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Abstract 

Quantum theory of a complex scalar field coupled to gravity is considered. 

A formalism for the semiclassical approach in Euclidean time is developed 

and used to study wormhole physics. The conserved global charge plays 

an essential role. Wormhole physics turns on only after the symmetry is 

spontaneously broken. An effective self-interaction for Goldstone bosom 

due to wormholes and child universes is shown to be a cosine potential, 

whose vacuwn energy will be reduced by the cosmic expansion. When 

the symmetry is nonabelian, it is argued that the effective potential is not 

well defined. Some implications and questions are discussed. 



-l- FERMILAB-Pub-88/27T 

Physics of geometrical fluctuations in quantum gravity has been studied [1,2,3] 

to implement the idea [4] that small scale fluctuations lead to an apparent loss of 

quantum coherence on a large scale. However, it has been shown [5,6] that there is 

no loss of quantum coherence due to geometrical fluctuations like wormholes or child 

universes. Coleman [7] has proposed a solution to the cosmological constant problem 

by employing the wormhole physics. 

Giddings and Strominger [3] have found a wormhole solution as an instanton 

configuration of Euclidean quantum gravity coupled to a massless axion, which arise 

from the antisymmetric rank three tensor in the superstring theories. Also, they 

wrote down an effective Hamiltonian for the interaction between wormholes and the 

I&, I&, system [6]. 

In this Letter, a general formalism for tunneling or instanton physics in Euclidean 

time is discussed in theory of a complex scalar field. This will show that wormholes 

exist in a more general frame. By using this, the properties of wormhole solution 

are studied. The wormhole solution exists only when the symmetry is spontaneously 

broken. An effective interaction between baby universes and Goldstone bosons is 

obtained and is shown to exhibit the cosine potential exactly like in the case of the 

ordinary axion interacting with QCD instantons [8,9]. With a nonabelian symmetry, 

the effective potential is not well defined. Finally, some discussion will follow. 

Consider a quantum mechanical system of a particle of unit mass which is moving 

on a plane with a potential V(T) and angular momentum Q = ~‘4. Energy is E = 

+‘/2 + V.,,(T), where V&~(T) = Qa/2r2 + V(T). Suppose that the particle is at a 

metastable local minimum of V&f. The standard semiclassical approach leads to 

tunneling rate proportional to exp(-2 J d~J2vsT;,, where the range of integration is 

from the metastable point to the escape point. 

Now the bounce solution, which gives the maximum rate, can be obtained by 
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solving the Euclidean equation, -4 - Q’/T” + V’(T) = 0, of the Euclidean action 

S$, = G/2 + V&~(T). The exponential factor becomes the exponent of minus the 

bounce action. 

Let us introduce back the real angle variable 6’ and so angular momentum becomes 

Q = ~~4. Euclidean action becomes SE = J d7[i1/2 +~~@/2 + V(T)]. The variational 

principle, 6SE = 0, will yield -i: + T@ + V’(T) = -i: + Q’/T” + V’(T) = 0 for r. One 

can see easily that this is a wrong equation. 

What went wrong? Because angular momentum is conserved by superselection 

rule, the tunneling process should satisfy the angular momentum conservation. The 

conservation of angular momentum should be a constraint in the variation of the 

Euclidean action. (The way to justify these statements in the path integral method 

is not known to the author.) The correct variational principle is 

b[sE + / drX(s)$] = 0 0) 

with a lagrangian multiplier, X. 

Now we can generalize this formalism easily into quantum field theory of a complex 

scalar field 4 E fexp(ie)/fi. The Euclidean action is 

$3 = 
J 

drd+ + ;f’@ + V(f)] (4 

The total charge Q = Jd+“f’i is conserved. As the charge is conserved, the vari- 

ational principle (1) produces the right bounce equation. But, the bounce equation 

becomes messy because the solution for the lagrangian multiplier is not local in space. 

