
WORMULATOR :

SIMULATOR FOR

RAPIDLY SPREADING MALWARE

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by

Jyotsna Krishnaswamy

December, 2009

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

WORMULATOR: A SIMULATOR FOR RAPIDLY SPREADING MALWARE

by

Jyotsna Krishnaswamy

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp, Department of Computer Science Date

Dr. Melody Moh, Department of Computer Science Date

Dr. Teng Moh, Department of Computer Science Date

Abstract

This project addresses the need for an application level simulator to simulate Internet-wide

phenomenon such as flash worms, botnets, Distributed Denial-of-Service attacks, etc. There are

many network simulators intended for parallel and distributed simulation, but most are designed to

simulate low level communication protocols such as TCP/IP. The desire to simulate rapidly

spreading malware for research and teaching purposes lead us to explore the Spamulator, which

was designed to simulate spam email on an Internet-wide scale. The Spamulator was developed by

a team at the University of Calgary. It is a lightweight, application level simulator, which

implements limited set of features of the Internet. In this project, the Spamulator is enhanced with

the User Datagram Protocol (UDP) to simulate UDP worms. The modified version of the

Spamulator is called the Wormulator. Wormulator tracks instantaneous network traffic, identifies

and signals congestion throughout the network. The Wormulator is further enhanced with the use

of POSIX threads instead of forking processes to create a distributed network of simulated servers.

The resulting tool is called the “Enhanced Wormulator”. Finally, a random scanning UDP worm

with behavior similar to the well known SQL Slammer worm is modeled to validate the results of

our simulation.

Results and data gathered from the simulation exhibit a qualitative resemblance to the real-

world SQL Slammer worm. “Enhanced Wormulator”, which uses POSIX thread instead of forking

a process, had a catalytic effect on the scalability factor of the simulation. The simulation was run

on a network of 30,000 server nodes. Hence, we conclude that rapidly spreading malware can be

effectively simulated using the Wormulator.

Acknowledgement

I take this opportunity to thank Dr. Mark Stamp, my project adviser, for his guidance and

support throughout my Master’s degree and my project. I also thank my professors, Dr. Melody

Moh and Dr. Teng Moh for serving as my committee. I am grateful to Dr. Kenneth Louden and Dr.

Horstmann for their support. I would like to mention and thank Dr. John Aycock for sharing his

work, the Spamulator, with us. Thanks to the Computer Science Department and the Graduate

School of San Jose State University for their unremitting patience and support.

I would like to thank my loving husband Vijay for believing in me and encouraging me in

all my endeavors. I thank my mom, dad and brother for providing me with the courage to realize

my potential. I thank my Uncle Ravi and Aunt Claire for their love and support. Last but not the

least, this project would not have been a success if not for my friends, who have always been

around for thought provoking discussions. I thank Aditya, Vinay, and Preeti for their timely help

and support in my work.

Table of Contents

 Chapter 1
 Introduction...7

1.1Purpose of this Project...8
1.2Order of the Project..9

 Chapter 2...11
 Related Work..11

2.1Traditional Network Simulators..11
2.2Parallel/Distributed Network Simulators...12
2.3High Level, Application Level, Parallel/Distributed Worm Simulators.................................13
2.4Spamulator...13

 Chapter 3...15
 Spamulator..15

3.1Architecture...15
3.2Implementation Details..16
3.3Proposed Modifications...18

 Chapter 4...20
 Wormulator...20

4.1Architecture...20
4.2Implementation Details..21
4.3Requirements Extraneous to the Wormulator..23
4.4Limitations of the Wormulator..25

 Chapter 5...27
 Enhanced Wormulator...27

5.1Implementation Details..27
5.2Challenges of Multi Threading..28

 Chapter 6...30
 Simulation..30

6.1Experimental Set Up..30
6.2Experiment...34
6.3Collection of Data..37
6.4Results ...38
6.5Evaluation of the Results...42

 Chapter 7...44
 Inference..44

7.1Proposal...44
7.2Future Work...45

 Chapter 8...47
 Conclusion...47

 References..48

 Appendix A..52
 IP Tables and libIPQ..52

 Appendix B..54
 Inter Process Communication...54

 Appendix C..56
 POSIX Threads...56

Chapter 1

Introduction

Computer worms exhibiting a swarm-like behavior continue to beleaguer the Internet. A

computer worm is a self-propagating malicious software program, which spreads on a network by

exploiting some vulnerability on the target hosts. The worm may not alter target hosts, but it will

likely disrupt network traffic. According to [2], a well-designed worm could infect the entire

Internet in 15 seconds.

SQL Slammer worm (sometimes called Sapphire) was the fastest computer worm in

history. The worm, released on January 2003, exploited stack buffer overflows in MS SQL server

and MSDE engines. It is said to have infected 90 percent of the vulnerable hosts in less than 10

minutes. The most novel feature of the worm is its speed, which is attributed to its size – it fits in a

single UDP packet. SQL Slammer worm uses random scanning to spread itself. The worm

randomly generates an Internet address to find the next vulnerable target. Random scanning worms

are only a subset of known worm spread algorithms [5].

Unlike random scanning worms, Flash worms adopt a hit-list scanning strategy. The author of

the worm collects a list of potentially vulnerable machines before the worm is released. According

to [1], the list is used to compute an efficient spread tree, which is encoded in to the worm. When

the flash worm is released on to an initial machine, it scans down the collected list of vulnerable

machines. When it infects a machine it divides the hit list in half, communicating half of the list to

the recipient worm, and keeping the other half of the list [3]. Even though Flash worms are yet to

be seen in reality, they are of importance for two reasons [1]:

- Flash worms are fastest possible worms.

- Given the off-line nature of the computation of the worm spread map, Flash worms are of

interest for studying and exploring containment defenses.

Topological scanning uses information contained on the victim machine to harvest a new

target. Email worms have used this tactic to harvest potential targets. A worm attacking a web

server could use the URLs stored on the server to find potential targets. Morris worm used this

technique. Code Red II employed local subnet scanning. Instead of selecting machines at random,

the worm scanned for targets on local addresses, those which were identical in the upper address

range [3].

Worms such as Conficker (January 2009) not only spiraled around the Internet at lightning

speed, but also harnessed infected computers into unified systems, called botnets [7]. The term

botnet is used to define a network of infected hosts, called bots, which are under the control of a

human called the botmaster. Botnets recruit vulnerable machines by remotely exploiting software

vulnerabilities by the use of worms, and social engineering, etc [4]. Botnets are largely used for

criminal activities such as extortion, email spamming, identity theft, and software piracy [4].

The rise of malware on the Internet mandates the need to study and research rapidly spreading

malware on an isolated test network. A framework must be laid to simulate and analyze the impact

of malware on the Internet.

1.1 Purpose of this Project

The main objective of this project is to simulate rapidly spreading malware on the Internet. The

requirements for the simulation are:

 A light weight application level network simulator.

 Simulate a limited set of Internet features such as network bandwidth, and the effects of

congestion on the network.

 Model a real world example of rapidly spreading malware. We chose to simulate the SQL

Slammer worm as there is abundant information and data available about the worm.

 Model a scalable network of nodes.

 Validate the results of our simulation with the actual data and behavior of the SQL

Slammer worm.

We hope that our simulator can be used to research and teach Internet-wide phenomenon such

as Distributed Denial-of-Service attacks, Botnets, XSS exploits, and develop and test innovative

defense mechanisms.

1.2 Order of the Project

Chapter 2 discusses relevant work pertaining to worm simulation. Significant projects and

their weakness are described. The justification for choosing Spamulator, a simulator to simulate

email spam, as the basis of our worm simulation is discussed.

Chapter 3 discusses the details of the Spamulator and the necessary modifications to

simulate rapidly spreading malware.

Chapter 4 describes the modified version of the Spamulator called the Wormulator. This

chapter also discusses other implementation details external to the Wormulator but essential for the

simulation, such as simulating a scalable distributed network of nodes, modeling network

bandwidth and effects of congestion on the network, and modeling a random scanning UDP worm.

Chapter 5 describes the “Enhanced Wormulator”, which is an improvement over the

“Wormulator” in Chapter 4. The improvement is mainly in the scalability factor of the number of

server nodes and simplification of the complexities built into the Spamulator/Wormulator.

Chapter 6 deals with the simulation itself. This chapter discusses the experimental set up,

followed by a preview of the simulation and data collection, and analysis and validation of the

results.

