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Abstract

We study the design of efficient data structures. In particular we focus on the design of data
structures where each operation has a worst case efficient implementations. The concrete prob-
lems we consider are partial persistence, implementation of priority queues, and implementation of
dictionaries.

The first problem we consider is how to make bounded in-degree and out-degree data structures
partially persistent, i.e., how to remember old versions of a data structure for later access. A node
copying technique of Driscoll et al. supports update steps in amortized constant time and access
steps in worst case constant time. The worst case time for an update step can be linear in the size
of the structure. We show how to extend the technique of Driscoll et al. such that update steps
can be performed in worst case constant time on the pointer machine model.

We present two new comparison based priority queue implementations, with the following prop-
erties. The first implementation supports the operations FindMin, Insert and Meld in worst
case constant time and Delete and DeleteMin in worst case time O(log n). The priority queues
can be implemented on the pointer machine and require linear space. The second implementation
achieves the same worst case performance, but furthermore supports DecreaseKey in worst case
constant time. The space requirement is again linear, but the implementation requires auxiliary
arrays of size O(log n). Our bounds match the best known amortized bounds (achieved by respec-
tively binomial queues and Fibonacci heaps). The data structures presented are the first achieving
these worst case bounds, in particular supporting Meld in worst case constant time. We show that
these time bounds are optimal for all implementations supporting Meld in worst case time o(n).
We also present a tradeoff between the update time and the query time of comparison based pri-
ority queue implementations. Finally we show that any randomized implementation with expected
amortized cost t comparisons per Insert and Delete operation has expected cost at least n/2O(t)

comparisons for FindMin.

Next we consider how to implement priority queues on parallel (comparison based) models.
We present time and work optimal priority queues for the CREW PRAM, supporting FindMin,
Insert, Meld, DeleteMin, Delete and DecreaseKey in constant time with O(log n) proces-
sors. Our implementation is the first supporting all of the listed operations in constant time. To
be able to speed up Dijkstra’s algorithm for the single-source shortest path problem we present a
different parallel priority data structure. With this specialized data structure we give a parallel
implementation of Dijkstra’s algorithm which runs in O(n) time and performs O(m log n) work on
a CREW PRAM. This represents a logarithmic factor improvement for the running time compared
with previous approaches.

We also consider priority queues on a RAM model which is stronger than the comparison
model. The specific problem is the maintenance of a set of n integers in the range 0..2w − 1 under
the operations Insert, Delete, FindMin, FindMax and Pred (predecessor query) on a unit
cost RAM with word size w bits. The RAM operations used are addition, left and right bit shifts,
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and bit-wise boolean operations. For any function f(n) satisfying log log n ≤ f(n) ≤
√

log n, we
present a data structure supporting FindMin and FindMax in worst case constant time, Insert

and Delete in worst case O(f(n)) time, and Pred in worst case O((log n)/f(n)) time. This
represents the first priority queue implementation for a RAM which supports Insert, Delete

and FindMin in worst case time O(log log n) — previous bounds were only amortized. The data
structure is also the first dictionary implementation for a RAM which supports Pred in worst case
O(log n/ log logn) time while having worst case O(log log n) update time. Previous sublogarithmic
dictionary implementations do not provide for updates that are significantly faster than queries.
The best solutions known support both updates and queries in worst case time O(

√
log n).

The last problem consider is the following dictionary problem over binary strings. Given a set of
n binary strings of length m each, we want to answer d–queries, i.e., given a binary query string of
length m to report if there exists a string in the set within Hamming distance d of the query string.
We present a data structure of size O(nm) supporting 1–queries in time O(m) and the reporting
of all strings within Hamming distance 1 of the query string in time O(m). The data structure can
be constructed in time O(nm). The implementation presented is the first achieving these optimal
time bounds for the preprocessing of the dictionary and for 1–queries. The data structure can be
extended to support the insertion of new strings in amortized time O(m).
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Chapter 1

Introduction

In this thesis we study the design of efficient data structures. In particular we focus on the design
of data structures allowing each of the individual operations on the data structures to have worst
case efficient implementations. The concrete problems we consider in this thesis are general tech-
niques to make data structure partially persistent, the implementation of priority queues, and the
implementation of dictionaries.

The thesis consists of an introduction summarizing the results achieved and a sequence of
papers. In Sections 1.1–1.5 we summarize our contributions and their relation to previous work.
Chapter 2 summarizes the role of a very general “tool” used throughout the thesis, the application
of invariants.

Chapter 3 [16]: Partially Persistent Data Structures of Bounded Degree with Constant Update Time. In
Nordic Journal of Computing, pages 238–255, volume 3(3), 1996.

Chapter 4 [20]: The Randomized Complexity of Maintaining the Minimum, with Shiva Chaudhuri and
Jaikumar Radhakrishnan. In Nordic Journal of Computing, Selected Papers of the 5th Scandinavian
Workshop on Algorithm Theory (SWAT’96), volume 3(4), pages 337-351, 1996.

Chapter 5 [15]: Fast Meldable Priority Queues. In Proc. 4th Workshop on Algorithms and Data Struc-
tures, LNCS volume 955, pages 282–290, 1995.

Chapter 6 [18]: Worst-Case Efficient Priority Queues. In Proc. 7th ACM-SIAM Symposium on Discrete
Algorithms, pages 52–58, 1996.

Chapter 7 [17]: Priority Queues on Parallel Machines. In Proc. 5th Scandinavian Workshop on Algorithm
Theory, LNCS volume 1097, pages 416–427, 1996.

Chapter 8 [23]: A Parallel Priority Data Structure with Applications, with Jesper Larsson Träff and Chris-
tos D. Zaroliagis. In Proc. 11th International Parallel Processing Symposium, pages 689-693, 1997.

Chapter 9 [19]: Predecessor Queries in Dynamic Integer Sets. In Proc. 14th Symposium on Theoretical
Aspects of Computer Science, LNCS volume 1200, pages 21-32, 1997.

Chapter 10 [21]: Approximate Dictionary Queries, with Leszek Ga̧sieniec. In Proc. 7th Combinatorial
Pattern Matching, LNCS volume 1075, pages 65–74, 1996.

1.1 Persistent data structures

A data structure is said to be ephemeral if updates to the data structure destroy the old version of
the data structure, i.e., the only version of the data structure remembered is the current version
of the data structure. A data structure is said to be persistent if old versions of the data structure
are remembered and can be accessed. Ordinary data structures are ephemeral. Persistent data
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structures are used in a variety of areas, such as computational geometry, text and file editing, and
high-level programming languages. For references see Driscoll et al. [44].

We distinguish three types of persistent data structures, depending on how new versions of the
data structure are achieved:

• A partially persistent data structure allows all old versions to be accessed but only the most
recent version to be modified.

• A fully persistent data structure allows all old versions both to be both accessed and modified.

• A confluently persistent data structure allows all old versions to be accessed and modified.
In addition two versions can be combined to a new version. The semantics of combining two
versions of the data structures is context dependent.

The differences between the three types of persistence are best illustrated by the corresponding
version graphs. The version graph of a persistent data structure is a directed graph where each node
corresponds to a version of the ephemeral data structure and an edge from a node representing
version D1 of the data structure to a node representing another version D2 states that D2 is
obtained from D1. The version graph of a partially persistent data structure is always a list, and
the version graph of a fully persistent data structure is a rooted tree. The version graph of a
confluently persistent data structure is a directed acyclic graph where all nodes have in-degree one
or two, except for the node corresponding to the initial data structure.

The first general approaches to making data structures partially persistent were described by
Overmars [86]. The first (straightforward) approach considered by Overmars is to explicitly store
a copy of each of the old versions of the data structure. The drawbacks of this approach are
obvious: It is very space inefficient and the time overhead to make the data structure persistent is
linear in the size of the data structure for each update. The second approach is to store only the
sequence of updates, and when accessing an old version of the data structure to rebuild that version
from scratch. The third approach considered by Overmars is a hybrid version where in addition
to the sequence of operations also every kth version of the data structure is stored (for k chosen
appropriately).

Later Driscoll et al. [44] developed two efficient general techniques for making a large class of
pointer based data structures both partially and fully persistent. The two techniques are denoted
node copying and node spitting. The techniques require that the ephemeral data structures are
pointer based, i.e., the ephemeral data structures consist of records each containing a constant
number of fields containing either atomic values or pointers to other records. In addition it is
required that the ephemeral data structures satisfy the bounded in-degree assumption: There exists
a constant d such that all records have in-degree bounded by d.

Both persistence techniques allow each update step to be performed in amortized constant time
and amortized constant space, and support each access step in worst case constant time.

Our contribution in Chapter 3 is to extend the partial persistence technique of Driscoll et al.
such that both update and access steps can be supported in worst case constant time, i.e., we show
how to eliminate the amortization from the node copying technique. Our main contribution is a
data structure allowing us to avoid cascades of node copyings in the original node copying technique
(see Chapter 3 for the details). We present our solution as a strategy for a two player pebble game
on dynamic graphs. The reformulation of the partial persistence technique as a pebble game was
first considered by Dietz and Raman [33, 92]; our solution solves an open problem about the pebble
game introduced by Dietz and Raman [33].

2



By assuming the more powerful unit cost RAM model Dietz and Raman [33] have presented a
different solution for the partial persistence problem achieving worst case constant time for access
and update steps for any pointer based data structure with polylogarithmic bounded in-degree.
Dietz and Raman also describe how to make data structures of constant bounded in-degree fully
persistent with a worst case slow down of O(log log n).

Dietz [31] has shown how to make arrays fully persistent on a unit cost RAM in expected
amortized time O(log log n) and constant space per operation. Because the memory of a RAM can
be considered as an array the result of Dietz applies to all data structures on a unit cost RAM.

As mentioned several general techniques have been developed to convert ephemeral data struc-
ture into their partially or fully persistent counterparts, but for confluently persistence no such
technique has been identified. The design of confluently persistent data structures is quite in-
volved. An example is the development of confluently persistent catenable lists [25, 45, 67]. But by
designing data structures such that they can be implemented in a purely functional language they
automatically become confluently persistent [85]. Such data structures have been denoted purely
functional data structures. Some recently developed purely functional data structures are: queues
and deques [84], random access lists [83], catenable lists [67], priority queues [22] and catenable
finger search trees [68]. A survey on the design of functional data structures can be found in the
thesis of Okasaki [85].

It remains an interesting open problem if there exists a construction which can remove the
amortization from the node splitting technique of Driscoll et al. [44] for making data structures
fully persistent, i.e., if there exists a data structure that can prevent cascades of node splittings
in the node splitting technique. A related open problem involving node splitting is to give a
pointer based data structure for avoiding cascades of node splittings when inserting elements into
an (a, b)-tree [64]. A solution to this problem would imply the first pointer based implementation
for constant update time finger search trees [60] and a first step towards removing the amortization
from the node splitting technique of of Driscoll et al. [44] . On a RAM constant update time finger
search trees have been given by Dietz and Raman [34]. Pointer based implementations of constant
update time search trees have been given by Levcopoulos and Overmars [73] and Fleischer [48].

1.2 Comparison based priority queues

A major part of this thesis is devoted to the implementation of priority queues. In this section we
consider implementations in three different types of computational models: sequential comparison
based models, parallel comparison based models and RAM models allowing the manipulation of
words. Two other types models are described in Sections 1.3 and 1.4.

A priority queue is a data structure storing a set of elements from a totally ordered universe
and supporting a subset of the operations listed below.

MakeQueue creates and returns an empty priority queue.

FindMin(Q) returns the minimum element contained in priority queue Q.

Insert(Q, e) inserts an element e into priority queue Q.

Meld(Q1, Q2) melds priority queues Q1 and Q2 to a new priority queue and returns the resulting
priority queue.

DecreaseKey(Q, e, e′) replaces element e by e′ in priority queue Q provided e′ ≤ e and it is
known where e is stored in Q.

DeleteMin(Q) deletes and returns the minimum element from priority queue Q.

3



Delete(Q, e) deletes element e from priority queue Q provided it is known where e is stored in Q.

The minimum requirement is that the operations MakeQueue, Insert and DeleteMin are
supported. For sake of simplicity we do not distinguish between elements and their associated
keys [76] (except for the data structure mentioned in Chapter 8).

1.2.1 Lower bounds

No unique optimal priority queue implementation exists, because any non constant operation can be
made constant by increasing the cost of some of the other operations supported. The two extreme
examples illustrating this fact are the following two trivial implementations:

• By storing each priority queue as a doubly linked list of the elements in an arbitrary order,
the operations FindMin and DeleteMin can be implemented in worst case time O(n) and
all other operations in worst case constant time.

• By storing each priority queue as a sorted doubly linked list of the elements, the operations
Insert, Meld and DecreaseKey can be implemented in worst case time O(n) and all other
operations in worst case constant time.

In the following we list known lower bound relations between the worst case time of the indi-
vidual operations in the comparison model.

Either Insert or DeleteMin requires Ω(log n)1 comparisons because n elements can be sorted
by performing MakeQueue, n Insert operations and n DeleteMin operations, and comparison
based sorting requires Ω(n log n) comparisons. In Chapter 5 we present another reduction to sorting
showing that if Meld is supported in worst case time o(n), then DeleteMin requires worst case
time Ω(log n).

But DeleteMin consists of both a FindMin and a Delete operation, and the above state-
ments do not identify which of the two operations require time Ω(logn). In Chapter 4 we show the
following tradeoff answering this question: If Insert and Delete take worst case time O(t(n)),
then FindMin requires worst case time n/2O(t(n)). We give two proofs of the tradeoff; the first
is an explicit adversary argument, and the second is a decision tree argument. The decision tree
argument implies the stronger result that if the updates take expected amortized time O(t(n)) then
the expected time for FindMin is at least n/2O(t).

The same tradeoff and proof holds if the assumption about Insert is replaced by the assumption
that a priority queue with n elements can be built in worst case time O(n · t(n)) — the proof only
uses the fact that a priority queue containing n elements can be build by n applications of Insert

in worst case time O(n · t(n)). If Meld is supported in worst case time o(n) then from Chapter 5 a
priority queue with n elements can be build in time o(n log n). If in addition FindMin is supported
in time O(nε) for a constant ε < 1 then from the tradeoff of Chapter 4 it follows that Delete must
require time Ω(log n).

This gives the following characterization of an “optimal” priority queue implementation.

Observation If a priority queue implementation supports Meld in worst case time o(n) and
FindMin in worst case time O(nε) for a constant ε < 1, then Delete and DeleteMin require
worst case time Ω(log n).

1f(n) ∈ Ω(g(n)) if and only if there exists an ε > 0 such that f(n) ≥ εg(n) for infinitely many n ∈ IN .
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The priority queue implementations we give in Chapters 5 and 6 are optimal in this sense,
because they support Delete and DeleteMin in worst case time O(log n) and all other operations
in worst case constant time.

1.2.2 Implementations

The first implementation of a priority queue was given by Williams in 1964 [109]. Williams’ data
structure, also known as a heap, represents a priority queue as a complete binary tree where each
node stores one element and the elements satisfy heap order, i.e., the element stored at a node is
larger than or equal to the element stored at the node’s parent. A heap can support all operations
except Meld in worst case time O(log n), and can be stored efficiently in an array of size n without
the use of pointers, i.e., a heap is an example of an implicit data structure [82].

The properties of heaps have been the topic of comprehensive research since the introduction
by Williams. That a heap containing n elements can be built in worst case time O(n) was shown
by Floyd [49]. In Section 1.3 we mention the bounds achieved by parallel heap construction al-
gorithms. The worst case number of comparisons for Insert and DeleteMin has among others
been considered by Gonnet and Munro [58] and Carlsson [26]. The average case behavior of heaps
has been considered in [13, 39, 40, 91].

Many priority queue implementations have been developed which support all the listed opera-
tions in worst case or amortized time O(log n). Common to all the implementations is that they all
are based on heap ordered trees. The constructions we give in Chapter 5 and 6 are no exception.
The most prominent implementations are binomial queues [24, 108], heap ordered (2, 3)-trees [1],
self-adjusting heaps [99], pairing heaps [52], Fibonacci heaps [53] and relaxed heaps [43]. Further
priority queue implementations can be found in [27, 46, 47, 63, 71, 97, 107].

The best amortized performance achieved by the data structures mentioned above is achieved
by binomial queues and Fibonacci heaps. Binomial queues support all operations except Del-

ete, DeleteMin and DecreaseKey in amortized constant time, and Delete, DeleteMin and
DecreaseKey in amortized time O(log n) (DecreaseKey implemented as Delete followed by
Insert). Fibonacci heaps achieve the same time bounds as binomial queues except that Decrease-

Key is supported in amortized constant time too. The best worst case bounds are achieved by
relaxed heaps. Relaxed heaps achieve worst case constant time for all operations except for Delete,
DeleteMin and Meld which require worst case time O(log n).

