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1. Introduction

The question of whether – and how much – child health gains affect adult outcomes is of major 

research interest across disciplines and great public policy importance. The belief that childhood 

health investments may improve adult living standards currently underlies many school health 

and nutrition programs in low-income countries. 

Existing research suggests several channels through which increasing child health 

investments could affect long-run earnings. Grossman’s (1972) seminal health human capital 

model interprets health care as an investment that increases future endowments of healthy time. 

Bleakley (2010) further develops this theory, arguing that how the additional time is allocated 

will depend on how health improvements affect relative productivity in education and in labor. 

Pitt, Rosenzweig, and Hassan (2012) – hereafter PRH – further note that time allocation will also 

depend on how the labor market values increased human capital and improved raw labor 

capacity, and that this in turn may vary with gender. They present a model in which exogenous 

health gains in low-income economies tend to reinforce men’s comparative advantage in 

occupations requiring raw labor, while leading women to obtain more education and move into 

more skill-intensive occupations, and provide evidence consistent with this model. 

We examine the case of intestinal worms, which globally affect approximately two 

billion people according to the World Health Organization (2014). Worms (helminths) are spread 

when infected individuals deposit fecal matter containing eggs in the local environment. Intense 

infections lead to lethargy, anemia, and growth stunting (Stephenson et al. 1993; Stoltzfus et al. 
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1997; Guyatt et al. 2001; Silva et al. 2003) and may also weaken the immunological response to 

other infections (Kjetland et al. 2006; Kirwan et al. 2010). Chronic parasitic infections in 

childhood may lead to inflammation and elevated cortisol that produce adverse health 

consequences later in life (Crimmins and Finch 2005), as well as increased maternal morbidity, 

low birth weight, and miscarriage (Larocque et al. 2006; Hotez 2009). 

There is ongoing debate about whether or not it is appropriate to carry out mass 

deworming treatment programs in endemic regions. Because treatment is safe and cheap, but 

diagnosis is expensive, the WHO recommends periodic mass school-based deworming in high-

prevalence areas (World Health Organization 1992). Several other bodies also highlight 

deworming as a cost-effective investment (Disease Control Priorities Project 2008; Hall and 

Horton 2008; Jameel Poverty Action Lab 2012; Givewell 2013). In contrast, a recent Cochrane 

review argues that while treatment of those known to be infected may be warranted, there is 

“quite substantial” evidence that mass deworming program does not improve average nutrition, 

health, or school performance outcomes (Taylor-Robinson et al. 2015).1 

Yet, because of its selection criteria focusing on medical-style randomized control trials 

(RCTs), the Cochrane review includes numerous studies subject to now well-known 

methodological limitations (Bundy et al. 2009), and excludes rigorous social science evidence. 

For instance, the review excludes Bleakley (2007), which estimates the community-wide impact 

of deworming in the early 20th century U.S. South using quasi-experimental difference-in-

                                                 
1 The Cochrane Reviews are systematic reviews of primary research in human health care and health policy. They 
are influential among health policymakers. 
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difference methods. That study finds that mass deworming improved literacy and raised long-run 

adult income by 17%; extrapolating to the higher infection rates in tropical Africa, Bleakley 

(2010) estimates deworming could boost income there by 24%.2    

 The present paper exploits community-wide experimental variation in a deworming 

program for children in Kenyan primary schools, combined with a longitudinal data set tracking 

these children into adulthood, to causally identify the effect of improved child health on later life 

outcomes. At the time of treatment, program participants had already passed the age window 

considered most critical for early childhood development, suggesting that the time endowment 

and time allocation effects emphasized in Bleakley (2010), Grossman (1972), and PRH (2012) 

may be the most relevant channels of impact. Indeed a survey conducted 1-2 years after 

treatment found no cognitive gains. However, consistent with Grossman (1972), treatment led to 

large gains in school participation, reducing absenteeism by one quarter (Miguel and Kremer 

2004). There was also evidence for epidemiological externalities within this primary school-age 

population: untreated children in treatment schools as well as children living near treatment 

schools had lower worm infection rates and higher school participation (Miguel and Kremer 

2004; Miguel and Kremer 2014), and children less than one year old (who were not eligible for 

treatment) in treated communities showed cognitive gains in later tests (Ozier 2014). 

                                                 
2 A small body of social science research studies the impact of deworming on labor outcomes. In addition to 
Bleakley (2007) and Bleakley (2010), early work by Schapiro (1919) using a first-difference research design found 
wage gains of 15-27% on Costa Rican plantations after deworming, while Weisbrod et al. (1973) observe little 
contemporaneous correlation in the cross-section between worm infections and labor productivity in St. Lucia. We 
discuss the related literature estimating deworming impacts on educational outcomes below. 
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 As discussed in Miguel and Kremer (2014), the original Miguel and Kremer (2004) paper 

contained several rounding errors, and a coding error in the estimation of cross-school 

externalities. Correcting this coding error indicates that short-run, one year epidemiological 

externalities extend out to 3 km or 4 km, rather than 6 km (Aiken et al. 2015, Clemens and 

Sandefur 2015, Miguel, Kremer and Hamory Hicks 2015). This coding error has been resolved 

in the current paper. Davey et al. (2015) express concerns that there were differences across 

schools in the number of visits to measure school attendance in Miguel and Kremer (2004). As 

noted in Hicks, Kremer and Miguel (2015), there is no statistical evidence for any imbalance in 

data collection patterns across treatment and control schools, and the Miguel and Kremer (2004) 

results are robust to weighting each individual equally in the analysis. This issue is not relevant 

to the current paper, which employs a different dataset than Miguel and Kremer (2004). 

 In the current analysis, we examine health, education, and labor market outcomes a decade 

later, at which point most subjects were young adults 19 to 26 years of age. We find 

improvements in self-reported health but not in height. Consistent with PRH, we find important 

gender distinctions in long-term deworming impacts. Men who were in treatment schools as boys 

work 3.5 more hours each week (on a base of 20.3 hours), spend more time in non-agricultural 

self-employment, and are more likely to hold manufacturing jobs with higher wage earnings. 

Their living standards improve as well, with males in treatment schools eating one more meal per 

week on average. Women who were in treatment schools have better self-reported health, spend 

more time in school as girls, and are approximately one quarter more likely to have passed the 

secondary school entrance exam and to have attended secondary school. They reallocate time 
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from traditional agriculture to non-agricultural self-employment and are also more likely to grow 

cash crops. Estimated effects on labor hours and living standards are larger for those who were 

older than 12 years of age (the median age) at baseline, who are much more likely to be out of 

school by the follow up survey. 

In line with Miguel and Kremer (2004), we also find evidence of positive 

epidemiological externalities on long-run outcomes across a range of outcomes using a 

seemingly unrelated regression framework. We report point estimates using the linear approach 

to estimating externalities employed in that paper, but also develop a procedure for bounding the 

impacts of deworming valid under the more general monotonicity assumption that the direct and 

epidemiological externality effects on labor market outcomes have the same sign.  

 Lastly, the estimated impacts of deworming on labor market outcomes, combined with 

other data, allow us to estimate fiscal impacts. We find that the additional net government 

revenues generated by increased work hours caused by deworming subsidies may be greater than 

the direct subsidy cost, suggesting that in the case of deworming, health human capital subsidies 

are potentially Pareto-improving. At a minimum, this suggests that the expected costs to 

taxpayers are less than would be suggested by multiplying program costs by 1.2 or 1.4 or some 

other standard multiplier for the deadweight loss of taxation. We also estimate an annualized 

financial internal rate of return to deworming subsidies of 32%, a high return. 

The rest of the paper is organized as follows. Section 2 discusses the Kenyan context, the 

deworming project, and the data. Section 3 presents the estimation strategy. Section 4 discusses 
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the main results. Section 5 combines the results on the price responsiveness of take-up and long-

run impacts to assess the fiscal impacts of deworming subsidies, and computes the internal rate 

of return. The final section concludes. All appendix material is in the online appendix. 

 

2. Data 

This section describes the study area, the deworming program, and the survey, including our 

respondent tracking approach and sample summary statistics. 

2.1 Study Area and Local Labor Markets 

The primary study area is Busia District, a densely-settled farming region in western Kenya 

adjacent to Lake Victoria that is somewhat poorer than the national average. Outside labor 

market opportunities for children are meager, and boys and girls both typically attend primary 

school, with dropout rates rising in grades 7 and 8 (the final two years of primary school).  

Primary school completion, when children in the study area are typically between 15 to 18 years 

of age, is a key time of labor market transition. Secondary education in Kenya, like tertiary 

education in the U.S., depends on exam performance, requires a substantial financial outlay, and 

often involves moving away from home. In our data, just over half of control group males and 

just under one third of females continue to secondary school. Occupational and family roles 

differ markedly by gender, with certain occupations, such as fishing, driving bicycle taxis, and 

manufacturing, overwhelmingly male, and others, such as small-scale market trading and 
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domestic service, largely female. The model in PRH (2012) suggests that labor market 

opportunities will affect gender-specific educational and labor responses to health investments.  

2.2 The Primary School Deworming Project (PSDP) 

In 1998 the non-governmental organization (NGO) International Child Support (ICS) launched 

the Primary School Deworming Program (PSDP) in two divisions of the district, in 75 primary 

schools with a total of 32,565 pupils. Parasitological surveys indicated that baseline helminth 

infection rates were over 90% in these areas. Using modified WHO infection thresholds, over 

one third of the sample had moderate-heavy infections with at least one helminth (Miguel et al. 

2014), a high but not atypical rate in African settings (Brooker et al. 2000; Pullan et al. 2011).  

The schools were experimentally divided into three groups (Groups 1, 2, and 3) of 25 

schools each: the schools were first stratified by administrative sub-unit (zone), zones were listed 

alphabetically within each geographic division, and schools were then listed in order of pupil 

enrollment within each zone, with every third school assigned to a given program group. Figure I 

presents the project research design and describes the timing of data collection. Appendix section 

A contains a detailed description of the experimental design, provides further information on the 

sample, and shows that the three groups were well-balanced along baseline characteristics 

(appendix Table S1). 