To overcome this, consider possible tunneling paths, say d(Z, T), which satisfy the 

initial condition and the charge conservation. However, they do not need to satisfy 

the local current conservation, a,$’ = 0, where j,, = f’$6’. One can divide these 

possible paths into sets, each of which is characterized by a source K(Z) of the current, 

&jp = K(Z). J d+sn(lc;r) = 0 for the overall charge conservation. 
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Let us first find the bounce solution inside a set of possible tunneling paths char- 

acterized by a given source K(Z). The variational principle is then 

~[SE + /dz'X(z)(L$,j" - K)] = 0 (3) 

Equations imply that X = B + constant. After substituting this, equations for f and 

6’ become 

-ap - f(a,e)’ + V’ = 0 (4) 

44f'W) = 4s) (51 

Note the minus sign of the second term in Eq.(4). 

The bounce solution satisfies the charge conservation and is a stationary point of 

the Euclidean action if the variations are constrained to satisfy the charge conserva- 

tion. What the variational principle Eq.(3) means is that by taking a variation in 

the set of a given source, we have frozen the variation along the source direction and 

found the stationary solution. Let us call the stationary solution by d=(z) for each n. 

Now compare the actions of the stationary solutions for different n’s, say n and 

n + E, where E is infinitesimal. &+r can be written as the sum of & and a variation 

64,. In terms of f and 8, the bounce solutions at n (K + c) are .f,O (f + 6f,e + 66). 

By taking variation of Eqs.(4) and (5), we obtain equations for 6f and 60, 

-B’bf - sf(ae)’ - zf(ae)(sse) + V”Sf = 0 (‘3) 

2a,(fsfa,e) + a,(f’a,se) = e(z) (7) 

By using Eqs. (6) and (7) and partial integrations one can obtain the difference 

between the actions, 

SS,” = SE(&+,) - SE(&) = - / dz’e(z)B(z) (8) 
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One can expect that there is a solution of equation, &(j’S,Ae) = s, where AB is 

order of l . The reason is that when the charge density is not zero, f is not zero. One 

can thus take perturbation of Eq.(5) in 8 and n. Then, Eq.(8) becomes 

6s; = - Jdz’tcAo (9) 

which is nonzero in the first order of e except when n = 0. For n = 0, the first 

variation of the action vanishes. The bounce solution satisfies Eqs.(4) and (5) with 

n = 0 and the bounce action gives the exponential suppression factor in the tunneling 

rate. 

Let us couple gravity to a complex scalar field. The Euclidean action is 

SE = J dz4&[-$$R + $“apf&f + ~f%“a,ea,e + v(f)] (10) 

There is a boundary term, which is not relevant here. There is also a term for the 

Euler number of the manifold, which will be neglected as it is not essential in the 

following discussion. 

The previous argument for the variational principle goes through here too. The 

Euclidean solution would satisfy the charge conservation, S,(j” E &g!-“‘f&9) = 0. 

The variational principle in Eq.(3) with n = 0 will lead to the rest of the field 

equations, 

-$a,(fiwf) - fapeape + v’(f) = 0 

RF - ;g,,R = $Tw 
P 

where T, = &&f&f - fV,,e&e -gpy(&faOf - if26’,ePe + V(f)). (The famous 

minus sign of Euclidean energy momentum tensor for the phase has been obtained 

independently by Giddings and Strominger [3] for the axion field arising from the 

rank three antisymmetric tensor of the superstring theories.) 



-5- FERMILAB-Pub-88/27T 

Suppose that the potential has the absolute minimum at f = v with value V, = 

V(v). One can choose freely v << Mr. Even though the symmetry is spontaneously 

broken, the total charge is still conserved. There is a massless Goldstone boson 

represented by the field a(z) = v.9. A ssume that the solution is O(4) symmetric. The 

metric is ds* = dps + R(p)*dCi:, where &li is the line element of a unit three sphere. 