The first nontrivial priority queue implementation supporting Meld in worst case time o(log n)
was presented by Fagerberg [46]. The cost of achieving this sublogarithmic melding is that the time
required for DeleteMin increases to ω(log n).

In Chapters 5 and 6 we present the first priority queue implementations that simultaneously
support Meld in worst case constant time and DeleteMin in worst case time O(log n). This
is similar to the amortized time achieved by binomial queues and Fibonacci heaps, but in the
worst case sense. From the tradeoff characterization it follows that the time bounds are the “best
possible” for the individual operations. Table 1.1 summarizes the best known bounds for different
priority queue implementations.

As mentioned both our constructions are based on heap ordered trees. To achieve constant time
for the operations Insert and Meld we adopt properties of redundant counter systems to control
the linking of heap ordered subtrees. Previously van Leeuwen [107] and Carlsson et al. [27] have
adopted similar ideas to construct priority queue implementations supporting Insert in constant
time. In Chapter 6 we achieve constant time for DecreaseKey by combining ideas from redundant
counter systems with the concept of heap order violations, i.e., a subset of the tree nodes are not
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Amortized Worst case
Vuillemin Fredman Driscoll Chapter 5 Chapter 6

[108] et al. [53] et al. [43]
MakeQueue O(1) O(1) O(1) O(1) O(1)
FindMin O(1) O(1) O(1) O(1) O(1)
Insert O(1) O(1) O(1) O(1) O(1)
Meld O(1) O(1) O(log n) O(1) O(1)
DecreaseKey O(log n) O(1) O(1) O(log n) O(1)
Delete/DeleteMin O(log n) O(log n) O(log n) O(log n) O(log n)

Table 1.1: The best amortized and worst case time bounds for priority queue implementations.

required to satisfy heap order. Allowing heap order violations can be used to achieve constant time
DecreaseKey operations as shown by Driscoll et al. [43]. The data structures in Chapters 5 and 6
require slightly different computational models. Whereas the data structure in Chapter 5 can be
implemented on a pointer based machine model, the data structure in Chapter 6 requires arrays of
size O(log n). It remains an open problem if the worst case bounds of Chapter 6 can be obtained
without the use of arrays, i.e., if a pointer based implementation exists which supports both Meld

and DecreaseKey in worst case constant time and DeleteMin in worst case time O(log n).
The data structure of Chapter 5 has been reconsidered in a functional setting by Brodal and

Okasaki [22]. In [22] a purely functional and therefore also confluently persistent priority queue
implementation is presented supporting MakeQueue, FindMin, Insert and Meld in constant
time and DeleteMin in time O(log n).

1.3 Parallel priority queues

Floyd showed in [49] how to build a heap sequentially in time O(n). How to build heaps in parallel
with optimal work O(n) has been considered in a sequence of papers [32, 35, 70, 95]. On an EREW
PRAM a work optimal algorithm achieving time O(log n) was given by Rao and Zhang [95] and
on a CRCW PRAM a work optimal algorithm achieving time O(log log n) was given by Dietz and
Raman [35]. A work optimal randomized CRCW PRAM algorithm has been presented by Dietz
and Raman [35]; it runs in time O(log log log n) with high probability. In the randomized parallel
comparison tree model Dietz has presented an algorithm that with high probability takes time
O(α(n))2 and does work O(n) [32].

There exist two different avenues of research adopting parallelism to priority queues. The
first is to speed up the individual priority queue operations by using O(log n) processors such
that the individual operations require time o(log n). The second is to support the concurrent
insertion/deletion of k elements by the following two operations, where k is assumed to be a
constant.

MultiInsert(Q, e1, . . . , ek) Inserts elements e1, . . . , ek into priority queue Q.

MultiDelete(Q) Deletes and returns the k least elements contained in priority queue Q.

The first approach is appropriate for applications where the number of processors is small
compared to the number of elements, say O(log n) processors. The second is appropriate when

2α(n) denotes an inverse of Ackerman’s function.
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there are a large number of processors available. An interesting application of parallel priority
queues is to parallelize Branch-and-Bound algorithms [89, 96].

We first summarize the speed up of the individual priority queue operations. It is parallel
computing folklore that a systolic processor array with Θ(n) processors can implement a priority
queue supporting the operations Insert and DeleteMin in constant time, see Exercise 1.119
in [72]. The first approach using o(n) processors is due to Biswas and Browne [11] and Rao and
Kumar [96] who considered how to let O(log n) processors concurrently access a binary heap by
pipelining Insert and DeleteMin operations. However, each operation still takes time O(log n)
to finish. In [11, 96] the algorithms assume that the processors have shared memory. Later Ranade
et al. [94] showed how to obtain the same result for the simplest network of processors namely a
linear array of O(log n) processors.

Pinotti and Pucci [90] presented a non-pipelined EREW PRAM priority queue implementation
that supports Insert and DeleteMin operations in time O(log log n) with O(log n/ log log n)
processors. Chen and Hu [28] later gave an implementation which also supports Meld in time
O(log log n). Recently Pinotti et al. [88] achieved matching bounds and in addition supported the
operations Delete and DecreaseKey in amortized time O(log log n) on a CREW PRAM.

Our contribution (Chapter 7) is a new parallel priority queue implementation supporting all the
operations considered in Section 1.2. Compared to the implementation of Pinotti and Pucci [90] our
implementation is the first non-pipelined EREW PRAM priority queue implementation supporting
Insert and DeleteMin in time O(1) with O(log n) processors. By assuming the more powerful
CREW PRAM we can also support the operations Meld, Delete and DecreaseKey in time
O(1) with O(log n) processors. A priority queue containing n elements can be build optimally
on an EREW PRAM in time O(log n) with O(n/ log n) processors. Because a straightforward
implementation of MultiInsert is to perform Build on the elements to be inserted followed by a
Meld operation we immediately get a CREW PRAM implementation supporting MultiInsert in
time O(log k) with O((log n+k)/ log k) processors. We also describe how our priority queues can be
modified to allow operations to be performed via pipelining. As a result we get an implementation
of priority queues on a processor array with O(log n) processors, supporting the operations Make-

Queue, Insert, Meld, FindMin, DeleteMin, Delete and DecreaseKey in constant time,
which extends the result of [94].

The second avenue of research mentioned is to support the operations MultiInsert and Multi-

Delete. In [89] Pinotti and Pucci introduced the notion of k-bandwidth parallel priority queue
implementations. The basic idea of the k-bandwidth technique is to modify a heap ordered priority
queue implementation such that each node stores k elements instead of one and to require extended
heap order among the elements, i.e., the k elements stored at a node are required to be larger than
or equal to the k elements stored at the parent of the node. Implementations of k-bandwidth-heaps
and k-bandwidth-leftist-heaps for the CREW PRAM are contained in [89].

The k-bandwidth technique is central to all parallel priority queue implementations that support
MultiDelete. Ranade et al. [94] show how to apply the k-bandwidth technique to achieve a
parallel priority queue implementation for a d-dimensional array of processors, and Pinotti et al. [88]
and Das et al. [30] give implementations for hypercubes.

Table 1.2 summarizes the performance of different implementations adopting parallelism to
priority queues.

A classical application of priority queues is in Dijkstra’s algorithm for the single-source shortest
path problem on a graph with n vertices and m positive weighted edges [37]. By using Fibonacci
heaps Dijkstra’s (sequential) algorithm gets a running time of O(m + n log n) [53]. The essential

3The operations Delete and DecreaseKey require the CREW PRAM and require amortized time O(log log n).
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[90] [88] [89] [28] [94] Chapter 7
Model EREW EREW3 CREW EREW Array CREW
FindMin 1 log logn 1 1 1 1
Insert log logn log logn – – 1 1
DeleteMin log logn log logn – – 1 1
Meld – log logn log n

k + log log k log log n
k + log k – 1

Delete – log logn – – – 1
DecreaseKey – log logn – – – 1
Build log n – n

k log k log n
k log k – logn

MultiInsert – – log n
k

+ log k log log n
k

+ log k – log k
MultiDelete – – log n

k
+ log log k log log n

k
+ log k – –

Table 1.2: Performance of some parallel implementations of priority queues.

property of Dijkstra’s algorithm is that it performs n iterations, each iteration consisting of a
DeleteMin operation followed by a number of DecreaseKey operations. Driscoll et al. [43] have
presented an EREW PRAM implementation of Dijkstra’s algorithm running in time O(n log n)
and doing work O(m + n log n). The question addressed by Driscoll et al. is how to parallelize
the DecreaseKey operations involved in each of the iterations. In Chapter 8 we address the
same problem by giving two implementations of Dijkstra’s algorithm for a CREW PRAM running
in time O(n) and doing respectively work O(n2) and O(m log n). Our contribution is a parallel
priority queue implementation which supports an arbitrary number of DecreaseKey operations
in constant time provided that the elements involved in the DecreaseKey operations have been
presorted.

1.4 RAM priority queues and dictionaries

Section 1.2 and 1.3 discussed the implementation of comparison based priority queues. In this
section we consider how to implement priority queues and dictionaries on the more powerful RAM
models. The details of our contribution are contained in Chapter 9.

As model we assume a unit cost RAM with a word size of w bits, allowing addition, arbitrary
left and right bit shifts and bit-wise boolean operations on words to be performed in constant
time. In addition we assume direct and indirect addressing, jumps and conditional statements.
Miltersen [78] refers to this model as a Practical RAM. We assume the elements stored are integers
in the range 0..2w − 1, i.e., each element fits within a machine word.

The operations we consider on a set of elements S are:

Insert(e) inserts element e into S,

Delete(e) deletes element e from S,

Pred(e) returns the largest element ≤ e in S, and

FindMin/FindMax returns the minimum/maximum element in S.

We denote a data structure supporting the operations Insert, Delete and FindMin a RAM
priority queue. Notice that in contrast to Section 1.2 Delete does not require knowledge of
the position of the element to be deleted. A data structure supporting Insert, Delete and
Pred we denote a RAM dictionary. In the following we summarize existing RAM priority queue
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and dictionary implementations – they all achieve strictly better bounds than comparison based
implementations. For a survey on comparison based implementations we refer to Mehlhorn and
Tsakalidis [76], but one representative example is (a, b)-trees [64] which support all the mentioned
operations in time O(log n).

The first data structure showing that the Ω(log n) lower bound for comparison based imple-
mentations does not hold for bounded universes is due to van Emde Boas et al. [104, 106]. The
data structure of van Emde Boas et al. supports the operations Insert, Delete, Pred, FindMin

and FindMax on a Practical RAM in worst case O(logw) time. For word size logO(1) n this im-
plies a time O(log log n) implementation. Thorup [102] has presented a priority queue supporting
Insert and DeleteMin in worst case time O(log log n) independently of the word size w. Thorup
notes that by tabulating the multiplicity of each of the inserted elements the construction supports
Delete in amortized O(log log n) time by skipping extracted integers of multiplicity zero.

Andersson [5] has presented an implementation of a RAM dictionary supporting Insert, Del-

ete and Pred in worst case O(
√

log n) time and FindMin and FindMax in worst case con-
stant time. Several data structures can achieve the same time bounds as Andersson [5], but they
all require constant time multiplication [6, 54, 93]. Andersson [5] mentions that there exists a
Ω(log1/3−o(1) n) lower bound for the dictionary problem on a practical RAM.

Our contribution in Chapter 9 is a data structure for a Practical RAM supporting FindMin

and FindMax in worst case constant time, Insert and Delete in worst case O(f(n)) time, and
Pred in worst case O((log n)/f(n)) time where f(n) is an arbitrary nondecreasing smooth function
satisfying log logn ≤ f(n) ≤

√
log n.

If f(n) = log log n we support the operations Insert, DeleteMin and Delete in worst case
time O(log log n), i.e., we achieve the result of Thorup but in the worst case sense. Furthermore
we support Pred queries in worst case O(log n/ log log n) time. If f(n) =

√
log n, we achieve time

bounds matching those of Andersson [5].

Our construction is obtained by combining the data structure of van Emde Boas et al. [104, 106]
with packed search trees similar to those of Andersson [5], but where we add buffers of delayed
insertions and deletions to the nodes of the packed search tree. The idea of adding buffers to a
search tree is inspired by Arge [7] who designs efficient external memory data structures.

The data structure presented in Chapter 9 is the first allowing predecessor queries in time
O(log n/ log logn) while having update time O(log log n), i.e., updates are exponentially faster
than Pred queries. It remains an open problem if Insert and Delete can be supported in time
O(log log n) while supporting Pred queries in time O(

√
log n).

1.5 Approximate Dictionary Queries

In Chapter 10 we consider the following approximate dictionary problem on a unit cost RAM. Let
W be a dictionary of n binary strings each of length m. We consider the problem of answering
d–queries, i.e., for a binary query string α of length m to decide if there is a string in W with at
most Hamming distance d of α.

Minsky and Papert originally raised this problem in [80]. Recently a sequence of papers have
considered how to solve this problem efficiently [41, 42, 59, 74, 112]. Manber and Wu [74] considered
the application of approximate dictionary queries to password security and spelling correction of
bibliographic files. Dolev et al. [41, 42] and Greene, Parnas and Yao [59] considered approximate
dictionary queries for the case where d is large. The initial effort towards a theoretical study of the
small d case was given by Yao and Yao in [112]. They present for the case d = 1 a data structure
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supporting queries in time O(m log log n) with space requirement O(nm logm). Their solution is
described in the cell-probe model of Yao [111] with word size one.

For the general case where d > 1, d–queries can be answered in optimal space O(nm) doing∑d
i=0

(m
i

)
exact dictionary queries for all the possible strings with Hamming distance at most d of

the query string, where each exact dictionary query requires time O(m) by using the data structure
of Fredman, Komlos and Szemeredi [51]. On the other hand d–queries can be answered in time
O(m) when the size of the data structure can be O(n

∑d
i=0

(m
i

)
) by inserting all n

∑d
i=0

(m
i

)
strings

with Hamming distance at most d into a compressed trie.
It is unknown how the above mentioned data structure which supports 1–queries in time O(m)

can be constructed in time O(nm). In Chapter 10 we present a standard unit cost RAM imple-
mentation which has optimal size O(nm) and supports 1–queries in time O(m) and which can be
constructed in time O(nm). Our data structure can be made semi-dynamic by supporting insertions
of new binary strings in amortized time O(m), when starting with an initial empty dictionary.

It remains an open problem if there exists a data structure having size O(nm) which can answer
d–queries in time o(md) for d ≥ 2.
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Chapter 2

The role of invariants

One of the basic ideas used intensively to obtain the results of this thesis is the fundamental concept
of invariants. We use invariants in the description of data structures, in lower bound/adversary
arguments, in the analysis of expected running times of randomized algorithms, and to argue about
the correctness of our algorithms. However, the most significant application of invariants has been
in the design of the data structures presented. In the following we describe the role of invariants in
our work, in particular the interaction between developing invariants and designing data structures.

In Chapters 3 and 4 we use invariants to describe explicit adversaries for respectively the pebble
game of Dietz and Raman [33] and for algorithms maintaining the minimum of a set. In both cases
the invariants capture the basic idea of the adversary, and the adversaries’ moves are “dictated” by
the invariants. In Chapter 4 we also use an invariant to reason about the expected running time
of a randomized algorithm maintaining the minimum of a set. In fact, the random choices of the
algorithm have been designed such that the invariant is satisfied.

In Chapters 5, 6 and 7 we use invariants to describe the needed extra properties of the (heap
ordered) trees. The invariants describe how many sons of each rank a node can have, how many
trees there are of each rank, and how many heap order violations there are. In Chapters 8 and 9 we
similarly use invariants to bound the sizes of the involved buffers. In Chapter 8 the main application
of invariants is to show that the involved buffers do not temporarily get empty, i.e., to argue about
a safety property used to prove the correctness of the algorithms.

Common to all the examples are that we developed the data structures hand in hand with the
invariants. In most cases we actually first proposed a set of invariants, and then considered how
to implement the required operations of the data structure under the constraints of the proposed
invariants. If this failed, we modified the invariants and reconsidered the implementation of the
operations. This cyclic process continued until feasible invariants were found. We believe that the
main advantage of using invariants while designing data structures is that invariants make it quite
easy to identify bottlenecks in the proposed constructions.

To illustrate this development process we briefly review the process of developing the data
structure presented in Chapter 6. The goal was to develop a priority queue implementation sup-
porting Meld and DecreaseKey in worst case constant time and DeleteMin in worst case
time O(log n). The only data structure supporting Meld in constant time was the data structure
in Chapter 5 (which supports Insert and Meld in worst case constant time and Delete and
DeleteMin in worst case time O(log n)), and the only one supporting DecreaseKey in constant
time was the data structure of Driscoll et al. [43]. It therefore seemed an appropriate approach to
combine the essential properties of both data structures, i.e., to represent a priority queue by one
heap ordered tree and to allow heap order violations. But due to the constant time requirement for
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Meld it was necessary to dispense with the O(log n) bound on the number of violations (in [43])
and to allow Θ(n) violations! What followed were numerous iterations alternating between mod-
ifying the invariants and realizing that the current invariants were too strong/weak to allow an
implementation of the operations achieving the required time bounds. Several mutually dependent
technical problems had to be solved, including: a) how to distribute the violations, such that at
most O(log n) violations should be considered during a single DeleteMin, b) how to Meld two
priority queues, in particular how to Meld two sets of Θ(n) violations, c) how to guarantee a
O(log n) bound on the maximum rank, and d) how to make transformations reducing the number
of violations. The final invariants solving all these problems can be found in Chapter 6 (invariants
S1–S5, O1–O5 and R1–R3).