Due to the NGO’s administrative and financial constraints, the schools were phased into 

deworming treatment during 1998-2001: Group 1 schools began receiving free deworming and 

health education in 1998, Group 2 schools in 1999, and Group 3 in 2001. Children in Group 1 
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and 2 schools were thus assigned 2.41 more years of deworming than Group 3 children on 

average (appendix Table S2), and these early beneficiaries are the treatment group in the 

analysis. Take-up rates were approximately 75% in the treatment group and 5% in the control 

group (Miguel and Kremer 2004). In 2001, the NGO required cost-sharing contributions from 

parents in a randomly selected half of the Group 1 and Group 2 schools, substantially reducing 

take-up, and in 2002-2003 it provided free deworming in all schools (Kremer and Miguel 2007).  

2.3 Kenya Life Panel Survey (KLPS) Data 

The Kenya Life Panel Survey Round 2 (KLPS-2) was collected during 2007-2009, and tracked a 

representative sample of approximately 7,500 respondents who were enrolled in grades 2-7 in the 

PSDP schools at baseline. Survey enumerators traveled throughout Kenya and Uganda to 

interview those who had moved out of local areas. The effective survey tracking rate in KLPS-2 

is 82.5%, and 83.9% among those still alive (see appendix sections A and C for further details on 

survey methodology, tracking rates, and attrition). The effective tracking rate is calculated as a 

fraction of those found, or not found but searched for during intensive tracking, with weights 

adjusted appropriately, in a manner analogous to the approach in the U.S. Moving To 

Opportunity study (Orr et al. 2003; Kling, Liebman and Katz 2007). 

These are high tracking rates for any age group over a decade, and especially for a mobile 

group of adolescents and young adults. Tracking rates are nearly identical and not significantly 

different in the treatment and control groups (appendix Table S2). 
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3. Estimation Strategy 

In this section, we define the quantities of interest, describe how to bound them in the presence 

of potential epidemiological externalities, and then present our econometric strategy.  

3.1 Bounding Deworming Treatment Effects in the Presence of Externalities 

We need to account for the possibility of externalities in empirically estimating the impact of 

deworming subsidies. Recall that deworming subsidies were assigned at the school level rather 

than the individual level. It is therefore worth distinguishing within-school and cross-school 

externalities. In the potential presence of within-school epidemiological externalities, we cannot 

separately identify the labor market impact of individual deworming status and of deworming 

status of others within the school. We can, however, identify the aggregate school-level labor 

market effect of the deworming subsidy. We, therefore, classify all individuals in schools with a 

deworming subsidy as “treated” in the empirical analysis.  

The remaining issue is cross-school epidemiological externalities. In the remainder of this 

subsection, we first show that under the relatively weak assumption that the sign of cross-school 

epidemiological effects on labor market outcomes is not opposite to the sign of direct effects, the 

difference in outcomes between treatment and control communities is a lower bound on the true 

total impact of a mass deworming program. For expositional clarity, and to parallel Miguel and 

Kremer (2004), we start with a discussion of externality effects after one period but generalize 

them below to longer timeframes. We consider a simple epidemiological model in which worm 

infection can spread only 𝛿𝛿 kilometers in a single year, for instance, due to the natural movement 
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of and interaction among the local population. Miguel and Kremer (2004), Miguel and Kremer 

(2014), and Hicks, Kremer and Miguel (2015) estimate substantial and significant short-run 

(after one year) cross-school externalities on worm infections within 3 km of treatment schools. 

Consider an outcome 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 for individual 𝑖𝑖 in school 𝑗𝑗 at time 𝑡𝑡, e.g., a labor market 

outcome. 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is a function of lagged school-level deworming subsidy treatment assignment, 

𝑇𝑇𝑖𝑖,𝑖𝑖−1 ∈ {0,1}, and the proportion of other individuals in communities within 𝛿𝛿 kilometers of that 

school also received deworming, 𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 ∈ [0,1]. This proportion captures the local “saturation” 

of the program. This local treatment rate is a function of both the program’s “coverage”, 𝑅𝑅𝑖𝑖,𝑖𝑖−1,𝛿𝛿 

—i.e., the fraction of pupils in nearby schools assigned to the deworming subsidy treatment, as 

determined by the research design—and the deworming take-up rate, which is a function of the 

deworming subsidy level, 𝑄𝑄(𝑆𝑆). Local treatment saturation is the product of coverage and take-

up, 𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑅𝑅𝑖𝑖,𝑖𝑖−1,𝛿𝛿𝑄𝑄(𝑆𝑆) + (1 − 𝑅𝑅𝑖𝑖,𝑖𝑖−1,𝛿𝛿)𝑄𝑄(0), where take-up in the zero subsidy control 

group is 𝑄𝑄(0). Kremer and Miguel (2007) found empirically that control group take-up was very 

close to zero, implying that 𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑅𝑅𝑖𝑖,𝑖𝑖−1,𝛿𝛿𝑄𝑄(𝑆𝑆) is a reasonable approximation.3  For now, we 

focus on saturation, which is the epidemiologically relevant quantity, but return to the distinction 

between saturation and coverage in the empirical implementation below. 

The first quantity of interest, 𝜋𝜋𝑖𝑖(1), is the expected overall impact of a mass deworming 

program, namely, the difference in expected outcomes between individuals in treated 

                                                 
3 To the extent there was some take-up in control schools, estimates are a lower bound on the impact of deworming. 
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communities fully exposed to other treatment communities (𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 1) versus individuals in 

untreated communities surrounded by untreated communities: 

 𝜋𝜋𝑖𝑖(1) ≡ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖| 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 1,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 1�

−  𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖| 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 0,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 0� 
(1) 

The second quantity of interest, 𝜋𝜋𝑖𝑖(𝑝𝑝), is the impact of a program, such as the one we study, in 

which the share of nearby population receiving deworming is 𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝, 𝑝𝑝 ∈ (0, 1). For each 

quantity of interest we may also be interested in scaling impact by cost, i.e., 𝜋𝜋𝑖𝑖(1)/

 (Cost of 𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 1) and 𝜋𝜋𝑖𝑖(𝑝𝑝)/ (Cost of 𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝). 

Define the expected outcome in untreated communities surrounded by other untreated 

communities (i.e., “pure control” communities uncontaminated by exposure to nearby treatment 

schools) as 𝑦𝑦0,𝑖𝑖 ≡ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖|𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 0,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 0� and define the difference in expected outcomes 

between treated and untreated communities at a given local treatment saturation proportion p as: 

 𝜆𝜆1𝑖𝑖(𝑝𝑝) ≡ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖| 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 1,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝�

− 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖| 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 0,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝�  
(2) 

Define the difference in average outcomes between untreated communities at a local treatment 

proportion 𝑝𝑝 versus pure control communities as: 

 𝜆𝜆2𝑖𝑖(𝑝𝑝) ≡ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖| 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 0,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝� − 𝑦𝑦0,𝑖𝑖  (3) 

The sum of these two effects is 𝜋𝜋𝑖𝑖(𝑝𝑝) ≡ 𝜆𝜆1𝑖𝑖(𝑝𝑝) + 𝜆𝜆2𝑖𝑖(𝑝𝑝). 



12 
 

The biological mechanism underlying the spread of worm infections implies that worm 

load in a particular location at time 𝑡𝑡 is non-decreasing in worm load in that location and 

neighboring areas within distance 𝛿𝛿 at lagged time 𝑡𝑡 − �̃�𝑡. Both own and neighbors’ treatment at 

time 𝑡𝑡 − �̃�𝑡 should thus reduce own worm load at 𝑡𝑡. This is captured in our first assumption 

(where to make the notion of monotonicity concrete, the first inequality establishes that the direct 

effect of treatment on Y is positive, without loss of generality): 

Assumption 1 (Monotonic externality effects): Suppose for all p, 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖�𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 1,𝑃𝑃𝑖𝑖,𝑖𝑖−�̃�𝑖,𝛿𝛿� = 𝑝𝑝� ≥ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖�𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 0,𝑃𝑃𝑖𝑖,𝑖𝑖−�̃�𝑖,𝛿𝛿� = 𝑝𝑝�, then for any two levels of local 

treatment saturation 𝑝𝑝′′ > 𝑝𝑝′, 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖�𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 𝜇𝜇,𝑃𝑃𝑖𝑖,𝑖𝑖−�̃�𝑖,𝛿𝛿� = 𝑝𝑝′′� ≥ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖�𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 𝜇𝜇,𝑃𝑃𝑖𝑖,𝑖𝑖−�̃�𝑖,𝛿𝛿� = 𝑝𝑝′� 

for all 𝜇𝜇 ∈ {0,1}. 

In a setting with real-world saturation level 𝑝𝑝, analysis that does not account for cross-

community spillover effects focuses on estimating 𝜆𝜆1𝑖𝑖(𝑝𝑝). Assumption 1 implies that 𝜆𝜆1𝑖𝑖(𝑝𝑝) is a 

lower bound on both quantities of interest, 𝜋𝜋𝑖𝑖(1) and 𝜋𝜋𝑖𝑖(𝑝𝑝). 

Proposition 1 (Bounding the treatment effect): Suppose for all p, 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖�𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 1,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝� ≥ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖�𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 0,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝�, then 𝜋𝜋𝑖𝑖(1) ≥ 𝜋𝜋𝑖𝑖(𝑝𝑝) ≥ 𝜆𝜆1𝑖𝑖(𝑝𝑝)  

for all 𝑝𝑝 ∈ (0, 1). 

Proof: We proceed in two steps. We first show that 𝜋𝜋𝑖𝑖(𝑝𝑝′′) ≥ 𝜋𝜋𝑖𝑖(𝑝𝑝′) for all 𝑝𝑝′′ > 𝑝𝑝′. Note that 

𝜋𝜋𝑖𝑖(𝑝𝑝′′) − 𝜋𝜋𝑖𝑖(𝑝𝑝′) = �𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 | 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 1,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝′′� − 𝑦𝑦0,𝑖𝑖� − �𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 | 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 1,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 =

𝑝𝑝′� − 𝑦𝑦0,𝑖𝑖� = 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 | 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 1,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝′′� −  𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 | 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 1,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝′�. This is 

greater than or equal to zero by the monotonicity assumption, implying that 𝜋𝜋𝑖𝑖(1) ≥ 𝜋𝜋𝑖𝑖(𝑝𝑝) for 
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all 𝑝𝑝 < 1.  We next show that 𝜋𝜋𝑖𝑖(𝑝𝑝) ≡ 𝜆𝜆1𝑖𝑖(𝑝𝑝) +  𝜆𝜆2𝑖𝑖(𝑝𝑝) ≥ 𝜆𝜆1𝑖𝑖(𝑝𝑝). For all 𝑝𝑝 > 0, Assumption 1 

implies that 𝜆𝜆2𝑖𝑖(𝑝𝑝) ≡ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 | 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 0,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 𝑝𝑝� − 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 | 𝑇𝑇𝑖𝑖,𝑖𝑖−1 = 0,𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 = 0� ≥ 0.  