The current conservation equation has a solution 

-%P) = 
n 

2+f (pY’R(p)3 03) 

so that &,(js = RJfZd) = n, where the integration is over any three sphere around 

the origin. The global charge n becomes an integer after quantization. Eqs.(ll) and 

(12) b ecome 

-j - $t - ,a;,, + V’(f) = 0 

a?r 72 &=l--[ 
3M; 8r4f2Re 

+ Vo] Ra (15) 

If we freeze f(p) to be V, we can solve Eq.(15) exactly. The general case will 

be discussed later. There are two parameters in the solution; the radius T of the 

wormhole in the flat space background such that rr = n/&kM, and the Hubble 

constant H of the DeSitter space time such that Hz = 8xV,/3Mi. The solution exists 

only if ,/&M~3/4n > V,, i.e., the size of the wormhole is smaller than the horizon 

length. The solution is 

HP = ~--$-$W2/~2)~ 

42 - PI 1/a h(z) = sin-l[z(a _ p)l 

(16) 

where II is the elliptic integral of the third kind and a > p > 0 > 7 are roots of 

z~-x?/(TH)~+~/(TH)~ = 0. This is a wormhole solution which connects two opposite 

points of Euclidean DeSitter space-time. The action of the wormhole solution is 
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SF-q& [a+) + a7F($l4 - 3q, qhl (17) 

wherep = [(a-P)/(a-r)]‘/’ and E (F) are the elliptic integral of the second (first) 

kind. 

As V, -+ &1M,f/4n, the bounce solution collapses into a three sphere with zero 

action. When V, + 0, Sb - S. = J;j;;M,/2v. (Th e solution in the case Vo = 0 has 

been given in Ref.[3].) If the symmetry breaking scale n is much lower scale than 

MP, the action is then much larger than tc and the radius of wormhole becomes larger 

than the Planck scale, and so the semiclassical approximation is good. The vacuum 

solution and action are a = 0 , R(p) = H-‘sin(Hp) and S, = -3Mi’/8&,. The 

contribution of wormholes is then K exp[-(Ss - Sv)], where K of order the size of the 

wormhole. 

The interpretation of the wormhole solution depends on whether there is no nega- 

tive mode or not around the solution. If there is negative mode, the solution is called 

as a bounce and describes the nucleation and growth of wormholes in the Minkowski 

time. If there is no negative mode, the solution is called as an instanton and describes 

the tunnelling and mixing of two states of the same energy. (See Ref. [8] for more 

explanation.) There is a simple but not complete argument that the wormhole solu- 

tion is not a bounce solution but a instanton solution in Euclidean time. Consider 

the asymptotically flat case. As r goes from -oo to +oo, the charge of our universe 

changes by AQ = n as the sign of the current changes, or that of dp/dr. This will sink 

into the wormhole, appearing in another side . However, the bounce solution should 

be bounce back to the initial configuration and there should be no charge difference. 

What happens if we make f(z) as dynamical rather than take f(z) to be V? A 

detailed study of Eqs.( 14) and (15) h s ows that at the neck of wormhole f will have a 

value smaller than v but nonzero and the size of the neck and the action get bigger. 

As one can see easily, the size and action go to infinity as the symmetry is restored. 
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What is the effect of the formation of wormholes and child universes in Euclidean 

time on our universe? That is captured in Ref.[5,6] as an effective Hamiltonian 

after summing over all possible combinations over formation of wormholes and child 

universes in the dilute gas approximation. When one restrict oneself to wormholes 

of charge fl, with creation (annihilation) operators a~,a!.(a+,a-), the Hamiltonian 

density becomes ‘7&t, = KewS(C + Ct), where C = ai + a-,@ = a+ + at. Note 

[C, Ct] = 0. Additionally, C, Ct are independent of space-time as wormholes do not 

carry any energy momentum. 

As the total charge of universes including child universes is conserved, the operator 

Q - a\=+ + ata- will commute with the effective Hamiltonian. This implies that the 

effective interaction is 

n =ff = Ke-s(e’“/“C + ,+‘Ct) (18) 

which is invariant under global U(1) rotation, a/v --) a/v + E, C + e-“C, and 

Ct + e-Wt. 

After many measurements, one expects that our universe will settle in one of 

the eigenstates of C and Ct [5,6]. The explicit form of the eigenstate is ]a >= 

* exp[aar’ - (a - a\)( a* - a!.)10 >, where C]a >= alo >,@]a >= Q’]Q >. Let us 

put a = cedis@. The effective Hamitonian density on this eigenstate becomes 

71 eff = cKeeS COS( i - h,) (19) 

This is the same form as the axion potential due to the QCD instanton effects [7,8]. 

