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Abstract

Optimization heuristics are often compared with each other to determine which
one performs best by means of worst-case performance ratio reflecting the quality
of returned solution in the worst case. The domination number is a complement
parameter indicating the quality of the heuristic in hand by determining how many
feasible solutions are dominated by the heuristic solution. We prove that the Max-
Regret heuristic introduced by Balas and Saltzman (1991) finds the unique worst
possible solution for some instances of the s-dimensional (s ≥ 3) assignment and
asymmetric traveling salesman problems of each possible size. We show that the Triple
Interchange heuristic (for s = 3) also introduced by Balas and Saltzman and two new
heuristics (Part and Recursive Opt Matching) have factorial domination numbers for
the s-dimensional (s ≥ 3) assignment problem.
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1 Introduction

The Multidimensional Assignment Problem (abbreviated s-AP in the case of s dimen-
sions) have been introduced by Pierskalla (1968) as a natural extension of 2-AP. General
s-APs have recently been considered to model data association problems in connection
with multitarget tracking and multisensor surveillance, see Poore (1994) as well as solving
centralized multisensor multitarget tracking, see Robertson (2001). Greedy randomized
adaptive search (GRASP) heuristics for multidimensional assignment problems arising in
multitarget tracking and data association have been proposed by Murphey et al. (1998).
Pusztaszeri et al. (1995) describe another interesting s-AP which arises in the context of
tracking elementary particles. By solving a 5-AP, they reconstruct tracks of charged ele-
mentary particles generated by the Large Electron-Positron Collider at CERN in Geneva.
In fact, several applications described in Burkard and Cela (1999), and Robertson (2001)
naturally require the use of s-AP for values of s larger than 3.

The Asymmetric Traveling Salesman Problem (ATSP) has a large variety of applica-
tions; see, e.g. Punnen (2002). For recent applications of asymmetric and highly nonmetric
instances in industry see Gupta et al. (2005) and in bioinformatics see Xu et al. (2005).
Most of ATSP research was concentrated on its symmetric special case (see, e.g., Gutin
and Punnen (2002)) and more research of the general case heuristics is required (see, e.g.,
Johnson et al. (2002)).

Both well-known Greedy algorithm and so-far-less-investigated Max-Regret algo-
rithm (see Balas and Salztman (1991), Ghosh et al. (2006), and Robertson (2001)) are
fast construction heuristics that build a solution element by element without an attempt
to improve it. We perform worst case analysis of Max-Regret for s-AP and ATSP by
means of domination analysis.

While computational experiments in Balas and Salztman (1991) show that Max-
Regret significantly outperforms Greedy for s-AP (s ≥ 3), more extensive experiments
in Robertson (2001) indicate that neither of the two heuristics dominates the other. This
conclusion is confirmed in our paper. Moreover, we prove that Greedy and Max-Regret
find the unique worst assignments for some instances of s-AP (s ≥ 3) of every possible
size. We introduce and discuss heuristics that perform much better in the worst case
than Greedy and Max-Regret. Such heuristics can be more reliable alternatives to
both Greedy and Max-Regret especially when we deal with previously uninvestigated
families of s-AP instances.

Experimental results in Ghosh et al. (2006) indicate that a version of Max-Regret,
Max-Regret-FC (called R-R-Greedy in Ghosh et al. (2006)), clearly outperforms
Greedy for ATSP. Nevertheless, we prove that, like Greedy, both Max-Regret and
Max-Regret-FC find the unique worst tour for some instances of ATSP of each possible
size. This, in particular, settles the problem of finding good bounds for the domination
number of Max-Regret-FC stated in Ghosh et al. (2006).
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The paper is organized as follows. We provide basic notions on domination analysis
and Greedy in Section 2. In Section 3, we describe Max-Regret for s-AP and prove
that, for each n ≥ 1 and s ≥ 3, there is an s-AP instance of size ns for which Max-
Regret constructs the unique worst assignment. For 2-AP we only prove that there
are instances for which Max-Regret finds an assignment which is worse than at least
n! − 2n−1 assignments. We conjecture that, in fact, the domination number of Max-
Regret for 2-AP is exactly 2n−1. Section 4 is devoted to three s-AP heuristics which
always find assignments that are not worse that ((n − 1)!)s−1 assignments. Two of the
heuristics Part and Recursive Opt Matching are new and might well be of interest
in practice. In Section 5 we describe Max-Regret and its version Max-Regret-FC for
ATSP and prove that, for each n ≥ 2, there is an ATSP instance on n vertices for which
both heuristics find the unique worst tour. Conclusions and further research appear in
Section 6.