The result follows. � 

It is possible to tie this result more closely to the empirical analysis by taking into 

account the fact that local saturation rates actually differ across communities. Allow 𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 to be 

distributed across communities as 𝑃𝑃𝑖𝑖,𝑖𝑖−1,𝛿𝛿 ∼ 𝐹𝐹, with density 𝑓𝑓. Then in practice the average 

difference in outcomes across treated and untreated communities is: 

� 𝜆𝜆1𝑖𝑖(𝑃𝑃)𝑓𝑓(𝑃𝑃)𝑑𝑑𝑃𝑃
𝑃𝑃=1

𝑃𝑃=0
. 

Since the result in Proposition 1 holds for all 𝑝𝑝 ∈ (0,1), it holds for this above expression, which 

is effectively a weighted average across different saturation proportions p in this set. 

The above discussion abstracts away from other covariates. As we discuss below, their 

inclusion in a regression analysis is important given the nature of the experimental design and 

stratified sampling, and also potentially improves statistical precision. One covariate that we 

include in the empirical analysis is the local density of all primary school pupils (in all schools, 

treatment and control). We show in Table S2 of the appendix and in Miguel and Kremer (2004) 

that the local numbers of all primary school pupils and of treatment school pupils are unrelated to 

treatment school assignment, although there is a statistically significant but small difference in 

the treatment saturation proportion; the fact that this proportion is slightly lower in treatment 

schools implies that the treatment school versus control school difference is, once again, likely to 

be a lower bound on true impacts.  Drug take-up rates in treatment schools are also not 
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significantly correlated with the local density of either treatment schools or of all schools 

(Miguel and Kremer 2004, Appendix Table A.II). Taken together, these patterns imply that any 

potential bias in the coefficient estimate on the treatment school indicator would again lead us to 

understate deworming impacts. 

Note that the bound above will still be valid, albeit looser, if the geographic spread of 

epidemiological externalities over time means that even “pure control” (i.e., 𝑇𝑇 = 0 and 𝑃𝑃 = 0) 

schools are subject to some spillover from the program. Those whose infection intensity falls due 

to cross-school spillovers could themselves generate positive spillovers for other nearby schools, 

which would then lead to less local re-infection with worms, and so on.  

Denote worm prevalence at location 𝑗𝑗 at time 𝑡𝑡 by 𝜔𝜔𝑖𝑖𝑖𝑖. Given the geographic spread of 

worm infections by 𝛿𝛿 kilometers per year, 𝜔𝜔𝑖𝑖𝑖𝑖 will be a non-decreasing function of worm 

prevalence at time 𝑡𝑡 − �̃�𝑡 at all locations within radius 𝛿𝛿�̃�𝑡. Thus given the results in Miguel and 

Kremer (2004), worm infection prevalence after the decade-long gap between treatment and the 

follow-up survey in our study will potentially be reduced by worm treatment within a distance of 

at least 30 km (=10 years x 3 km per year) and perhaps beyond. And while, of course, these 

effects may fade over time, no school in our study area of roughly 15 km by 40 km can be 

considered a “pure control” in the presence of these externalities. 

It is straightforward to generalize the bounding result above to the empirically relevant 

case of an extended follow-up period. Denote the time period of the original deworming program 

as 𝑡𝑡 = 0, and subsequent years take on values of 𝑡𝑡 = 1, 2, 3, … 𝑡𝑡∗, where 𝑡𝑡∗ is the period of the 
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follow-up survey. While in the short-run (as in Miguel and Kremer 2004) the cross-school local 

treatment saturation measure due to the deworming program (𝑃𝑃𝑖𝑖,0,𝛿𝛿) is likely to fairly accurately 

capture the magnitude of the externality impacts, over time the infection “feedback” effects 

generated in all directions among nearby schools would lead us to understate the magnitude of 

the true cross-school externalities. Determining the magnitude of all these externality effects is 

beyond the scope of this paper, as the spatial and temporal variation in our data do not allow us 

to precisely estimate the wide range of potentially relevant parameters, but in Appendix B we 

prove that the bounding result still holds in this case. 

As noted, Miguel and Kremer (2004) report cross-school externalities up to 3 km from 

the school, and at 3-6 km. There was a statistical program coding error in the construction of the 

cross-school externality term in Miguel and Kremer (2004) limiting the analysis to the 12 closest 

schools. Correcting the coding error does not substantively alter the estimated effects of 

externalities between 0-3 or 0-4 km, since there were never more than 12 schools within 4 km, 

but does lead to less precisely estimated overall effects between 3-6 km from a school; Miguel 

and Kremer (2014) and Ahuja et al. (2015) contain a complete discussion of the updated 

empirical results. We consider cross-school externalities up to 6 km in the analysis in this paper 

for two reasons. First, we do so since spillover effects are likely to diffuse spatially over time, as 

discussed above. Second, we consider externality effects out to 6 km because an F-test in a 

seemingly unrelated regression (SUR) framework rejects the hypothesis that the externality 

effects are zero in the 3-6 km range for the outcomes we consider (P-value < 0.001), indicating 

that their inclusion is appropriate (see appendix B2 for details). The main results are largely 
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unchanged using alternative specifications for the cross-school externality effect, including 

dropping these terms from the analysis entirely, as we discuss below. 

3.2 Estimation 

The econometric approach relies on the PSDP’s prospective experimental design, namely, that 

the program exogenously provided individuals in treatment (Group 1 and 2) schools two to three 

additional years of deworming. We focus on intention-to-treat estimates, since compliance rates 

are high, and previous research showed that untreated individuals within treatment communities 

experienced gains (Miguel and Kremer 2004), complicating estimation of treatment effects on 

the treated within schools. Since PRH suggest potentially different labor market effects of health 

investments on males and females in low-income “brawn-based economies”, occupations are 

sharply differentiated by gender in our data, and roughly twice as many women in our sample 

have children compared to the men, we follow the tradition in the labor market literature of 

examining prime-age women and men separately (Altonji and Blank 1999; Bertrand 2011).4 

The dependent variable is outcome 𝑌𝑌𝑖𝑖𝑖𝑖, for individual 𝑖𝑖 in school 𝑗𝑗, in the KLPS-2 survey:  

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝜆𝜆1𝑇𝑇𝑖𝑖 + 𝜆𝜆2𝑃𝑃𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖,0
′ 𝛽𝛽 + 𝜀𝜀𝑖𝑖𝑖𝑖   (4) 

The outcome is a function of the assigned deworming program treatment status of the 

individual’s primary school (𝑇𝑇𝑖𝑖); the treatment saturation proportion among neighboring schools 

                                                 
4 This study is registered on the American Economic Association RCT registry (#AEARCTR-0001191). We did not 
register a pre-analysis plan, as they were uncommon in Economics when data collection for this study was 
completed in 2009.  
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within 6 km during the original treatment phase of the PSDP (𝑃𝑃𝑖𝑖); a vector 𝑋𝑋𝑖𝑖𝑖𝑖,0 of baseline 

individual and school controls; and a disturbance term 𝜀𝜀𝑖𝑖𝑖𝑖, which is clustered at the school level. 

The 𝑋𝑋𝑖𝑖𝑖𝑖,0 controls include school geographic and demographic characteristics used in the PSDP 

“list randomization”, the student gender and grade characteristics used for stratification in 

drawing the KLPS sample (Bruhn and McKenzie 2009), a pre-program average school test score 

to capture academic quality, the 2001 cost-sharing school indicator (described below), the total 

number of primary school pupils within 6 km of the school, and survey month and wave 

controls. Estimates are weighted to make the results representative of the full PSDP sample 

originally in grades 2-7, taking into account the sampling for KLPS and the tracking strategy. 

 One issue with employing local saturation rates as an explanatory variable in practice is 

that they are a function of the local treatment decisions of households in the relevant local area, 

leading to possible endogeneity concerns, for instance, if take-up is higher in areas where people 

have unobservably better labor market prospects. To address these concerns we construct the 

local saturation measure 𝑃𝑃𝑖𝑖 as a function of the local coverage rate 𝑅𝑅𝑖𝑖 of treatment school pupils 

within 6 km of school 𝑗𝑗, which is exogenously determined by the experimental design, times the 

average take-up rate of deworming drugs in the entire sample at the full subsidy level. This 

implies that variation in the local saturation variable is driven entirely by the experimental 

design, with the average take-up rate serving as a useful “rescaling” to allow for a more 

meaningful interpretation of the magnitude of estimated effects. 
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The main coefficient of interest is 𝜆𝜆1, which captures gains accruing to individuals in 

treatment schools relative to the control; since deworming was assigned by school rather than at 

the individual level, some of the gains in treatment schools are likely due to within-school 

externalities. This is an attractive coefficient to focus on since it is a lower bound on the overall 

effect of deworming (Proposition 1). Another coefficient of some interest is 𝜆𝜆2, which captures 

the spillover effects for nearby schools, following the approach in Miguel and Kremer (2004), in 

which cross-school externalities are estimated by taking advantage of variation in the local 

density of treatment schools induced by the randomization. As explained further in that paper, 

since reinfection rates are high in the area, the magnitude of externality effects may be either 

larger or smaller than the effect of own-school treatment. We have analyzed other specifications, 

including interactions between treatment and local saturation, and non-linearities in saturation 

(appendix B), but cannot reject that  𝑇𝑇𝑖𝑖 and 𝑃𝑃𝑖𝑖 are additively separable and enter in linearly. 

The direct treatment effect estimates and externality effects are locally relevant to the 

infection rates and treatment saturation rates in the setting we study, and while we do not find 

evidence of interaction effects or non-linear externalities, it remains possible that such effects 

would emerge at treatment levels outside the support of values that we observe. One case of 

potential interest is one in which treatment coverage rates are even higher than those observed in 

our setting, for instance, if all local schools were assigned to treatment (rather than 

approximately two-thirds, as in our case). In this case, it is possible to place bounds on the cost-

effectiveness of deworming using our data under the highly conservative assumption that there 



19 
 

are no additional benefits from boosting deworming treatment saturation, i.e., in the notation 

above that 𝜋𝜋(𝑝𝑝) = 𝜋𝜋(𝑝𝑝′) and 𝜆𝜆2(𝑝𝑝) = 𝜆𝜆2(𝑝𝑝′) for all 𝑝𝑝′ > 𝑝𝑝. 