Chapter 7 elaborates on our approach to the problem of malware, limitations of our

simulation, and the possible future work.

Chapter 8 is the concluding chapter which reiterates our goals, achievements and

contribution to the field of computer network security and study of malware.

Appendix A provides background information on IP Tables and library libIPQ.

Appendix B discusses various Inter Process Communication Mechanisms used in the

simulation.

Appendix C describes the POSIX threads used in the simulation.

Chapter 2

Related Work

The work for this project can be categorized in three separate parts: modeling the SQL

Slammer worm, using a loop back network simulator, and modeling a limited set of features of the

Internet. The SQL Slammer exemplifies rapidly spreading malware, and the Wormulator is proof

of concept of simulating rapidly spreading malware. The following are associated work, which

serve as an insight to this project work.

2.1 Traditional Network Simulators

There are different network simulators for different types of networks. SENSE is a wireless

network simulator for sensor networks. It frees simulation models from interdependence usually

found in an object-oriented architecture, and promotes reusability, scalability and extensibility [8].

NeuroWeb is an Internet-based framework for the simulation of neural networks. It aims for using

the Internet as a transparent environment to allow users the exchange of information (neural

network objects, neural network paradigms) and the exploit of available computing resources for

neural network specific tasks [9].

Network Simulator (NS-2) is a popular network simulation tool for TCP/IP protocols and

algorithms. It is an object-oriented simulator that allows users to create realistic network topology,

network components such as routers, hosts, and monitor packet queue at the nodes, and simulate

wireless mobile nodes [10]. Although NS2 is widely adopted, there are some limitations to it. First,

it does not have the functions related with real IP addresses. Second, its agent mechanism makes it

inconvenient to configure a simulation task, such as the TCP connection behaviors [11].

OPNET, developed by OPNET technologies is a popular commercial tool used for TCP/IP

network simulation. It is an object-oriented and menu driven simulator with a user friendly

Graphical User Interface (GUI) [12]. OPNET is expensive making it infeasible for use in the

academic world. The SENSE, Neuro Web, NS-2, and OPNET simulators are sequential programs

that run on a single machine. This is not suitable to simulate malware, which propagates on a

distributed network such as the Internet.

2.2 Parallel/Distributed Network Simulators

To overcome the short comings of a sequential simulator, a team of researchers from

Georgia Institute of Technology developed a parallel library called libSynk, and used it to build the

first parallel discrete event simulator – GTNetS. The library libSynk was used to develop a parallel

version of NS2 called PDNS. GTNetS supports a large variety of TCP and UDP based

applications, TCP/IP/MAC layer protocols, mobile nodes, routing algorithms and distributed

simulation of a topology on network of workstations, a shared-memory symmetric multiprocessing

system, or a combination of both [14].

GloMoSim is a sequential/parallel library developed at University of California Los

Angeles, for simulation of large-scale Wireless Networks. Each module of the library simulates a

specific wireless communication protocol in the protocol stack [15]. According to [11], the above

simulators were originally designed to simulate and test communication protocols such as MPLS

and TCP/IP. They are not convenient for application layer simulation as they focus on lower levels

of the TCP/IP stack.

2.3 High Level, Application Level, Parallel/Distributed Worm Simulators

The first attempt to design a simulator for applications is the SimGrid, a simulation-based

framework for evaluating cluster, grid and P2P algorithms, and heuristics. SimGrid provides

several programming environments to develop a real distributed application, study the behavior of

a MPI application, and study theoretical problems and compare several heuristics [16]. However,

this is not a universal simulator for other distributed applications.

A more sophisticated and dedicated worm spread simulator called PAWS, developed by a

team from University of Delaware, runs on multiple PCs and models a realistic internet topology,

background traffic, and link bandwidth to capture effects of congestion. However, this is a packet

level simulation and requires a test bed such as Emulab to run the simulation [13]. Emulab is an

experimental network platform available to remote users [17]. According to [6], Emulab faces

scalability problems along with the risk of allowing a secure network have an external network

connection. An alternative to Emulab is virtualization provided by VMware, which hosts multiple

virtual machines on a single physical machine. This mechanism is resource-intensive and does not

scale well [18].

2.4 Spamulator

John Aycock, Heather Crawford, and Rennie deGraaf, Department of Computer Science,

University of Calgary developed an Internet simulator – the Spamulator to teach a course on spam

and spy ware [6]. The Spamulator is a lightweight network simulator running on a single machine.

According to [6], The Internet is a complicated thing; we do not need to simulate the entire

Internet, just those parts of it which are necessary for sending spam.

Thus, the Spamulator implements a limited set of features of the Internet such as Network

Routing Daemon for Transport Control Protocol and Domain Name Server for simulated servers.

The Spamulator is designed to simulate an Internet with millions of domains, work alongside

normal Internet applications, function under extremely heavy use, and is extensible for future

projects and research [6]. The Spamulator requires little or no physical hardware requirements as it

can be run on a single machine or a laptop [6].

From the above discussions, we decided that the Spamulator is the ideal choice to simulate

rapidly spreading malware for research and teaching purposes. An initial study of the tool revealed

that it supports only TCP applications such as Telnet. Hence, it we decided to extend the

Spamulator to provide UDP support. Additionally, the following features critical for the simulation

of a UDP worms were added to the simulator: 1) track network traffic, and 2) simulate the effects

of congestion in the network. The resulting simulator is called the Wormulator.

Chapter 3

Spamulator

This section begins with a level high architecture of the Spamulator, followed by

implementation details, and ends with the necessary modifications of the tool for the purpose of

simulating rapidly spreading malware.

3.1 Architecture

The Spamulator is a loop back network simulator, whose components run on a single

computer machine or a laptop. The architecture of the Spamulator is illustrated in Fig 3-1.1.

Outside World

Packet for a simulated
IP

SPAMULATOR:
 Find and launch server
 Redirect packets

Packet to non
simulated IP address

TCP Client Simulated Server

Packet redirected to
the simulated IP

Single
Computer

Figure 3-1.1 Architecture of Spamulator

Network packets that originate from a client program destined to a simulated server are

redirected to a local queue.

The packets on the queue are read by core of the Spamulator, the Loop Back Network Simulator

(LNS), which reroutes the packet to the local simulated server [6]. Return traffic from the

simulated server to the client program is handled in a similar manner. Network traffic not destined

to a simulated IP address is untouched by the Spamulator.

Apart from rerouting packets, the Spamulator finds and launches simulated servers, keeps

track of open connections, forwards packets between a server and a client, obtains domain name

information for the simulated servers from a local DNS, and performs clean up when a server

ceases to exist; thereby, acting as the backbone of the simulation. The Spamulator makes use of the

“Network Interface Card” (NIC), to send and receive packets. Therefore, the NIC must be active

while executing the tool.

The underlying architectural design principle is simplicity. This is apparent in what has

been excluded from the Spamulator – for instance, no attempt was made to simulate network

topology, latency, or failures [6].

3.2 Implementation Details

Spamulator has been implemented on two platforms: Linux and Mac OS [6]. Our

simulation is built on Linux platform and uses the Linux version of the Spamulator. Spamulator

makes use of the Linux packet-filtering rules: 1) MANGLE IP Table rules ensure that packets

destined for the simulated servers are queued on to a local queue instead of being sent out [19]. 2)

Packets on the queue are accessed by the Spamulator via the LibIPQ library [20]. See Appendix A

for more details on IP Tables and the library LibIPQ.

The core functionality of the Spamulator, packet handling, is managed by the LNS module.

The pseudo code for LNS is given in Figure 3-2.1. When LNS receives a packet, a new connection

is detected by seeing if P is a SYN packet. The IP address 127.0.0.1 is the loop back address of the

local machine and the IP address 127.0.0.2 is used as a sentinel value to detect return traffic [6].

The simulated server is launched by forking a child process. A pipe is created between the

Spamulator and the child process to communicate the server’s port number. When the server

writes back, a SIGIO signal is raised and handled by the LNS module.