2 Domination Analysis and Greedy

Research on combinatorial optimization (CO) heuristics has produced a large variety of
heuristics especially for well-known CO problems and, thus, it is important to develop ways
of selecting the best ones among them. In most of the literature, heuristics are compared
by means of computational experiments and, while experimental analysis is of definite
importance, it cannot cover all possible families of instances of the CO problem at hand
and, in particular, it usually does not cover the hardest instances. Worst case analysis is
normally performed by approximation analysis (see, e.g., Ausiello et el. (1999)), where
upper or lower bounds for the worst case performance ratio are of interest. Introduced in
Glover and Punnen (1997), domination analysis provides an alternative and a complement
to approximation analysis. In domination analysis, we are interested in the domination
number or domination ratio of the heuristic solution. We define these parameters below.

Pros and cons of domination analysis are discussed in Gutin and Yeo (2005) and, in
our view, it is advantageous to have bounds for both performance ratio and domination
ratio of a heuristic whenever it is possible. Roughly speaking this would enable us to see
a 2D picture rather than a 1D picture.

Let P be a minimization CO problem, let I be an instance of P, let S(I) denote the
set of feasible solutions of I, and let H be a heuristic for P. The size of I is denoted by |I|
and the solution obtained by H for I is denoted by H(I). When considering the weight
of a solution y we write w(y).

The domination number of a heuristic H is

domn(H, n) = min
I∈P: |I|=n

domn(H, I),

where domn(H, I) = |{y ∈ S(I) : w(H(I)) ≤ w(y)}|.
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In other words, the domination number domn(H, n) is the maximum integer such that
the solution H(I) obtained by H for any instance I of P of size n is not worse than at
least domn(H, n) feasible solutions of I (including H(I)). The domination ratio of H is

domr(H, n) = min
I∈P: |I|=n

domn(H, I)
|S(I)| .

In many cases, domination analysis is very useful. For example, the greedy algorithm
has domination number 1 for many CO problems, (see, e.g., Punnen and Kabadi (2002)).
In other words, the greedy algorithm, in the worst case, produces the unique worst possible
solution. This is reflected in computational experiments with the greedy algorithm for the
asymmetric traveling salesman problem (ATSP), (see, e.g., Johnson et al. (2002)), where
it was concluded that the greedy algorithm ‘might be said to self-destruct.’ The fact that
the greedy algorithm is of domination number 1 for s-AP (s ≥ 3) as well (see Theorem
3.2) implies that the algorithm should be used with great care for s-AP. Bounds for
domination numbers/ratios were obtained for many CO heuristics; see, e.g., Berend et al.
(2006), Gutin and Yeo (2005), Koller and Noble (2004), and Punnen et al. (2003).

Many CO problems can be formulated as follows. We are given a pair (E,F), where
E is a finite set and F is a family of subsets of E, and a weight function w that assigns a
real weight w(e) to every element of E. A maximal (with respect to inclusion) set B ∈ F
is called a base. The weight w(S) of S ∈ F is defined as the sum of the weights of the
elements of S. The objective is to find a base B ∈ F of minimum weight.

The well-known Greedy algorithm proceeds as follows. It starts from the empty set
X. In every iteration Greedy adds a minimum weight element e to the current set X
provided e 6∈ X and X ∪ {e} is a subset of a set in F . The algorithm stops when a base
has been constructed.