For concreteness, consider the case in which all estimates are based on local treatment 

saturation rates in the neighborhood of 𝑝𝑝 < 1 and program coverage 𝑅𝑅 <  1. Due to 

externalities, program benefits are experienced both in the schools assigned to treatment and the 

control schools, and can be represented as 𝑅𝑅𝜋𝜋(𝑝𝑝) + (1 − 𝑅𝑅)𝜆𝜆2(𝑝𝑝) = 𝑅𝑅𝜆𝜆1(𝑝𝑝) + 𝜆𝜆2(𝑝𝑝). Then 

under an assumption of constant marginal per capita treatment costs (which again is likely to be 

conservative given the fixed costs of setting up a treatment program), the cost of expanding local 

program coverage to all schools in the area (𝑅𝑅 = 1) is 1/𝑅𝑅 times the cost of covering proportion 

𝑅𝑅 of the population. In our case, this is implemented by multiplying the baseline costs of 

deworming treatment by 1/(2/3)  =  1.5, while the total benefits are assumed to remain 

unchanged.  We present bounds using this approach in section 5 below.5 

 

4. Results 

After briefly discussing long-run health effects, we present impacts on education, labor outcomes 

and living standards, by gender. Results are broadly consistent with the PRH model.  

4. 1 Long-run health impacts 

                                                 
5  Of course, if 𝜋𝜋(𝑝𝑝) = 𝜋𝜋(𝑝𝑝′) and 𝜆𝜆2(𝑝𝑝) = 𝜆𝜆2(𝑝𝑝′) for all 𝑝𝑝′ >  𝑝𝑝, policymakers have the option of replicating a 
program like that implemented in this study, in which case the relevant cost-effectiveness calculations would be 
based on the costs and benefits at coverage and saturation levels found in our data. 
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While treatment dramatically reduced moderate-heavy infections in the short-run (Table I, row 

1), adult helminth lifespans are typically between one and four years (Hotez et al. 2006), so the 

direct effects of treatment will no longer be present a decade later in the data used in this 

analysis. Any long-run effects would likely instead be due to effects on other diseases through an 

immunological channel, or to the effects of changes in schooling or labor outcomes.  

Although we find no long-term effects on height or body mass index in the full sample, 

there is some evidence of persistent health gains in terms of self-reported health and reduced 

miscarriage. Respondent reports that their health was “very good” rose by 4.0 percentage points 

(SE 1.8, P < 0.05), on a base of 67.3% in the control group. We cannot reject equal effects for 

both genders, but gains are slightly larger for women. We do detect gains in body mass index 

among treated women (P < 0.05). Furthermore, deworming reduced miscarriage rates among 

treatment group females by 2.8 percentage points (SE 1.3, P < 0.05) on a base of 3.9 percent in a 

probit analysis (where each pregnancy is the unit of observation). The lack of miscarriage impact 

among the partners of men in the treatment group suggests a health, rather than a living 

standards, channel for the impacts estimated among sample women. 

4.2 Education impacts 

The medium-run follow up (Miguel and Kremer 2004) found increased primary school 

participation among both boys and girls, consistent with the idea that health investment increased 

the endowment of healthy time (Grossman 1972), and that for children, this increased time went 

into schooling rather than working. The long-run follow up data show that treatment continued to 
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boost boys’ primary school enrollment, but that average academic performance did not improve, 

with higher enrollment translating into higher rates of grade repetition but no increase in 

educational attainment, and no significant differences between the treatment and control groups 

in rates of passing the secondary school exam or enrolling in secondary school (Table II). We do 

not have data on whether increased primary-school enrollment improved non-cognitive skills, a 

possible channel for later labor market impacts (Heckman, Stixrud and Urzua 2006). Recall that 

in the models in Bleakley (2010) and Pitt, Rosenzweig and Hassan (2012), deworming would not 

increase secondary schooling if attractive work opportunities emerged around the time of 

primary school completion (roughly ages 15 to 18) and if health investments raised the marginal 

return to work as much as the discounted return to secondary schooling. 

In contrast, our primary specification suggests that deworming leads to marked academic 

gains for girls, increasing the rate at which girls passed the secondary school entrance exam by 

9.6 percentage points (P < 0.05) on a base of 41%.  This increase of roughly one quarter reduces 

the existing gender gap in exam performance by half. Consistent with the model in PRH (2012), 

in which positive health shocks disproportionately induce women to allocate more time to human 

capital acquisition, treatment also halved the gender gap in secondary school entry, increasing 

girls’ secondary enrollment by 0.325 years, or a third (appendix Table S3), and increasing 

overall years of school enrollment for women by 0.354 years (SE 0.179, P < 0.10) (Table II). The 

estimated increase in girls’ educational attainment is 0.261 years (SE 0.171, P = 0.13), as some 

of the increased enrollment translated into increase grade repetition, as was the case for males. 
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4.3 Impact on labor hours and occupation 

Average weekly hours worked in the control group are quite low, at 20.3 for men and 16.3 for 

women (although many women in our sample are engaged in home production or child-rearing 

activities, and time spent on these activities was not systematically collected in KLPS-2). Among 

men, deworming increased time spent working by 17%, or 3.49 hours per week (SE 1.42, P < 

0.05, Table III, Panel A). In contrast, estimated effects on non-household work hours among 

women are small. It is worth noting that one quarter of both the treatment and control groups are 

still in school by the time of the survey (Table II), and labor market outcomes are less 

meaningful for this group. We next focus on a subpopulation that is largely older than school 

age, which we operationalize as those who were older than 12 years old (the median age) at 

baseline, and thus at least 22 or 23 years of age at follow-up: only 5% of control individuals in 

this age group were still enrolled in any school at follow-up, compared to 39% among younger 

control individuals. In this older subpopulation, average hours worked per week in the control 

group is somewhat higher, at 28.2 hours for men and 21.7 hours for women. For this subgroup 

among both genders, deworming increased time spent working by 13.0%, or 3.29 hours per week 

(SE 1.80, P < 0.10), and treated men worked 3.74 more hours per week (P < 0.10). Treated 

women worked 2.01 more hours per week, and although we cannot reject the hypothesis of no 

effect for women, we also cannot reject the hypothesis of equal treatment effects by gender.  

 Deworming changes how work hours are allocated across sectors and occupations, with 

important distinctions by gender (Table III, Panel B). Taking the genders together, hours in non-
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agricultural self-employment increase by 45% (P<0.01), and results are shown by gender in 

Figure II (Panels A and B). There are no statistically significant changes in hours worked in 

agriculture or wage employment. 

Breaking results down by gender, point estimates suggest that deworming leads men to 

increase total work hours, and we cannot reject the hypothesis of equal percentage increases 

across sectors (Table III, Panel B). In contrast, women increase time in non-agricultural self-

employment by 1.86 hours (SE 0.81, P < 0.05) on a base of 2.7 hours, nearly 70%, and reduce 

hours worked in agriculture by 1.27 hours (SE 0.56, P < 0.05). This shift from agricultural work 

into non-agricultural self-employment could potentially be interpreted as consistent with PRH, 

although the evidence is not dispositive. 77% of self-employed women work in retail, which 

seems less physically-intensive than agriculture, and there is evidence that retail profits are tied 

to math skills (Kremer et al. 2013). However, there is no significant difference in education 

levels between women working in agriculture and those in non-agricultural self-employment. 

Deworming treatment also leads to shifts in occupational choice (Table III, Panel C). 

Treatment respondents are three times more likely to work in manufacturing (coefficient 0.0110, 

P < 0.05) from a low base of 0.005. On the flip side, casual labor – which typically does not 

require regular work hours – falls significantly (P < 0.05). Manufacturing jobs require more 

hours per week than other occupations: they average 53 hours per week, compared to 42 hours 

for all wage earning jobs, 34 hours for self-employment and 15 hours for agriculture. Workers in 

manufacturing tend to miss relatively few work days due to poor health, at just 1.1 days in the 
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last month (in the control group), compared to 1.5 days among all wage earners. Manufacturing 

jobs are highly paid, with average earnings more than double those in casual labor (Table S17). 

Deworming also leads to an increase in cash crop cultivation for the entire sample (Table III, 

Panel C), with a gain of 1.36 percentage points (P < 0.05) on a low base of 0.73 percent.  

Estimates of occupational effects by gender are less precise, but there are significant 

increases in manufacturing among men and in growing cash crops among women. The 

particularly large effect of deworming on physically-demanding and well-paid manufacturing 

employment among men is consistent with the PRH model. There is suggestive evidence of a 

shift into high work hour occupations for men but not women (see appendix C). 

The increase in secondary education, non-agricultural self-employment, and cash crop 

cultivation among women may reflect a desire to engage in higher productivity activities within 

existing family and social constraints, which may complicate moves into manufacturing or other 

lucrative male-dominated jobs. More speculatively, these may pay off in the form of higher 

future earnings, even if not yet apparent in our data. 

4.4 Impact on living standards 

Living standards can be assessed using data on either consumption or earnings. We do not have 

data on overall consumption, but do have data on the number of meals consumed. Treatment 

respondents eat 0.095 more meals per day (SE 0.029, P < 0.01, Table IV, Panel A). The increase 

in meals eaten is larger for men, at 0.125 meals/day (P < 0.01) than for women (0.051 meals), 

implying that treatment males miss just under one fewer meal each week than control males.  
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Treatment effects are particularly large for the older than school age subsample (across both 

genders), at 0.119 more meals per day (P < 0.01). 

Total earnings are the sum of earnings in wage labor, in non-agricultural self-

employment, and in agriculture, each weighted by the proportions working in each sector.  We 

begin by considering total non-agricultural earnings (the sum of wage labor earnings and non-

agricultural self-employment profits), which are likely to be more accurately captured than 

agricultural production in this setting. Those with no non-agricultural earnings are included in 

the analysis (with zero earnings). In the full sample, treatment respondents’ total non-agricultural 

earnings are 15.0% higher (112 shillings, SE 96, Table IV, Panel A), although the effect is not 

statistically significant. In the older than school age subsample, the effect is considerably larger 

at 22.6% (278 shillings, SE 167, P = 0.101). 