 Create Stream socket

Receive packet P

 P is from source IP address As port Ps
 P is to destination IP address Ad, port Pd

if P is a new connection:

find server to handle connection
start server process
wait for port number P’d from simulated server
store (As, Ps, Ad, Pd, P’d) in table T
rewrite P into P:

 change As to 127.0.0.2
 change Ad to 127.0.0.1
 change Pd to P’d

else:
if As = 127.0.0.1 and Ad = 127.0.0.2:

 this is return traffic from the server
find entry (?,?,?,?,Ps) in T
rewrite P into P’:

 change Ps to Pd found in T
 change As to Ad found in T
 change Ad to As found in T

else:
find entry (As, Ps, Ad, Pd,?) in T
rewrite P into P’:

 change As to 127.0.0.2
 change Ad to 127.0.0.1
 change Pd to P’d found in T

send P’

Figure 3-2.1 Anatomy of the LNS - Spamulator [6]

The server mentioned in the code in Figure 3-2.1 is a stand alone C++ executable or a

script present under ‘/var/lns/useservers/’ directory. When LNS detects a new connection, it

follows the algorithm in Figure 3-2.2 to locate a server.

  A is the destination IP address as a string, e.g., "10.0.0.1"
 P is the destination port as a string, e.g., "42"
 Du = /var/lns/useservers

if executable file Du/A:P exists: return Du/A:P

if executable file Du/A exists: return Du/A

do a DNS reverse lookup

 destination IP address queried
 TXT record requested, not PTR record

return SERVER_NOT_FOUND

Figure 3-2.2 Anatomy of locating a server [6]

The Spamulator communicates with the servers through various Inter Process

Communication techniques: 1) each server is executed as a child process created by fork and exec

system calls. A pipe is opened between the server and the Spamulator, the read end of the pipe is

set to the Spamulator and the write end is set to the server. 2) Packets intercepted by the

Spamulator are forwarded to the simulated server by network sockets. 3) Signals are used for

asynchronous events between the Spamulator and its child processes- the simulated servers. See

Appendix B for more details on IPC used in the simulation.

3.3 Proposed Modifications

One of the goals of this project is to simulate the SQL Slammer worm, which is a UDP

worm. The Spamulator implements only Transmission Control Protocol. The first modification is

to implement User Datagram Protocol.

The SQL Slammer worm contributed to an explosive growth in network traffic across the

Internet resulting congestion in the network. To simulate the same network congestion, the second

modification to the Spamulator is to measure the instantaneous network traffic and model

congestion in the network.

A TCP application engages in a one-to-one dedicated connection between a client and a

server, which ceases to exist when a FIN packet is received. A new connection needs to be

established for subsequent communication. Our simulation differs from TCP applications in many

aspects: 1) A UDP application does not establish connection, 2) A UDP engages in many-to-one

connection where many clients can send a packet to one server, and 3) A UDP employs one-way

communication, from an infected machine to a potential target. Given these differences, the third

modification to the Spamulator is to store a table of open connections based on the destination IP

address and port number only unlike TCP connections, which store the source and the destination

details to identify a connection uniquely.

The modified version of the Spamulator is called the Wormulator, which is discussed in the

following Chapter 4.

Chapter 4

Wormulator

From Chapter 3 it is evident that the Spamulator cannot be used in its original form to

simulate rapidly spreading malware. This section begins with a high level architecture of the

Wormulator, followed by implementation details, and ends with the discussion of requirements

extraneous to the Wormulator, but essential for the simulation of the SQL Slammer worm.

4.1 Architecture

The Wormulator is an extension of the Spamulator with the addition of User Datagram

Protocol (UDP), measurement of instantaneous network traffic, and simulate effects of congestion

in the network. The architecture of the Wormulator is illustrated in Fig 4-1.1.

 Outside World

UDP Worm Packet
for a simulated IP

WORMULATOR
 Tracks Instantaneous Packet
 Signals Congestion to

Packet to non
simulated IP
address

TCP Client

Simulated Server

Packet redirected to
the simulated IP

Simulated Server

Single Machine

Figure 4-1.1 Architecture of Wormulator

The Wormulator is a modified version of the Spamulator providing User Datagram

Protocol to simulate UDP applications such as the UPD worm simulation. Since the Spamulator

supports connection-oriented TCP, we decided to make the Wormulator provide connectionless

UDP support. Study of the Spamulator revealed that the most significant modifications were to be

made in the core functionality of the Spamulator, the LNS module. All the other modules of the

Spamulator are included in the Wormulator and used as needed. Wormulator is implemented by

making minimal changes to the original design of the Spamulator.

Apart from providing UPD support, the Wormulator measures the instantaneous network

traffic, i.e. the number of packets in the network at a given instant of time. The Wormulator signals

congestion to all the simulated servers, when the network traffic generated by the worm increases

beyond a pre-defined limit. This is essential to capture the consequence of the UDP worm on the

network. See Appendix B for more details on the inter-process communication mechanisms

employed by the Wormulator.

4.2 Implementation Details

Wormulator is implemented on the Linux platform and uses the Linux version of the

Spamulator. The core functionality of the Spamulator, packet handling, managed by the LNS

module is modified to implement UDP in the Wormulator. The pseudo code for the modified LNS

with UDP is given in Figure 4-2.1. The IP address 127.0.0.1 is the loop back address of the local

machine. Since there is no return traffic in the simulation of the UDP worm, there is no need for a

sentinel value to detect return traffic. The Wormulator creates a datagram socket to read UDP

packets. An instant of time is measured by invoking ‘time (NULL)’ system call of Linux. If the

current time differs from the previous time, a new instance is determined.

User defined signals are used to simulate the effect of congestion in the network. SIGUSR1 signals

a congestion free network and SIGUSR2 indicates congestion in the network. The servers that

receive these signals control the rate of worm scan traffic accordingly. The total network

bandwidth is configurable.

 Define parameters:
 networkTraffic = 0.
 NETWORK_BANDWIDTH = 10000.
 congestion = FALSE;

Create User Datagram socket

Receive packet P

 P is from source IP address As port Ps
 P is to destination IP address Ad, port Pd

If in the same instance of time

networkTraffic ++
else:

networkTraffic = 0

if P is a new connection:
find server to handle connection
start server process
wait for port number P’d from simulated server
store (Ad, Pd, P’d) in table T
rewrite P into P:

 change As to 127.0.0.1
 change Ad to 127.0.0.1
 change Pd to P’d

else:
find entry (Ad, Pd,?) in T
rewrite P into P’:

 change As to 127.0.0.1
 change Ad to 127.0.0.1
 change Pd to P’d found in T


If (networkTraffic > NETWORK_BANDWIDTH)
 Congestion = TRUE

If (Congestion)
 send signal SIGUSR2 to all servers
else:

send signal SIGUSR1 to all servers

send P’

Figure 4-2.1 Anatomy of the modified LNS – Wormulator

When LNS receives a UDP packet, a new connection is detected by looking for an open

connection that matches the destination server IP address and port number. A significant deviation

from the Spamulator is in the particulars stored in connection table T in Figure 4-2.1. An existing

connection is uniquely identified by the destination address only and not by a combination of

source and destination address as in the Spamulator.

4.3 Requirements Extraneous to the Wormulator

To successfully simulate rapidly spreading malware similar to the real world malware, we

must implement additional features, which are external to the Wormulator but crucial for an

accurate simulation.

First and foremost, a distributed network of nodes is created to replicate the real world SQL

servers, which were targeted by the SQL Slammer worm. The worm on an infected server

generates random IP addresses and sends itself to these addresses. Hence, each server node is also

capable of sending worm packets to other servers. The mode of communication between these

nodes is via message passing in an asynchronous mode, which is similar to the Internet. A server is

a C++ executable named after a unique IP address and port number. The pseudo code of a

simulated server is given in Figure 4-3.1. The empty packet serves to bring the server alive before

initiating the worm spread. When a packet is sent for the first time to a server, the Wormulator

captures the packet and launches the server. The signals SIGUSR1 and SIGUSR2 are used to

control the rate of worm scan traffic. See figure 4-3.2 for more details on how this is done. See The

worm packet, if received, is handled by an independent thread. See Appendix C for more details

on pthreads.

 Create UDP socket and bind to a unique port number P

Write port number P to ostream, which is read by Wormulator

Create file to log statistics

Set up signal handlers:

 SIGINT cleans up & terminates server executable
 SIGUSR2 indicates congestion free network.
 SIGUSR1 indicates congested network with no bandwidth.

Receive worm packet P

 P is from source IP address 127.0.0.1 port 1
 P is to destination IP address 127.0.0.1 port P

if P is an empty packet:

do nothing, as this packet is sent to bring the server alive.

if P is a first non empty packet:

create a pthread to handle the worm packet.

