(r) = constant to obtain the wormhole solution.
Now in order to find the analytic solutions of the ob-
tained field equations, we need only one extra ansatz.
Therefore, we consider the following cases:

1. Linear barotropic EoS

In this particular section, we are going to construct
wormhole solutions by considering the following linear
barotropic EoS [39].

pr = ωρ (26)

where ω is the EoS parameter. In the context of late-
time cosmic acceleration, the ΛCDM description of the
dark energy is characterized by the EoS parameter ω =
−1 and is the most successful theory so far. Another
widely discussed time-dependent dark energy model
is the quintessence model characterized by the EoS pa-
rameter ω > −1, whereas the least theoretically under-
stood dark energy is the phantom energy characterized
by ω < −1. In Ref. [40], the authors investigated the
asymptotically flat phantom wormhole solutions. Also,
it is mentioned in [41, 42] that finding wormhole solu-
tions with linear barotropic EoS in the framework of a
non-linear model is quite difficult in both teleparallel
and symmetric teleparallel gravity. However, we obtain
the exact wormhole solution in the framework of our
non-linear f (R, Lm) model with linear barotropic EoS.
On solving the equations (23) and (24) by incorporating
the relation (26), we obtained the following first order
differential equation

b′ +
(2α − 1)

(1 − α + αω)

b
r
= 0. (27)
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Now on integrating the above equation by using the
throat condition b(r0) = r0, we obtained the following
expression for the shape function b(r) in terms of radial
coordinate r

b(r) = r0

(
r0

r

) (2α−1)
(1−α+αω)

. (28)

The behavior of the shape function given in equation
(28) and the flaring-out condition are presented in Figs.
1 and 2.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

r

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

b(
r)

Shape function for different values of α

α = 0.75

α = 1

α = 2

α = 3

FIG. 1. Shape function with ω = −2 and r0 = 1 (pr = ωρ).

1 2 3 4 5 6 7

r

1.5

2.0

2.5

3.0

3.5

4.0

4.5

α

Flare-out condition

0.176

0.244

0.312

0.380

0.448

0.516

0.584

0.652

0.720

0.788

b′
(r

)

FIG. 2. Flare-out condition with ω = −2 and r0 = 1 (pr = ωρ).

From our investigation, we found that b(r)
r → 0 as

r → ∞ will satisfy only if (i) ω < −1 with α > − 1
ω−1 ,

and (ii) −1 < ω < 1 with 0 < α < − 1
ω−1 . As we are

interested in exploring wormhole geometry under the
phantom scenario, we consider the range ω < −1 with
α > − 1

ω−1 in this analysis. By setting the appropriate
values from the above region, we have plotted the shape
functions in Figs. 1 and 2. We found that the flaring-out
condition is satisfied with asymptotic flatness.
Now, by using the equation (28) in equations (23)-(25),
one can acquire the expressions for the energy density,

radial pressure, and the tangential pressure as

ρ(r) =


−

r0

(
r0
r

) 2α−1
α(ω−1)+1

r3(α(ω − 1) + 1)




1/α

, (29)

pr(r) = ω


−

r0

(
r0
r

) 2α−1
α(ω−1)+1

r3(α(ω − 1) + 1)




1/α

, (30)

pt(r) = −

(α(ω − 1) + 2)


− r0

(
r0
r

) 2α−1
α(ω−1)+1

r3(α(ω−1)+1)




1/α

2α
. (31)

Now we analyze the behavior of Null energy condition
(NEC) in the vicinity of the throat. The NEC correspond-
ing to our linear barotropic EoS model read as

ρ + pr = (ω + 1)


−

r0

(
r0
r

) 2α−1
α(ω−1)+1

r3(α(ω − 1) + 1)




1/α

, (32)

ρ + pt = −

(α(ω − 3) + 2)


− r0

(
r0
r

) 2α−1
α(ω−1)+1

r3(α(ω−1)+1)




1/α

2α
. (33)

At the throat, the above expressions reduce to the fol-
lowing,

ρ + pr |r=r0= (ω + 1)

(
− 1

r2
0(α(ω − 1) + 1)

)1/α

, (34)

ρ + pt |r=r0= −
(α(ω − 3) + 2)

(
− 1

r2
0(α(ω−1)+1)

)1/α

2α
.