We next consider each source of income separately. In principle, the proportions working 

in different sectors could differ by treatment group, but note that there are no significant 

differences by treatment status (appendix Table S5, odd numbered columns). While weighted 

earnings by sector can always be summed to generate total earnings, the treatment versus control 

differences within particular sectors presented above reflect a combination of treatment and 

selection effects. Treatment and control individuals work as wage laborers at similar rates and 

have similar selection patterns along observable dimensions (Tables S5, S14-S15), but there are 

significantly different patterns of selection into wage employment and non-agricultural self-

employment by treatment status (Table S5). This suggests that selection concerns are potentially 
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important, and that it may not be appropriate to interpret the differences between treatment and 

control individuals within employment sectors as causal impacts. Recall that the consumption 

and total non-agricultural earnings results above (in Panel A of Table IV) are based on the full 

sample, and the issue of sorting across employment sectors does not apply. 

 Those working in wage employment likely have the best measured data. The distribution 

of log wage earnings is shifted to right for both men (Figure II, Panel C) and women (Panel D) in 

the treatment group relative to control. Log earnings (Table IV, Panel B) are 26.9 log points (SE 

8.5, P < 0.01) greater. The estimated differences in earnings are larger than those of hours, 

consistent with the hypotheses that treatment leads men to shift into jobs that require more work 

hours and that pay better.  Log wages computed as earnings per hour worked (among those who 

work at least 10 hours per week) are 19.7 log points (SE 10.2, P < 0.10) greater in the treatment 

group.  Wage earnings differences between treatment and control are also positive among the 

larger number of respondents who had ever earned wages since 2007, with an average difference 

of 22.5 log points (P < 0.01) during the most recent earnings period.  

 The data on self-employment profits are likely measured with somewhat more noise. 

Monthly profits are 22% larger in the treatment group, but the difference is not significant (Table 

4, Panel C), in part due to large standard errors created by a few male outliers reporting 

extremely high profits. In a version of the profit data that trims the top 5% of observations, the 

difference is 28% (P < 0.10). 
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With no changes in the proportion of respondents in different sectors, and estimated 

increases in earnings of more than 20% among wage earners – and similar (if less precisely 

estimated) profit increases among the self-employed – treatment will have increased overall 

earnings unless agricultural earnings declined. Unfortunately, we lack sufficient data on 

agricultural earnings to perform a direct test. However, several patterns suggest that it is unlikely 

agricultural earnings declined, and highly unlikely that they declined sufficiently to outweigh the 

gains in other sectors. Recall that cash crop cultivation increased, and that hours worked in 

agriculture did not change. Most importantly, if agricultural productivity had declined, one might 

expect that food consumption among those working in agriculture would decline, but there is in 

fact an increase of 0.065 meals (SE 0.033) in this group (appendix C).  

4.5 Heterogeneous Treatment Effects and Alternative Specifications 

While statistical power is limited, we do not find strong evidence of heterogeneous treatment 

effects on education, labor market or living standards outcomes by baseline school grade, local 

treatment saturation, or the presence of schistosomiasis (as proxied for by distance to Lake 

Victoria, see appendix section C.4 and Tables S6-S13).  

Estimated deworming impacts are largely robust to whether or not we account for the 

cross-school spillovers at all, and to accounting for cross-school externalities at different 

distances (appendix Tables S6-S9, column 5). Appendix Figure S4 shows that effects typically 

remain statistically significant across alternative specifications of the externality effects for key 

outcome measures (although for the “passed primary exam” outcome for females, P-values range 
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from 0.02 to 0.26). The externality results are similar if we focus on the number of local pupils, 

rather than the proportion, in treatment schools (appendix Tables S6-S9, column 2). 

4.6 Accounting for multiple inference 

To further assess robustness, we next account for multiple inference, and then examine two 

additional sources of variation in exposure to deworming.  

Appendix Tables S18-S21 present the false discovery rate adjusted q-values (analogues 

to the standard P-value) that limit the expected proportion of rejections within a set of 

hypotheses that are Type I errors (Benjamini, Krieger and Yekutieli 2006; Anderson 2008). Key 

results are robust to this adjustment: taking both genders together, the deworming impact on 

meals eaten and labor earnings is statistically significant at the 1% level (q-value < 0.01), on total 

hours worked in non-agricultural self-employment and manufacturing employment is significant 

at the 5% level, and the reduction in casual labor jobs, the increase in cash crops, and trimmed 

self-employed profits are significant at the 10% level. There is less power with the gender 

subsamples but most key results continue to hold at the 10% level (appendix section C.5).  

4.7 Variation in cost-sharing 

Because the temporary 2001 deworming treatment cost-sharing program substantially reduced 

take-up, it provides an additional, orthogonal source of variation in treatment, albeit with less 

statistical power. Reassuringly, the estimated effect of cost-sharing has the opposite sign of the 

main deworming treatment effect for 26 of the 30 outcomes presented in Tables I-IV (excluding 
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the first outcome in Table 1, which was measured before cost-sharing was introduced), and this 

pattern seems extremely unlikely to occur by chance. In addition, stacking the data and using 

seemingly unrelated regression (SUR) estimation across outcomes, we reject the hypothesis that 

the cost-sharing coefficients are zero (P<0.001); see appendix section B for further details. 

4.8 Cross-school treatment externalities 

Cross-school externalities provide a third source of exogenous variation in exposure to 

deworming.  Several of the externality effect estimates in Tables I-IV are significant and large in 

magnitude, including for miscarriage, manufacturing employment, and meals eaten (P < 0.05). 

Under the null hypothesis of no epidemiological externalities, there should be no correlation with 

the direct treatment effect. In 26 of the 30 post-2001 specifications in Tables I-IV, the sign of the 

treatment effect and the cross-school externality effect are the same, which is extremely unlikely 

to occur by chance; an alternative test estimates a correlation of 0.750 between the t-statistics for 

the direct effect and the externality effect across outcomes (P-value < 0.001); and using SUR, we 

reject the hypothesis that the 0-6 km cross-school externality effects are zero (P<0.001); see 

appendix B. The existence of cross-school externalities provides additional evidence on the 

robustness of the deworming impacts, and reassurance that estimated effects are not simply due 

to some form of reporting bias in the treatment schools. 

 

5. The Rate of Return and Fiscal Impacts of Deworming Subsidies 
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The estimated impacts of deworming on labor market outcomes, combined with other data, allow 

us to estimate the internal financial rate of return and fiscal impacts of deworming subsidies.  

We observe only a snapshot of labor market outcomes at the time of the follow-up 

survey, rather than the whole path of future hours and earnings, and thus the calculations in this 

section are by necessity somewhat speculative. We adopt what we consider to be a reasonably 

conservative approach in bounding the effect of lifetime income. In particular, we base our 

calculations on differences in hours worked between the treatment and control groups. This is 

likely to be conservative for a number of reasons: 1) estimated differences in earnings among 

wage workers are larger than differences in hours (Table IV, Panel B); 2) among women, 

treatment is associated with greater educational attainment and higher test scores, and it seems 

plausible that this could lead to higher future earnings, particularly if education and experience 

are complements (Card 1999); 3) there is increased non-agricultural self-employment, 

particularly among women, and it seems plausible that some of this consists of investments that 

could pay off in increased earnings later; and 4) estimated effects on hours worked and non-

agricultural earnings are larger among those who are older and more likely to be out of school. 

 For projections about the future path of earnings and thus government revenues, we 

examine the following expression: 
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𝑆𝑆2𝑄𝑄(𝑆𝑆2) − 𝑆𝑆1𝑄𝑄(𝑆𝑆1) < � 𝑁𝑁𝛾𝛾 [ 𝜏𝜏(𝑆𝑆1) � (1 (1 + 𝑟𝑟)⁄ )𝑖𝑖𝑤𝑤𝑖𝑖

𝑖𝑖=50

𝑖𝑖=0

�𝜆𝜆1,𝛾𝛾 + 𝑝𝑝𝜆𝜆2,𝛾𝛾 𝑅𝑅⁄ �
𝛾𝛾

 

−𝐾𝐾 � (1 (1 + 𝑟𝑟)⁄ )𝑖𝑖Δ𝐸𝐸�𝛾𝛾𝑖𝑖(𝑆𝑆1, 𝑆𝑆2) ]
𝑖𝑖=50

𝑖𝑖=0

 

(5) 

The left hand side is the fiscal cost to the government of increasing a deworming subsidy 

from S1 to S2, which in turn may affect deworming take-up Q; take-up is non-decreasing in the 

subsidy. To compute this, we use information on take-up at different price levels from Kremer 

and Miguel (2007), and current estimates of per pupil mass deworming treatment costs (provided 

by the NGO Deworm The World) of $0.59 per year. The total direct deworming cost then is the 

2.41 years of average deworming in the treatment group times this figure, or 𝑀𝑀 = $1.42 per 

person treated and $1.07 per pupil in a deworming treatment school, given average take-up of 

75%. Under partial deworming subsidies, as implemented in the 2001 cost-sharing program, 

individuals paid an average of $0.27 for the medicines, so the direct cost to the government 

would be $1.15 for each fully dewormed individual over 2.41 years. In Table V, Panel A, we 

compare these subsidy levels with the default case of no subsidies, 𝑆𝑆1 = 0. 

 The right hand side captures the implications for government revenue of increasing the 

subsidy from S1 to S2. 𝑁𝑁𝛾𝛾 is the fraction of individuals in the sample of type 𝛾𝛾 ∈ Γ, which we 

operationalize as gender, following the empirical analysis. The first term in the square brackets 

captures the increase in tax revenue generated by any increase in work hours: 𝜏𝜏(𝑆𝑆1) is the 

prevailing tax rate; r is the per period interest rate; wt is the wage rate in year t; 𝜆𝜆1,𝛾𝛾 is the 

estimated deworming impact on work hours in treatment schools for gender γ ; 𝜆𝜆2,𝛾𝛾 is the 
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estimated externality effect; and p and R denote the program’s saturation and coverage, as above.  

These gains are captured over an individual’s working life, which we take to be 50 years.  