Record time of infection in the log file.

Figure 4-3.1 Anatomy of a simulated server

 Define the following:
 wormMessage = absolute path of the worm

sleepRange = 100.0 ms

Create UDP socket to send self

In an infinite loop:

 generate random IP address of a simulated server, As
 calculate the corresponding port number, Ps
 send the ‘wormMessage’ to As: Ps
 sleep for the duration of ‘sleepRange’

Figure 4-3.2 Anatomy of a UDP worm

While the SQL Slammer worm had no malicious payload, it caused considerable harm by

overloading networks and disabling database servers. Many sites lost connectivity as local copies

of the worm saturated their access bandwidths [5].

Once a machine is compromised, the worm tries to propagate itself. A random scanning UDP

worm with behavior similar to the SQL worm is modeled for our simulation. The pseudo code of

random scanning UDP worm is given in Figure 4-3.2. In our worm model, the worm sends itself

by sending a single UDP packet containing the absolute path of the worm executable. Random IP

addresses are restricted to the simulated servers only and are generated using the ‘boost::random’

number generator. The variable ‘sleepRange’ plays an important role in controlling the worm scan

traffic. The sleep command prevents dominance of a single instance of the worm. The variable

‘sleepRange’ is modified dynamically. When congestion is detected in the network, as indicated

by SIGUSR1 in Figure 4-3.1, the sleepRange will increase at every new instant of time. This will

result in a gradual decline in the network traffic. When the network is free of congestion, as

indicated by SIGUSR2 in Figure 4-3.1, the sleepRange will decrease at every instant of time,

resulting in an exponential growth in network traffic. The variable ‘sleepRange,’ is modified by

the formula:

VARIANCE * GAUSSIAN_GENERATOR() + FACTOR

VARIANCE and boost::GAUSSIAN_GENERATOR() are used to introduce randomness in the

pattern, and FACTOR is the factor by which the sleepRange is increased or decreased. The initial

value of sleepRange of 100 micro seconds is effective for a test bed of 2,500 nodes. Increase the

sleepRange to 200 micro seconds for a test bed greater than 2,500. The simulation could be

successfully scaled to a test bed of 3,500 server nodes.

4.4 Limitations of the Wormulator

The main objective of this project is to simulate the SQL Slammer worm on a scalable

network of nodes, thousands of server nodes running on a single machine. This set up is necessary

to accurately demonstrate the effects of the worm on the Internet.

A key feature that influences the performance and scalability of the Wormulator is the way the tool

creates and manages its children - the simulated servers. Each server is spawned as a separate child

process. A huge overhead is incurred in creating and maintaining a process. A significant

improvement can be achieved by creating light weight, resource conservative POSIX threads as a

replacement for processes. This would entail fundamental changes in the Wormulator. The primary

motivation for using Pthreads is to realize potential program performance gains [30]. Multi

threading can pose its own share of challenges and special caution must be exercised to

synchronize communication between the threads, if needed. Chapter 5, discusses the challenges

and the details of the “Enhanced Wormulator”, which implements threads instead of processes.

Chapter 5

Enhanced Wormulator

The Wormulator, which spawns the server nodes by forking a separate child process, does

not scale beyond 3,500 server nodes. It was observed that the CPU context switch between these

processes was memory and time intensive. This lead to the exploration of the possibility of using

threads instead of processes to create the server nodes. This section describes the implementation

details of the “Enhanced Wormulator” followed by a description of the challenges and solutions to

creating several thousand threads by a single program – the “Enhanced Wormulator”.

5.1 Implementation Details

Enhanced Wormulator is implemented on the Linux platform. The core functionality of the

“Enhanced Wormulator”, packet handling, managed by the LNS module is modified to create

servers via the POSIX threads. The pseudo code for the modified LNS with UDP is given in

Figure 5-1.1. A new thread is created when a packet for a simulated server is received for the first

time. The thread will execute the server code described in figure 4-3.1.

The significant differences between the “Enhanced Wormulator” and the

Wormulator/Spamulator are: 1) Light weight POSIX thread is created to spawn a server. 2) The

newly created thread becomes a peer of the main thread; therefore, there is no hierarchy between

threads and no concept of parent and child relationship. 3) The unique server port is known in

advance and so the server does not write its port number to the LNS. 4) The server executable need

not be created before hand under ‘/var/lns/userserver’, as each server is executed as a thread.

Consequently, there is no method to locate a server.

 Define parameters:
 networkTraffic = 0.
 NETWORK_BANDWIDTH = 10000.
 congestion = FALSE;

Create User Datagram socket

Receive packet P

 P is from source IP address As port Ps
 P is to destination IP address Ad, port Pd

If in the same instance of time

networkTraffic ++
else:

networkTraffic = 0

if P is a new connection:
create a new thread with unique thread Id, tId:

 Invoke the server
store (Ad, Pd, P’d) in table T
store tId in a tIdList
rewrite P into P:

 change As to 127.0.0.1
 change Ad to 127.0.0.1
 change Pd to P’d

else:
find entry (Ad, Pd,?) in T
rewrite P into P’:

 change As to 127.0.0.1
 change Ad to 127.0.0.1
 change Pd to P’d found in T


If (networkTraffic > NETWORK_BANDWIDTH)
 Congestion = TRUE

If (Congestion)
 send signal SIGUSR2 to all servers in tIdList
else:

send signal SIGUSR1 to all servers in tIdList

send P’

Figure 5-1.1 Anatomy of the LNS of Enhanced Wormulator

5.2 Challenges of Multi Threading

It is uncommon and not recommended to create several thousand threads from a single

program. If a program contains tasks that need to be executed concurrently a static pool of threads

is suggested.

However, this is unsuitable for our requirement of simulating an internet of nodes. So this project

undertakes the daunting task of creating thousands of peer threads that continue to exist throughout

the simulation.

The foremost challenge is to decide on an optimal stack size for each thread. Since, the

main memory is limited and is shared by all the threads, the stack size for each thread it set to a

minimum value so that a large number of threads can be created. It was observed that a minimum

size of 80 -100 KB was necessary to run the simulation. By default, the stack size is larger than

this value. So the operating system must be configured accordingly. See section 6.1 for more

details. Furthermore, shared resources between threads must be synchronized. However, in our

simulation no resource is shared among the threads.

Chapter 6

Simulation

This section begins with a description of the set up for the simulation using the “Enhanced

Wormulator”, followed by the experiment itself, and ends with an analysis and validation of the

results of the experiment.

6.1 Experimental Set Up

The experimental set up consists of: 1) configure the Linux operating system, 2) install and

configure the Wormulator, 3) configure rules for the network stack, and 4) create an isolated

network of servers.

The default system configuration is modified as shown in Figure 6-1.1 to accommodate the

creation of large number of threads, files and UDP packets generated during the simulation.

 Increase number of threads:
echo 100000000 > /proc/sys/kernel/threads-max

Append the following in ‘/etc/sysctl.conf’ file:

Increase the maximum default receive socket buffer size:
 net.core.rmem_max = 524280
 net.core.rmem_default = 524280

Increase the maximum default send socket buffer size :
 net.core.wmem_max = 524280
 net.core.wmem_default = 524280

Set the maximum number of open files:
 fs.file-max = 100000

 #stack size for each thread
ulimit -s 80

#max open files
ulimit -n 40240

 Figure 6-1.1 Configure features of the Linux Operating System

The Wormulator can be installed using the install document of the Spamulator.

'/var/lns/useservers' directory is searched by the Wormulator to launch a server. Dependency

packages are ‘libboost-dev' and 'iptables-dev'. The directory structure of the Spamulator is

retained, except for the LNS module of the Spamulator is replaced by the modified LNS of the

“Enhanced Wormulator”. A folder named ‘~/home/user/Files’ is created to store the log files

created by the servers.

The Wormulator is configured by specifying a value for ‘NETWORK_BANDWIDTH’ in

Figure 4-2.1. The value is configurable and is set to an initial value of 10000 in our simulation.

Since the simulation uses the network protocol stack to send and receive packets, the Network

Interface Card (NIC) of the machine needs to be active during the simulation.

The system network stack is configured to capture packets generated for simulated servers.