(35)
We have presented the behavior of the energy den-

sity and radial NEC in Fig. 3 and 4, respectively. We
found that the energy density shows positive behav-
ior, whereas the radial NEC exhibits negative behavior.
Also, one can observe that the right-hand side of the (34)
is a negative quantity corresponding to positive values
of α with ω < −1, which confirms the violation of NEC
at the wormhole throat. Moreover, we have obtained the
embedding surface for this case by using the Eq. (12),
which is shown in Fig.5.
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1 2 3 4 5

r

0

2

4

6

8
ρ

Energy density for different values of α

α = 0.75

α = 1

α = 2

α = 3

FIG. 3. Energy density with ω = −2 and r0 = 1 (pr = ωρ).

1 2 3 4 5

r

−8

−6

−4

−2

0

ρ
+
P
r

Radial NEC for different values of α

α = 0.75

α = 1

α = 2

α = 3

FIG. 4. Radial NEC with ω = −2 and r0 = 1 (pr = ωρ).

2. Anisotropic EoS

In this subsection, we consider the following anisotropic
EoS to construct wormhole solutions [43].

pt = npr, (36)

where n ̸= 1. On solving the equations (23)-(25) by in-
corporating the relation (36), we obtained the following
first-order differential equation

b′ − (2n + 1)(2α − 1){
2n(α − 1) + 1

} b
r
= 0. (37)

Now on integrating the above equation by using the
throat condition b(r0) = r0, we obtained the following
expression for the shape function b(r)

b(r) = r0

(
r
r0

) (2α−1)(2n+1)
[2n(α−1)+1]

. (38)

From our investigation, we found some constraints on
parameters α and n to satisfy the asymptotic flatness
condition corresponding to the shape function obtained
in the equation (38). We listed out the specific con-
straints in Table I.

n n < −1 n = −1 −1 < n ≤ − 1
2 − 1

2 < n < 0 0 < n < 1 n > 1

α α ∈
(

1
n+1 , 2n−1

2n

)
α < 3

2 α < 2n−1
2n or α > 1

n+1 α > 2n−1
2n or α < 1

n+1 α ∈
(

2n−1
2n , 1

n+1

)
α ∈

(
1

n+1 , 2n−1
2n

)

TABLE I. Table shows the acceptable ranges to satisfy the
asymptotic flatness condition.

Now we study the flaring-out condition for the shape
function (38). By choosing some appropriate values
from Table I, we have shown the behavior of the flaring-
out condition in Fig. 6. One can notice that the flaring-
out condition is satisfied at the wormhole throat.

2 4 6 8 10

r

−6

−5

−4

−3

−2

−1

0

1

b′
(r

)

Flare-out conditions for different values of α

α = 1

α = −1.4

α = 4

α = 0.25

α = 0.3

α = 0.54

FIG. 6. Flare-out condition with r0 = 1 (pt = npr). Here, we
plotted for the parameter values (α, n): (1,−1.5), (−1.4,−1),
(4,−0.7), (0.25,−0.1), (0.3, 0.5), (0.54, 2).
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FIG. 5. Embedding diagram for the linear barotropic EoS
model corresponding to parameter values ω = −2 and α =

0.4.

Now, by using the equation (38) in equations (23)-(25),
one can acquire the expressions for the energy density,
radial pressure, and the tangential pressure as

ρ(r) =



(2n + 1)r0

(
r
r0

) (2α−1)(2n+1)
2(α−1)n+1

r3(2(α − 1)n + 1)




1/α

, (39)

pr(r) =

(α − 2)




(2n+1)r0

(
r

r0

) (2α−1)(2n+1)
2(α−1)n+1

r3(2(α−1)n+1)




1/α

α + 2αn
, (40)

pt(r) =

(α − 2)n




(2n+1)r0

(
r

r0

) (2α−1)(2n+1)
2(α−1)n+1

r3(2(α−1)n+1)




1/α

α + 2αn
. (41)

The NEC corresponding to our anisotropic EoS model
read as

ρ + pr =

2(α + αn − 1)




(2n+1)r0

(
r

r0

) (2α−1)(2n+1)
2(α−1)n+1

r3(2(α−1)n+1)




1/α

α + 2αn
,

(42)

ρ + pt =

(α + (3α − 2)n)




(2n+1)r0

(
r

r0

) (2α−1)(2n+1)
2(α−1)n+1

r3(2(α−1)n+1)




1/α

α + 2αn
.