In Chapter 4 we similarly use invariants to develop a randomized algorithm for the FindAny

problem (see Chapter 4 for a definition). The main idea of the algorithm is to maintain the current
rank of an “arbitrarily” selected element from the set of elements maintained. The invariant is
used to formalize the meaning of “arbitrarily”, by requiring that the selected element must be
uniformly picked from the set of elements maintained. The implementation of Insert and Delete

are straightforward, when the random choices satisfy the invariant. While the expected time for
Insert now follows directly from the implementation of Insert, the expected time for Delete

follows from the invariant because Delete is only expensive when the picked element is also the
element to be deleted.

In Chapter 8 we present parallel implementations of Dijkstra’s algorithm for the single-source
shortest path problem based on pipelined merging of adjacency lists. Crucial to the correctness of
the algorithms is that the buffers in the pipelines between processors do not illegally temporarily
get empty. For the sequential pipeline presented we give an invariant which guarantees that buffers
never become empty. For the tree pipeline presented we give a different invariant guaranteeing that
if the buffers temporarily get empty (which they can in the tree pipeline) it is safe to ignore them.

Finally, in Chapter 3 we use invariants to describe an adversary for a pebble game on cliques
(see Chapter 3 for a definition of the game). The goal of the adversary is to force a node from
the clique to have a lot of pebbles. After an initialization phase the adversary maintains a subset
of the nodes as candidates for the node to store many pebbles. A lower bound for the number of
pebbles on each of the candidate nodes is described by a set of invariants (involving as a parameter
the number of steps performed after the initialization phase). The moves of the adversary follow
immediately from the invariants. From the invariants it follows that after a number of rounds there
exists a candidate node having the number of pebbles claimed.

Viewed in isolation, none of these applications of invariance techniques are new. However,
we consider it to be quite noteworthy that the power of the invariance technique is so clearly
demonstrated in connection with the development of (highly nontrivial) combinatorial algorithms.
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Chapter 3

Partially Persistent Data Structures
of Bounded Degree with Constant
Update Time
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Abstract

The problem of making bounded in-degree and out-degree data structures partially persistent
is considered. The node copying method of Driscoll et al. is extended so that updates can be
performed in worst case constant time on the pointer machine model. Previously it was only
known to be possible in amortized constant time.

The result is presented in terms of a new strategy for Dietz and Raman’s dynamic two player
pebble game on graphs.

It is shown how to implement the strategy and the upper bound on the required number of
pebbles is improved from 2b+ 2d+O(

√
b) to d+ 2b, where b is the bound of the in-degree and d

the bound of the out-degree. We also give a lower bound that shows that the number of pebbles
depends on the out-degree d.

Category: E.1, F.2.2
Keywords: data structures, partial persistence, pebble game, lower bounds

3.1 Introduction

This paper describes a method to make data structures partially persistent. A partially persistent
data structure is a data structure in which old versions are remembered and can always be inspected.
However, only the latest version of the data structure can be modified.

An interesting application of a partially persistent data structure is given in [98] where the
planar point location problem is solved by an elegant application of partially persistent search
trees. The method given in [98] can be generalised to make arbitrary bounded in-degree data
structures partially persistent [44].

As in [44], the data structures we consider will be described in the pointer machine model, i.e.,
they consist of records with a constant number of fields each containing a unit of data or a pointer
to another record. The data structures can be viewed as graphs with bounded out-degree. In the
following let d denote this bound.

The main assumption is that the data structures also have bounded in-degree. Let b denote this
bound. Not all data structures satisfy this constraint — but they can be converted to do it: Replace

∗This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under contract
no. 7141 (project ALCOM II).
†BRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.
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nodes by balanced binary trees, so that all original pointers that point to a node now instead point
to the leafs in the tree substituted into the data structure instead of the node, and store the node’s
original information in the root of the tree. The assumption can now be satisfied by letting at most
a constant number of pointers point to the same leaf. The drawback of this approach is that the
time to access a node v is increased from O(1) to O(log bv) where bv is the original in-degree of v.

The problem with the method presented in [44, 98] is that an update of the data structure takes
amortized time O(1), in the worst case it can be O(n) where n is the size of the current version of
the data structure.

In this paper we describe how to extend the method of [44, 98] so that an update can be done
in worst case constant time. The main result of this paper is:

Theorem 1 It is possible to implement partially persistent data structures with bounded in-degree
(and out-degree) such that each update step and access step can be performed in worst case time
O(1).

The problem can be restated as a dynamic two player pebble game on dynamic directed graphs,
which was done by Dietz and Raman in [33]. In fact, it is this game we consider in this paper.

The central rules of the game are that player I can add a pebble to an arbitrary node and player
D can remove all pebbles from a node provided he places a pebble on all of the node’s predecessors.
For further details refer to Section 3.3. The goal of the game is to find a strategy for player D
that can guarantee that the number of pebbles on all nodes are bounded by a constant M . Dietz
and Raman gave a strategy which achieved M ≤ 2b + 2d + O(

√
b) — but they were not able to

implement it efficiently which is necessary to remove the amortization from the original persistency
result.

In this paper we improve the bound to M = d + 2b by a simple modification of the original
strategy. In the static case (where the graph does not change) we get M = d+ b.

We also consider the case where the nodes have different bounds on their in- and out-degree.
In this case we would like to have Mv = f(bv, dv) where f : N2 → N is a monotonically increasing
function. Hence only nodes with a high in-degree should have many pebbles. We call strategies with
this property for locally adaptive. In fact, the strategy mentioned above satisfies that Mv = dv+2bv
in the dynamic game and Mv = dv + bv in the static game.

By an efficiently implementable strategy we mean a strategy that can be implemented such that
the move of player D can be performed in time O(1) if player D knows where player I performed
his move. In the following we call such strategies implementable.

The implementable strategies we give do not obtain such good bounds. Our first strategy
obtains M = 2bd+ 1, whereas the second is locally adaptive and obtains Mv = 2bvdv + 2bv − 1.

The analysis of our strategies are all tight — we give examples which match the upper bounds.
The two efficiently implementable strategies have simple implementations with small constant fac-
tors.

We also give lower bounds for the value of M which shows that M depends both on b and d for
all strategies. More precisely we show that (we define log x = max{1, log2 x}):

M ≥ max{b+ 1, bα +
√

2α− 7/4 − 1/2c,
⌈

log 2
3d

log log 2
3d
− 1

⌉
},

where α = min{b, d}.
The paper is organized as follows. In Section 3.2 we describe the method of [44, 98] and in

Section 3.3 we define the dynamic graph game of [33]. In Section 3.4 we give the new game strategy
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for player D which is implementable. The technical details which are necessary to implement the
strategy are described in Section 3.5 and the strategy is analysed in Section 3.6. In Section 3.7
we give a locally adaptive strategy and in Section 3.8 we give a locally adaptive strategy which is
implementable. Finally, the lower bound for M is given in Section 3.9.

3.2 The node copying method

In this section we briefly review the method of [44, 98]. For further details we refer to these articles.
The purpose of this section is to motivate the game that is defined in Section 3.3, and to show that
if we can find a strategy for this game and implement it efficiently, then we can also remove the
amortization from the partially persistency method described below.

The ephemeral data structure is the underlying data structure we want to make partially per-
sistent. In the following we assume that we have access to the ephemeral data structure through
a finite number of entry pointers. For every update of the data structure we increase a version
counter which contains the number of the current version.

When we update a node v we cannot destroy the old information in v because this would not
enable us to find the old information again. The idea is now to add the new information to v

together with the current version number. So if we later want to look at an old version of the
information, we just compare the version numbers to find out which information was in the node
at the time we are looking for. This is in very few words the idea behind the so called fat node
method.

An alternative to the previous approach is the node copying method. This method allows at
most a constant number (M) of additional pieces of information in each node (depending on the
size of b). When the number of different copies of information in a node gets greater than M we
make a copy of the node and the old node now becomes dead because new pointers to the node
has to point to the newly created copy. In the new node we only store the information of the dead
node which exists in the current version of the ephemeral data structure. We now have to update
all the nodes in the current version of the data structure which have pointers to the node that has
now become dead. These pointers should be updated to point to the newly created node instead
— so we recursively add information to all the predecessors of the node that we have copied. The
copied node does not contain any additional information.

3.3 The dynamic graph game

The game Dietz and Raman defined in [33] is played on a directed graph G = (V,E) with bounded
in-degree and out-degree. Let b be the bound of the in-degree and d the bound of the out-degree.
W.l.o.g. we do not allow self-loops or multiple edges. To each node a number of pebbles is associated,
denoted by Pv. The dynamic graph game is now a game where two players I and D alternate to
move. The moves they can perform are:

Player I:

a) add a pebble to an arbitrary node v of the graph or

b) remove an existing edge (v, u) and create a new edge (v,w) without violating the in-degree
constraint on w, and place a pebble on the node v.

Player D:
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c) do nothing or

d) remove all pebbles from a node v and place a new pebble on all the predecessors of v.
This is denoted by Zero(v).

The goal of the game is to show that there exists a constant M and a strategy for player D
such that, whatever player I does, the maximum number of pebbles on any node after the move of
player D is bounded by M . In the static version of the game player I can only do moves of type
a).

The relationship between partially persistent data structures and the pebble game defined is
the following. The graph of the pebble game corresponds to the current version of an ephemeral
data structure. A pebble corresponds to additional information stored in a node. A move of
player I of type a) corresponds to updating a data field in the ephemeral data structure and a
move of type b) corresponds to updating a pointer field in the ephemeral data structure. A Zero

operation performed by player D corresponds to the copying of a node in the node copying method.
The pebbles placed on the predecessor nodes correspond to updating the incoming pointers of the
corresponding node copied in the persistent data structure.

The existence of a strategy for player D was shown in [33], but the given strategy could not be
implemented efficiently (i.e., the node v in d) could not be located in time O(1)).

Theorem 2 (Dietz and Raman [33]) A strategy for player D exists that achieves M = O(b+d).

3.4 The strategy

We now describe our new strategy for player D. We start with some definitions. We associate the
following additional information with the graph G.

• Edges are either black or white. Nodes have at most one incoming white edge. There are no
white cycles.

• Nodes are either black or white. Nodes are white if and only if they have an incoming white
edge.

The definitions give in a natural way rise to a partition of the nodes into components: two nodes
connected by a white edge belong to the same component. It is easily seen that a component is a
rooted tree of white edges with a black root and all other nodes white. A single black node with no
adjacent white edge is also a component. We call a component consisting of a single node a simple
component and a component with more than one node a non simple component. See Figure 3.1 (on
the left) for an example of a graph with two simple components and one non simple component.

To each node v we associate a queue Qv containing the predecessors of v. The queue operations
used in the following are:

• Add(Qu, v) adds v to the back of Qu.

• Delete(Qu, v) removes v from Qu.

• Rotate(Qu) moves the front element v of Qu to the back of Qu, and returns v.

The central operation in our strategy is now the following Break operation. The component
containing v is denoted Cv.
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Figure 3.1: The effect of performing a Break operation. The numbers are the number of pebbles
on the nodes.

procedure Break(Cv)
r ← the root of Cv
color all nodes and edges in Cv black
if Qr 6= ∅ then

color r and (Rotate(Qr), r) white
endif
Zero(r)

end.

The effect of performing Break on a component is that the component is broken up into simple
components and that the root of the original component is appended to the component of one of its
predecessors (if any). An example of the application of the Break operation is shown in Figure 3.1.

A crucial property of Break is that all nodes in the component change color (except for the
root when it does not have any predecessors, in this case we by definition say that the root changes
its color twice).

Our strategy is now the following (for simplicity we give the moves of player I and the counter
moves of player D as procedures).

procedure AddPebble(v)
place a pebble on v

Break(Cv)
end.

procedure MoveEdge((v, u), (v,w))
place a pebble on v

if (v, u) is white then
Break(Cv)
Delete(Qu, v)
replace (v, u) with (v,w) in E

Add(Qw, v)
else

Delete(Qu, v)
replace (v, u) with (v,w) in E

Add(Qw, v)
Break(Cv)

endif
end.
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In MoveEdge the place where we perform the Break operation depends on the color of the edge
(v, u) being deleted. This is to guarantee that we only remove black edges from the graph (in order
not to have to split components).

Observe that each time we apply AddPebble or MoveEdge to a node v we find the root of
Cv and zero it. We also change the color of all nodes in Cv — in particular we change the color
of v. Now, every time a black node becomes white it also becomes zeroed, so after two I moves
have placed pebbles on v, v has been zeroed at least once. That the successors of a node v cannot
be zeroed more than O(1) times and therefore cannot place pebbles on v without v getting zeroed
is shown in Section 3.6. The crucial property is the way in which Break colors nodes and edges
white. The idea is that a successor u of v cannot be zeroed more than O(1) times before the edge
from (v, u) will become white. If (v, u) is white both v and u belong to the same component, and
therefore u cannot change color without v changing color.

In Section 3.5 we show how to implement Break in worst case time O(1) and in Section 3.6
we show that the approach achieves that M = O(1).

3.5 The new data structure

The procedures in Section 3.4 can easily be implemented in worst case time O(1) if we are able
to perform the Break operation in constant time. The central idea is to represent the colors
indirectly so that all white nodes and edges in a component points to the same variable. All the
nodes and edges can now be made black by setting this variable to black.

A component record contains two fields. A color field and a pointer field. If the color field is
white the pointer field will point to the root of the component.

To each node and edge is associated a pointer cr which points to a component record. We will
now maintain the following invariant.

• The cr pointer of each black edge and each node forming a simple component will point to
a component record where the color is black and the root pointer is the null pointer. Hence,
there is a component record for each non simple component, but several black edges and
nodes forming a simple component can share the same component record.

• For each non simple component there exist exactly one component record where the color is
white and the root pointer points to the root of the component. All nodes and white edges
in this component point to this component record.

An example of component records is shown in Figure 3.2. Notice that the color of an edge e is
simply e.cr.color so the test in MoveEdge is trivial to implement. The implementation of Break

is now:

procedure Break(v)
if v.cr.color = black then

r ← v

else
r ← v.cr.root

v.cr.color ← black

v.cr.root ← ⊥
endif
if r.Q 6= ∅ then

u ← Rotate(r.Q)
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Figure 3.2: A graph with component records.

if u.cr.color = black then
u.cr ← new-component-record(white, u)

endif
r.cr ← (u, r).cr ← u.cr

endif
Zero(r)

end.

From the discussion of the node copying method in Section 3.2 it should be clear that the above
described data structure also applies to this method.

3.6 The analysis

Theorem 3 The player D strategy given in Section 3.4 achieves M = 2bd+ 1.

Proof. A direct consequence of Lemmas 1 and 2. 2

Lemma 1 The player D strategy given in Section 3.4 achieves M ≤ 2bd+ 1.

Proof. Let the first operation (either an AddPebble or MoveEdge operation) be performed at
time 1, the next at time 2 and so on.

Assume that when the game starts all nodes are black and there are no pebbles on any node.
Fix an arbitrary node v at an arbitrary time tnow. Let tlast denote the last time before tnow

when v was zeroed (if v has never been zeroed let tlast be 0). In the following we want to bound
the number of pebbles placed on v in the interval ]tlast, tnow[. In this interval v cannot change its
color from black to white because this would zero v.

Assume without loss of generality that v is white at the end of time tlast, that at time tbreak ∈
]tlast, tnow[ a Break(Cv) is performed and (therefore) at time tnow v is black (it is easy to see that
all other cases are special cases of this case).

Note that the only time an AddPebble(v) or MoveEdge((v, u), (v,w)) operation can be
performed is at time tbreak because these operations force the color of v to change. Therefore, v’s
successors are the same in the interval ]tlast, tbreak[, and similarly for ]tbreak, tnow[.

We will handle each of the two intervals and the time tbreak separately. Let us first consider
the interval ]tlast, tbreak[. Let w be one of v’s successors in this interval. w can be zeroed at most b
times before it will be blocked by a white edge from v (w cannot change the color without changing
the color of v), because after at most b− 1 Zero(w) operations, v will be the first element in Qw.
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So a successor of v can be zeroed at most bd times throughout the first interval which implies
that at most bd pebbles can be placed on v during the first interval. For ]tbreak, tnow[ we can repeat
the same argument so at most bd pebbles will be placed on b during this interval too.