Unfortunately, both computational experiments and domination analysis point out
that Greedy is often a poor choice for heuristic even if it is only used to generate initial
solutions that will be improved by more sophisticated heuristics (see the previous section).
Thus, other heuristics are of definite interest. A promising and quite universal heuristic
appears to be Max-Regret algorithm studied in Balas and Saltzman (1991), and Robert-
son (2001) for the 3-dimensional assignment problem (3-AP). Variations of Max-Regret
were introduced and investigated in Ghosh et al. (2006) for ATSP. Our analysis for both
both s-AP (s ≥ 3) and ATSP indicates that Max-Regret is of similar quality in the
worst case as Greedy, namely, the domination number Max-Regret for both problems
equals 1. Recently, Bendall and Margot (2006) studied an extension of Greedy, which is
of domination number 1 for many CO problems as well.
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3 Greedy, s-AP-Max-Regret and s-AP-Max-Regret-FC

For a fixed s ≥ 2, the s-AP is stated as follows. Let X1 = X2 = · · · = Xs = {1, 2, . . . , n}.
We will consider only vectors that belong to the Cartesian product X = X1×X2×· · ·×Xs.
Each vector e is assigned a weight w(e). For a vector e, ej denotes its jth coordinate, i.e.,
ej ∈ Xj . A partial assignment is a collection e1, e2, . . . , et of t ≤ n vectors such that
ei
j 6= ek

j for each i 6= k and j ∈ {1, 2, . . . , s}. An assignment is a partial assignment with
n vectors. The weight of a partial assignment A = {e1, e2, . . . , et} is w(A) =

∑t
i=1 w(ei).

The objective is to find an assignment of minimum weight.

We will start from Greedy for s-AP. Using Theorem 2.1 in Gutin and Yeo (2002) one
can prove that, for each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which Greedy
will find the unique worst possible assignment. We will give a short direct proof of this
result, which is also of interest later in this section.

A vector h is backward if min{hi : 2 ≤ i ≤ s} < h1; a vector h is horizontal if
h1 = h2 = · · · = hs. A vector is forward if it is not horizontal or backward.

Lemma 3.1 Let F be an assignment of s-AP (s ≥ 2). Either all vectors of F are hori-
zontal or F contains a backward vector.

Proof: Let F = {f1, f2, . . . , fn}, where f i
1 = i for each 1 ≤ i ≤ n. Assume that not

every vector of F is horizontal. We show that F has a backward vector. Suppose it is
not true. Then F has a forward vector f i. Thus, there is a subscript j such that f i

j > i.
By the pigeonhole principle, there exists a superscript k > i such that fk

j ≤ i, i.e., fk is
backward; a contradiction. 2

Theorem 3.2 For each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which Greedy
will find the unique worst possible assignment.

Proof: Let M > n and let E = {e1, e2, . . . , en}, where ei = (i, i, . . . i) for every 1 ≤ i ≤ n.
We define the required instance I as follows: w(ei) = iM for each 1 ≤ i ≤ n and, for each
f 6∈ E, w(f) = min{fi : 1 ≤ i ≤ s} ·M + 1.

Observe that Greedy will construct E. Let F = {f1, f2, . . . , fn} be any other as-
signment, where f i

1 = i for each 1 ≤ i ≤ n. By Lemma 3.1, F has a backward vector fk.
Notice that

w(fk) ≤ (k − 1)M + 1 (1)

By the definition of the weights and (1),

w(F ) =
n∑

i=1

w(f i) =
∑

i 6=k

w(f i) + w(fk)
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≤
∑

i6=k

(iM + 1) + (k − 1)M + 1

=
n∑

i=1

iM + n−M

<
n∑

i=1

iM = w(E).

2

The first successful application of max-regret for improving the Transportation Simplex
Algorithm is appeared in the so called Vogel’s Approximation Method (see Reinfeld and
Vogel (1958)) and has been used as a base of the Max-Regret heuristic for solving the
3-AP in Balas and Saltzman (1991). The authors of Goldengorin et el. (2006) gave a
general approach that extends Max-Regret heuristics.

s-AP-Max-Regret proceeds as follows. Set Wj = A = ∅ for each j = 1, 2, . . . , s.
While |X1| 6= |W1| do the following: For each i ∈ {1, 2, . . . , s} and a ∈ Xi \Wi, find two
lightest vectors ei,a and f i,a (w(ei,a) ≤ w(f i,a)) in the set

H = {h ∈ X : hi = a, hj ∈ Xj \Wj , j ∈ {1, 2, 3, . . . , s} \ {i}}

and compute the difference (called regret) ∆i,a = w(f i,a)−w(ei,a). Compute the max-regret

∆i0,a0 = max{∆i,a : i ∈ {1, 2, . . . , s}, a ∈ Xi \Wi}.