(43)

At the throat, the above expressions reduce to the fol-
lowing,

ρ + pr |r=r0=

2(α + αn − 1)
(

2n+1
r2

0(2(α−1)n+1)

)1/α

α + 2αn
, (44)

ρ + pt |r=r0=

(α + (3α − 2)n)
(

2n+1
r2

0(2(α−1)n+1)

)1/α

α + 2αn
. (45)

We have presented the behavior of the energy density
and radial NEC in Fig. 7 and 8, respectively. We found
that the energy density exhibits negative behavior corre-
sponding to the GR case i.e. α = 1, whereas it is positive
for other values of α. Further, we found that NEC is vi-
olated in the neighborhood of the throat corresponding
to every chosen value of α satisfying the constraints ob-
tained in Table I.

2 4 6 8 10

r

−2.0

−1.5

−1.0

−0.5

0.0
ρ

α = 1

2 4 6 8 10

r

0.2

0.3

0.4

0.5

0.6

ρ

α = 4

1 2 3 4

r

0.00

0.05

0.10

0.15

0.20

ρ

α = 0.25

1 2 3 4

r

0

200

400
ρ

α = 0.3

FIG. 7. Energy density with r0 = 1 (pt = npr). Here, we
plotted for the parameter values (α, n): (1,−1.5), (4,−0.7),
(0.25,−0.1), (0.3, 0.5).

Further, we have investigated the 3D visualization of
the surface sweep through a 2π rotation around the z-
axis for this case, is shown in Fig. 9.

3. Isotropic EoS

Usually, the energy-momentum tensor of the asymp-
totically flat wormholes in the GR is anisotropic i.e. pr ̸=
pt. We have already discussed the wormhole solutions
for the anisotropic EoS case. In this section, we shall
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r

α = 1
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r

−0.14
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−0.08

−0.06

−0.04

ρ
+
P
r

α = 4
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r

−1.5
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0.0

ρ
+
P
r

α = 0.25

1.00 1.05 1.10 1.15 1.20

r

−1000

−800

−600

−400

−200

0

ρ
+
P
r

α = 0.3

FIG. 8. Radial NEC with r0 = 1 (pt = npr). Here, we
plotted for the parameter values (α, n): (1,−1.5), (4,−0.7),
(0.25,−0.1), (0.3, 0.5).

FIG. 9. Embedding diagram for the anisotropic EoS model cor-
responding to parameter values n = −1.5 and α = 0.85.

study wormhole solutions for the following isotropic re-
lation

pr = pt. (46)

Now inserting the Eqs. (24) and (25) in the above ex-
pression (46), we could able to find the shape function

b(r) = c
(

r
c

)3
, (47)

where c is the integrating constant. Imposing the throat
condition b(r0) = r0 to the above expression, we obtain
the final version of the shape function

b(r) = r0

(
r
r0

)3
. (48)

It is clear that the above expression is not asymptotically
flat i.e. b(r)

r ↛ 0 as r → ∞. Thus it can be concluded
that finding asymptotically flat wormhole solutions for
isotropic pressure under constant redshift function for
the f (R, Lm) model (22) is quite difficult.

B. Model II

We presume the following non-minimal type f (R, Lm)
function [31],

f (R, Lm) =
R
2
+ (1 + λ R)Lm (49)

where λ is the coupling constant. The characteristics of
Neutron stars have been investigated by using NICER
data in the framework of the above-considered f (R, Lm)
model [31]. The coupling constant presents large val-
ues as compared to the weak-field limit. The same de-
pendence appeared in scalar-tensor theories, where this
parameter varies according to the scalar field mass, re-
ferred to as the chameleon mechanism [44]. It is quite
interesting to study the dependence of this coupling pa-
rameter in the context of different astrophysical systems
such as white dwarfs, black holes, wormholes, and neu-
tron stars. In particular, for the case λ = 0, we retrieve
the usual wormhole geometry of GR. The cosmological
implications of the considered model have been tested
in [29]. We will examine the characteristics of the given
model in the context of wormholes.
Therefore, we obtain the following field equations cor-
responding to this specific f (R, Lm) function,
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ρ =
Φ′
(

r
(
−b′

)
+ 2r(r − b)Φ′ − 3b + 4r

)
+ 2r(r − b)Φ′′(r) + r2R

2
(

λ
(
r (b′ − 4) + 3b

)
Φ′ + 2λr(b − r)Φ′2 + r

(
2λ(b − r)Φ′′ + λrR + r

)) , (50)