The second term in the square brackets accounts for the fact that improved child health 

may lead the government to accrue additional educational expenditures, for instance, if 

secondary schooling rates increase for type γ, which we find for females. Let K capture the cost 

of an additional unit of schooling, and Δ𝐸𝐸�𝛾𝛾𝑖𝑖(𝑆𝑆1, 𝑆𝑆2) denote the average increase in schooling for 

type γ  when the deworming subsidy increases from S1 to S2. To compute the right hand side of 

eqn. 5, we use a combination of estimates from this paper and other Kenyan data. The hours 

worked estimates (Table III) indicate that treatment group males work 3.49 more hours per week 

(𝜆𝜆1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 3.49), whereas the treatment effect estimate for women is near zero (𝜆𝜆1,𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

0.32). The point estimate of the increase in work hours due to epidemiological externalities is 

10.20 hours/week for an increase in treatment saturation from 0 to 100%, and we combine this 

information with each school’s local density of treated pupils to determine 𝑝𝑝𝜆𝜆2,𝛾𝛾.6 Since this 

externality estimate is not significant at conventional levels, we focus on the case of no 

epidemiological externality (𝜆𝜆2,𝛾𝛾 = 0) in panel B, and present results in Panel C assuming the 

externality has the estimated magnitude for completeness. We examine the impact of a program 

that treated two thirds of local schools, as in the PSDP, and scale up externality gains by the 

inverse of the coverage rate (1/𝑅𝑅) since the control group also benefits from externalities. 

                                                 
6 Results are similar when externalities are disaggregated by gender (not shown). 
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At the time of writing, the Government of Kenya pays 11.85% interest on its sovereign 

debt and inflation is approximately 2%, so we set the real cost of capital 𝑟𝑟 to 9.85%.7 We assume 

that the sample population begins working ten years after they first began receiving deworming 

and retires after 40 years of work.8  From year 10 post-treatment onwards, we combine estimated 

𝜆𝜆1,𝛾𝛾 and 𝜆𝜆2,𝛾𝛾 values from Tables III-IV above with the pattern of lifecycle earnings reported in 

the most recent publicly available data, the 1998/1999 Kenya Integrated Labour Force Survey, 

and assume recent Kenyan economic growth trends continue. This forward projection of 

earnings is necessary given the limitations of existing data, and implies that the calculations that 

follow are somewhat speculative. We also assume the initial starting wage w is $0.17 per hour, 

which is a weighted average of wages by sector in our data and the mean Kenyan agricultural 

wage in Suri (2011), with weights corresponding to control group mean hours per sector (Table 

IV).9  Kenyan taxes (mainly on consumption) absorb roughly 16.6% of GDP so we set the tax 

rate under no subsidy to 16.6%.10 

We estimated deworming impacts on school enrollment by gender and year (appendix 

Table S3), and also gathered detailed information on current teacher salaries and class sizes from 

                                                 
7 See http://www.centralbank.go.ke/securities/bonds/manualresults.aspx and World Bank Development Indicators. 
This is a conservative assumption since other potential funders of deworming subsidies (e.g., international 
organizations, private donors) are likely to face lower interest rates; use of a lower interest rate greatly increases the 
returns to deworming in the calculations described below. 
8 This ten year gap roughly corresponds to the time elapsed from the start of PSDP until the KLPS2 survey (2007-
09). By ignoring the time before KLPS2 data was collected, it underestimates gains due to greater work hours prior 
to the survey. Yet it misses any reduction in work hours due to substitution of school for work. However, existing 
estimates of child labor productivity suggest these foregone earnings are likely to be small (Udry 1996). 
9 In Suri (2011), the mean agricultural wage is $0.16, and the control group mean is $0.23 (Table IV, Panel B) for 
those working for wages. Self-employed wages are calculated by dividing control group monthly profits (Table IV, 
Panel C) by 4.5 times the hours worked per week among those working in self-employment, for a wage of $0.14.  
10 From World Development Indicators, government expenditures are roughly 19.5% of GDP, and from 
http://blogs.worldbank.org/africacan/three-myths-about-aid-to-kenya about 15% of government expenditure is 
financed from donors, thus 0.195*0.85=0.166. 

http://www.centralbank.go.ke/securities/bonds/manualresults.aspx
http://blogs.worldbank.org/africacan/three-myths-about-aid-to-kenya
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the Ministry of Education, allowing us to estimate per capita schooling costs 𝐾𝐾 for both primary 

and secondary schooling. Because the PSDP program did not increase the number of teachers or 

classrooms in primary schools, and there is no reason to believe the Kenyan government adjusted 

these factors in response to the program (based on our observations as well as on discussions 

with local officials), any costs of increased classroom congestion at the primary level due to 

deworming would have been incurred by students in these schools and thus is already captured in 

the labor market outcomes in our data.  We therefore focus on measuring the fiscal costs to the 

government of increased secondary school enrollment, since these costs would be incurred either 

by the government (by paying for additional teachers) or by secondary school students.  Teacher 

salaries constitute the bulk of recurrent government education spending, at over 90% of 

secondary school spending (Otieno and Colclough 2009), and most other expenses are 

traditionally covered by tuition and local parent fees. We factor in the costs that the government 

would need to incur in order to maintain the secondary school pupil-teacher ratio, using our 

estimated per student secondary school teacher cost of $116.85 per year (Table V, Panel A).  

Assuming no externality gains,  ∑ 𝑁𝑁𝛾𝛾 ∑ (1 (1 + 𝑟𝑟)⁄ )𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖=50
𝑖𝑖=0 𝜆𝜆1,𝛾𝛾𝛾𝛾  = $142.43, implying 

that individuals gain an average of $119 in take-home pay and the NPV of government revenue 

increases by $23 per person (Table V, Panel B). The additional public educational costs incurred 

are estimated to be approximately $10.71, so the net increase in government revenue is $12.90, 

far greater than the $1.07 subsidy.  If deworming also generates positive externalities, the 

earnings gains are much larger, with a per capita net increase in government revenue of $102.97 

(Panel C).  
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A policy relevant case is one in which the coverage (𝑅𝑅) of the population assigned to 

deworming increased from the roughly two thirds in our study sample up to all local primary 

schools, as in a national mass treatment program. In that case, the relative cost-effectiveness of 

the program could depend on the degree to which total program treatment effects depend on 

local treatment saturation, i.e., on the shapes of both 𝜋𝜋(𝑝𝑝) and 𝜆𝜆2(𝑝𝑝), something we cannot 

directly estimate (the 10-90 range for saturation rate 𝑃𝑃𝑖𝑖 in our data is 0.427 to 0.599). However, 

we can bound the cost-effectiveness of a program that covered the entire population under the 

conservative assumption that there are no additional net benefits from boosting the treatment 

rate. The cost per treatment school student (under full subsidies) would rise by 50% from $1.07 

to $1.60 while the NPV net increase in government revenue would remain unchanged at $12.90, 

implying that a program treating all schools would also be cost effective.  

In terms of other extensions, our model assumes a linear income/consumption tax but the 

result is robust to a range of alternative assumptions on taxation, including the possibility of a 

lower tax rate in our predominantly rural sample; see appendix section C for further discussion.  

A standard approach to assessing the desirability of a program is to calculate the social 

internal rate of return (IRR), which solves for the interest rate that equates the NPV of the full 

social cost and all earning gains, whether taxed or untaxed: in the above notation, 𝑀𝑀𝑄𝑄(𝑆𝑆) =

∑ 𝑁𝑁𝛾𝛾�∑ (1 (1 + 𝑟𝑟)⁄ )𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖=50
𝑖𝑖=0 �𝜆𝜆1,𝛾𝛾 + 𝑝𝑝𝜆𝜆2,𝛾𝛾 𝑅𝑅⁄ � − 𝐾𝐾∑ (1 (1 + 𝑟𝑟)⁄ )𝑖𝑖Δ𝐸𝐸�𝛾𝛾𝑖𝑖(0, 𝑆𝑆)𝑖𝑖=50

𝑖𝑖=0 �𝛾𝛾 . The 

annualized social IRR with no health spillovers (𝜆𝜆2,𝛾𝛾 = 0) is very high at 31.8%, and with health 

spillovers is a massive 51.0%. 
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These fiscal and IRR calculations are speculative for several reasons, including the 

projection of future earnings, as noted above. This exercise also ignores broader general 

equilibrium effects of a mass national deworming program on wage levels and the capital stock; 

these macroeconomic effects could theoretically either increase or decrease the effects we 

present in this section, although they seem unlikely to overturn the main patterns (appendix C 

contains a discussion). They are also relatively imprecisely estimated: we bootstrapped standard 

errors (with 1000 runs), and find that net revenue gains are less than zero 29% of the time for the 

case of no health spillovers. So while estimates indicate that the expected net revenue effects of 

deworming are large, there remains considerable uncertainty around these estimates. 

Yet these calculations are also conservative in several dimensions. For one, note that 

even in cases where the net revenue effects are not positive, the gains in the labor market due to 

deworming help partially offset the original expenditure outlay on deworming subsidies, 

substantially reducing their net fiscal cost. The fiscal and internal rate of return exercises above 

also only rely on income and ignore any welfare gains through other channels. It is plausible that 

those who had better health and nutrition as a result of deworming benefited from an increased 

endowment of healthy hours, and experienced direct utility gains from simply feeling better, and 

the same could be said for any inherent welfare benefits of increased schooling. Finally, we do 

not incorporate recent evidence that positive deworming externalities extend beyond those in our 

sample to other age groups: Ozier (2014) finds that living in a deworming treatment community 

early in life (age 0 to 2) leads to improved cognitive and academic performance ten years later. 
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Older individuals in the area also plausibly benefited from the health spillovers of treatment but 

we lack data to quantify any such gains. 

 

6. Conclusion 

Previous work (Miguel and Kremer 2004) found that a primary-school deworming program 

increased school participation. This paper shows that some education and labor market outcomes 

improve one decade after receiving deworming. These gains could have substantial positive 

welfare impacts for households living near subsistence, like many in our Kenyan sample. A 

conservative estimate of the annualized financial internal rate of return (IRR) to deworming is 

high at 31.8%. Our best estimate is that deworming subsidies will generate more in future 

government revenue than they cost in up-front expenditures.11 

The high rate of return to deworming in our Kenyan context is consistent with the finding 

of sizeable deworming impacts on education and incomes in the 20th century U.S. South 

(Bleakley 2007; Bleakley 2010), and recent evidence on positive long-run educational impacts in 

East Africa in Ozier (2014) and Croke (2014). Of course, there is uncertainty around our 

estimates and returns could differ in other environments, but even given some uncertainty, or 

substantial weight on priors that the returns to deworming are smaller, this growing body of 

                                                 
11 Some have argued that certain other public health investments could also have this property, including tobacco 
cessation (Lightwood and Glantz 2013) and reduced drunk driving (Ditsuwan et al. 2013). 
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evidence suggests that the expected financial rate of return would likely exceed conventional 

hurdles for public health investment (Ahuja et al. 2015). 