Add ei0,a0 to A and each ei0,a0
j to Wj , j = 1, 2, . . . , s.

A modification of s-AP-Max-Regret that computes the regrets only for the first
coordinates, i.e., only ∆1,a’s will be denoted s-AP-Max-Regret-FC (FC abbreviates
First Coordinate).

Remark 3.3 In s-AP-Max-Regret, when |H| = 1 we set ∆i,a = 0. Since we perform
the worst case analysis, when breaking ties, we will follow the choice leading to the worst
solution among possible options.

Theorem 3.4 The domination number of both s-AP-Max-Regret and s-AP-Max-
Regret-FC equals 1 for each s ≥ 3.

Proof: Consider the instance I described in the proof of Theorem 3.2. Observe that
∆i,1 = (M +1)−M = 1 for each i and ∆i,a = (M +1)− (M +1) = 0 for each a > 1. Thus,
both s-AP-Max-Regret and s-AP-Max-Regret-FC will choose e1 first. Similarly, we
can see that both heuristics will uniquely choose e2, . . . , en one by one. In Theorem 3.2,
we showed that E = {e1, e2, . . . , en} is unique worst possible for I. 2
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Notice that the proof of Theorem 3.4 cannot be extended to 2-AP-Max-Regret
or 2-AP-Max-Regret-FC. Moreover, it was proved in Ghosh et al. (2006) that 2-
AP-Max-Regret-FC is of domination number 2n−1. We believe that 2n−1 is also the
domination number for 2-AP-Max-Regret, but we are unable to prove it. In support
of this conjecture we prove the following:

Theorem 3.5 The domination number of 2-AP-Max-Regret is at most 2n−1.

Proof: Choose n positive numbers d1 > d2 > · · · > dn arbitrarily and consider the
following instance of 2-AP: w(i, i) = −di for each i = 1, 2, . . . , n, w(i, j) = 0 for each
1 ≤ i < j ≤ n and w(i, j) = −∑i

k=j dk for each 1 ≤ j < i ≤ n.

Initially 2-AP-Max-Regret computes the regrets as follows: ∆1,k = d1 and ∆2,k =
dn for each k = 1, 2, . . . , n. We may assume that 2-AP-Max-Regret chooses (1,1) (see
Remark 3.3). Similarly, we can see that 2-AP-Max-Regret chooses (2, 2), (3, 3), . . . , (n, n)
one by one. Thus, the weight of the assignment M = {(1, 1), (2, 2), . . . , (n, n)} built by
2-AP-Max-Regret equals −∑n

i=1 di.

For an integer p ≥ 1, let Op(i, p) denote an operation that replaces in M the vectors
{(i, i), (i+1, i+1), . . . , (i+p, i+p)} by the vectors {(i, i+1), (i+1, i+2), . . . , (i+p−1, i+
p), (i + p, i)}. The operation Op(i, 0) does nothing. Consider the following procedure. It
starts from i := 1. It chooses an arbitrary integer p with 0 ≤ p ≤ n− i, performs Op(i, p),
sets i := i + p + 1 and continues this loop while i < n.

Notice that Op(i, p) preserves the weight of the assignment and, thus, every assignment
obtained by the procedure is of weight w(M). Let f(n) be the number of all possible
assignments that can be obtained by the procedure. Clearly, f(1) = 1 and set f(0) = 1.
To compute f(n) observe that after using Op(1, p) we will have f(n − p − 1) possible
assignments. Thus, for each n ≥ 2 we have f(n) = f(n− 1) + f(n− 2) + . . . + f(0). This
implies that f(n) = 2n−1 for n ≥ 1.

To show that any assignment that cannot be constructed by the procedure is of weight
smaller than w(M), build a complete digraph DKn with vertices {1, 2, . . . , n} and with
a loop on every vertex. For arbitrary 1 ≤ i, j ≤ n, the arc (i, j) of DKn corresponds to
the vector (i, j) and we set the weight of arc (i, j) equal w(i, j). We call an arc (i, j) with
i < j forward and with i ≥ j backward. Notice that the weight of every forward arc is 0.