Otherwise, the packets will be sent to the outside world. The output chain of the Mangle IP Table

is modified by setting rules as described in Figure 6-1.2.1 and 6-1.2.2. See Appendix A for more

details on IP Tables. The rules instruct the Mangle IP Table to redirect packets destined to

simulated servers to a local queue, making the packets available to a user space application, in our

simulation the Wormulator. Figure 6-1.2 captures packets destined for 30,000 servers.

 iptables -t mangle -I OUTPUT -p udp -d 10.0.0.0/24 --destination-port 14000:14999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.1.0/24 --destination-port 14000:14999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.2.0/24 --destination-port 14000:14999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.3.0/24 --destination-port 15000:15999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.4.0/24 --destination-port 15000:15999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.5.0/24 --destination-port 15000:15999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.6.0/24 --destination-port 16000:16999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.7.0/24 --destination-port 16000:16999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.8.0/24 --destination-port 16000:16999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.9.0/24 --destination-port 17000:17999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.10.0/24 --destination-port 17000:17999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.11.0/24 --destination-port 17000:17999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.12.0/24 --destination-port 18000:18999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.13.0/24 --destination-port 18000:18999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.14.0/24 --destination-port 18000:18999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.15.0/24 --destination-port 19000:19999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.16.0/24 --destination-port 19000:19999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.17.0/24 --destination-port 19000:19999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.18.0/24 --destination-port 20000:20999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.19.0/24 --destination-port 20000:20999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.20.0/24 --destination-port 20000:20999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.21.0/24 --destination-port 21000:21999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.22.0/24 --destination-port 21000:21999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.23.0/24 --destination-port 21000:21999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.24.0/24 --destination-port 22000:22999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.25.0/24 --destination-port 22000:22999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.26.0/24 --destination-port 22000:22999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.27.0/24 --destination-port 23000:23999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.28.0/24 --destination-port 23000:23999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.29.0/24 --destination-port 23000:23999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.30.0/24 --destination-port 24000:24999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.31.0/24 --destination-port 24000:24999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.32.0/24 --destination-port 24000:24999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.33.0/24 --destination-port 25000:25999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.34.0/24 --destination-port 25000:25999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.35.0/24 --destination-port 25000:25999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.36.0/24 --destination-port 26000:26999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.37.0/24 --destination-port 26000:26999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.38.0/24 --destination-port 26000:26999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.39.0/24 --destination-port 27000:27999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.40.0/24 --destination-port 27000:27999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.41.0/24 --destination-port 27000:27999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.42.0/24 --destination-port 28000:28999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.43.0/24 --destination-port 28000:28999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.44.0/24 --destination-port 28000:28999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.45.0/24 --destination-port 29000:29999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.46.0/24 --destination-port 29000:29999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.47.0/24 --destination-port 29000:29999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.48.0/24 --destination-port 30000:30999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.49.0/24 --destination-port 30000:30999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.50.0/24 --destination-port 30000:30999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.51.0/24 --destination-port 31000:31999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.52.0/24 --destination-port 31000:31999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.53.0/24 --destination-port 31000:31999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.54.0/24 --destination-port 32000:32999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.55.0/24 --destination-port 32000:32999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.56.0/24 --destination-port 32000:32999 -j QUEUE

Figure 6-1.2.1 IP Table rules to capture packets sent to simulated servers

 iptables -t mangle -I OUTPUT -p udp -d 10.0.57.0/24 --destination-port 33000:33999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.58.0/24 --destination-port 33000:33999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.59.0/24 --destination-port 33000:33999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.60.0/24 --destination-port 34000:34999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.61.0/24 --destination-port 34000:34999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.62.0/24 --destination-port 34000:34999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.63.0/24 --destination-port 35000:35999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.64.0/24 --destination-port 35000:35999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.65.0/24 --destination-port 35000:35999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.66.0/24 --destination-port 36000:36999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.67.0/24 --destination-port 36000:36999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.68.0/24 --destination-port 36000:36999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.69.0/24 --destination-port 37000:37999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.70.0/24 --destination-port 37000:37999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.71.0/24 --destination-port 37000:37999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.72.0/24 --destination-port 38000:38999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.73.0/24 --destination-port 38000:38999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.74.0/24 --destination-port 38000:38999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.75.0/24 --destination-port 39000:39999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.76.0/24 --destination-port 39000:39999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.77.0/24 --destination-port 39000:39999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.78.0/24 --destination-port 40000:40999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.79.0/24 --destination-port 40000:40999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.80.0/24 --destination-port 40000:40999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.81.0/24 --destination-port 41000:41999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.82.0/24 --destination-port 41000:41999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.83.0/24 --destination-port 41000:41999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.84.0/24 --destination-port 42000:42999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.85.0/24 --destination-port 42000:42999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.86.0/24 --destination-port 42000:42999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.87.0/24 --destination-port 43000:43999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.88.0/24 --destination-port 43000:43999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.89.0/24 --destination-port 43000:43999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.90.0/24 --destination-port 44000:44999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.91.0/24 --destination-port 44000:44999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.92.0/24 --destination-port 44000:44999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.93.0/24 --destination-port 45000:45999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.94.0/24 --destination-port 45000:45999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.95.0/24 --destination-port 45000:45999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.96.0/24 --destination-port 46000:46999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.97.0/24 --destination-port 46000:46999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.98.0/24 --destination-port 46000:46999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.99.0/24 --destination-port 47000:47999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.100.0/24 --destination-port 47000:47999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.101.0/24 --destination-port 47000:47999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.102.0/24 --destination-port 48000:48999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.103.0/24 --destination-port 48000:48999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.104.0/24 --destination-port 48000:48999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.105.0/24 --destination-port 49000:49999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.106.0/24 --destination-port 49000:49999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.107.0/24 --destination-port 49000:49999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.108.0/24 --destination-port 50000:50999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.109.0/24 --destination-port 50000:50999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.110.0/24 --destination-port 50000:50999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.111.0/24 --destination-port 51000:51999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.112.0/24 --destination-port 51000:51999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.113.0/24 --destination-port 51000:51999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.114.0/24 --destination-port 52000:52999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.115.0/24 --destination-port 52000:52999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.116.0/24 --destination-port 52000:52999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.117.0/24 --destination-port 53000:53999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.118.0/24 --destination-port 53000:53999 -j QUEUE
iptables -t mangle -I OUTPUT -p udp -d 10.0.119.0/24 --destination-port 53000:53999 -j QUEUE

Figure 6-1.2.2 IP Table rules to capture packets sent to simulated servers

An isolated network of servers is setup as follows: 1) the desired number of server

executables is created under '/var/lns/useserver/' directory, 2) the Wormulator is executed in the

background, and 3) the script in Figure 6-1.3 is interpreted. When a packet is sent to a non-existing

simulated server, the Wormulator looks for the server in '/var/lns/useserver/' and if found launches

the server and forwards the packet. The empty packet is ignored by the server. The sole purpose of

the empty packet is to bring the server to life.

 Create UDP socket

Loop though the number of simulated servers

 generate IP address of a simulated server, As
 calculate the corresponding port number, Ps
 send the empty UDP packet to As: Ps

Figure 6-1.3 Create network of servers

The sleepRange in the worm is modified depending on the number of server nodes. See figure 4-

3.2 for more details.

6.2 Experiment

The simulated servers communicate to each other through the Wormulator. Figure 5-2.1

illustrates the experiment.

10.0.0.0:14000

10.0.0.255: 14255 10.0.2.255:14768

10.0.1.1: 14256

WORMULATOR

Figure 6-2.1 Create network of servers

The Wormulator executed in the verbose mode outputs various diagnostics. Diagnostics

printed by the Wormulator, when the servers are launched is given in Figure 6-2.2. The diagnostics

indicate successful launch of the simulated servers.

Figure 6-2.2 Snapshot of Spamulator launching servers [6]

Diagnostic in Figure 6-2.3 is printed when the worm packet is sent from one simulated

server to another. The message indicates successful redirection of the packets to the destined

simulated servers on the local host.

Figure 6-2.3: Snapshot of LNS of the Wormulator re-directing packets

The instantaneous network traffic measured and tracked by the Wormulator is printed on

the console as depicted in Figure 6-2.4. The output is captured from a simulation run with a test

bed 500 servers with a total network bandwidth of 10000. The network traffic increases during the

initial phase when there is no congestion in the network. Once the traffic grows beyond 10000,

inducing congestion, the network traffic begins to decline. The simulation can be terminated by

raising SIGINT on the Wormulator.

Figure 6-2.4 Simulation Output, where ‘NETWORK_BADNWIDTH= 10000’

The worm spread is triggered by sending the UDP worm to a simulated server. This is

achieved by a script whose pseudo code in given in Figure 6-2.5.