We now just have to consider the operation at time tbreak. The color of v changes so a
Break(Cv) is performed. There are three possible reasons for that: a) An AddPebble(v) op-
eration is performed, b) a MoveEdge ((v, u), (v,w)) is performed or c) one of the operations is
performed on a node different from v. In a) and b) we first add a pebble to v and then per-
form a Break(Cv) operation and in c) we first add a pebble to another node in Cv and then do
Break(Cv). The Break operation can add at most one pebble to v when we perform a Zero

operation to the root of Cv (because we do not allow multiple edges) so at most two pebbles can
be added to v at time tbreak.

We have now shown that at time tnow the number of pebbles on v can be at most 2bd+ 2. This
is nearly the claimed result. To decrease this bound by one we have to analyse the effect of the
operation performed at time tbreak more carefully.

What we prove is that when two pebbles are placed on v at time tbreak then at most bd − 1
pebbles can be placed on v throughout ]tbreak, tnow[. This follows if we can prove that there exists
a successor of v that cannot be zeroed more than b− 1 times in the interval ]tbreak, tnow[.

In the following let r be the node that is zeroed at time tbreak. We have the following cases to
consider:

i) AddPebble(v) and Break(r) places a pebble on v. Now r and one of its incoming edges are
white. So r can be zeroed at most b − 1 times before (v, r) will become white and block
further Zero(r) operations.

ii) MoveEdge((v, u), (v,w)) and Zero(r) places a pebble on v. Depending on the color of (v, u)
we have two cases:

a) (v, u) is white. Therefore u is white and r 6= u. Since we perform Break(r) before we
modify the pointers we have that r 6= w. So as in i) r can be zeroed at most b− 1 times
throughout ]tbreak, tnow[.

b) (v, u) is black. Since Break is the last operation we do, the successors of v will be the
same until after tnow, so we can argue in the same way as i) and again get that r can be
zeroed at most b− 1 times throughout ]tbreak, tnow[.

We conclude that no node will ever have more than 2bd+ 1 pebbles. 2

Lemma 2 The player D strategy given in Section 3.4 achieves M ≥ 2bd+ 1.

Proof. Let G = (V,E) be the directed graph given by V = {r, v1, . . . , vb, w1, . . . , wd} and E =
{(r, vb)} ∪ {(vi, wj)|i ∈ {1, . . . , b} ∧ j ∈ {1, . . . , d}}. The graph is shown in Figure 3.3. Initially
all nodes in V are black and all queues Qwi contain the nodes (v1, . . . , vb). We will now force the
number of pebbles on vb to become 2bd+ 1.

First place one pebble on vb — so that vb becomes white. Then place 2b − 1 pebbles on each
wj . There will now be bd pebbles on vb and all the edges (vb, wj) are white. Place one new pebble
on vb and place another 2b− 1 pebbles on each wj . Now there will be 2bd+ 1 pebbles on vb. 2
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Figure 3.3: A graph which can force M to become 2bd+ 1.

3.7 A simple locally adaptive strategy

In this section we present a simple strategy that is adaptive to the local in- and out-degree bounds of
the nodes. It improves the bound achieved in [33]. The main drawback is that the strategy cannot
be implemented efficiently in the sense that the node to be zeroed cannot be found in constant
time. In Section 3.8 we present an implementable strategy that is locally adaptive but does not
achieve as good a bound on M .

Let dv denote the bound of the out-degree of v and bv the bound of the in-degree. Define Mv to
be the best bound player D can guarantee on the number of pebbles on v. We would like to have
that Mv = f(bv, dv) for a monotonic function f : N2 → N .

The strategy is quite simple. To each node v we associate a queueQv containing the predecessors
of v and a special element Zero. Each time the Zero element is rotated from the front of the
queue the node is zeroed.

The simple adaptive strategy
if the I-move deletes (v, u) and adds (v,w) then

Delete(Qu, v)
Add(Qw, v)

endif
while (v′ ← Rotate(Qv))6=Zero do v ← v′ od
Zero(v)

end.

Notice that the strategy does not use the values of bv and dv explicitly. This gives the strategy
the nice property that we can allow bv and dv to change dynamically.

The best bound Dietz and Raman could prove for their strategy was M ≤ 2b + 2d + O(
√
b).

The next theorem shows that the simple strategy above achieves a bound of Mv = dv + 2bv. If the
graph is static the bound improves to Mv = dv + bv.

Theorem 4 For the simple adaptive strategy we have that Mv = dv + 2bv. In the static case this
improves to Mv = dv + bv.

Proof. Each time we perform AddPebble(v) or MoveEdge((v, u), (v,w)) we rotate Qv. It is
possible to rotate Qv at most bv times without zeroing v. This implies that between two Zero(v)
operations at most bv MoveEdge operations can be performed on outgoing edges of v. Therefore,
v can have had at most bv + dv different successors between two Zero(v) operations. Between two
zeroings of a successor w of v, Qv must have been rotated because Rotate(Qw) returned v in the
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Figure 3.4: A graph which can force M to become dv + 2bv.

while-loop, this is because the Zero element is moved to the back of Qw when w is being zeroed.
So except for the first zeroing of w all zeroings of w will be preceded by a rotation of Qv.

For each operation performed on v we both place a pebble on v and rotate Qv. So the bound
on the number of rotations of Qv gives the following bound on the number of pebbles that can be
placed on v: Mv ≤ (dv + bv) + bv.

In the static case the number of different successors between two Zero (v) operations is dv so
in the same way we get the bound Mv ≤ dv + bv.

It is easy to construct an example that matches this upper bound. Let G = (V,E) where

V = {v, u1, . . . , ubv , w1, . . . , wdv , wdv+1, . . . , wdv+bv} and

E = {(ui, v)|i ∈ {1, . . . , bv}} ∪ {(v,wi)|i ∈ {1, . . . , dv}}.

The graph is shown in Figure 3.4.
At the beginning all nodes are black and the Zero element is at the front of each queue.

The sequence of operations which will force the number of pebbles on v to become dv + 2bv is
the following: AddPebble on v,w1, . . . , wdv , followed by MoveEdge((v,wi−1+dv ), (v,wi+dv )) and
AddPebble(wi+dv) for i = 1, . . . , bv. The matching example for the static case is constructed in a
similar way. 2

3.8 A locally adaptive data structure

We will now describe a strategy that is both implementable and locally adaptive. The data structure
presented in Section 3.4 and Section 3.5 is not locally adaptive, because when redoing the analysis
with local degree constraints we get the following bound for the static version of the game:

Mv = 1 + 2
∑

{w|(v,w)∈E}
bw.

The solution to this problem is to incorporate a Zero element into each of the queues Qv as
in Section 3.7 and then only zero a node when Rotate returns this element. We now have the
following Break operation:

procedure Break(Cv)
r ← the root of Cv
color all nodes and edges in Cv black
w ← Rotate(Qr)
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if w =Zero then
Zero(r)
w ← Rotate(Qr)

endif
if w 6=Zero then

color r and (w, r) white
endif

end.

The implementation is similar to the implementation of Section 3.5.
The next theorem shows that the number of pebbles on a node v with this strategy will be

bounded by Mv = 2bvdv + 2bv − 1, so only nodes with large in-degree (or out-degree) can have
many pebbles.

Theorem 5 The above strategy for player D achieves Mv = 2bvdv + 2bv − 1.

Proof. The proof follows the same lines as in the proof of Theorem 3. A node v can change its
color at most 2bv − 1 times between two zeroings. We then have that the number of AddPebble

and MoveEdge operations performed on v is at most 2bv − 1.
The time interval between two Zero(v) operations is partitioned into 2bv intervals and that v

changes its color only on the boundary between two intervals. In each of the intervals each successor
w of v can be zeroed at most once before it will be blocked by a white edge from v.

So when we restrict ourselves to the static case we have that each successor gets zeroed at most
2bv times. Hence the successors of v can place at most 2bvdv pebbles on v.

Each AddPebble operation places a pebble on v, so for the static case, the total number of
pebbles on v is bounded by Mv = 2bvdv + 2bv − 1.

We now only have to show that a MoveEdge((v, u), (v,w)) operation does not affect this
analysis. We have two cases to consider. If u has been zeroed in the last interval then u will either
be blocked by a white edge from v or v appears before the Zero element in Qu and therefore none
of the Break operations in MoveEdge can result in a Zero(u). If u has not been zeroed then
it is allowed to place a pebble on v in the MoveEdge operation. If the Break operation forces a
Zero(w) to place a pebble on v then w cannot place a pebble on v during the next time interval.
So we can conclude that the analysis still holds.

The matching lower bound is given in the same way as in Theorem 4. 2

3.9 A lower bound

In this section we will only consider the static game.
Raman states in [92] that “the dependence on d of M appears to be an artifact of the proof (for

the strategy of [33])”. Theorem 6 shows that it is not an artifact of the proof, but that the value
of M always depends on the value of b and d.

It is shown in [44] that M ≤ b holds in the amortized sense, so in that game M does not depend
of d.

Theorem 6 For b ≥ 1 and all player D strategies we have:

M ≥ max{b+ 1, bα +
√

2α− 7/4 − 1/2c,
⌈

log 2
3d

log log 2
3d
− 1

⌉
},
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where α = min{b, d}.

Proof. Immediate consequence of Lemma 3 and 4 and Corollary 1. 2

Lemma 3 For b, d ≥ 1 and all player D strategies we have M ≥ b+ 1.

Proof. We will play the game on a convergent tree with l levels where each node has exactly b

incoming edges. The player I strategy is simple, it just places the pebbles on the root of the tree.
The root has to be zeroed at least once for each group of M + 1 AddPebble operations. So

at least a fraction 1
M+1 of the time will be spent on zeroing the root. At most M pebbles can

be placed on any internal node before the next Zero operation on that node, because we do not
perform AddPebble on internal nodes. So a node on level 1 has to be zeroed at least once for
every M Zero operation on the root. Zeroing a node at level 1 takes at least 1

M(M+1) of the time,

and in general, zeroing a node at level i takes at least 1
M i(M+1)

of the time.

Because the number of nodes in each level of the tree increases by a factor b we now have the
following constraint on M :

l∑
i=0

bi

M i(M + 1)
=

1

M + 1

l∑
i=0

(
b

M

)i
≤ 1.

By letting l � M we get the desired result M ≥ b + 1. If d = 1, it follows from Theorem 4 that
this bound is tight. 2

Lemma 4 For b, d ≥ 1 and all player D strategies we have:

M ≥
⌈

log 2
3d

log log 2
3d
− 1

⌉
.

Proof. We will play the game on the following graph G = (V,E) where V = {r, v1, . . . , vd} and
E = {(r, v1), . . . , (r, vd)}. The adversary strategy we will use for player I is to cyclically place
pebbles on the subset of the vi’s which have not been zeroed yet. The idea is that for each cycle at
least a certain fraction of the nodes will not be zeroed.

We start by considering how many nodes cannot be zeroed in one cycle. Let the number of
nodes not zeroed at the beginning of the cycle be k. Each time one of the vi’s is zeroed a pebble
is placed on r, so out of M + 1 zeroings at least one will be a Zero(r). So we have that at least
b k
M+1c of the nodes are still not zeroed at the end of the cycle. So after i cycles we have that the

number of nodes not zeroed is at least (the number of floors is i):⌊
. . .

⌊⌊
d

M + 1

⌋
1

M + 1

⌋
. . .

1

M + 1

⌋
.

By the definition of M , we know that all nodes will be zeroed after M + 1 cycles, so we have the
following equation (the number of floors is M + 1):⌊

. . .

⌊⌊
d

M + 1

⌋
1

M + 1

⌋
. . .

1

M + 1

⌋
= 0.

Lemma 3 gives us that M ≥ 2. By induction on the number of floors is it easy to show that
omitting the floors increases the result at most 3/2. Hence, we have

d

(M + 1)M+1
≤ 3/2.
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So the minimum solution of M for this inequality will be a lower bound for M . It is easy to see

that this minimum solution has to be at least
log 2

3
d

log log 2
3
d
− 1. 2

Lemma 5 For all D strategies where b = d we have:

M ≥ bb+
√

2b− 7/4 − 1/2c.

Proof. For b = d = 0 the lemma is trivial. The case b = d = 1 is true by Lemma 3. In the following
we assume b = d ≥ 2.

Again, the idea is to use player I as an adversary that forces the number of pebbles to become
large on at least one node.

The graph we will play the game on is a clique of size b+ 1. For all nodes u and v both (u, v)
and (v, u) will be edges of the graph and all nodes will have in- and out-degree b. Each Zero

operation of player D will remove all pebbles from a node of the graph and place one pebble on all
the other nodes.

At a time given P0, P1, . . . , Pb will denote the number of pebbles on each of the b+ 1 nodes —
in increasing order, so Pb will denote the number of pebbles on the node with the largest number
of pebbles.

Let c1, c2 and c3 denote constants characterising the adversary’s strategy. The following invari-
ants will hold from a certain moment of time to be defined later:

I1 : i ≤ j ⇒ Pi ≤ Pj ,
I2 : Pi ≥ i,

I3 :

{
Pc1+c2−i ≥ c1 + c2 − 1 for 1 ≤ i ≤ c3,
Pc1+c2−i ≥ c1 + c2 − 2 for c3 < i ≤ c2,

I4 : 1 ≤ c3 ≤ c2 and c1 + c2 ≤ b+ 1.

I1 is satisfied per definition. I2 is not satisfied initially but after the first b Zero’s will be satisfied.
This is easily seen. The nodes that have not been zeroed will have at least b pebbles and the nodes
that have been zeroed can be ordered according to the last time they were zeroed. A node followed
by i nodes in this order will have at least i pebbles because each of the following (at least) i zeroings
will place a pebble on the node.

We can now satisfy I3 and I4 by setting c1 = c2 = c3 = 1 so now we have that all the four
invariants are satisfied after the first b Zero operations.

Figure 3.5 illustrates the relationship between c1, c2 and c3 and the number of pebbles on the
nodes. The figure only shows the pebbles which are guaranteed to be on the nodes by the invariants.
The idea is to build a block of nodes which all have the same number of pebbles. These nodes are
shown as a dashed box in Figure 3.5. The moves of player I and D affect this box. A player I move
will increase the block size whereas a player D move will push the block upwards. In the following
we will show how large the block can be forced to be.

We will first consider an AddPebble operation. If c3 < c2 we know that on node c1 +c2−c3−1
(in the current ordering) there are at least c1 + c2 − 2 pebbles so by placing a pebble on the node
c1 + c2− c3 − 1 we can increase c3 by one and still satisfy the invariants I1, . . . , I4. There are three
cases to consider. If the node c1 + c2 − c3 − 1 already has c1 + c2− 1 pebbles we increase c3 by one
and try to place the pebble on another node. If c3 = c2 and c1 + c2 < b+ 1 we can increase c2 by
one and set c3 = 1 and then try to place the pebble on another node. If we have that c2 = c3 and

27



c2

c1

P13

P14

P15

P7

P6

P5

P4

P3

P2

P1

P0

P8

P9

P10

P11

P12 c3

number of pebbles

Figure 3.5: The adversary’s strategy.

c1 + c2 = b+ 1 we just place the pebble on an arbitrary node — because the block has reached its
maximum size.

Whenever player D does a Zero operation we can easily maintain the invariant by just increas-
ing c1 by one — as long as c1 + c2 < b+ 1. Here we have three cases to consider. Let i denote the
number of the node that player D zeroes. We will only consider the case when c1 ≤ i < c1 + c2,
the cases 0 ≤ i < c1 and c1 + c2 ≤ i ≤ b are treated in a similar way. The values of the P s after
the Zero operation are: P ′0 = 0, P ′1 = P0 + 1, . . . , P ′i = Pi−1 + 1, P ′i+1 = Pi+1 + 1, . . . , P ′b = Pb + 1.
So because I2 and I3 were satisfied before the Zero operation it follows that when we increase c1
by one the invariant will still be satisfied after the Zero operation.

We will now see how large the value of c2 can become before c1 + c2 = b+ 1. We will allow the
last move to be a player I move.

We let x denote the maximum value of c2 when c1 + c2 = b + 1. At this point we have that
c1 = b+1−x. Initially we have that c1 = 1. Each Zero operation can increase c1 by at most one so
the maximum number of AddPebble operations we can perform is 1+((b+1−x)−1) = b+1−x.

It is easily seen that the worst case number of pebbles we have to add to bring c2 up to x is
1 +

∑x−1
i=2 (i− 1) — because it is enough to have two pebbles in the last column of the block when

we are finished.
So the size of x ≥ 0 is now constrained by:

1 +
x−1∑
i=2

(i− 1) ≤ b+ 1− x.