An assignment corresponds to a cycle factor of DKn, which is a collection of disjoint
cycles (some of them may be loops) that cover all vertices of DKn. In particular, the weight
of an assignment equals the weight of the corresponding cycle factor in DKn. Notice that
the weight of every forward arc is 0 and, thus, the weight of a cycle factor equals the sum of
the weights of its backward arcs. We call a pair (i, j), (i′, j′) of backward arcs intersecting
if the intervals [j, i] and [j′, i′] of real line intersect (one of these intervals may be just a
point). Observe that if a cycle factor does not have intersecting backward arcs, then its
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weight equals −∑n
i=1 di = w(M) and every such cycle factor corresponds to an assignment

that can be obtained by the procedure above. Thus, there are exactly f(n) = 2n−1 cycle
factors without intersecting backward arcs.

Now suppose that a cycle factor F has an intersecting pair (i, j), (i′, j′) of backward
arcs. Thus, there is an integer k such that k ∈ [j, i] ∩ [j′, i′]. By the definition of a cycle
factor, k < n. Observe that the above arguments imply that w(F ) ≤ −∑n

i=1 di − dk <
w(M).

So, there are only 2n−1 assignments of weight not smaller than w(M). 2

4 s-AP Heuristics of Large Domination Number

For ATSP, there are several heuristics with domination number at least (n − 2)!; see,
e.g., Punnen and Kabadi (2002). In this section, we will demonstrate that s-AP admits a
number of heuristics of domination number at least ((n− 1)!)s−1. We introduce two such
new heuristics Part and Recursive Opt Matching, which might well be of interest
in practice. The key lemma is the following result similar to the corresponding result in
Gutin and Yeo (2002).

The average weight of an assignment (denoted by w̄) is the total weight of all assign-
ments divided by the number of assignments. The average weight of a vector in X is
w(X)/ns. Thus, by linearity of expectation, the average weight of an assignment equals
w̄ = w(X)/ns−1.

Lemma 4.1 Let H be a heuristic that for each instance of s-AP constructs an assignment
of weight at most the average weight of an assignment. Then the domination number of
H is at least ((n− 1)!)s−1.

Proof: Consider an instance I of s-AP. Let C denote the set of all vectors of I with the
first coordinate equal 1. Consider P = {Af : f1 ∈ C}, where Af = {f1, f2, . . . , fn} is an
assignment with f i

j = f1
j + i − 1 (modulo n), j = 1, 2, . . . , s. Observe that each vector is

in exactly one Af and, thus, P is a partition of X = X1×X2× · · ·×Xs into assignments.
Since

∑
f∈C w(Af ) = w(X), |C| = ns−1 and w̄ = w(X)/ns−1, the heaviest assignment Ah

in P is of weight at least w̄.

Let S(Xi) be the set of all permutations on Xi (2 ≤ i ≤ s) and let π2 ∈ S(X2), π3 ∈
S(X3), . . . , πs ∈ S(Xs). To obtain P(π2, π3, . . . , πs) from P, replace f i

j with πj(f i
j) for

each j ≥ 2 and i = 1, 2, . . . , n. Thus, we obtain a family

F = {P(π2, π3, . . . , πs) : π2 ∈ S(X2), π3 ∈ S(X3), . . . , πs ∈ S(Xs)}

of partitions of X into assignments. The family consists of (n!)s−1 partitions. We may
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choose the heaviest assignment in each partition and, thus, obtain a family A of assign-
ments of weight at least w̄.

However, we can have several occurrences of the same assignment in A. We claim that
no assignment G = {g1, g2, . . . , gn} (with gi

1 = i for i = 1, 2, . . . , n) can be in more than
ns−1 partitions of F . We may assume that G ∈ P. Let G be also in some P(π2, π3, . . . , πs).
By definition, there is an assignment {d1, d2, . . . , dn} in P with di

1 = i for i = 1, 2, . . . , n
such that gi

j = πj(di
j) for each j = 2, 3, . . . , s and i = 1, 2, . . . , n. These relations uniquely

define the permutations π2, π3, . . . , πs. Thus, {g1, g2, . . . , gn} can be repeated in F at most
|P| = ns−1 times.