The results also have implications for several related literatures. Many studies argue that 

early childhood health gains in utero or before age three have the largest impacts (Almond and 

Currie 2010) and some have argued that interventions outside a narrow window of child 

development will not have major effects. Our evidence suggests that health interventions among 

school-aged children, which are too late in life to affect cognition or height, can have long-run 

impacts on labor outcomes by affecting the amount of time people spend in school or work. 

While there is a literature on differences in work hours across wealthy countries (Prescott 

2004), the determinants of labor hours in poor countries are less studied. Work hours are quite 

low in some low-income settings (Fafchamps 1993), including among our control group. The 

findings here suggest that poor child health may be one factor behind this low adult labor supply. 

Finally, our analysis does not account for potential negative externalities from 

deworming through drug resistance. Geerts and Gryseels (2000) and Geerts and Gryseels (2001) 

highlight mass deworming policy approaches that could minimize the development of resistance, 

and while there is limited current evidence on drug resistance related to human deworming, it has 

been documented in livestock (Albonico, Engels and Savioli 2004).  Despite their concerns, 

Geerts and Gryseels (2001) do still conclude that community-based mass deworming treatment 

makes sense in high morbidity settings, such as our Kenyan study area, and we agree it is 

unlikely that resistance would be large enough to overturn the case for subsidies. Worm 
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prevalence is likely to decline over time with economic development, as more people have 

sanitation facilities, wear shoes, and take other actions to avoid infection, and it is therefore 

unlikely to be optimal to hold back on treating the sick today in order to “save” the drug for later. 

Moreover, if there is a need to cut back on drug administration to reduce the risk that resistance 

will develop, cutting back on veterinary use in high-income countries may be a more appropriate 

initial response.  
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Table I: Deworming impacts on health 
  Coefficient estimate (s.e.) on 

deworming treatment indicator 
Coeff. est. (s.e.) 
externality term 

Control group mean (s.d.);  
Number of Observations 

 All Male Female All All Male Female 
Moderate-heavy worm infections in 2001 -0.166*** 

(0.026) 
-0.191*** 
(0.028) 

-0.144*** 
(0.032) 

-0.074 
(0.223) 

0.327 
(0.469) 
2,297 

0.319 
(0.466) 
1,216 

0.337 
(0.473) 
1,081 

Self-reported health "very good" indicator at KLPS-2 0.040** 
(0.018) 

0.023 
(0.025) 

0.051** 
(0.025) 

0.128 
(0.115) 

0.673 
(0.469) 
5,070 

0.713 
(0.452) 
2,585 

0.629 
(0.483) 
2,485 

Height at KLPS-2 -0.152 
(0.272) 

0.041 
(0.376) 

-0.367 
(0.396) 

-2.136 
(1.632) 

167.3 
(7.9) 
5,057 

171.7 
(6.4) 
2,579 

162.4 
(6.4) 
2,478 

Body mass index (BMI) at KLPS-2 0.121 
(0.104) 

-0.131 
(0.112) 

0.358** 

(0.167) 
0.138 

(0.539) 
21.50 
(2.36) 
5,048 

21.31 
(2.10) 
2,576 

21.71 
(2.62) 
2,472 

Miscarriage indicator (obs. at pregnancy level) at KLPS-2  
(for females – themselves; for males – their partners) 

-0.015* 
(0.008) 

0.000 
(0.004) 

-0.028** 
(0.013) 

-0.078** 
(0.037) 

0.030 
(0.171) 
5,022 

0.015 
(0.123) 
1,622 

0.039 
(0.194) 
3,238 

Notes: The sample includes all individuals surveyed in KLPS-2 (2007-2009), except for the moderate-heavy worm infection data, which is from the 2001 PSDP 
parasitological survey.  Each entry in columns 1-3 is from a separate OLS regression, except the miscarriage outcome, which are marginal probit specifications in 
which each observation is a pregnancy. All observations are weighted to maintain initial population proportions, except for the 2001 moderate-heavy worm 
infection results. Standard errors are clustered by school. Significant at 90% (*), 95% (**), 99% (***) confidence.  The coefficient on the deworming treatment 
indicator term is 𝜆𝜆1 in equation 1. The cross-school externality term is the “saturation rate” – the number of treatment group (Group 1,2) pupils within 6 km 
divided by the total number of primary school pupils within 6 km, multiplied by the average deworming take-up rate in the sample – demeaned, and the 
coefficient on the externality term is 𝜆𝜆2 in equation 1.  All regressions except for the first include controls for baseline 1998 primary school population, 
geographic zone of the school, survey wave and month of interview, a female indicator variable, baseline 1998 school grade fixed effects, the average school test 
score on the 1996 Busia District mock exams, total primary school pupils within 6 km, and the cost-sharing school indicator. The first row includes controls for 
baseline 1998 primary school population, geographic zone of the school, a female indicator variable, baseline 1998 school grade fixed effects, the average school 
test score on the 1996 Busia District mock exams, and total primary school pupils within 6 km. Self-reported health “very good” takes on a value of one if the 
answer to the question “Would you describe your general health as somewhat good, very good, or not good?” is “very good”, and zero otherwise. Sixteen 
unreasonably low values for height are dropped, but the height results are substantively the same if these are not dropped. Sixteen unreasonably high values (at 
98 and above) for BMI are dropped (these are the same 16 observations that were dropped for height); note that the female BMI effect estimate is not statistically 
significant at traditional confidence levels if these observations are retained (not shown). 
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Table II: Deworming impacts on education 

  Coefficient estimate (s.e.) on 
deworming treatment indicator 

Coeff. est. (s.e.) 
externality term 

Control group mean (s.d.);  
Number of Observations 

 All Male Female All All Male Female 
Total years enrolled in school, 1998-2007 0.294** 

(0.145) 
0.150 

(0.166) 
0.354* 
(0.179) 

1.015 
(0.839) 

6.69 
(2.97) 
5,037 

7.05 
(2.93) 
2,567 

6.29 
(2.96) 
2,470 

Total years enrolled in primary school, 1998-2007 0.155** 
(0.075) 

0.238** 
(0.102) 

0.026 
(0.098) 

0.784 
(0.485) 

4.38 
(2.48) 
5,038 

4.43 
(2.42) 
2,568 

4.32 
(2.55) 
2,470 

Repetition of at least one grade (1998-2007) indicator 0.063*** 
(0.018) 

0.072*** 

(0.025) 
0.053* 
(0.030) 

0.099 
(0.123) 

0.672 
(0.470) 
5,084 

0.669 
(0.471) 
2,595 

0.676 
(0.468) 
2,489 

Grades of schooling attained by 2007 0.150 
(0.143) 

-0.030 
(0.148) 

0.261 

(0.171) 
0.323 

(0.842) 
8.72 

(2.21) 
5,084 

9.06 
(2.28) 
2,595 

8.34 
(2.07) 
2,489 

Attended secondary school indicator 0.030 
(0.035) 

-0.035 
(0.038) 

0.090** 
(0.038) 

-0.032 
(0.217) 

0.421 
(0.494) 
5,084 

0.504 
(0.500) 
2,595 

0.329 
(0.470) 
2,489 

Passed secondary school entrance exam during 1998-2007 
indicator 

0.050 
(0.031) 

0.004 
(0.030) 

0.096** 
(0.040) 

0.220 
(0.161) 

0.505 
(0.500) 
4,974 

0.590 
(0.492) 
2,541 

0.409 
(0.492) 
2,433 

Out-of-school (at 2007-09 survey) indicator -0.006 
(0.022) 

0.022 
(0.030) 

-0.029 
(0.026) 

0.185 
(0.142) 

0.75 
(0.43) 
5,058 

0.70 
(0.46) 
2,582 

0.80  
(0.40) 
2,476 

Notes: For details on the regressions, see the notes for Table I. Each entry in columns 1-3 is from a separate OLS regression.  
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Table III: Deworming impacts on labor hours and occupational choice 
  Coefficient estimate (s.e.) on deworming 

treatment indicator 
Coeff. est. (s.e.) 
externality term 

Control group mean (s.d.);  
Number of Observations 

Panel A: Hours worked All Male Female All All Male Female 
Hours worked in all sectors in last week, full sample 1.58 

(1.04) 
3.49** 
(1.42) 

0.32 
(1.36) 

10.20 
(7.80) 

18.4 
(23.1) 
5,084 

20.3 
(24.6) 
2,595 

16.3 
(21.1) 
2,489 

Hours worked in all sectors in last week, older than school age 
subsample (older than 12 years of age at baseline) 

3.29* 
(1.80) 

3.74* 
(2.21) 

2.01 
(2.45) 

18.0 
(11.8) 

25.4 
(26.1) 
2,235 

28.2 
(27.2) 
1,201 

21.7 
(24.1) 
1,034 

Panel B: Sectoral time allocation (full sample)        
Hours worked in non-agricultural self-employment in last week 1.51*** 

(0.55) 
1.35* 
(0.73) 

1.86** 
(0.81) 

6.00* 
(3.23) 

3.3 
(12.8) 
5,084 

3.8 
(13.7) 
2,595 

2.7 
(11.7) 
2,489 

Hours worked in agriculture in last week -0.07 
(0.42) 

1.03* 
(0.55) 

-1.27** 
(0.56) 

-0.55 
(3.41) 

8.3 
(11.4) 
5,084 

7.8 
(11.6) 
2,595 

8.8 
(11.2) 
2,489 

Hours worked in wage earning in last week 0.14 
(0.84) 

1.11 
(1.32) 

-0.27 
(1.08) 

4.74 
(5.07) 

6.9 
(18.5) 
5,084 

8.8 
(20.0) 
2,595 

4.8 
(16.5) 
2,489 

Panel C: Occupational choice (full sample)        
Manufacturing job indicator 0.0110*** 

(0.0040) 
0.0192** 
(0.0077) 

0.0050 
(0.0035) 

0.0531** 
(0.0250) 

0.0049 
(0.0698) 

5,084 

0.0068 
(0.0824) 

2,595 

0.0027 
(0.0522) 

2,489 
Construction/casual labor job indicator -0.0053** 

(0.0026) 
-0.0031 
(0.0030) 

-0.0073 
(0.0045) 

-0.0196 
(0.0154) 

0.0048 
(0.0691) 

5,084 

0.0040 
(0.0628) 

2,595 

0.0057 
(0.0756) 

2,489 
Domestic service job indicator -0.0050 

(0.0061) 
0.0016 

(0.0038) 
-0.0134 
(0.0129) 