The Goldstone boson becomes massive due to the quantum gravity effects and the to- 

tal charge in our universe is not conserved. Mass of Goldstone boson, Mi = SK@, 

is now dependent on a parameter c of the wave function of our universe. 

Let us try to include the worm holes carrying charge fn. These are qualitatively 

different from the sum of n wormholes of charge fl because of topological difference. 
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Hence there is an effective potential for each n similar to Eq.(19) with different K 

and S. One may not expect any correlations between eigenvalues Q, for different n. 

Summing over all rz, the effective Hamitonian becomes a sum over 7~ of A,, cos(1za/v - 

en) with amplitudes and phases independent of each other. In this case Goldstone 

boson dynamics becomes more involved. 

Suppose that the scalar field is in the 3 representation of SU(3) and the symmetry 

is broken spontaneously to SU(2). There are 5 massless Goldstone bosons. Probably, 

there exist 5 corresponding operators similar to C, Ct. The effective interaction 

(18) can be generalized in this case too. However, there is a problem to find a 

eigenstate of all 5 operators because they are not completely commuting each other. 

These nonabelian wormholes look quite interesting. But, the consequences of these 

will not be pursed here. 

In this Letter, the wormhole dynamics arising from quantum mechanics of a com- 

plex scalar field coupled to gravity has been studied. The wormhole physics will turn 

on after spontaneous symmetry breaking. The induced effective interaction of Gold- 

stone bosons has a cosine potential, whose parameters depend on the state of our 

universe. The possible vacuum energy will be red-shifted into nonrelativistic massive 

Goldstone bosons as the universe expands. 

Suppose that the symmetry breaking occurs later than inflation. Will the worm- 

hole effect turn on immediately? Otherwise, did it happened in the past, or will it 

in the future? A cosine potential looks bad for the cosmological constant problem. 

Will multicharged wormhole effects rescue the situation? Finally, what will be the 

effects of nonabelian wormholes on quantum coherence and the cosmological constant 

problem? 

Acknowledgements 

This work was supported in part by the U.S. Department of Energy. The author 



-9- FERMILAB-Pub-88/27T 

thanks W. Bardeen, R. Pisarski, and S. Parke for useful discussions. 

References 

1. S.W. Hawking, Phys. Lett. 195B(1987) 337; S.W. Hawking, “Wormholes in 

Spacetime”, DAMTP preprint (1987). 

2. G.V. Lavrelashvili, V.A. Rubakov, and P.-G. Tinyakov, JETP Lett. 46 (1987) 

167. 

3. S.B. Giddings and A.Strominger, “Axion-Induced Topological Change in Quan- 

tum Gravity and String Theory”, Harvard Preprint HUTP-87/A067 (to appear 

in Nucl. Phys. B). 

4. S.W Hawking, D.N. Page, and C.N. Pope, Nucl. Phys. B170 (1980) 283; S.W. 

Hawking, Comm. Math. Phys. 87 (1982) 395; A.Strominger, Phys. Rev. Lett. 

52, 91984) 1733; D. Gross, Nucl. Phys. B236 (1984) 349. 

5. S. Coleman, “Black Holes as Red Herrings: Topological Fluctuations and the 

Loss of Quantum Coherence”, Harvard Preprint HUTP-88/A008 (to appear in 

Nucl. Phys. B). 

6. S.B. Giddings and A. Strominger, “Loss of Incoherence and Determination of 

Coupling Constant in Quantum Gravity”, Harvard Preprint, HUTP-88/A006 

(to appear in Nucl. Phys. B) 

7. S. Coleman, “Why There Is Nothing rather than Something: A Theory of The 

Cosmological Constant”, Harvard Preprint HUTP-88/A022 

8. S. Coleman, in “The Ways of Subnuclear Physics” ed. by A. Zichichi (Plenum, 

New York, 1976). 

9. J.E. Kim, Phys. Report 150 (1987) 1. 