So, each assignment in A is of weight at least w̄, no assignment in A can be repeated
more than ns−1 times, and A has (n!)s−1 assignments with repetitions. Therefore, we can
find (in A) ((n − 1)!)s−1 distinct assignments of weight at least w̄. Since w(H(I)) ≤ w̄
and I is arbitrary, we conclude that H is of domination number at least (n!)s−1. 2

Consider a new heuristic Part that finds a partition P of X into assignments and
computes an assignment in P of minimum weight. The proof above shows that Part is of
domination number at least ((n−1)!)s−1. This heuristic is fast (of time complexity O(ns))
and might be of interest at least for producing initial assignments for local improvement
heuristics such as the Triple Interchange introduced in Balas and Saltzman (1991) for
3-AP. Before studying Triple Interchange we consider another new heuristic Recur-
sive Opt Matching for s-AP.

Recursive Opt Matching proceeds as follows. Compute a new weight w̄(i, j) =
w(Xij)/ns−2, where Xij is the set of all vectors with last two coordinates equal i and j,
respectively. Solving the 2-AP with the new weights to optimality, find an optimal assign-
ment {(i, πs(i)) : i = 1, 2, . . . , n}, where πs is a permutation on Xs. While s 6= 1, introduce
(s − 1)-AP with weights given as follows: w′(f i) = w(f i, πs(i)) for each vector f i ∈ X ′,
where X ′ = X1×X2×· · ·×Xs−1, with last coordinate equal i and apply Recursive Opt
Matching recursively. As a result we have obtained permutations πs, πs−1, . . . , π2. The
output is the assignment {(i, π2(i), π3(π2(i)), . . . , πs(πs−1(. . . (π2(i))) . . .)) : i = 1, 2, . . . , n}.

Theorem 4.2 For each s ≥ 2, Recursive Opt Matching is of domination number at
least ((n− 1)!)s−1.

Proof: By Lemma 4.1, it suffices to show that the assignment obtained by Recursive
Opt Matching is of weight at most w̄ = w(X)/ns−1, the average weight of an assignment.
Our proof is by induction on s ≥ 2. Clearly the assertion holds for s = 2 and consider
s ≥ 3. Observe that

w(X)
ns−1

= w̄ =
1
n

n∑

i=1

n∑

j=1

w̄(i, j) ≥
n∑

i=1

w̄(i, πs(i)) =
w′(X ′)
ns−2

.
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Let A = {(g1, πs(1)), . . . , (gn, πs(n))} be an assignment obtained by Recursive Opt
Matching, where gi ∈ X ′ such that gi

s−1 = i for every i = 1, . . . , n. Let A′ = {g1, . . . , gn}.
Then by induction hypothesis, w̄′ = w′(X ′)/ns−2 ≥ w′(A′) = w(A) and we are done. 2

It is straightforward to see that for any fixed s ≥ 3, Recursive Opt Matching is of
running time merely O(ns).

Consider 3-AP. Triple Interchange is a local search heuristic that at every step tries
to improve an assignment D = {d1, d2, . . . , dn} by looking at a triple of vectors di, dj , dk. It
compares w(di)+w(dj)+w(dk) with the weight of each of 35 triples (hi, hj , hk) 6= (di, dj , dk)
such that hi

1 = di
1, h

j
1 = dj

1, h
k
1 = dk

1, {hi
2, h

j
2, h

k
2} = {di

2, d
j
2, d

k
2} and {hi

3, h
j
3, h

k
3} =

{di
3, d

j
3, d

k
3}. If Triple Interchange finds a triple hi, hj , hk lighter than di, dj , dk, it

replaces di, dj , dk with hi, hj , hk in D. The heuristic stops when no triple in the current
assignment D can be replaced by a lighter one.

The following theorem does not depend on the initial assignment in Triple Inter-
change.

Theorem 4.3 The domination number of Triple Interchange is at least ((n− 1)!)2.

Proof: Assume that E = {e1, e2, . . . , en}, where ei = (i, i, i), is an assignment that cannot
be improved using Triple Interchange. The set of all vectors X = Y ∪ Z ∪ E, where
Y is the set of vectors with exactly two equal coordinates and Z is the set of vectors
with all coordinates being different. Clearly, w(X) = w(Y ) + w(Z) + w(E). We will
prove that w(Y ) ≥ 3(n − 1)w(E) and w(Z) ≥ (n − 1)(n − 2)w(E), which imply that
w(E) ≤ w̄ = w(X)/n2 and the result of the theorem follows from Lemma 4.1.