 Create UDP socket.

IP address of the compromised machine is Ad, port Pd

Send absolute path to the worm to Ad: Pd

Figure 6-2.5 Initial worm spread

6.3 Collection of Data

The most important data generated during the simulation is the instantaneous network

traffic which is logged under '~/home/user/Files/lnsTraffic.txt’. A sample of the instantaneous

network traffic is given in Figure 6-3.1. As it can be observed the network traffic continues to

increase up to 10000 (NETWORK_BANDWIDTH), after which congestion sets in and traffic

begins o decline.

Figure 6-3.1 Sample of instantaneous network traffic

6.4 Results

The data collected in section 6.3 Collection of Data is plotted using Gnuplot. Figure 6-4.1

depicts the network traffic generated by the UPD worm on a test bed of 25000 servers.

Figure 6-4.1 Network Traffic for a test bed of 25000 servers, network bandwidth = 7000

The network traffic increases almost exponentially until the limit of the network bandwidth,

beyond which the traffic begins to decline due to exhaustion of bandwidth of the network. The

result of our simulation is comparable to the behavior exhibited by the real SQL Slammer worm

depicted in Figure 6-4.2.

The network traffic generated by the UPD worm is measured for varying test bed of nodes:

1) 1000, 2) 5000, 3) 10000, 4) 15000, 5) 20000, and 6) 30000 nodes. The simulation results are

illustrated in Figure 6-4.3 to Figure 6-4.8.

Figure 6-4.2: Slammer’s early progress as measured by WAIL, tarpit [5]

Figure 6-4.3: Simulation output for 1000 simulated servers

Figure 6-4.4: Simulation output for 5000 simulated servers

Figure 6-4.5: Simulation output for 10000 simulated servers

Figure 6-4.6: Simulation output for 15000 simulated servers

Figure 6-4.7: Simulation output for 20000 simulated servers

Figure 6-4.8: Simulation output for 30000 simulated servers

6.5 Evaluation of the Results

The results obtained in the above figures reveal a pattern in rate at which congestion sets in

to the network. The pattern is depicted in figure 6-4.9. For a test bed of 10, 50, and 100 nodes the

time to reach congestion is considerably high, greater than the number of nodes. However, when

the number of nodes increases beyond 500, the speed at which congestion sets in is increases

proportionately. This observation corroborates the understanding that higher the number of

infected nodes, greater the worm scan traffic, which in turn exhausts the network bandwidth faster.

0

50

100

150

200

250

Time in ms

1 2 3 4 5 6 7 8 9
Simulation Run Number

Rate of network congestion

Time for congestion
Number of Nodes*10

Number of
Nodes *10

Figure 6-4.9: Rate of network congestion

The simulation scaled successfully to a test bed 30,000 servers. There was no memory

available to create more threads and scale the simulation beyond this limit. The simulation as run

on single processor of 1.7 Ghz and a memory of 1.25 GB. The simulation can scale further if run

on a larger memory or multi processor machine.

Chapter 7

Inference

Since the beginning of this project in January 2009, several potent malware have struck the

Internet all over the world. According to a Microsoft report released in November 2009, worms

have almost doubled from the second quarter of 2008 to become the “most significant threat,” in

the first quarter of 2009 [34]. Taterf, a worm stealing login credentials for gaming, increased its

presence by 156% to 4.9 million [34]. July 2009 witnessed a series of coordinated cyber attacks

against major government, news media and financial websites in the United States and South

Korea. The attack involved activating a botnet causing a Denial-of-Service attack [35].

To understand the development, progress and the potential risks of worms, we need to

observe and study the worms and malware in a controlled environment.

7.1 Proposal

An application level worm simulator to replicate Internet-wide activities not only

formalizes the behavior of malware, but it also builds a foundation for further investigation. A

worm simulator can be used to observe the behavior of malware on an isolated network, project

the devastating effects on the real Internet, and propose and test new defense mechanisms. The

simulator will continue to evolve as our knowledge about the worms mature.

The Wormulator is developed to teach and research rapidly spreading malware in

universities. It is not a full fledged network simulator. It is developed for simulating applications

without the overhead of low level network simulation.

Together with the Wormulator, which implements UDP, and the Spamulator, which implements

TCP, it is possible to simulate any Internet application. Even though the simulation implements

only a subset of rapidly spreading malware, there are several other types of malware that can be

simulated using the Wormulator.

The results obtained from this simulation project bear a qualitative resemblance to the

behavior exhibited by the actual SQL Slammer worm. Wormulator provides a convenient and

coherent environment to simulate Internet-wide phenomenon on a single machine. However, the

aim of our simulation is not to show that the Wormulator is the absolute solution for simulating all

types of malware. Additional implementations may be needed to make the Wormulator more

robust and pertinent.

7.2 Future Work

The Wormulator must be updated as and when necessary for it to be accepted and widely

used. This can involve significant modifications ranging from fundamental changes in the structure

of classes and relationship between them, to a re-modeling a significant portion of the tool. The

changes will result from the natural progression of the tool and our knowledge about malware.

The performance of the Wormulator can be improved in several other ways. Some of those

include, a better error reporting mechanism, enhancements such as using standard stl::map instead

of the non-standard hash map, a simple graphical user interface as an alternative to diagnostics

printed on the standard output, restructuring of the modules of the Wormulator into header and

implementation files, implementing network concepts such as routing and topology, and capture

many other statistics such as number of infections received, whether the server is infected, etc.

The work done in this project and the results obtained can serve as the basis for the

simulation of next generation malware. With little or no modifications, the Wormulator and the

Spamulator can be used to simulate:

 Email and Internet Relay Chat worms that use Topological scanning.

 Flash worms that use passive harvesting of target IP addresses.

 Worms that employ subnet and permutation-based scanning techniques.

 Self modifying, metamorphic malware.

 Honey pots, SQL Injection attacks, Distributed Denial-of-Service attacks.

Testing a distributed worm simulator is a challenge, since large networks are difficult to set up

and maintain. The work and the results of this project were developed and evaluated on a single

processor Intel machine. A network test bed such as Emulab, provides researchers with a wide

range of distributed and networked environments that can be used to develop, debug and evaluate

their systems [17]. Our simulation can be run on such test beds to further validate its robustness

and relevance.

Chapter 8

Conclusion

Internet worms continue to adopt ingenious methods for which there are no known defense

mechanisms. In 2009 worms have been ranked as the second most prevalent security threat.

According to a security report from Microsoft, the United States, United Kingdom, France and

Italy are beset by Trojans. Brazil was attacked by malware targeting online banking, and Spain and

Korea saw the dominance of worms led by threats targeting online gamers [34]. Study of malware

and their defense mechanisms is an active field of research.

Simulation of rapidly spreading malware is the first step in our fight against security

threats. The Spamulator, which supports TCP only, is not suitable to simulate UDP applications.

Hence, the Spamulator is modified to create the Wormulator, which implements connectionless

User Datagram Protocol. Apart from this, the Wormulator is enhanced with the ability to track

instantaneous network traffic, and identify and signal congestion throughout the network. Finally,

the Wormulator is enhanced further by implementing a network of nodes by creating POSIX

threads instead of forking child processes. Each node functions as both, a server to receive worm

packets and as a client to propagate the worm.

The effectiveness of our simulation is validated by simulating a UDP worm, the SQL

Slammer worm, and evaluating it against the real world worm performance. This proof by example

simulation produced an exponential growth in the instantaneous network traffic, creating

congestion in the network. Moreover, the simulation scaled effectively up to a test bed of 30,000

nodes.

In conclusion, we believe that we have created a common ground to simulate all types of

malware.

References
[1] Stuart Staniford, David Moore, Vern Paxson, Nicholas Weaver, “The Top Speed of Flash

Worms,” in Proceedings of the 2004 ACM workshop on Rapid Malcode, Washington DC,

USA, n.2, 2004, pp. 33 - 42.

[2] Mark Stamp, “Information Security Principles and Practice,” Hoboken, NJ: Wiley, 2006.

[3] Nicholas Weaver, “Potential Strategies for High Speed Active Worms: A Worst Case

Analysis,” Mar 24, 2002. [Online]. URL: http://www.cgisecurity.com/lib/worms.pdf.