Pr =
1
K


r

(
b′
(
(λrR + r)Φ′ + 4λR + 2

)
− r

(
2(λrR + r)Φ′2 − 4λRΦ′(r) + r(λR + 1)

(
2Φ′′ + R

)))

+b

(
r
(

Φ′
(

2(λrR + r)Φ′ − 5λR − 1
)
+ 2r(λR + 1)Φ′′

)
− 4λR − 2

)
 , (51)

Pt =
1
K

[
r
(

b′
(
−λrRΦ′ + 2λR + 1

)
+ 2λr2R

(
Φ′2 + Φ′′

)
− r

(
rR(λR + 1) + 2Φ′

))

+b

(
r
(

Φ′
(
−2λrRΦ′ + λR + 2

)
− 2λrRΦ′′

)
+ 2λR + 1

)
 , (52)

where

K = 2r(λR + 1)

(
λ

(
r
(

b′ − 4
)
+ 3b

)
Φ′

+2λr(b − r)Φ′2 + r
(

2λ(b − r)Φ′′ + λrR + r
))

. (53)

1. b(r) = r0 + γ2r0

(
1 − r0

r

)

Here, we turn our attention to the model with b(r) =
r0 + γ2r0

(
1 − r0

r

)
[45], where 0 < γ < 1 is particu-

larly interesting to have wormhole solutions that sat-
isfy the flaring-out condition at wormhole throat. The
stress-energy tensor profile for this specific function un-
der constant redshift function is given by

ρ =
γ2r2

0
r4 + 2γ2λr2

0
, (54)

Pr =
1
L2

[
2γ2λr3

0

(
3γ2r0 − 2

(
γ2 + 1

)
r
)
− r4r0M

]
,

(55)

Pt =
r4r0

(
γ2(r − 2r0) + r

)
+ 4γ2λr3

0M
2L2 , (56)

where L =
(

r4 + 2γ2λr2
0

)
and M =

(
γ2(r − r0) + r

)
.

For the case of the NEC along the radial and tangential

direction is provided by

ρ + Pr = −
r0

(
γ2(r − 2r0) + r

) (
r4 + 4γ2λr2

0

)

L2 , (57)

ρ + Pt =

(
γ2 + 1

)
rr0

(
r4 + 4γ2λr2

0

)

2L2 . (58)

One can find that at wormhole throat, the above equa-
tions reduce to

ρ + Pr |r=r0= −

(
1 − γ2

) (
4γ2λ + r2

0

)

(
2γ2λ + r2

0

)2 , (59)

ρ + Pt |r=r0=

(
γ2 + 1

) (
4γ2λ + r2

0

)

2
(

2γ2λ + r2
0

)2 . (60)

For this specific case, we noticed that the RHS of Eq. (59)
is a negative quantity for any λ > 0 and 0 < γ < 1,
which confirms the violation of radial NEC at the throat.
However, from Eq. (60), we can see that tangential NEC
is satisfied at the throat. The graphical representations
of ρ and ρ + Pr are shown in Fig. 10 and 11. Interest-
ingly, energy density is positive throughout space-time,
whereas NEC is violated at the throat and its neighbor-
hood. Also, we observed that for substantial values of
λ, the radial NEC ρ + Pr would be validated.
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0.35
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Energy density for different values of λ

λ = 0

λ = 1

λ = 2

FIG. 10. Energy density with r0 = 1 and γ = 0.6. Note that for
λ = 0 corresponds to GR case.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

ρ
+
P
r

Radial NEC for different values of λ

λ = 0

λ = 1

λ = 2

FIG. 11. Radial NEC with r0 = 1 and γ = 0.6. Note that for
λ = 0 corresponds to GR case.