Observe that |Y | = 3n(n− 1) (there are 3 ways to choose which coordinate is different
from the other two, n ways to choose value from {1, 2, . . . , n} for this coordinate and n−1
ways to choose value for the two coordinates). The set Y can be partitioned into |Y |/2
pairs of the form f i, f j such that f i has one coordinate equal i and two coordinates equal
j and f j has one coordinate equal j and two coordinates equal i. For each such pair f i, f j ,
we have w(f i)+w(f j) ≥ w(ei)+w(ej) as otherwise we could improve ei, ej , ek by f i, f j , ek

(k 6= i, j). Summing up all the inequalities we obtain w(Y ) ≥ 3(n− 1)w(E).

Note that |Z| = n(n − 1)(n − 2). For a vector f = (i, j, k), let f+ = (k, i, j) and
f− = (j, k, i). Let F = {(i, j, k) ∈ X : i < j < k} and G = {(i, j, k) ∈ X : j < i < k}.
Then Z = {{f, f+, f−} : f ∈ F ∪G} is a partition of Z into |Z|/3 triples. Observe that
for a triple h = (i, j, k), h+, h−, we have w(h) + w(h+) + w(h−) ≥ w(ei) + w(ej) + w(ek).
This implies w(Z) ≥ (n− 1)(n− 2)w(E). 2

The Pair Interchange heuristic also described in Balas and Saltzman (1991) is
similar to Triple Interchange, but tries to improve pairs of vectors in the current
assignment. Pair Interchange does not always produce an assignment whose weight is

10



at most the average weight of an assignment. To see that consider an instance of 3-AP
with the following weights: w(i, i, i) = 0 for each i = 1, 2, . . . , n, w(i, j, k) = 1 for each
triple i, j, k in which exactly two members equal, and w(i, j, k) = −n3 for each triple i, j, k
in which all members of different. The assignment E = {(1, 1, 1), (2, 2, 2), . . . , (n, n, n)}
cannot be improved by Pair Interchange, but w(E) = 0 and the average weight of an
assignment is negative for each n ≥ 3.

5 ATSP–Max-Regret and ATSP-Max-Regret-FC

A variation of Max-Regret for ATSP, ATSP-Max-Regret-FC (FC abbreviates First
Coordinate), was first introduced in (Ghosh et al. 2006) under a different name, R-R-
Greedy. The authors of (Ghosh et al. 2006) found an exponential upper bound on
the domination number of ATSP-Max-Regret-FC and stated a problem to obtain a
nontrivial lower bound for the domination number. Extensive computational experiments
in (Ghosh et al. 2006) demonstrated a clear superiority of ATSP-Max-Regret-FC over
Greedy and several other construction heuristics in Glover et al. (2001). Therefore, the
result of Theorem 5.2 is somewhat unexpected.

Let K∗
n be a complete digraph with vertices V = {1, 2, . . . , n}. The weight of an arc

(i, j) is denoted by wij . The ATSP is the problem of finding a tour (i.e., a Hamilton cycle)
of K∗

n of total minimum weight. Let Q be a collection of disjoint paths in K∗
n. An arc

a = (i, j) is a feasible addition to Q if Q + a is either a collection of disjoint paths or a
tour in K∗

n. Consider ATSP-Max-Regret-FC and ATSP-Max-Regret.

ATSP-Max-Regret-FC proceeds as follows. Set W = T = ∅. While V 6= W do
the following: For each i ∈ V \ W , compute two lightest arcs (i, j) and (i, k) that are
feasible additions to T , and compute the difference ∆i = |wij −wik|. For i ∈ V −W with
maximum ∆i choose the lightest arc (i, j), which is a feasible addition to T and add (i, j)
to M and i to W.

ATSP-Max-Regret proceeds as follows. Set W+ = W− = T = ∅. While V 6= W+

do the following: For each i ∈ V \W+, compute two lightest arcs (i, j) and (i, k) that are
feasible additions to T , and compute the difference ∆+

i = |wij−wik|; for each i ∈ V \W−,
compute two lightest arcs (j, i) and (k, i) that are feasible additions to T , and compute the
difference ∆−

i = |wji − wki|. Compute i′ ∈ V \W+ with maximum ∆+
i′ and i′′ ∈ V \W−

with maximum ∆−
i′′ . If ∆+

i′ ≥ ∆−
i′′ choose the lightest arc (i′, j′), which is a feasible addition

to T and add (i′, j′) to M , i′ to W+ and j′ to W−. Otherwise, choose the lightest arc
(j′′, i′′), which is a feasible addition to T and add (j′′, i′′) to M , i′′ to W− and j′′ to W+.