(Accessed: Mar 30, 2009)

 [4] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, Andreas Terzis, “A Multifaceted

Approach to Understanding the Botnet Phenomenon,” in Proceedings of the 6th ACM

SIGCOMM conference on Internet measurement, Rio de Janeiro, Brazil, 2006, pp. 41 – 52.

[5] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, Nicholas

Weaver, “Inside the Slammer Worm,” IEEE Security and Privacy, v. 1, n. 4, pp. 33 – 39,

2003.

[6] John Aycock, Heather Crawford, Rennie deGraaf, “Spamulator: The Internet on a Laptop,”

in Proceedings of the 13th Annual Conference on Innovation and Technology in Computer

Science Education, Madrid, Spain, 2008, pp. 142-147.

[7] John Markoff, “Worm Infects Millions of Computers Worldwide,” Feb 2009. [Online].

URL: http://www.nytimes.com/2009/01/23/technology/internet/23worm.html. (Accessed:

Jan 30, 2009)

[8] Gilbert Chen, Joel Branch, Michael J. Pflug, Lijuan Zhu, and Boleslaw K. Szymanski,

“SENSE: AWIRELESS SENSOR NETWORK SIMULATOR,” Advances in Pervasive

Computing and Networking, Springer, NY, 2004, pp. 249-267. [Online]. URL:

http://cgi2.cs.rpi.edu/~szymansk/papers/wpcn.04.pdf. (Accessed: Oct 30, 2009)

[9] Erich Schikuta, “NeuroWeb: An Internet-Based Neural Network Simulator,” Tools with

Artificial Intelligence, (ICTAI 2002), in Proceedings of the 14th IEEE International

Conference, Nov 2002, pp. 407 – 412.

[10] UCB/LBNL/VINT groups, UCB/LBNL/VINT, “Network Simulator (NS),” May 2001.

[Online]. URL: http://www.isi.edu/nsnam/ns/. (Accessed: Jun 16, 2009)

[11] Siming Lin1, Xueqi Cheng and Jianming, “A Visualized Parallel Network Simulator for

Modeling Large-scale Distributed Applications,” Parallel and Distributed Computing,

http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/RecentCon.jsp?punumber=4420121
http://www.isi.edu/nsnam/ns/
http://cgi2.cs.rpi.edu/~szymansk/papers/wpcn.04.pdf
http://www.springerlink.com/content/t067m7/?p=90d4b4d2418e45d0a3fb921dcdceb09f&pi=0
http://www.springerlink.com/content/t067m7/?p=90d4b4d2418e45d0a3fb921dcdceb09f&pi=0
http://www.nytimes.com/2009/01/23/technology/internet/23worm.html
http://www.cgisecurity.com/lib/worms.pdf

Applications and Technologies, (PDCAT '07), in Proceedings of the Eighth International

Conference, Dec 2007, pp. 339 – 346.

[12] H. Akhtar, "An overview of some network modeling, simulation and performance analysis

tools," iscc, pp.344, 2nd IEEE Symposium on Computers and Communications (ISCC '97),

1997.

[13] Songjie Wei, Jelena Mirkovic, Martin Swany, “Distributed Worm Simulation with a

Realistic Internet Model,” in Proceedings of the 19th Workshop on Principles of Advanced

and Distributed Simulation, pp. 71 - 79, 2005.

[14] Dr. George F. Riley, Georgia Institute of Technology, “The Georgia Tech Network

Simulator,” in Proceedings of the ACM SIGCOMM workshop on Models, methods and

tools for reproducible network research, Karlsruhe, Germany, 2003, pp. 5 – 12.

[15] Xiang Zeng, Rajive Bagrodia, Mario Gerla, “GloMoSim: a Library for Parallel Simulation

of Large-scale Wireless Networks,” in Proceedings of the 12th Workshop on Parallel and

Distributed Simulations (PADS '98), May 1998, Banff, Alberta, Canada.

[16] Henri Casanova, Arnaud Legrand and Martin Quinson, “SimGrid: A Generic Framework

for Large-Scale Distributed Experimentations,” in Proceedings of the 10th IEEE

International Conference on Computer Modeling and Simulation (UKSIM/EUROSIM'08).

[Online]. URL: http://www.loria.fr/~quinson/articles/SimGrid-uksim08.pdf. (Accessed:

Oct 14, 2009)

[17] Emulab, last accessed 17 Dec 2007. [Online]. URL: http://www.emulab.net. (Accessed:

Nov 3, 2009)

[18] B. Kneale, A. Y. De Horta, I. Box, “VELNET (Virtual Environment for Learning

Networking),” in Proceedings of the 6th Australasian Computing Education

Conference(ACE2004), Dunedin, New Zealand, v. 30, pp. 161–168

[19] Oskar Andreasson, “Iptables Tutorial,” Version 1.2.2, 19 Nov 2006. [Online]. URL:

http://iptables-tutorial.frozentux.net/iptables-tutorial.html. (Accessed: Dec 3, 2008)

[20] Linux Programmer's Manual (3)

[21] Mani Radhakrishnan and John Sloworth, “Socket Programming in C/C++,” Sep 24, 2008.

[Online]. URL: www.rites.uic.edu/~solworth/sockets.pdf. (Accessed: Feb 15, 2009)

[22] A joint effort of CAIDA, ICSI, Silicon Defense, UC Berkeley EECS and UC San Diego

CSE, “Analysis of the Sapphire Worm,” Feb 12, 2007. [Online]. URL:

http://www.caida.org/research/security/sapphire/. (Accessed: Mar 5, 2009)

http://www.caida.org/research/security/sapphire/
http://www.rites.uic.edu/~solworth/sockets.pdf
http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://www.emulab.net/
http://www.loria.fr/~quinson/articles/SimGrid-uksim08.pdf
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/RecentCon.jsp?punumber=4420121
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/RecentCon.jsp?punumber=4420121

[23] David M. Nicol, “Efficient simulation of Internet worms,” ACM Transactions on Modeling

and Computer Simulation (TOMACS), v 18 , Issue 2 , Article No. 5, Apr 2008.

 [24] Brian Beej Jorgensen Hall, “Beej's Guide to Network Programming Using Internet

Sockets,” version 3.0.13, 2009. [Online]. URL: http://beej.us/guide/bgnet/. (Accessed: May

23, 2009)

 [25] C.Col´on Osorio, Zachi Klopman, “An Initial Analysis and Presentation of Malware

Exhibiting Swarm-Like Behavior,” in Proceedings of the 2006 ACM symposium on

Applied computing, Dijon, France, pp. 323 – 329.

[26] Kalyan S. Perumalla, Srikanth Sundaragopalan, “High-Fidelity Modeling of Computer

Network Worms,” in Proceedings of the 20th Annual Computer Security Applications

Conference, pp.126 - 135, 2004.

[27] Norman Matloff, “Overview of Computer Networks,” April 11, 2005. [Online]. URL:

http://heather.cs.ucdavis.edu/~matloff/Networks/Intro/NetIntro.pdf. (Accessed: Jan 3,

2009)

[28] Songjie Wei and Jelena Mirkovic, “A Realistic Simulation of Internet-Scale Events,” in

Proceedings of the 1st International Conference on Performance Evaluation Methodologies

and Tools, Pisa, Italy, Italy Article No. 28, 2006.

[29] Sven Goldt, Sven van der Meer, Scott Burkett, Matt Welsh, “The Linux Programmer's

Guide,” Version 0.4, 1995. [Online]. URL: http://tldp.org/LDP/lpg/lpg.html. (Accessed:

Feb 13, 2009)

[30] Blaise Barney, “POSIX Threads Programming,” Last Modified: 07/27/2009. [Online].

URL: https://computing.llnl.gov/tutorials/pthreads/#Overview. (Accessed: Mar 29, 2009)

[31] David A Rusling, “The Linux Kernel,” Version 0.8-3, 1999. [Online]. URL: http://tldp.org/

LDP/tlk/ipc/ipc.html. (Accessed: Aug 8, 2009)

[32] S. Staniford, V. Paxson, N. Weaver, “How to Own the Internet in Your Spare Time,” in

Proceedings of the 11th USENIX Security Symposium, USENIX, pp.149 – 167, Aug 2002.

[33] J. Nazario, J. Anderson, R. Wash, C. Connelly, “The Future of Internet Worms,” Crimelabs

Research, Jun 2001.

[34] Article featured in Malware and Hardware Security magazine, 02 November 2009.