2. b(r) = r er0−r

Considering the specific choice for the form function
b(r) = r er0−r [46] where 0 < r0 < 1 is particularly inter-
esting to have wormhole solutions that satisfy the con-
dition b

′
(r0) < 1. Taking this form into account, the

generalized field equations Eqs. (50-52) can be read as

ρ =
(r − 1)er0

−err2 + 2λrer0 − 2λer0
, (61)

Pr =

er0

(
2λ
(

r2 − 1
)

er0 − err2
)

(
err2 − 2λ(r − 1)er0

)2 , (62)

Pt =
er0
(

err3 − 4λ(r − 1)er0
)

2
(
err2 − 2λ(r − 1)er0

)2 . (63)

Using Eqs. (61-63), one can obtain the NEC given by

ρ + Pr =
rer0

(
4λ(r − 1)er0 − err2

)

(
err2 − 2λ(r − 1)er0

)2 , (64)

ρ + Pt =
(r − 2)er0

(
4λ(r − 1)er0 − err2

)

2
(
err2 − 2λ(r − 1)er0

)2 . (65)

For this wormhole model, we assume the throat radius
r0 = 0.5 and hence the flare-out condition b

′
(0.5) =

0.5 < 1 obeyed at the throat. Also, we can see from

Eq. (64) that ρ + Pr |r=r0= − r0(4λ+r2
0−4λr0)

(2λ+r2
0−2λr0)

2 , which can

be violated for 0 < r0 < 1 and λ >
r2

0
4(r0−1) . Also, we

noticed that radial NEC could be validated at the throat
for 0 < r0 < 1 and λ <

r2
0

2(r0−1) ∨
r2

0
2(r0−1) < λ <

r2
0

4(r0−1) .
Further, we study tangential NEC at r = r0 provided

by ρ + Pt = − (r0−2)(4λ+r2
0−4λr0)

2(2λ+r2
0−2λr0)

2 . It is observed that tan-

gential NEC is violated for 0 < r0 < 1 within the range

λ < s2

2s−2 ∨ r2
0

2r0−2 < λ <
r2

0
4r0−4 , whereas satisfied within

λ >
r2

0
4(r0−1) . We have presented the graphical behavior

of energy density and NEC in Figs. 12 and 13 with some
particular values discussed above. It is obvious that
NEC is violated, whereas energy density is respected in
the vicinity of the throat. However, one can notice that
energy density is no longer validated far from the throat.

1 2 3 4 5 6

r

0

1

2

3

4

ρ

Energy density for different values of λ

λ = 0

λ = 1

λ = 2

FIG. 12. Energy density with r0 = 0.5. Note that for λ = 0
corresponds to GR case.

V. AMOUNT OF EXOTIC MATTER

Now we will estimate the amount of exotic matter
required for a wormhole to be stable. To do this, we
use the volume integral quantifier (VIQ) approach, in-
troduced by Visser et al. [47], which can quantify the
average amount of matter present in spacetime, violat-
ing NEC. The VIQ is defined as

IV =
∮
[ρ + Pr]dV (66)
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FIG. 13. Radial NEC with r0 = 0.5. Note that for λ = 0 corre-
sponds to GR case.

where the volume can be read as dV = r2 dr dΩ with dΩ
the solid angle. Since

∮
dV = 2

∫ ∞
r0

dV = 8π
∫ ∞

r0
r2dr, we

have

IV = 8π
∫ ∞

r0

(ρ + Pr)r2dr. (67)

Now, the volume integral corresponding to a wormhole
whose field varies from the throat r0 to a fixed radius r1
with r1 ≥ r0, is given as

IV = 8π
∫ r1

r0

(ρ + Pr)r2dr. (68)

Now with the help of the above Eq. (68), we have in-
vestigated the volume integral and presented the nature
of those in Figs. (14-16). It is evident from the graphs
that IV → 0, as r1 → r0. Thus, we can conclude that a
small fraction of exotic matter can stabilize a traversable
wormhole. We found that one can minimize the total
amount of average null energy condition (ANEC) violat-
ing matter by taking suitable wormhole geometry. One
can check the references [48, 49] to review some interest-
ing applications of VIQ.

2 3 4 5 6 7
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r 1

VIQ for barotropic case
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V

FIG. 14. Profile of VIQ with α = 2, ω = −2, and r0 = 1.
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V

FIG. 15. Profile of VIQ with α = 4, n = −0.7 and r0 = 1.
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r
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−36.0
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−27.0
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−18.0
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−9.0

−4.5

0.0

I
V

FIG. 16. Profile of VIQ with γ = 0.6, λ = 2 and r0 = 1.