Remark 5.1 In ATSP-Max-Regret-FC, if |V \ W | = 1 we set ∆i = 0. A similar
remark applies to ATSP-Max-Regret.
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Theorem 5.2 The domination number of both ATSP-Max-Regret-FC and ATSP-
Max-Regret equals 1 for each n ≥ 2.

Proof: Since the proofs for both heuristics use the same family of instances and are
similar, we restrict ourselves only to ATSP-Max-Regret-FC.

Consider an instance of ATSP on the complete digraph with vertex set {1, 2, . . . , n},
n ≥ 2. Let the weights be as follows: wik = min{0, i − k} for each 1 ≤ i 6= k ≤ n, i 6= n,
and wnk = −k for each 1 ≤ k ≤ n − 1. We will slightly modify the weights: w′ij = wij

unless j = i+1 modulo n. We set w′i,i+1 = −1− 1
n+1 for 1 ≤ i ≤ n−1 and w′n,1 = −1− 1

n+1 .
ATSP-Max-Regret-FC will use the weight function w′.

ATSP-Max-Regret-FC constructs the tour TMR = (1, 2, 3, . . . , n, 1) by first choos-
ing the arc (n − 1, n), then the arc (n − 2, n − 1), etc. The last two arcs are (1, 2) and
(n, 1) (they must be included in the tour). Indeed, initially ∆n−1 = n+2

n+1 > ∆i for each
i 6= n− 1. Once (n− 1, n) is added to TMR, ∆n−2 = n+2

n+1 becomes maximal, etc.

Let T ′, T ′′ be a pair of tours. Since
∑

(i,j)∈K∗
n
|wij − w′ij | < 1, w(T ′) < w(T ′′) implies

w′(T ′) < w′(T ′′). Thus, to prove that w′(T ) < w′(TMR) for each tour T 6= TMR, it suffices
to show that w(T ) < w(TMR).

Observe that w(TMR) = −n. Let T = (i1, i2, . . . , in, i1) be an arbitrary tour, where
i1 = 1. Suppose that is = n. Observe that the weight of the path P = (i1, i2, . . . , is)
equals

∑s−1
k=1 min{0, ik − ik+1}. Thus, w(P ) ≤ 1 − n and w(P ) = 1 − n if and only if

i1 < i2 < · · · < is. Since is = n, the weight of the arc (is, is+1) equals −is+1. Thus,
w(T ) ≤ 1 − n − is+1 and w(T ) ≥ w(TMR) if and only if is+1 = 1 and i1 < i2 < · · · < is.
We conclude that w(T ) ≥ w(TMR) if and only if T = TMR. 2

6 Conclusions and Further Research

We have carried out worst-case analysis of Max-Regret for the Multidimensional As-
signment Problem (s-AP, s ≥ 3) and Asymmetric Traveling Salesman Problem (ATSP).
We proved that Max-Regret for both problems may find unique worst possible solution.
Thus, like Greedy, Max-Regret should be used with great care and, possibly, avoided
all together when instances of previously unstudied families are to be solved. In such a
case heuristics of factorial domination number that have a proven excellent computational
record (such as Helsgaun’s version of Lin-Kernighan heuristic for the Symmetric TSP (see
Helsgaun (2000), and Punnen et al. (2003)) appear to be a much better choice.

For s-AP we considered three heuristics of factorial domination number. Two of the
heuristics are new and, we believe, that they might well be of practical interest. Gerold
Jäger has already performed preliminary computational experiments comparing Recur-
sive Opt Matching and its modifications with other fast heuristics including Greedy
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and Max-Regret for s-AP, s ≥ 3. The experiments demonstrated that on average Re-
cursive Opt Matching and its variants outperform the other tested heuristics especially
for s > 3. We plan to report on these and other experimental results in a future paper.
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