Hence, we have x ≥ b1/2 +
√

2b− 7/4c. Let i ∈ {0, 1, . . . , x − 1} denote the number of Zero

operations after the block has reached the top. By placing the pebbles on node b− 1 it is easy to
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see that the following invariants will be satisfied (I3 and I4 will not be satisfied any longer):

I5 : Pb ≥ b+ i,

I6 : Pb−j ≥ b+ i− 1 for j = 1, . . . , x− i− 1.

So after the next x− 1 zeroings we see that Pb ≥ b+ (x− 1) which gives the stated result. 2

Corollary 1 For all D strategies we have M ≥ bα+
√

2α− 7/4− 1/2c where α = min{b, d}.

3.10 Conclusion

In the preceding sections we have shown that it is possible to implement partially persistent bounded
in-degree (and out-degree) data structures where each access and update step can be done in worst
case constant time. This improves the best previously known technique which used amortized
constant time per update step.

It is a further consequence of our result that we can support the operation to delete the cur-
rent version and go back to the previous version in constant time. We just have to store all our
modifications of the data structure on a stack so that we can backtrack all our changes of the data
structure.

3.11 Open problems

The following list states open problems concerning the dynamic two player game.

• Is it possible to show a general lower bound for M which shows how M depends on b and d?

• Do better (locally adaptive) strategies exist?

• Do implementable strategies for player D exist where M ∈ O(b+ d)?
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Abstract

The complexity of maintaining a set under the operations Insert, Delete and FindMin is
considered. In the comparison model it is shown that any randomized algorithm with expected
amortized cost t comparisons per Insert and Delete has expected cost at least n/(e22t) − 1
comparisons for FindMin. If FindMin is replaced by a weaker operation, FindAny, then
it is shown that a randomized algorithm with constant expected cost per operation exists; in
contrast, it is shown that no deterministic algorithm can have constant cost per operation.
Finally, a deterministic algorithm with constant amortized cost per operation for an offline
version of the problem is given.

Category: F.2.2
Keywords: set, updates, minimum queries, tradeoff

4.1 Introduction

We consider the complexity of maintaining a set S of elements from a totally ordered universe
under the following operations:

Insert(x): inserts the element x into S,

Delete(x): removes from S the element x provided it is known where x is stored, and

FindMin: returns the minimum element in S without removing it.

We refer to this problem as the Insert-Delete-FindMin problem. We denote the size of S
by n. The analysis is done in the comparison model, i.e., the time required by the algorithm is the
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Table 4.1: Worst case asymptotic time bounds for different set implementations.

Implementation Insert Delete FindMin

Doubly linked list 1 1 n

Heap [109] log n log n 1
Search tree [48, 73] log n 1 1
Priority queue [15, 27, 43] 1 log n 1

number of comparisons it makes. The input is a sequence of operations, given to the algorithm in
an online manner, that is, the algorithm must process the current operation before it receives the
next operation in the sequence. The worst case time for an operation is the maximum, over all
such operations in all sequences, of the time taken to process the operation. The amortized time of
an operation is the maximum, over all sequences, of the total number of comparisons performed,
while processing this type of operation in the sequence, divided by the length of the sequence.

Worst case asymptotic time bounds for some existing data structures supporting the above
operations are listed in Table 4.1. The table suggests a tradeoff between the worst case times of
the two update operations Insert, Delete and the query operation FindMin. We prove the
following lower bound on this tradeoff: any randomized algorithm with expected amortized update
time at most t requires expected time (n/e2t) − 1 for FindMin. Thus, if the update operations
have expected amortized constant cost, FindMin requires linear expected time. On the other hand
if FindMin has constant expected time, then one of the update operations requires logarithmic
expected amortized time. This shows that all the data structures in Table 4.1 are optimal in the
sense of the tradeoff, and they cannot be improved even by considering amortized cost and allowing
randomization.

For each n and t, the lower bound is tight. A simple data structure for the Insert-Delete-
FindMin problem is the following. Assume Insert and Delete are allowed to make at most
t comparisons. We represent a set by dn/2te sorted lists. All lists except for the last contain
exactly 2t elements. The minimum of a set can be found among all the list minima by dn/2te − 1
comparisons. New elements are added to the last list, requiring at most t comparisons by a binary
search. To perform Delete we replace the element to be deleted by an arbitrary element from the
last list. This also requires at most t comparisons.

The above lower bound shows that it is hard to maintain the minimum. Is it any easier to
maintain the rank of some element, not necessarily the minimum? We consider a weaker problem
called Insert-Delete-FindAny, which is defined exactly as the previous problem, except that
FindMin is replaced by the weaker operation FindAny that returns an element in S and its rank.
FindAny is not constrained to return the same element each time it is invoked or to return the
element with the same rank. The only condition is that the rank returned should be the rank of the
element returned. We give a randomized algorithm for the Insert-Delete-FindAny problem with
constant expected time per operation. Thus, this problem is strictly easier than Insert-Delete-
FindMin, when randomization is allowed. However, we show that for deterministic algorithms,
the two problems are essentially equally hard. We show that any deterministic algorithm with
amortized update time at most t requires n/24t+3 − 1 comparisons for some FindAny operation.
This lower bound is proved using an explicit adversary argument, similar to the one used by
Borodin, Guibas, Lynch and Yao [14]. The adversary strategy is simple, yet surprisingly powerful.
The same strategy may be used to obtain the well known Ω(n log n) lower bound for sorting. An
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explicit adversary for sorting has previously been given by Atallah and Kosaraju [8].
The previous results show that maintaining any kind of rank information online is hard. How-

ever, if the sequence of instructions to be processed is known in advance, then one can do better.
We give a deterministic algorithm for the offline Insert-Delete-FindMin problem which has an
amortized cost per operation of at most three comparisons.

Our proofs use various averaging arguments which are used to derive general combinatorial
properties of trees. These are presented in Section 4.2.2.

4.2 Preliminaries

4.2.1 Definitions and notation

For a rooted tree T , let leaves(T ) be the set of leaves of T . For a vertex, v in T , define deg(v) to
be the number of children of v. Define, for ` ∈ leaves(T ), depth(`) to be the distance of ` from
the root and path(`) to be the set of vertices on the path from the root to `, not including `.

For a random variable X, let support[X] be the set of values that X assumes with non-zero
probability. For any non-negative real valued function f , defined on support[X], we define the
arithmetic mean and geometric mean of f by

E
X

[f(X)] =
∑

x∈support[X]

Pr[X = x]f(x), and

GM
X

[f(X)] =
∏

x∈support[X]

f(x)Pr[X=x].

We will also use the notation E and GM to denote the arithmetic and geometric means of a set of
values as follows: for a set R, and any non-negative real valued function f , defined on R, define

E
r∈R

[f(r)] =
1

|R|
∑
r∈R

f(r), and GM
r∈R

[f(r)] =
∏
r∈R

f(r)1/|R|.

It can be shown (see [62]) that the geometric mean is at most the arithmetic mean.

4.2.2 Some useful lemmas

Let T be the infinite complete binary tree. Suppose each element of [n] = {1, . . . , n} is assigned
to a node of the tree (more than one element may be assigned to the same node). That is,
we have a function f : [n] → V (T ). For v ∈ V (T ), define wtf (v) = |{i ∈ [n] : f(i) = v}|,
df = Ei∈[n][depth(f(i))], Df = max{depth(f(i)) : i ∈ [n]} and mf = max{wtf (v) : v ∈ V (T )}.

Lemma 6 For every assignment f : [n] → V (T ), the maximum number of elements on a path
starting at the root of T is at least n2−df .

Proof. Let P be a random infinite path starting from the root. Then, for i ∈ [n], Pr[f(i) ∈ P ] =
2−depth(f(i)). Then the expected number of elements of [n] assigned to P is

n∑
i=1

2−depth(f(i)) = n E
i∈[n]

[2−depth(f(i))] ≥ nGM
i∈[n]

[2−depth(f(i))]

= n2−Ei∈[n][depth(f(i))] = n2−df .

Since the maximum is at least the expected value, the lemma follows. 2
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Lemma 7 For every assignment f : [n]→ V (T ), mf ≥ n/2df+3.

Proof. Let H = {h : mh = mf}. Let h be the assignment in H with minimum average depth dh
(the minimum exists). Let m = mh = mf , and D = Dh. We claim that

wth(v) = m, for each v ∈ V (T ) with depth(v) < D. (4.1)

For suppose there is a vertex v with depth(v) < D and wt(v) < m (i.e., wt(v) ≤ m− 1). First,
consider the case when some node w at depth D has m elements assigned to it. Consider the
assignment h′ given by

h′(i)
def
=


w if h(i) = v,

v if h(i) = w,

h(i) otherwise.

Then h′ ∈ H and dh′ < dh, contradicting the choice of h. Next, suppose that every node at depth
D has less than m elements assigned to it. Now, there exists i ∈ [n] such that depth(h(i)) = D.
Let h′ be the assignment that is identical to h everywhere except at i, and for i, h′(i) = v. Then,
h′ ∈ H and dh′ < dh, again contradicting the choice of h. Thus (4.1) holds.

The number of elements assigned to nodes at depth at most D−1 is m(2D−1), and the average
depth of these elements is

1

m(2D − 1)

D−1∑
i=0

mi2i =
(D − 2)2D + 2

2D − 1
≥ D − 2.

Since all other elements are at depth D, we have dh ≥ D − 2. The total number of nodes in the
tree with depth at most D is 2D+1 − 1. Hence, we have

mf = m ≥ n

2D+1 − 1
≥ n

2dh+3 − 1
≥ n

2df+3 − 1
. 2

For a rooted tree T , let W` =
∏
v∈path(`) deg(v). Then, it can be shown by induction on

the height of tree that
∑
`∈leaves(T ) 1/W` = 1. The following lemma is implicit in the work of

McDiarmid [75].

Lemma 8 For a rooted tree T with m leaves, GM
`∈leaves(T )

[W`] ≥ m.

Proof. Since the geometric mean is at most the arithmetic mean, we have

GM
`

[
1

W`
] ≤ E

`
[

1

W`
] =

1

m

∑
`

1

W`
=

1

m
.

Now,

GM
`

[W`] =
1

GM
`

[1/W`]
≥ m. 2
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4.3 Deterministic offline algorithm

We now consider an offline version of the Insert-Delete-FindMin problem. The sequence of
operations to be performed is given in advance, however, the ordering of the set elements is unknown.
The ith operation is performed at time i. We assume that an element is inserted and deleted at
most once. If an element is inserted and deleted more than once, it can be treated as a distinct
element each time it is inserted.

From the given operation sequence, the offline algorithm can compute, for each element x, the
time, t(x), at which x is deleted from the data structure (t(x) is ∞ if x is never deleted).

The data structure maintained by the offline algorithm is a sorted (in increasing order) list
L = (x1, . . . , xk) of the set elements that can become minimum elements in the data structure.
The list satisfies that t(xi) < t(xj) for i < j, because otherwise xj could never become a minimum
element.

FindMin returns the first element in L and Delete(x) deletes x from L, if L contains x, i.e.,
x = x1. To process Insert(x), the algorithm computes two values, ` and r, where r = min{i :
t(xi) > t(x)} and ` = max{i : xi < x}. Notice that once x is in the data structure, none of
x`+1, . . . , xr−1 can ever be the minimum element. Hence, all these elements are deleted and x is
inserted into the list between x` and xr. No comparisons are required among the elements to find
r, because r can be computed by a search for t(x) in (t(x1), . . . , t(xk)). Thus, Insert(x) may be
implemented as follows: starting at xr, step backwards through the list, deleting elements until the
first element smaller than x is encountered.

The number of comparisons for an insertion is two plus the number of elements deleted from
L. By letting the potential of L be |L| the amortized cost of Insert is |L′| − |L|+# of elements
removed during Insert+2 which is at most 3 because the number of elements removed is at most
|L|− |L′|+ 1. Delete only decreases the potential, and the initial potential is zero. It follows that

Theorem 7 For the offline Insert-Delete-FindMin problem the amortized cost of Insert is
three comparisons. No comparisons are required for Delete and FindMin.

4.4 Deterministic lower bound for FindAny

In this section we show that it is difficult for a deterministic algorithm to maintain any rank
information at all. We prove

Theorem 8 Let A be a deterministic algorithm for the Insert-Delete-FindAny problem with
amortized time at most t = t(n) per update. Then, there exists an input for which A takes at least
n/24t+3 − 1 comparisons to process one FindAny.

The Adversary. We describe an adversary strategy for responding to the comparisons.
The adversary maintains an infinite binary tree and the elements currently in the data structure

are distributed among the nodes of this tree. New elements inserted into the data structure are
placed at the root. For x ∈ S let v(x) denote the node of the tree at which x is. The adversary
maintains two invariants. For any distribution of the elements among the nodes of the infinite tree,
define the occupancy tree to be the finite tree given by the union of the paths from every non-empty
node to the root. The invariants are

(A) If neither of v(x) or v(y) is a descendant of the other then x < y is consistent with the
responses given so far if v(x) appears before v(y) in an inorder traversal of the occupancy
tree, and
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(B) If v(x) = v(y) or v(x) is a descendant of v(y), the responses given so far yield no information
on the order of x and y. More precisely, in this case, x and y are incomparable in the partial
order induced on the elements by the responses so far.

The comparisons made by any algorithm can be classified into three types, and the adversary
responds to each type of the comparison as described below. Let the elements compared be x and y.

• v(x) = v(y): Then x is moved to the left child of v(x) and y to the right child and the
adversary answers x < y.

• v(x) is a descendant of v(y): Then y is moved to the unique child of v(y) that is not an
ancestor of v(x). If this child is a left child then the adversary answers y < x and if it is a
right child then the adversary answers x < y.

• v(x) 6= v(y) and neither is a descendant of the other: If v(x) is visited before v(y) in the
inorder traversal of the occupancy tree, the adversary answers x < y and otherwise the
adversary answers y < x.

The key observation is that each comparison pushes two elements down one level each, in the
worst case.

Maintaining ranks. We now give a proof of Theorem 8.
Consider the behavior of the algorithm when responses to its comparisons are given according

to the adversary strategy above. Define the sequences S1 . . . Sn+1 as follows.

S1 = Insert(a1) . . . Insert(an)FindAny.

Let b1 be the element returned in response to the FindAny instruction in S1. For i = 2, 3, . . . n,
define

Si = Insert(a1) . . . Insert(an)Delete(b1) . . .Delete(bi−1)FindAny

and let bi be the element returned in response to the FindAny instruction in Si. Finally, let

Sn+1 = Insert(a1) . . . Insert(an)Delete(b1) . . .Delete(bn).

For 1 ≤ i ≤ n, bi is well defined and for 1 ≤ i < j ≤ n, bi 6= bj . The latter point follows from the
fact that at the time bi is returned by a FindAny, b1, . . . , bi−1 have already been deleted from the
data structure.

Let T be the infinite binary tree maintained by the adversary. Then the sequence Sn+1 defines a
function f : [n]→ V (T ), given by f(i) = v if bi is in node v just before the Delete(bi) instruction
during the processing of Sn+1. Since the amortized cost of an update is at most t, the total number
of comparisons performed while processing Sn+1 is at most 2tn. A comparison pushes at most two
elements down one level each. Then, writing di for the distance of f(i) from the root, we have∑n
i=1 di ≤ 4tn. By Lemma 7 we know that there is a set R ⊆ [n] with at least n/24t+3 elements

and a vertex v of T such that for each i ∈ R, f(bi) = v.
Let j = minR. Then, while processing Sj, just before the FindAny instruction, each element

bi, i ∈ R is in some node on the path from the root to f(i) = v. Since the element returned by the
FindAny is bj, it must be the case that after the comparisons for the FindAny are performed, bj
is the only element on the path from the root to the vertex in which bj is. This is because invariant
(B) implies that any other element that is on this path is incomparable with bj. Hence, these
comparisons move all the elements bi, i ∈ R\j, out of the path from the root to f(j). A comparison
can move at most one element out of this path, hence, the number of comparisons performed is at
least |R| − 1, which proves the theorem.
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4.4.1 Sorting

The same adversary can be used to give a lower bound for sorting. We note that this argument is
fundamentally different from the usual information theoretic argument in that it gives an explicit
adversary against which sorting is hard.

Consider an algorithm that sorts a set S, of n elements. The same adversary strategy is used
to respond to comparisons. Then, invariant (B) implies that at the end of the algorithm, each
element in the tree must be in a node by itself. Let the function f : S → V (T ) indicate the node
where each element is at the end of the algorithm, where T is the infinite binary tree maintained
by the adversary. Then, f assigns at most one element to each path starting at the root of T .
By Lemma 6 we have 1 ≥ n2−d, where d is the average distance of an element from the root. It
follows that the sum of the distances from the root to the elements in this tree is at least n log n,
and this is equal to the sum of the number of levels each element has been pushed down. Since
each comparison contributes at most two to this sum, the number of comparisons made is at least
(n log n)/2.

4.5 Randomized algorithm for FindAny

We present a randomized algorithm supporting Insert, Delete and FindAny using, on an aver-
age, a constant number of comparisons per operation.