VI. CONCLUSIONS

A wormhole is a short-cut that act as a subway for dis-
tinct regions of spacetime or distinct spacetimes apart
from each other. The theoretical solution of field equa-
tions of GR that violates energy conditions gave rise to
the concept of a wormhole. Nowadays, wormhole so-
lutions in the context of modified gravity theories have
attracted the attention of researchers. Modified gravity
theories play a significant role in bypassing the necessity
of undetected exotic matter in constructing wormholes.
In this paper, we have examined different wormhole so-
lutions in the f (R, Lm) gravity. This theory has been in-
vestigated to analyze some dark energy candidates by
utilizing dynamical system technique [50]. Further, hy-
drostatic equilibrium configurations of neutron stars in
the context of f (R, Lm) gravity is obtained in [51]. More-
over, f (R, Lm) gravity describes pulsars as massive as
PSR J2215+5135 [52] with the help of an equation of state
for nuclear matter. These attractive features of f (R, Lm)
gravity motivated us to study wormholes in this gravity.
In this manuscript, we attempted to explore wormhole
geometry in the framework of f (R, Lm) gravity. We
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have derived the field equations for the wormhole met-
ric (8) in the f (R, Lm) gravity background. Then we
have considered two different f (R, Lm) models, such as,
f (R, Lm) =

R
2 + Lα

m (model I) and f (R, Lm) =
R
2 + (1 +

λ R)Lm (model II), where α and λ are arbitrary model
parameters. Firstly, we have studied the wormhole so-
lutions for three different cases (i) a linear barotropic
EoS, (ii) an anisotropic EoS, and (iii) isotropic EoS, under
model I. For the linear barotropic case, we calculated the
shape function b(r) and obtained the possible regions
where the flatness condition is satisfied. We found the
flaring-out condition is satisfied for any ω < −1 cor-
responding to α > − 1

ω−1 under the asymptotic back-
ground. Further, we have investigated the energy con-
ditions and noticed that energy density is positive in the
entire space-time. NEC is violated in the neighborhood
of the throat for increasing values of α under the phan-
tom region. However, the violation of NEC may not be
maintained for very large values of α.
Again, for the anisotropic case, we have obtained the
possible ranges of α and n using the asymptotically flat-
ness condition, which is listed in Table I. By setting the
appropriate values from the Table I, we have studied the
behavior of the shape functions and energy conditions.
We found that the flaring-out condition is satisfied at the
wormhole throat. The energy density exhibit negative
behavior corresponding to the GR case, i.e., α = 1, while
it is positive for other values of α. The NEC is violated in
the neighborhood of the throat corresponding to every
chosen value of α satisfying the constraints obtained in
Table I. Further, we have investigated wormholes for the
isotropic relation and observed that the obtained shape
function is not asymptotically flat. It seems that find-
ing asymptotically flat wormhole solutions for isotropic
pressure under constant redshift function in f (R, Lm)
scenario is quite difficult.
Further, finding the wormhole solutions for model II in
an analytic way is quite tricky due to the complexity of
the field equations. Therefore, we have studied worm-
hole solutions with two different shape functions, i.e.,
b(r) = r0 + γ2r0

(
1 − r0

r

)
and b(r) = r er0−r in order

to investigate model II. For b(r) = r0 + γ2r0

(
1 − r0

r

)

case, we found that radial NEC is violated, and tan-
gential NEC is satisfied near the throat within λ > 0
and 0 < γ < 1. Energy density is positive in the en-
tire spacetime. Again, for b(r) = r er0−r, we investi-
gated the NEC thoroughly and obtained some validity
ranges for NEC. It is observed radial NEC is violated