[Online]. URL: http://www.infosecurity-magazine.com/view/4934/information-security-

threats-in-h1-2009-malware-and-rogue-security-software/. (Accessed: Nov 10, 2009)

http://www.infosecurity-magazine.com/view/4934/information-security-threats-in-h1-2009-malware-and-rogue-security-software/
http://www.infosecurity-magazine.com/view/4934/information-security-threats-in-h1-2009-malware-and-rogue-security-software/
http://www.infosecurity-magazine.com/category/84/malware-and-hardware-security/
http://tldp.org/LDP/tlk/ipc/ipc.html
http://tldp.org/LDP/tlk/ipc/ipc.html
https://computing.llnl.gov/tutorials/pthreads/#Overview
http://tldp.org/LDP/tlk/tlk-toc.html
http://beej.us/guide/bgnet/

[35] Wikipedia contributors, “Cyber Attacks,” Wikipedia, The Free Encyclopedia, Jul 2009.

[Online]. URL: http://en.wikipedia.org/wiki/July_2009_cyber_attacks. (Accessed: Oct 26,

2009)

http://en.wikipedia.org/wiki/July_2009_cyber_attacks

Appendix A

IP Tables and libIPQ
This section provides background information on important elements such as IP Tables and

library libIPQ used in a loop back network simulator such as the Spamulator and the Wormulator.

IP tables are inherent to a loop back network simulator. IP Tables such as IP filter, IP

mangle, etc., operate mainly in layer 2, of the TCP/IP stack. IP Tables are made up of a table and a

chain and are applied on individual packets. Each table has a specific purpose, and there are four

tables, namely Raw, Nat, Mangle and Filter tables. Each chain contains a set of rules that are

applied on packets that traverse the chain. There are four types of chains, namely Pre-routing,

Post-routing, Input, Output and Forward [19]. The Spamulator and the Wormulator modifies only

the “MANGLE” IP Table. When a packet enters the local host, the packet comes into eth0 or eth1.

The following actions take place: 1) the REROUTING chain of the IP Table Mangle, if set,

mangles the packet before routing decision is made, 2) routing decision is made as to whether the

packet is destined for the local machine or needs to be forwarded, 3) INPUT chain of the IP Table

Mangle, if set, mangles the packet before the packet is sent to the machine, and 4) Packets are sent

to the application or forwarded to another machine. Similarly, when a packet is sent from our

LOCALHOST, the packet is processed before it is sent out of the machine. The OUTPUT and

POSTROUTING chain of the mangle table is used instead. An example rule: “iptables -t

mangle -I OUTPUT -p udp -d 10.0.0.0/8 --destination-port 1400:1500

-j QUEUE”:

 IP table under consideration is “Mangle” and -I option inserts a rule somewhere in the

OUTPUT chain.

 UDP packets destined for any IP address in the range 10.0.0.0 to 10.0.0.8 and port ranging

from 1400 to 1500 is captured on a local ip_queue.

LibIPQ is a development library for iptables user space packet queuing. Netfilter in Linux

provides a means of retrieving packets from the network stack and queue them to the user space.

These packets maybe altered in the user space and then sent back to the kernel. Kernel module

called queue handler is registered with Netfilter to pass packets to and from the user space. The

queue handler for IPv4 is ip_queue. Using appropriate IP Table Rule along with the target set to

QUEUE, the packets can be sent to the ip_queue module, which will then attempt to deliver the

packets to a user space application. If no user space application is waiting, the packets will be

dropped [20]. An application in the user space may access these packets via the libIPQ library

which provides the APIs for communicating with ip_queue. For an application to use this library

we need to include: 1) linux/netfilter.h, and 2) libipq.h. The following are some of the library

function calls used in the Spamulator:

 ipq_create_handle, initializes library and returns context handle.

 ipq_set_mode, sets the queue mode to copy either packet metadata, or payloads and

metadata to user space. It is also used to initially notify ip_queue that an application is

ready to receive queue messages.

 ipq_read, waits for a queue message to arrive from ip_queue and read it into a buffer.

 ipq_message_type, determines the message type in the buffer.

 ipq_get_packet, retrieves packet message from the buffer.

 ipq_get_msgerr, retrieves an error message from the buffer.

 ipq_set_verdict, sets a verdict on a packet, optionally replacing its contents.

 ipq_destroy_handle, destroys context handle and associated resources [20].

Appendix B

Inter Process Communication
Various Inter-Process Communication mechanisms of the Linux operating system are used

in the loop back network simulator as well as our simulation. This section will explore some of the

commonly used IPC mechanisms, starting with network sockets, followed by unnamed pipes and

ends with signals.

Network sockets provide connection between processes. Sockets can be classified as

connection oriented or connectionless, packet based or stream based, and reliable or unreliable.

Sockets are used for connection based client server model where the server waits for connection

from the client. Sockets support different domains, types and protocols [21]. Some of the

commonly used socket APIs in the simulation are:

 Create a socket of domain, type and protocol.

 Bind the address of the socket on to a server port.

 Send/receive packets.

 Shutdown and close a socket to stop reading/writing and release kernel data structures.

Less commonly used auxiliary socket APIs are: htons, htonl, ntohs, ntohl, which are used for

network byte ordering. Sparc is big endian and Intel is little endian. The simulation is run on an

Intel machine with Linux Operating System. Typically, a server application is bind to a particular

port on the machine. The ports are defined as follows: 1) 0 – 1023 port numbers can be used only

by root, 2) 1024-5000 port numbers used by popular applications, and 3) 5001-64K port numbers

are ephemeral ports used by user defined applications. The real SQL Slammer worm attacked port

1434 of a MS SQL server. However in our simulation, since all servers run on the same the

localhost, 127.0.0.1, each server is bind to a unique port number starting from 14000.

Pipes are unidirectional byte stream, which connect the standard output of one process to

the standard input of another process. When a process creates a pipe, the kernel sets up two file

descriptors. One descriptor is used to write data into the pipe, while the other is used to read data

from the pipe [29]. A pipe in our simulation is created to communicate between the Wormulator

and a child server process. Since a pipe is unidirectional, the Wormulator closes the write end and

keeps the read end open. Similarly, the child server closes the read end and keeps the write end

open. When the server writes to the standard output, the data is redirected to the Wormulator. The

server writes its port number in this manner.

Signals are used to signal asynchronous events to one or more processes. Signals can be

generated by a keyboard interrupt, generated by the kernel or other processes in the system [31].

The signals used in the simulation are:

 SIGINT, raised by the keyboard interrupt is handled by the Wormulator, which will

terminate all its child server processes and itself.

 SIGALRM, is a timer which terminates an execution after the timer runs out. This is used

by the Wormulator while it waits for a server to write its port. If the server does not

respond within the time limit, the server connection is terminated.

 SIGCHLD, signals the termination of a child process to the parent process. The

Wormulator handles this signal, which is raised when one of its child server processes exit.

 SIGIO, is raised when the child server process writes into the pipe created between the

Wormulator and itself. This is raised when the server writes its port number to the pipe.

 SIGUSR1 and SIGUSR2, are user defined signals. In our simulation, these signals are

raised by calling the kill() system call in the Wormulator and are handled in each of the

child server processes. SIGUSR1 signals congestion free network and enables the worm to

grow, and SIGUSR2 signals congested network and inhibit the worm’s growth.

Appendix C

POSIX Threads
This section discusses some of the multi threading techniques used in the simulation. In

Linux everything is treated as a thread by the Kernel. By definition, a thread is a light weight

process that exists within the main process and shares the process resources. However, each thread

has its own registers, thread specific data on its own stack, scheduling priorities, and signals [30].

A thread can be independently scheduled by the kernel, involves less overhead in creation and

maintenance. As a result, CPU context switching between threads is faster.

The Wormulator launches a server by creating a separate child process, using the fork()

system call. The server is executed in this child process. The UDP worm in our simulation

generates random IP server address and sends itself, in an infinite loop. It is imperative that the

server, which receives the worm packet, does not get blocked executing the worm code. Therefore,

a thread is created, which will execute the worm code. The following POSIX pthread functions are

used in our simulation:

 pthread_create creates a new thread and makes it executable. In our simulation the

server creates a thread when it receives a worm packet for the first time. The worm code is

executed in this thread. No threads are created for subsequent infections of the server.

 pthread_exit is used to explicitly exit a thread. This function is called when the server

receives a SIGINT from its parent process, the Wormulator.