4.5.1 The algorithm

The algorithm maintains three variables: S, z and rank . S is the set of elements currently in the
data structure, z is an element in S, and rank is the rank of z in S. Initially, S is the empty set,
and z and rank are null. The algorithm responds to instructions as follows.

Insert(x): Set S ← S ∪ {x}. With probability 1/|S| we set z to x and let rank be the rank of z
in S, that is, one plus the number of elements in S smaller than z. In the other case, that
is with probability 1 − 1/|S|, we retain the old value of z; that is, we compare z and x and
update rank if necessary. In particular, if the set was empty before the instruction, then z is
assigned x and rank is set to 1.

Delete(x): Set S ← S − {x}. If S is empty then set z and rank to null and return.

Otherwise (i.e., if S 6= ∅), if x ≡ z then get the new value of z by picking an element of S
randomly; set rank to be the rank of z in S. On the other hand, if x is different from z, then
decrement rank by one if x was smaller than z.

FindAny: Return z and rank .

4.5.2 Analysis

Claim 9 The expected number of comparisons made by the algorithm for a fixed instruction in any
sequence of instructions is constant.

Proof. FindAny takes no comparisons. Consider an Insert instruction. Suppose the number of
elements in S just before the instruction was s. Then, the expected number of comparisons made
by the algorithm is s · (1/(s+ 1)) + 1 · (s/(s+ 1)) < 2.

We now consider the expected number of comparisons performed for a Delete instruction. Fix
a sequence of instructions. Let Si and zi be the values of S and z just before the ith instruction. Note
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that Si depends only on the sequence of instructions and not on the coin tosses of the algorithm;
on the other hand, zi might vary depending on the coin tosses of the algorithm. We first show that
the following invariant holds for all i:

|Si| 6= ∅ =⇒ Pr[zi = x] =
1

|Si|
for all x ∈ Si. (4.2)

We use induction on i. For i = 1, Si is empty and the claim holds trivially. Assume that the claim
holds for i = `; we shall show that then it holds for i = `+ 1. If the `th instruction is a FindAny,
then S and z are not disturbed and the claim continues to hold.

Suppose the `th instruction is an Insert. For x ∈ S`, we can have z`+1 = x only if z` = x and
we retain the old value of z after the Insert instruction. The probability that we retain the old
value of z is |S`|/(|S`|+ 1). Thus, using the induction hypothesis, we have for all x ∈ S`

Pr[z`+1 = x] = Pr[z` = x] · Pr[z`+1 = z`] =
1

|S`|
· |S`||S`|+ 1

=
1

|S`|+ 1
.

Also, the newly inserted element is made z`+1 with probability 1
|S`|+1 . Since |S`+1| = |S`|+ 1, (4.2)

holds for i = `+ 1.
Next, suppose the `th instruction is a Delete(x). If the set becomes empty after this instruc-

tion, there is nothing to prove. Otherwise, for all y ∈ S`+1,

Pr[z`+1 = y]

= Pr[z` = x & z`+1 = y] + Pr[z` 6= x & z`+1 = y]

= Pr[z` = x] · Pr[z`+1 = y | z` = x] + Pr[z` 6= x] · Pr[z` = y | z` 6= x].

By the induction hypothesis we have Pr[z` = x] = 1/|S`|. Also, if z` = x then we pick z`+1

randomly from S`+1; hence Pr[z`+1 = y | z` = x] = 1/|S`+1|. For the second term, by the induction
hypothesis we have Pr[z` 6= x] = 1−1/|S`| and Pr[z` = y | z` 6= x] = 1/(|S`|−1) = 1/|S`+1| (because
|S`+1| = |S`| − 1). By substituting these, we obtain

Pr[z`+1 = y] =
1

|S`|
· 1

|S`+1|
+ (1− 1

|S`|
) · 1

|S`+1|

=
1

|S`+1|
.

Thus, (4.2) holds for i = `+ 1. This completes the induction.
Now, suppose the ith instruction is Delete(x). Then, the probability that zi = x is precisely

1/|Si|. Thus, the expected number of comparisons performed by the algorithm is

(|Si| − 2) · 1

|Si|
< 1. 2

4.6 Randomized lower bounds for FindMin

One may view the problem of maintaining the minimum as a game between two players: the algo-
rithm and the adversary. The adversary gives instructions and supplies answers for the comparisons
made by the algorithm. The objective of the algorithm is to respond to the instructions by making
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as few comparisons as possible, whereas the objective of the adversary is to force the algorithm to
use a large number of comparisons.

Similarly, if randomization is permitted while maintaining the minimum, one may consider the
randomized variants of this game. We have two cases based on whether or not the adversary is
adaptive. An adaptive adversary constructs the input as the game progresses; its actions depend
on the moves the algorithm has made so far. On the other hand, a non-adaptive adversary fixes
the instruction sequence and the ordering of the elements before the game begins. The input it
constructs can depend on the algorithm’s strategy but not on its coin toss sequence.

It can be shown that against the adaptive adversary randomization does not help. In fact,
if there is a randomized strategy for the algorithm against an adaptive adversary then there is a
deterministic strategy against the adversary. Thus, the complexity of maintaining the minimum
in this case is the same as in the deterministic case. In this section, we show lower bounds with a
non-adaptive adversary.

The input to the algorithm is specified by fixing a sequence of Insert, Delete and FindMin

instructions, and an ordering for the set {a1, a2, . . . , an}, based on which the comparisons of the
algorithm are answered.

Distributions. We will use two distributions on inputs. For the first distribution, we construct
a random input I by first picking a random permutation σ of [n]; we associate with σ the sequence
of instructions

Insert(a1), . . . , Insert(an),Delete(aσ(1)),Delete(aσ(2)), . . . ,Delete(aσ(n)), (4.3)

and the ordering

aσ(1) < aσ(2) < . . . < aσ(n). (4.4)

For the second distribution, we construct the random input J by picking i ∈ [n] at random and a
random permutation σ of [n]; the instruction sequence associated with i and σ is

Insert(a1), . . . , Insert(an),Delete(aσ(1)), . . . ,Delete(aσ(i−1)),FindMin, (4.5)

and the ordering is given, as before, by (4.4).
For an algorithm A and an input I, let CU (A, I) be the number of comparisons made by the

algorithm in response to the update instructions (Insert and Delete) in I; let CF (A, I) be the
number of comparisons made by the algorithm while responding to the FindMin instructions.

Theorem 10 Let A be a deterministic algorithm for maintaining the minimum. Suppose

E
I

[CU (A, I)] ≤ tn. (4.6)

Then

GM
J

[CF (A, J) + 1] ≥ n

e2t
.

Before we discuss the proof of this result, we derive from it the lower bounds on the randomized
and average case complexities of maintaining the minimum. Yao showed that a randomized algo-
rithm can be viewed as a random variable assuming values in some set of deterministic algorithms
according to some probability distribution over the set [110]. The randomized lower bound follows
from this fact and Theorem 10.
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Corollary 2 (Randomized complexity) Let R be a randomized algorithm for Insert-Delete-
FindMin with expected amortized time per update at most t = t(n). Then the expected time for
FindMin is at least n/(e22t)− 1.

Proof. We view R as a random variable taking values in a set of deterministic algorithms with
some distribution. For every deterministic algorithm A in this set, let

t(A)
def
= E

I
[CU (A, I)]/n.

Then by Theorem 10 we have GM
J

[CF (A, J) + 1] ≥
(
n

e

)
· 2−t(A). Hence,

GM
R

[GM
J

[CF (R, J) + 1] ≥ GM
R

[

(
n

e

)
· 2−t(R)] =

(
n

e

)
· 2
−E
R

[t(R)]
.

Since the expected amortized time per update is at most t, we have ER[t(R)] ≤ 2t. Hence,

E
R,J

[CF (R, J)] + 1 = E
R,J

[CF (R, J) + 1] ≥ GM
R,J

[CF (R, J) + 1] ≥ n

e22t
.

Thus, there exists an instance of J with instructions of the form (4.5), for which the expected
number of comparisons performed by R in response to the last FindMin instruction is at least
n/(e22t)− 1. 2

The average case lower bound follows from the arithmetic-geometric mean inequality and The-
orem 10.

Corollary 3 (Average case complexity) Let A be a deterministic algorithm for Insert-Del-

ete-FindMin with amortized time per update at most t = t(n). Then the expected time to find the
minimum for inputs with distribution J is at least n/(e22t)− 1.

Proof. A takes amortized time at most t per update. Therefore,

E
I

[CU (A, I)] ≤ 2tn.

Then, by Theorem 10 we have

E
J

[CF (A, J)] + 1 = E
J

[CF (A, J) + 1] ≥ GM
J

[CF (A, J) + 1] ≥ n

e22t
. 2

4.6.1 Proof of Theorem 10

The Decision Tree representation. Consider the set of sequences in support[I]. The actions
of a deterministic algorithm on this set of sequences can be represented by a decision tree with
comparison nodes and deletion nodes. (Normally a decision tree representing an algorithm would
also have insertion nodes, but since, in support[I], the elements are always inserted in the same
order, we may omit them.) Each comparison node is labeled by a comparison of the form ai : aj ,
and has two children, corresponding to the two outcomes ai > aj and ai ≤ aj. Each deletion
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node has a certain number of children and each edge, x, to a child, is labeled by some element ax,
denoting that element ax is deleted by this delete instruction.

For a sequence corresponding to some permutation σ, the algorithm behaves as follows. The
first instruction it must process is Insert(a1). The root of the tree is labeled by the first comparison
that the algorithm makes in order to process this instruction. Depending on the outcome of this
comparison, the algorithm makes one of two comparisons, and these label the two children of the
root. Thus, the processing of the first instruction can be viewed as following a path down the
tree. Depending on the outcomes of the comparisons made to process the first instruction, the
algorithm is currently at some vertex in the tree, and this vertex is labeled by the first comparison
that the algorithm makes in order to process the second instruction. In this way, the processing
of all the insert instructions corresponds to following a path consisting of comparison nodes down
the tree. When the last insert instruction has been processed, the algorithm is at a delete node
corresponding to the first delete instruction. Depending on the sequence, some element, aσ(1) is
deleted. The algorithm follows the edge labeled by aσ(1) and the next vertex is labeled by the
first comparison that the algorithm makes in order to process the next delete instruction. In this
manner, each sequence determines a path down the tree, terminating at a leaf.

We make two simple observations. First, since, in different sequences, the elements are deleted
in different orders, each sequence reaches a distinct leaf of the tree. Hence the number of leaves is
exactly n!. Second, consider the ordering information available to the algorithm when it reaches a
delete node v. This information consists of the outcomes of all the comparisons on the comparison
nodes on the path from the root to v. This information can be represented as a poset, Pv, on the
elements not deleted yet. For every sequence that causes the algorithm to reach v, the algorithm
has obtained only the information in Pv. If a sequence corresponding to some permutation σ takes
the algorithm to the delete node v, where ai is deleted, then ai is a minimal element in Pv, since,
in σ, ai is the minimum among the remaining elements. Hence each of the elements labeling an
edge from v to a child is a minimal element of Pv. If this Delete instruction was replaced by a
FindMin, then the comparisons done by the FindMin would have to find the minimum among
these minimal elements. A comparison between any two poset elements can cause at most one of
these minimal elements to become non-minimal. Hence, the FindMin instruction would cost the
algorithm deg(v)− 1 comparisons.

The proof. Let T be the decision tree corresponding to the deterministic algorithm A. Set
m = n!. For ` ∈ leaves(T ), let D` be the set of delete nodes on the path from the root to `, and
C` be the set of comparison nodes on the path from the root to `.

Each input specified by a permutation σ and a value i ∈ [n], in support[J ] causes the algorithm
to follow a path in T upto some delete node, v, where, instead of a Delete, the sequence issues
a FindMin instruction. As argued previously, the number of comparisons made to process this
FindMin is at least deg(v) − 1. There are exactly n delete nodes on any path from the root to a
leaf and different inputs cause the algorithm to arrive at a different delete nodes. Hence

GM
J

[CF (A, J) + 1] ≥
∏

`∈leaves(T )

∏
v∈D`

(deg(v))1/nm. (4.7)

Since T has m leaves, we have using Lemma 8 that

m ≤ GM
`∈leaves(T )

[
∏

v∈path(`)

deg(v)]

= GM
`∈leaves(T )

[
∏
v∈C`

deg(v)] · GM
`∈leaves(T )

[
∏
v∈D`

deg(v)]. (4.8)
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Consider the first term on the right. Since every comparison node v has arity at most two, we have∏
v∈C` deg(v) = 2|C`|. Also, by the assumption (4.6) of our theorem,

E
`∈leaves(T )

[|C`|] = E
I

[CU (A, I)] ≤ tn.

Thus

GM
`∈leaves(T )

[
∏
v∈C`

deg(v)] ≤ GM
`∈leaves(T )

[2|C`|] ≤ 2E`[|C`|] ≤ 2tn.

From this and (4.8), we have

GM
`∈leaves(T )

[
∏
v∈D`

deg(v)] ≥ m2−tn.

Then using (4.7) and the inequality n! ≥ (n/e)n, we get

GM
J

[CF (A, J) + 1] ≥
∏

`∈leaves(T )

∏
v∈D`

(deg(v))1/nm

= ( GM
`∈leaves(T )

[
∏
v∈D`

deg(v)])1/n ≥ n

e2t
. 2

Remark. One may also consider the problem of maintaining the minimum when the algorithm is
allowed to use an operator that enables it to compute the minimum of some m values in one step.
The case m = 2 corresponds to the binary comparisons model. Since an m-ary minimum operation
can be simulated by m− 1 binary minimum operations, the above proof yields a lower bound of

1

m− 1

[
n

e22t(m−1)
− 1

]
on the cost of FindMin, if the amortized cost of Insert and Delete is at most t. However, by
modifying our proof one can improve this lower bound to

1

m− 1

[
n

em2t
− 1

]
.
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Abstract

We present priority queues that support the operations FindMin, Insert, MakeQueue

and Meld in worst case time O(1) and Delete and DeleteMin in worst case time O(log n).
They can be implemented on the pointer machine and require linear space. The time bounds
are optimal for all implementations where Meld takes worst case time o(n).

To our knowledge this is the first priority queue implementation that supports Meld in
worst case constant time and DeleteMin in logarithmic time.

Category: E.1
Keywords: priority queues, meld, worst case complexity

Introduction

We consider the problem of implementing meldable priority queues. The operations that should be
supported are:

MakeQueue Creates a new empty priority queue.

FindMin(Q) Returns the minimum element contained in priority queue Q.

Insert(Q, e) Inserts element e into priority queue Q.

Meld(Q1, Q2) Melds the priority queues Q1 and Q2 to one priority queue and returns the new
priority queue.

DeleteMin(Q) Deletes the minimum element of Q and returns the element.

Delete(Q, e) Deletes element e from priority queue Q provided that it is known where e is stored
in Q (priority queues do not support the searching for an element).

The implementation of priority queues is a classical problem in data structures. A few references
are [43, 47, 52, 53, 63, 108, 109].

In the amortized sense, [101], the best performance is achieved by binomial heaps [108]. They
support Delete and DeleteMin in amortized time O(log n) and all other operations in amortized
constant time. If we want to perform Insert in worst case constant time a few efficient data

∗This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under contract
no. 7141 (project ALCOM II) and by the Danish Natural Science Research Council (Grant No. 9400044).
†BRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.
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structures exist. The priority queue of van Leeuwen [107], the implicit priority queues of Carlsson
et al. [27] and the relaxed heaps of Driscoll et al. [43], but neither of these support Meld efficiently.
However, the last two do support MakeQueue, FindMin and Insert in worst case constant time
and Delete and DeleteMin in worst case time O(log n).

Our implementation beats the above by supporting MakeQueue, FindMin, Insert and Meld

in worst case time O(1) and Delete and DeleteMin in worst case time O(log n). The computa-
tional model is the pointer machine and the space requirement is linear in the number of elements
contained in the priority queues.

We assume that the priority queues contain elements from a totally ordered universe. The only
allowed operation on the elements is the comparisons of two elements. We assume that comparisons
can be performed in worst case constant time. For simplicity we assume that all priority queues
are nonempty. For a given operation we let n denote the size of the priority queue of maximum
size involved in the operation.

In Section 5.1 we describe the data structure and in Section 5.2 we show how to implement the
operations. In Section 5.3 we show that our construction is optimal. Section 5.4 contains some
final remarks.

5.1 The Data Structure

Our basic representation of a priority queue is a heap ordered tree where each node contains one
element. This is slightly different from binomial heaps [108] and Fibonacci heaps [53] where the
representation is a forest of heap ordered trees.