within 0 < r0 < 1 and λ >
r2

0
4(r0−1) whereas, tangen-

tial NEC is violated for 0 < r0 < 1 within the range

λ <
r2

0
2r0−2 ∨ r2

0
2r0−2 < λ <

r2
0

4r0−4 . In this case, we found
that energy density is positive in the neighborhood of
the throat. Moreover, we noticed that the value of the
coupling constant obtained in our study is consistent
with the values obtained in [30, 31]. According to the
Ref. [31], the best result can be achieved when the cou-
pling parameter λ is around 30. Further, in case of white
dwarf system the consistent value of λ lies between 0
and 1 [30]. However, in our study, we noticed that for
a traversable wormhole solution, λ is a non-negative
value and that is consistent with values obtained in the
above results.
In addition, we have examined the VIQ to study the
amount of exotic matter required at the throat for a
traversable wormhole. In our analysis, we found that
a small amount of exotic matter is necessary for a
traversable wormhole. We can conclude that the modifi-
cation of standard GR can efficiently minimize the use of
exotic matter and provide a stable traversable wormhole
solution. Although wormholes have not been detected
yet, in this study, we have investigated the possible exis-
tence of wormhole geometries in the context of f (R, Lm)
gravity. In this study, we have considered the constant
redshift function, i.e., Φ(r) = constant. It would be
interesting to investigate wormholes with non-constant
redshift functions in this modified gravity in the near
future.

DATA AVAILABILITY STATEMENT

There are no new data associated with this article.

ACKNOWLEDGMENTS

RS acknowledges University Grants Commission
(UGC), New Delhi, India, for awarding a Senior Re-
search Fellowship (UGC-Ref. No.: 191620096030).
ZH acknowledges the Department of Science and
Technology (DST), Government of India, New Delhi,
for awarding a Senior Research Fellowship (File No.
DST/INSPIRE Fellowship/2019/IF190911). P.K.S. ac-
knowledges the National Board for Higher Mathe-
matics (NBHM) under the Department of Atomic En-
ergy (DAE), Govt. of India for financial support
to carry out the Research project No.: 02011/3/2022
NBHM(R.P.)/R&D II/2152 Dt.14.02.2022 and Transilva-
nia University of Brasov for Transilvania Fellowship for
Visiting Professors. We are very much grateful to the
honorable referees and to the editor for the illuminating
suggestions that have significantly improved our work



13

in terms of research quality, and presentation.

[1] L. Flamm, Phys. Z. 17, 448 (1916).
[2] A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).
[3] R. W. Fuller, J. A. Wheeler, Phys. Rev. 128, 919 (1962).
[4] M. S. Morris, K. S. Thorne, U. Yurtsever, Phys. Rev. Lett. 61, 1446

(1988).
[5] M. S. Morris, K. S. Thorne, Am. J. Phys. 56, 395 (1988).
[6] M. Visser, Lorentzian wormholes: from Einstein to Hawking (AIP

Press, New York, 1995).
[7] J. A. Wheeler, Geons. Phys. Rev. 97, 511 (1955).
[8] K. A. Bronnikov, S. V. Grinyok, Gravit. Cosmol. 7, 297 (2001).
[9] K. A. Bronnikov, A. A. Starobinsky, JETP Lett. 85, 1 (2007).

[10] J.A. Gonzalez, F.S. Guzman,O. Sarbach, Class. Quantum Gravity
26, 015010 (2009).

[11] F. S. N. Lobo, M.A. Oliveira, Phys. Rev. D 80, 104012 (2009).
[12] S.H. Mazharimousavi, M. Halilsoy, Mod. Phys. Lett. A 31, 1650192

(2016).
[13] T. Azizi, Int. J. Theor. Phys. 52, 3486 (2013).
[14] K. A. Bronnikov, S.W. Kim, Phys. Rev. D 67, 064027 (2003).
[15] M. L. Camera, Phys. Lett. B 573, 27 (2003).
[16] F. Parsaei, N. Riazi, Phys. Rev. D 91, 024015 (2015).
[17] N. M. Garcia, F. S. N. Lobo, Phys. Rev. D 82, 104018 (2010).
[18] N. M. Garcia, F. S. N. Lobo, Class. Quantum Gravity 28, 085018

(2011).
[19] O. Bertolami et al., Phys. Rev. D 75, 104016 (2007).
[20] T. Harko, Phys. Lett. B 669, 376 (2008).
[21] T. Harko, Phys. Rev. D 81, 084050 (2010).
[22] T. Harko, Phys. Rev. D 81, 044021 (2010).
[23] T. Harko, Phys. Rev. D 90, 044067 (2014).
[24] T. Harko and S. Shahidi, Eur. Phys. J. C 82, 219 (2022).
[25] V. Faraoni, Phys. Rev. D 76, 127501 (2007).
[26] T. Harko and F. S. N. Lobo, Eur. Phys. J. C 70, 373-379 (2010).
[27] V. Faraoni, Cosmology in Scalar-Tensor Gravity, Kluwer Academic,

Dordrecht (2004).
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