-0.0097 
(0.0322) 

0.0192 
(0.1372) 

5,084 

0.0067 
(0.0813) 

2,595 

0.0331 
(0.1791) 

2,489 
Grows cash crop indicator 0.0136** 

(0.0060) 
0.0068 

(0.0071) 
0.0207** 
(0.0094) 

0.0111 
(0.0260) 

0.0073 
(0.0850) 

5,068 

0.0080 
(0.0890) 

2,588 

0.0065 
(0.0803) 

2,480 
Notes: For details on the regressions, see the notes for Table I. Each entry in columns 1-3 is from a separate OLS regression. “Older than school age” denotes 
those older than 12 years of age (the median age) at baseline in 1998. Agricultural work in Panel B includes both farming and pastoral activities.   
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Table IV: Deworming impacts on living standards and labor earnings 
  

Coefficient estimate (s.e.) on deworming 
treatment indicator 

Coeff. est. 
(s.e.) 

externality 
term 

Control group mean (s.d.);  
Number of Observations 

Panel A: Consumption and non-agricultural earnings All Male Female All All Male Female 
Number of meals eaten yesterday, full sample 0.095*** 

(0.029) 
0.125*** 
(0.041) 

0.051 
(0.043) 

0.415*** 
(0.124) 

2.16 
(0.64) 
5,083 

2.10 
(0.65) 
2,595 

2.23 
(0.62) 
2,488 

Number of meals eaten yesterday, older than school age 
subsample (older than 12 years of age at baseline) 

0.119*** 
(0.042) 

0.147*** 
(0.051) 

0.070 
(0.063) 

0.406* 
(0.236) 

2.11 
(0.66) 
2,234 

2.04 
(0.67) 
1,201 

2.20 
(0.63) 
1,033 

Total non-agricultural earnings (wage earnings plus self-
employed profits), past month, full sample 

112 
(96) 

139 
(171) 

98 
(68) 

226 
(694) 

749 
(2,132) 
5,084 

1,115 
(2,703) 
2,595 

340 
(1,075) 
2,489 

Total non-agricultural earnings (wage earnings plus self-
employed profits), past month, older than school age subsample 
(older than 12 years of age at baseline) 

278 
(167) 

312 
(265) 

188 
(139) 

1,152 
(971) 

1,231 
(2,440) 
2,235 

1,774 
(2,903) 
1,201 

527 
(1,375) 
1,034 

Panel B: Wage earnings (among wage earners)        

Ln(Total labor earnings), past month 0.269*** 
(0.085) 

0.244** 
(0.109) 

0.165 
(0.175) 

1.141 
(0.869) 

7.79 
(0.88) 
710 

7.92 
(0.87) 
542 

7.46 
(0.81) 
168 

Ln(Wage = Total labor earnings / hours), past month, if ≥10 
hours per week of work 

0.197* 
(0.102) 

0.181 
(0.128) 

0.225 
(0.194) 

0.378 
(0.898) 

2.68 
(0.91) 
601 

2.88 
(0.89) 
448 

2.21 
(0.81) 
153 

Ln(Total labor earnings), most recent month worked since 2007 0.225*** 
(0.070) 

0.221** 
(0.097) 

0.178* 

(0.104) 
0.941 

(0.597) 
7.83 

(0.91) 
1,175 

7.97 
(0.89) 
819 

7.54 
(0.89) 
356 

Panel C: Non-agricultural self-employment outcomes  
(among non-agricultural self-employed) 

       

Total self-employed profits (self-reported) past month 384 
(308) 

111 
(465) 

250 
(265) 

-77 
(1,646) 

1,766 
(2,619) 

585 

2,135 
(3,235) 

313 

1,265 
(1,261) 

272 
Total self-employed profits past month, top 5% trimmed 341* 

(177) 
259 

(309) 
80 

(219) 
440 

(1,256) 
1,221 

(1,151) 
553 

1,184 
(1,056) 

284 

1,265 
(1,261) 

269 
Total employees hired (excluding self) 0.416 

(0.361) 
0.245 

(0.403) 
0.603 

(1.275) 
-0.886 
(2.547) 

0.188 
(0.624) 

633 

0.253 
(0.614) 

343 

0.097 
(0.630) 

290 
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Notes: For details on the regressions, see the notes for Table I. Each entry in columns 1-3 is from a separate OLS regression, except for “total employees hired” 
in Panel C, which utilizes a negative binomial regression. “Older than school age” denotes those older than 12 years of age (the median age) at baseline in 1998. 
Real earnings measures account for the higher prices found in the urban areas of Nairobi and Mombasa. We collected price surveys in both rural western Kenya 
and in urban Nairobi during KLPS-2, and base the urban price deflator on these data; results are unchanged without this price adjustment. The total non-
agricultural earnings measure in Panel A includes those with zero reported earnings and profits. The wage, earnings and profits results in Panels B and C are 
among those who reported wage employment or non-agricultural self-employment, respectively. When computing wages, we exclude those with fewer than 10 
hours per week to address division bias from noise in estimation of number of hours worked. “Total employees hired” is among those who are self-employed. 
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Table V: Fiscal Impacts of Deworming Subsidies 

Panel A: Calibration Parameters 
No 

Subsidy 
Partial 

Subsidy 
Full 

Subsidy Notes 
Size of Subsidy: S $0.00 $1.15 $1.42 From Deworm the World; Kremer and Miguel (2007) 
Take-up rate: Q(S) 5% 19% 75% From Kremer and Miguel (2007) 
Average per-person cost: SQ(S) $0.00 $0.22 $1.07 Subsidy x take-up rate 
Mean per person increase in work hours/week: λ1 0.00 0.44 1.75 Men: increase of 3.49 hours/week; women: no change 

(Table III). Partial subsidy multiplied by Q(S)/Q(full) 
Mean increase in work hours/week from externality: pλ2 0.00 1.76 5.21 10.20 (Table III) x Coverage of treatment school students within 6 km 

(R, 68.1%) x [Q(S) for full subsidy, Q(S)/Q(full) for partial subsidy] 
Mean increase in schooling costs 0.00 2.71 10.71 NPV of (additional secondary schooling costs per pupil-year ($116.85) 

    x direct increase in secondary schooling). Partial subsidy multiplied by 
Q(S)/Q(full). 

Mean increase in schooling costs from externality 0.00 3.40 13.42 NPV of (additional secondary schooling costs per pupil-year ($116.85)  
    x externality increase in secondary schooling). Partial subsidy 

multiplied by Q(S)/Q(full). 
Panel B: No health spillovers     
Annual increase in per-person earnings $0.00 $3.91 $15.44 λ1 x starting wage x 52 
NPV increase in per-person earnings (relative to no subsidy) - $36.08 $142.43 9.85% Annual (real) interest rate in Kenya 
NPV increase in per-person government revenue - $3.27 $12.90 NPV earnings x 16.575% tax rate – Direct schooling costs 
Panel C: With health spillovers     
Annual increase in per-person earnings $0.00 $26.77 $83.11 (λ1 + (p/R) λ2) x starting wage x 52 
NPV increase in per-person earnings (relative to no subsidy) - $246.99 $766.81 9.85% Annual (real) interest rate in Kenya 
NPV increase in per-person government revenue  - $34.83 $102.97 NPV earnings x 16.575% tax rate – (Direct+externality schooling costs) 

Notes: The deworming cost is US$0.59 per year, and the average number of years treated was 2.41 years. Figures in Panels B and C are relative to the “no 
subsidy” case. We use a starting hourly wage rate (w) of $0.17, a weighted average of wages by sector with weights corresponding to control group mean hours 
per sector (Table IV). We use Suri’s (2011) mean wage of $0.16 as the agricultural wage, and the control group mean of $0.23 (Table IV, Panel A) for those 
working for wages. Self-employed wages are calculated by dividing control group monthly profits (Table IV, Panel B) by 4.5 times the hours worked per week 
among those working in self-employment, for a wage of $0.14. The public finance data is from the Kenyan Central Bank website and the World Bank 
Development Indicators. The NPV of per-person lifetime earnings in the no subsidy and no health spillovers case is $1,509.96. We assume that earnings start 10 
years after deworming treatment and continue for 40 years. Life cycle earnings profiles for Kenya are created using data from the 1998/1999 Kenya Integrated 
Labour Force Survey, by regressing individual earnings on age, age squared, and indicator variables for female, attained a schooling level of 
primary/secondary/beyond, and province of residence. Future earnings are also assumed to increase by the average per-capita GDP growth rate in Kenya during 
the 2001 to 2011 period, namely 1.52% per annum (World Bank Development Indicators).  
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Figure I: Project Timeline of the  
Primary School Deworming Program (PSDP) and the Kenya Life Panel Survey (KLPS) 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2007-09: Kenya Life Panel Survey (KLPS) Round 2 data collection (Wave 1 2007-08, 
Wave 2 2008-09), N=5,084. 

2003-05: Kenya Life Panel Survey (KLPS) Round 1 data collection (Wave 1 2003-04, 
Wave 2 2004-05), N=5,211. 

January 1998: 75 primary schools chosen for Primary School Deworming Program 
(PSDP), and assigned to three groups of 25 schools (Group 1, Group 2, Group 3). Baseline 
pupil and school survey data collection. 

2002-2003: Group 3 
receives free 
deworming 

2002-2003: Group 2 
receives free 
deworming 

2002-2003: Group 1 
receives free 
deworming 

2001: Group 3 receives 
free deworming 

2001: A random half of 
Group 2 receives free 
deworming, half 
participate in cost-
sharing 

2001: A random half of 
Group 1 receives free 
deworming, half 
participate in cost-
sharing 

1999-2000: Group 3 
does not receive 
deworming 

1999-2000: Group 2 
receives free 
deworming 

1999-2000: Group 1 
receives free 
deworming 

1998: Group 3 does not 
receive deworming 

1998: Group 2 does not 
receive deworming 

1998: Group 1 receives 
free deworming 

1998-2001: Ongoing unannounced school participation data collection visits 
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Figure II: Kernel densities of hours worked in self-employment and log earnings in wage employment, treatment versus control 

 
Notes: Kernel density in the treatment group is shown in black, and in the control group shown in grey. Panel A displays hours worked in self-employment in the 
last week (among those working 10 to 80 hours in the sector) for males, and Panel B displays the same for females. Panel C displays log earnings in wage 
employment in the past month (among those with positive earnings) for males, and Panel D displays the same for females.   
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