With each node we associate a rank and we partition the children of a node into two types,
type i and type ii. The heap ordered tree must satisfy the following structural constraints.

a) A node has at most one child of type i. This child may be of arbitrary rank.

b) The children of type ii of a node of rank r have all rank less than r.

c) For a fixed node of rank r, let ni denote the number of children of type ii that have rank i.
We maintain the regularity constraint that

i) ∀i : (0 ≤ i < r ⇒ 1 ≤ ni ≤ 3),
ii) ∀i, j : (i < j ∧ ni = nj = 3⇒ ∃k : i < k < j ∧ nk = 1),
iii) ∀i : (ni = 3⇒ ∃k : k < i ∧ nk = 1).

d) The root has rank zero.

The heap order implies that the minimum element is at the root. Properties a), b) and c)
bound the degree of a node by three times the rank of the node plus one. The size of the subtree
rooted at a node is controlled by property c). Lemma 9 shows that the size is at least exponential
in the rank. The last two properties are essential to achieve Meld in worst case constant time.
The regularity constraint c) is a variation of the regularity constraint that Guibas et al. [60] used in
their construction of finger search trees. The idea is that between two ranks where three children
have equal rank there is a rank of which there only is one child. Figure 5.1 shows a heap ordered
tree that satisfies the requirements a) to d) (the elements contained in the tree are omitted).

Lemma 9 Any subtree rooted at a node of rank r has size ≥ 2r.

48



3

2

0 1

0

j0

j2 j1 j1 j1 j0
j1 j0 j0 j0 j0 j1 j1 j0
j0 j0 j0

j0

HHH��
�

���

��
�(((((((
XXXXXHH
H

���
��

��
�

Figure 5.1: A heap ordered tree satisfying the properties a) to d). A box denotes a child of type i,
a circle denotes a child of type ii, and the numbers are the ranks of the nodes.

Proof. The proof is a simple induction in the structure of the tree. By c.i) leaves have rank zero
and the lemma is true. For a node of rank r property c.i) implies that the node has at least one
child of each rank less than r. By induction we get that the size is at least 1 +

∑r−1
i=0 2i = 2r. 2

Corollary 4 The only child of the root of a tree containing n elements has rank at most blog(n−1)c.

We now describe the details of how to represent a heap ordered tree. A child of type i is always
the rightmost child. The children of type ii appear in increasing rank order from right to left. See
Figure 5.1 and Figure 5.2 for examples.
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Figure 5.2: The arrangement of the children of a node.

A node consists of the following seven fields: 1) the element associated with the node, 2) the
rank of the node, 3) the type of the node, 4) a pointer to the parent node, 5) a pointer to the
leftmost child and 6) a pointer to the next sibling to the left. The next sibling pointer of the
leftmost child points to the rightmost child in the list. This enables the access to the rightmost
child of a node in constant time too. Field 7) is used to maintain a single linked list of triples of
children of type ii that have equal rank (see Figure 5.2). The nodes appear in increasing rank order.
We only maintain these pointers for the rightmost child and for the rightmost child in a triple of
children of equal rank. Figure 5.2 shows an example of how the children of a node are arranged.

In the next section we describe how to implement the operations. There are two essential
transformations. The first transformation is to add a child of rank r to a node of rank r. Because
we have a pointer to the leftmost child of a node (that has rank r− 1 when r > 0) this can be done
in constant time. Notice that this transformation cannot create three children of equal rank. The
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second transformation is to find the smallest rank i where three children have equal rank. Two of
the children are replaced by a child of rank i+ 1. Because we maintain a single linked list of triples
of nodes of equal rank we can also do this in constant time.

5.2 Operations

In this section we describe how to implement the different operations. The basic operation we use
is to link two nodes of equal rank r. This is done by comparing the elements associated with the
two nodes and making the node with the largest element a child of the other node. By increasing
the rank of the node with the smallest element to r + 1 the properties a) to d) are satisfied. The
operation is illustrated in Figure 5.3. This is similar to the linking of trees in binomial heaps and
Fibonacci heaps [108, 53].
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Figure 5.3: The linking of two nodes of equal rank.

We now describe how to implement the operations.

• MakeQueue is trivial. We just return the null pointer.

• FindMin(Q) returns the element located at the root of the tree representing Q.

• Insert(Q, e) is equal to Meld Q with a priority queue only consisting of a rank zero node
containing e.

• Meld(Q1, Q2) can be implemented in two steps. In the first we insert one of the heap ordered
trees into the other heap ordered tree. This can violate property c) at one node because the
node gets one additional child of rank zero. In the second step we reestablish property c) at
the node. Figure 5.4 shows an example of the first step.
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Figure 5.4: The first step of a Meld operation (the case e1 ≤ e2 < e′1 ≤ e′2).
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Let e1 and e2 denote the roots of the trees representing Q1 and Q2 and let e′1 and e′2 denote
the only children of e1 and e2. Assume w.l.o.g. that e1 is the smallest element. If e2 ≥ e′1 we
let e2 become a rank zero child of e′1, otherwise e2 < e′1. If e′2 < e′1 we can interchange the
subtrees rooted at e′2 and e′1, so w.l.o.g. we assume e1 ≤ e2 < e′1 ≤ e′2. In this case we make
e2 a rank zero child of e′1 and swap the elements e′1 and e2 (see Figure 5.4). We have assumed
that the sizes of Q1 and Q2 are at least two, but the other cases are just simplified cases of
the general case.

The only invariants that can be violated now are the invariants b) and c) at the child of the
root because it has got one additional rank zero child. Let v denote the child of the root. If v
had rank zero we can satisfy the invariants by setting the rank of v to one. Otherwise only c)
can be violated at v. Let ni denote the number of children of v that have rank i. By linking
two nodes of rank i where i is the smallest rank where ni = 3 it is easy to verify that c) can
be reestablished. The linking reduces ni by two and increments ni+1 by one.

If we let (nr−1, . . . , n0) be a string in {1, 2, 3}∗ the following table shows that c) is reestablished
after the above described transformations. We let x denote a string in {1, 2, 3}∗ and yi strings
in {1, 2}∗. The table shows all the possible cases. Recall that c) states that between every
two ni = 3 there is at least one ni = 1. The different cases are also considered in [60].

y11 � y12
y213y11 � y221y12
y223y11 � y231y12

x3y213y11 � x3y221y12
x3y31y223y11 � x3y31y231y12

y112 � y121
y122 � y131

x3y112 � x3y121
x3y21y122 � x3y21y131

After the linking only b) can be violated at v because a child of rank r has been created.
This problem can be solved by increasing the rank of v by one.

Because of the given representation Meld can be performed in worst case time O(1).

• DeleteMin(Q) removes the root e1 of the tree representing Q. The problem is that now
property d) can be violated because the new root e2 can have arbitrary rank. This problem
is solved by the following transformations.

First we remove the root e2. This element later on becomes the new root of rank zero. At
most O(log n) trees can be created by removing the root. Among these trees the root that
contains the minimum element e3 is found and removed. This again creates at most O(log n)
trees. We now find the root e4 of maximum rank among all the trees and replaces it by the
element e3. A rank zero node containing e4 is created.

The tree of maximum rank and with root e3 is made the only child of e2. All other trees are
made children of the node containing e3. Notice that all the new children of e3 have rank
less than the rank of e3. By iterated linking of children of equal rank where there are three
children with equal rank, we can guarantee that ni ∈ {1, 2} for all i less than the rank of e3.
Possibly, we have to increase the rank of e3.

Finally, we return the element e1.
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Because the number of trees is at most O(log n) DeleteMin can be performed in worst case
time O(log n). Figure 5.5 illustrates how DeleteMin is performed.

............................
.......
.......

.......
.......
.......

.......
.......
.......

.......
.......
.......

.......
.......
.......

.......
.......
.......h

h

h

h
h

h

hh

T
TT,,

, l
l
l�

��
�
�
� B
B
B

�
��
T
TT

�
�
� B
B
B

�
�
� B
B
B
PP �

�
� A
A
A

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................
.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

e4

e3

e3

e2

e1

e4

e3

e2 e2

e3

e4

e2

� � �

Figure 5.5: The implementation of DeleteMin.

• Delete(Q, e) can be implemented similar to DeleteMin. If e is the root we just perform
DeleteMin. Otherwise we start by bubbling e upwards in the tree. We replace e with its
parent until the parent of e has rank less than or equal to the rank of e. Now, e is the
arbitrarily ranked child of its parent. This allows us to replace e with an arbitrary ranked
node, provided that the heap order is still satisfied. Because the rank of e increases for each
bubble step, and the rank of a node is bounded by blog(n − 1)c, this can be performed in
time O(log n).

We can now replace e with the meld of the children of e as described in the implementation
of DeleteMin. This again can be performed in worst case time O(log n).

To summarize, we have the theorem:

Theorem 11 There exists an implementation of priority queues supporting Delete and Delete-

Min in worst case time O(log n) and MakeQueue, FindMin, Insert and Meld in worst case
time O(1). The implementation requires linear space and can be implemented on the pointer ma-
chine.

5.3 Optimality

The following theorem shows that if Meld is required to be nontrivial, i.e., to take worst case
sublinear time, then DeleteMin must take worst case logarithmic time. This shows that the
construction described in the previous sections is optimal among all implementations where Meld

takes sublinear time.

If Meld is allowed to take linear time it is possible to support DeleteMin in worst case
constant time by using the finger search trees of Dietz and Raman [34]. By using their data
structure MakeQueue, FindMin, DeleteMin, Delete can be supported in worst case time
O(1), Insert in worst case time O(log n) and Meld in worst case time O(n).

Theorem 12 If Meld can be performed in worst case time o(n) then DeleteMin cannot be
performed in worst case time o(log n).

52



Proof. The proof is by contradiction. Assume Meld takes worst case time o(n) and DeleteMin

takes worst cast time o(log n). We show that this implies a contradiction with the Ω(n log n) lower
bound on comparison based sorting.

Assume we have n elements that we want to sort. Assume w.l.o.g. that n is a power of 2, n = 2k.
We can sort the elements by the following list of priority queue operations. First, create n priority
queues each containing one of the n elements (each creation takes worst case time O(1)). Then
join the n priority queues to one priority queue by n− 1 Meld operations. The Meld operations
are done bottom-up by always melding two priority queues of smallest size. Finally, perform n

DeleteMin operations. The elements are now sorted.
The total time for this sequence of operations is:

nTMakeQueue +
k−1∑
i=0

2k−1−iTMeld(2i) +
n∑
i=1

TDeleteMin(i) = o(n log n).

This contradicts the lower bound on comparison based sorting. 2

5.4 Conclusion

We have presented an implementation of meldable priority queues where Meld takes worst case
time O(1) and DeleteMin worst case time O(log n).

Another interesting operation to consider is DecreaseKey. Our data structure supports
DecreaseKey in worst case time O(log n), because DecreaseKey can be implemented in terms
of a Delete operation followed by an Insert operation. Relaxed heaps [43] support Decrease-

Key in worst case time O(1) but do not support Meld. But it is easy to see that relaxed heaps
can be extended to support Meld in worst case time O(log n). The problem to consider is if it is
possible to support both DecreaseKey and Meld simultaneously in worst case constant time.

As a simple consequence of our construction we get a new implementation of meldable double
ended priority queues, which is a data type that allows both FindMin/FindMax and Delete-

Min/ DeleteMax [9, 38]. For each queue we just have to maintain two heap ordered trees as
described in Section 5.1. One tree ordered with respect to minimum and the other with respect to
maximum. If we let both trees contain all elements and the elements know their positions in both
trees we get the following corollary.

Corollary 5 An implementation of meldable double ended priority queues exists that supports
MakeQueue, FindMin, FindMax, Insert and Meld in worst case time O(1) and Delete-

Min, DeleteMax, Delete, DecreaseKey and IncreaseKey in worst case time O(log n).
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gerth@brics.dk

Abstract

An implementation of priority queues is presented that supports the operations Make-

Queue, FindMin, Insert, Meld and DecreaseKey in worst case time O(1) and DeleteMin

and Delete in worst case time O(log n). The space requirement is linear. The data structure
presented is the first achieving this worst case performance.

Category: E.1
Keywords: priority queues, meld, decrease key, worst case complexity

6.1 Introduction

We consider the problem of implementing priority queues which are efficient in the worst case
sense. The operations we want to support are the following commonly needed priority queue
operations [76].

MakeQueue creates and returns an empty priority queue.

FindMin(Q) returns the minimum element contained in priority queue Q.

Insert(Q, e) inserts an element e into priority queue Q.

Meld(Q1, Q2) melds priority queues Q1 and Q2 to a new priority queue and returns the resulting
priority queue.

DecreaseKey(Q, e, e′) replaces element e by e′ in priority queue Q provided e′ ≤ e and it is
known where e is stored in Q.

DeleteMin(Q) deletes and returns the minimum element from priority queue Q.

Delete(Q, e) deletes element e from priority queue Q provided it is known where e is stored in Q.

The construction of priority queues is a classical topic in data structures [15, 27, 43, 46, 49, 52,
53, 71, 97, 107, 108, 109]. A historical overview of implementations can be found in [76]. There are
many applications of priority queues. Two of the most prominent examples are sorting problems
and network optimization problems [100].

∗This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under contract
no. 7141 (project ALCOM II) and by the Danish Natural Science Research Council (Grant No. 9400044).
†BRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.
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Amortized Worst case
Fredman et al. [53] Driscoll et al. [43] Brodal [15] New result

MakeQueue O(1) O(1) O(1) O(1)
FindMin O(1) O(1) O(1) O(1)
Insert O(1) O(1) O(1) O(1)
Meld O(1) O(log n) O(1) O(1)
DecreaseKey O(1) O(1) O(log n) O(1)
Delete/DeleteMin O(log n) O(log n) O(log n) O(log n)

Table 6.1: Time bounds for the previously best priority queue implementations.

In the amortized sense, [101], the best performance for these operations is achieved by Fibonacci
heaps [53]. They achieve amortized constant time for all operations except for the two delete
operations which require amortized time O(log n). The data structure we present achieves matching
worst case time bounds for all operations. Previously, this was only achieved for various strict
subsets of the listed operations [15, 27, 43, 107]. For example the relaxed heaps of Driscoll et
al. [43] and the priority queues in [15] achieve the above time bounds in the worst case sense except
that in [43] Meld requires worst case time Θ(logn) and in [15] DecreaseKey requires worst case
time Θ(log n). Refer to Table 6.1. If we ignore the Delete operation our results are optimal in the
following sense. A lower bound for DeleteMin in the comparison model is proved in [15] where
it is proved that if Meld can be performed in time o(n) then DeleteMin cannot be performed
in time o(log n).

The data structure presented in this paper originates from the same ideas as the relaxed heaps
of Driscoll et al. [43]. In [43] the data structure is based on heap ordered trees where Θ(log n) nodes
may violate heap order. We extend this to allow Θ(n) heap order violations which is a necessary
condition to be able to support Meld in worst case constant time and if we allow a nonconstant
number of violations.

In Section 6.2 we describe the data structure representing a priority queue. In Section 6.3
we describe a special data structure needed internally in the priority queue construction. In Sec-
tion 6.4 we show how to implement the priority queue operations. In Section 6.5 we summarize the
required implementation details. Finally some concluding remarks on our construction are given
in Section 6.6.

6.2 The Data Structure

In this section we describe the components of the data structure representing a priority queue. A
lot of technical constraints are involved in the construction. Primary these are consequences of the
transformations to be described in Section 6.3 and Section 6.4.3. In Section 6.5 we summarize the
required parts of the construction described in the following sections.

The basic idea is to represent a priority queue by two trees T1 and T2 where all nodes contain
one element and have a nonnegative integer rank assigned. Intuitively the rank of a node is the
logarithm of the size of the subtree rooted at the node. The details of the rank assignment achieving
this follow below.

The children of a node are stored in a doubly linked list in increasing rank order from right to
left. Each node has also a pointer to its leftmost child and a pointer to its parent.

The notation we use is the following. We make no distinction between a node and the element
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it contains. We let x, y, . . . denote nodes, p(x) the parent of x, r(x) the rank of x, ni(x) the number
of children of rank i that x has and ti the root of Ti. Nodes which are larger than their parents are
called good nodes — good because they satisfy heap order. Nodes which are not good are called
violating nodes.

The idea is to let t1 be the minimum element and to lazy merge the two trees T1 and T2

such that T2 becomes empty. Since t1 is the minimum element we can support FindMin in worst
case constant time and the lazy merging of the two trees corresponds intuitively to performing
Meld incrementally over the next sequence of operations. The merging of the two trees is done
by incrementally increasing the rank of t1 by moving the children of t2 to t1 such that T2 becomes
empty and t1 becomes the node of maximum rank. The actual details of implementing Meld follow
in Section 6.4.5.

As mentioned before we have some restrictions on the trees forcing the rank of a node to be
related to the size of the subtree rooted at the node. For this purpose we maintain the invariants
S1–S5 below for any node x.

S1 : If x is a leaf, then r(x) = 0,

S2 : r(x) < r(p(x)),

S3 : if r(x) > 0, then nr(x)−1(x) ≥ 2,

S4 : ni(x) ∈ {0, 2, 3, . . . , 7},
S5 : T2 = ∅ or r(t1) ≤ r(t2).

The first two invariants just say that leaves have rank zero and that the ranks of the nodes
strictly increase towards the root. Invariant S3 says that a node of rank k has at least two children
of rank k − 1. This guarantees that the size of the subtree rooted at a node is at least exponential
in the rank of the node (by induction it follows from S1 and S3 that the subtree rooted at node
x has size at least 2r(x)+1 − 1). Invariant S4 bounds the number of children of a node that have
the same rank within a constant. This implies the crucial fact that all nodes have rank and degree
O(log n). Finally S5 says that either T2 is empty or its root has rank larger than or equal to the
rank of the root of T1.

Notice that in S4 we do not allow a node to have only a single child of a given rank. This is
because this allows us to cut off the leftmost children of a node such that the node can get a new
rank assigned where S3 is still satisfied. This property is essential to the transformations to be
described in Section 6.4.3. The requirement ni(x) ≤ 7 in S4 is a consequence of the construction
described in Section 6.3.

After having described the conditions of how nodes are assigned ranks and how this forces
structure on the trees we now turn to consider how to handle the violating nodes — which together
with the two roots could be potential minimum elements. To keep track of the violating nodes we
associate to each node x two subsets V (x) and W (x) of nodes larger than x from the trees T1 and
T2. That is the nodes in V (x) and W (x) are good with respect to x. We do not require that if
y ∈ V (x) ∪W (x) that x and y belong to the same Ti tree. But we require that a node y belongs
to at most one V or one W set. Also we do not require that if y ∈ V (x) ∪W (x) then r(y) ≤ r(x).

The V sets and the W sets are all stored as doubly linked lists. Violations added to a V set are
always added to the front of the list. Violations added to a W set are always added in such a way
that violations of the same rank are adjacent. So if we have to add a violation to W (x) and there
is already a node in W (x) of the same rank, then we insert the new node adjacent to this node.
Otherwise we just insert the new node at the front of W (x).
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We implement the V (x) and W (x) sets by letting each tree node x have four additional pointers:
One to the first node in V (x), one to the first node in W (x), and two to the next and previous node
in the violation list that x belongs to — provided x is contained in a violation list. Each time we
add a node to a violation set we always first remove the node from the set it possibly belonged to.

Intuitively V (x)’s purpose is to contain violating nodes of large rank. Whereas W (x)’s purpose
is to contain violating nodes of small rank. If a new violating node is created which has large rank,
i.e., r(x) ≥ r(t1), we add the violation to V (t1), otherwise we add the violation to W (t1). To be
able to add a node to W (t1) at the correct position we need to know if a node already exists in
W (t1) of the same rank. In case there is we need to know such an element. For this purpose we
maintain an extendible array1 of size r(t1) of pointers to nodes in W (t1) of each possible rank. If
no node exists of a given rank in W (t1) the corresponding entry in the array is null.

The structure on the V and W sets is enforced by the following invariants O1–O5. We let wi(x)
denote the number of nodes in W (x) of rank i.

O1 : t1 = minT1 ∪ T2,

O2 : if y ∈ V (x) ∪W (x), then y ≥ x,

O3 : if y < p(y), then an x 6= y exists such that y ∈ V (x) ∪W (x),

O4 : wi(x) ≤ 6,

O5 : if V (x) = (y|V (x)|, . . . , y2, y1), then

r(yi) ≥ b(i− 1)/αc for i = 1, 2, . . . , |V (x)|

where α is a constant.

O1 guarantees that the minimum element contained in a priority queue always is the root of
T1. O2 says that the elements are heap ordered with respect to membership of the V and W sets.
O3 says that all violating nodes belong to a V or W set. Because all nodes have rank O(log n)
invariants O4 and O5 imply that the sizes of all V and W sets are O(log n). Notice that if we
remove an element from a V or W set, then the invariants O4 and O5 cannot become violated.

That invariants O4 and O5 are stated quite differently is because the V and W sets have very
different roles in the construction. Recall that the V sets take care of large violations, i.e., violations
that have rank larger than r(t1) when they are created. The constant α is the number of large
violations that can be created between two increases in the rank of t1.

For the roots t1 and t2 we strengthen the invariants such that R1–R3 also should be satisfied.

R1 : ni(tj) ∈ {2, 3, . . . , 7} for i = 0, 1, . . . , r(tj)− 1,

R2 : |V (t1)| ≤ αr(t1),

R3 : if y ∈W (t1) then r(y) < r(t1).

Invariant R1 guarantees that there are at least two children of each rank at both roots. This
property is important for the transformations to be described in Section 6.4.2 and Section 6.4.3.
Invariant R2 together with invariant O5 guarantee that if we can increase the rank of t1 by one we
can create α new large violations and add them to V (t1) without violating invariant O5. Invariant
R3 says that all violations in W (t1) have to be small.

1An extendible array is an array of which the length can be increased by one in worst case constant time. It is
folklore that extendible arrays can be obtained from ordinary arrays by array doubling and incremental copying. In
the rest of this paper all arrays are extendible arrays.
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The maintenance of R1 and O4 turns out to be nontrivial but they can all be maintained by
applying the same idea. To unify this idea we introduce the concept of a guide to be described in
Section 6.3.

The main idea behind the construction is the following captured by the DecreaseKey oper-
ation. The details follow in Section 6.4. Each time we perform a DecreaseKey operation we
just add the new violating node to one of the sets V (t1) or W (t1). To avoid having too many
violations stored at the root of T1 we incrementally do two different kinds of transformations. The
first transformation moves the children of t2 to t1 such that the rank of t1 increases. The second
transformation reduces the number of violations in W (t1) by replacing two violations of rank k by
at most one violation of rank k+ 1. These transformations are performed to reestablish invariants
R2 and O4.

6.3 Guides

In this section we describe the guide data structure that helps us maintaining the invariants R1
and O4 on ni(t1), ni(t2) and wi(t1). The relationship between the abstract sequences of variables
in this section and the children and the violations stored at the roots are explained in Section 6.4.

The problem can informally be described as follows. Assume we have to maintain a sequence of
integer variables xk, xk−1, . . . , x1 (all sequences in this section goes from right to left) and we want
to satisfy the invariant that all xi ≤ T for some threshold T . On the sequence we can only perform
Reduce(i) operations which decrease xi by at least two and increase xi+1 by at most one. The xis
can be forced to increase and decrease by one, but for each change in an xi we are allowed to do
O(1) Reduce operations to prevent any xi from exceeding T . The guide’s job is to tell us which
operations to perform.

This problem also arises implicitly in [15, 27, 60, 67]. But the solution presented in [60] requires
time Θ(k) to find which Reduce operations to perform whereas the problems in the other papers
are simpler because only x1 can be forced to increase and decrease. The data structure we present
can find which operations to perform in worst case time O(1) for the general problem.

To make the guide’s knowledge about the xis as small as possible we reveal to the guide another
sequence x′k, . . . , x

′
1 such that xi ≤ x′i ∈ {T − 2, T − 1, T} (this choice is a consequence of the

construction we describe below). As long as all xi ≤ x′i we do not require help from the guide.
First when an xi = x′i is forced to become xi+1 we require help from the guide. In the following we
assume w.l.o.g. that the threshold T is two such that x′i ∈ {0, 1, 2} and that Reduce(i) decreases
x′i by two and increases x′i+1 by one.

The data structure maintained by the guide partitions the sequence x′k, . . . , x
′
1 into blocks of

consecutive x′is of the form 2, 1, 1, . . . , 1, 0 where the number of ones is allowed to be zero. The
guide maintains the invariant that all x′is not belonging to a block of the above type have value
either zero or one. An example of a sequence satisfying this is the following where blocks are shown
by underlining the subsequences.

1, 2, 1, 1, 0 , 1, 1, 2, 0 , 2, 0 , 1, 0, 2, 1, 0 .

The guide stores the values of the variables x′i in one array and uses another array to handle the
blocks. The second array contains pointers to memory cells which contain the index of an xi or the
value ⊥. All variables in the same block point to the same cell and this cell contains the index of
the leftmost variable in the block. Variables not belonging to a block point to a cell containing ⊥.
A data structure for the previous example is illustrated in Figure 6.1. Notice that several variables
can share a memory cell containing ⊥. This data structure has two very important properties:
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Figure 6.1: The guide data structure.

1. Given a variable we can in worst case time O(1) find the leftmost variable in the block, and

2. we can in worst case time O(1) destroy a given block, i.e., let all nodes in the block belong
to no block, by simply assigning ⊥ to the block’s memory cell.

When an x′i is forced to increase the guide can in worst case time O(1) decide which Reduce

operations to perform. We only show how to handle one nontrivial case, all other cases are similar.
Assume that there are two blocks of variables adjacent to each other and that the leftmost x′i = 1 in
the rightmost block has to be increased. Then the following transformations have to be performed:

2, 1, 1, 0 , 2, 1, 1, 1, 0

� 2, 1, 1, 0 , 2, 2, 1, 1, 0 increment x′i,

� 2, 1, 1, 1 , 0, 2, 1, 1, 0 Reduce,

� 2, 1, 1, 1 , 1, 0, 1, 1, 0 Reduce,

� 2, 1, 1, 1, 1, 0 , 1, 1, 0 reestablish blocks.

To reestablish the blocks the two pointers of the new variables in the leftmost block are set to
point to the leftmost block’s memory cell and the rightmost block’s memory cell is assigned the
value ⊥.

In the case described above only two Reduce operations were required and these were performed
on x′js where j ≥ i. This is true for all cases.

We conclude this section with two remarks on the construction. By using extendible arrays the
sequence of variables can be extended by a new xk+1 equal to zero or one in worst case time O(1).
If we add a reference counter to each memory cell we can reuse the memory cells such that the
total number of needed memory cells is at most k.

6.4 Operations

In this section we describe how to implement the different priority queue operations. We begin
by describing some transformations on the trees which are essential to the operations to be imple-
mented.

6.4.1 Linking and delinking trees

The fundamental operation on the trees is the linking of trees. Assume that we have three nodes
x1, x2 and x3 of equal rank and none of them is a root ti. By doing two comparisons we can find
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the minimum. Assume w.l.o.g. that x1 is the minimum. We can now make x2 and x3 the leftmost
children of x1 and increase the rank of x1 by one. Neither x2 or x3 become violating nodes and x1

still satisfies all the invariants S1–S5 and O1–O5.

The delinking of a tree rooted at node x is a little bit more tricky. If x has exactly two or three
children of rank r(x)− 1, then these two or three children can be cut off and x gets the rank of the
largest ranked child plus one. From S4 it follows that x still satisfies S3 and it follows that S1–S5
and O1–O5 are still satisfied. In the case where x has at least four children of rank r(x) − 1 two
of these children are simply cut off. Because x still has at least two children of rank r(x) − 1 the
invariants are still satisfied.

It follows that the delinking of a tree of rank k always results in two or three trees of rank k− 1
and one additional tree of rank at most k (the tree can be of any rank between zero and k).

6.4.2 Maintaining the children of a root

We now describe how to add children below a root and how to cut off children at a root while
keeping R1 satisfied. For this purpose we require four guides, two for each of the roots t1 and t2.
We only sketch the situation at t1 because the construction for t2 is analogous.

To have constant time access to the children of t1 we maintain an extendible array of pointers
that for each rank i = 0, . . . , r(t1) − 1 has a pointer to a child of t1 of rank i. Because of R1
such children are guaranteed to exist. This enables us to link and delink children of rank i in
worst case time O(1) for an arbitrary i. One guide takes care of that ni(t1) ≤ 7 and the other of
that ni(t1) ≥ 2 for i = 0, . . . , r(t1) − 3 (to maintain a lower bound on a sequence of variables is
equivalent to maintaining an upper bound on the negated sequence). The children of t1 of rank
r(t1)− 1 and r(t1)− 2 are treated separately in a straight forward way such that there always are
between 2 and 7 children of these ranks. This is necessary because of the dependency between the
guide maintaining the upper bound on ni(t1) and the guide maintaining the lower bound on ni(t1).
The “marked” variables that we reveal to the guide that maintains the upper bound on ni(t1) have
values {5, 6, 7} and to the guide that maintains the lower bound have values {4, 3, 2}.

If we add a new child at t1 of rank i we tell the guide maintaining the upper bound that ni(t1)
is forced to increase by one (this assumes i < r(t1) − 2). Then the guide then tells us where to
do at most two Reduce operations. The Reduce(i) operation in this context corresponds to the
linking of three trees of rank i. This decreases ni(t1) by three and increases ni+1(t1) by one. We
only do the linking when ni(t1) = 7 so that the guide maintaining the lower bound on ni(t1) will
be unaffected (this implies a minor change in the guide). If this results in too many children of
rank r(t1) − 2 or r(t1) − 1 we link some of these children and possibly increase the rank of t1. If
the rank of t1 increases we also have to increase the domain of the two guides.

To cut off a child is similar, but now the Reduce operation corresponds to the delinking of a
tree. The additional tree from the delinking transformation that can have various ranks is treated
separately after the delinking. We just add it below t1 as described above.

At t2 the situation is nearly the same. The major difference is that because we knew that t1
was the smallest element the linking and delinking of children of t1 would not create new violations.
This is not true at t2. The linking of children never creates new violations but the delinking of
children at t2 can create three new violations. We will see in Section 6.4.4 that it turns out that
we only cut off children of t2 which have rank larger than r(t1). The tree “left over” by a delinking
is made a child of t1 if it has rank less than r(t1). Otherwise it is made a child of t2. The new
violations which have rank larger than r(t1) are added to V (t1). To satisfy O5 and R2 we just have
to guarantee that the rank of t1 will be increased and that α in R2 and O5 is chosen large enough.
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6.4.3 Violation reducing transformations

We now describe the most essential transformation on the trees. The transformation reduces the
number of potential violations

⋃
y∈T1∪T2

V (y) ∪W (y) in the tree by at least one.

Assume we have two potential violations x1 and x2 of equal rank k < r(t1) which are not roots
or children of a root. First we check that both x1 and x2 are violating nodes. If one of the nodes
already is a good node we remove it from the corresponding violation set. Otherwise we proceed
as described below.

Because of S4 we know that both x1 and x2 have at least one brother. If x1 and x2 are not
brothers assume w.l.o.g. that p(x1) ≤ p(x2) and swap the subtrees rooted at x1 and at a brother of
x2. The number of violations can only decrease by doing this swap. We can now w.l.o.g. assume
that x1 and x2 are brothers and both children of node y.

If x1 has more than one brother of rank k we just cut off x1 and make it a good child of t1 as
described in Section 6.4.2. Because x1 had at least two brothers of rank k, S4 is still satisfied at y.

In case x1 and x2 are the only brothers of rank k and r(y) > k + 1 we just cut off both x1 and
x2 and make them new good children of t1 as described in Section 6.4.2. Because of invariant S4
we are forced to cut off both children.

The only case that remains to be considered is when x1 and x2 are the only children of rank k
and that r(y) = k+ 1. In this case we cut off x1, x2 and y. The new rank of y is uniquely given by
one plus the rank of its new leftmost child. We replace y by a child of t1 of rank k + 1 which can
be cut off as described in Section 6.4.2. If y was a child of t1 we only cut off y. If the replacement
for y becomes a violating node of rank k + 1 we add it to W (t1). Finally, x1, x2 and y are made
good children of t1 as described in Section 6.4.2.

Above it is important that the node y is replaced by is not an ancestor of y, because if y
was replaced by such a node a cycle among the parent pointers would be created. Invariant S2
guarantees that this cannot happen.

6.4.4 Avoiding too many violations

We now describe how to avoid too many violations. The only violation sets we add violations to
are V (t1) and W (t1). Violations of rank larger than r(t1) are added to V (t1) and otherwise they
are added to W (t1). The violations in W (t1) are controlled by a guide. This guide guarantees that
wi(t1) ≤ 6. We maintained a single array so we could access the violating nodes in W (t1) by their
rank.

If we add a violation to W (t1) the guide tells us for which ranks we should do violation reducing
transformations as described in the previous section. We only do the transformation if there are
exactly six violations of the given rank and that there is at least two violating nodes which are not
children of t2. If there are more than four violations that are children of t2 we cut the additional
violations off and links them below t1. This makes these nodes good and does not affect the guides
maintaining the children at t2.

For each priority queue operation that is performed we increase the rank of t1 by at least one
by moving a constant number of children from t2 to t1 — provided T2 6= ∅. By increasing the rank
of t1 by one we can afford creating α new violations of rank larger than r(t1) by invariant O5 and
we can just add the violations to the list V (t1). If T2 6= ∅ and r(t2) ≤ r(t1) + 2 we just cut of
the largest children of t2 and link them below t1 and finally add t2 below t1. This will satisfy the
invariants. Otherwise we cut off a child of t2 of rank r(t1) + 2 and delink this child and add the
resulting trees below t1 such that the rank of t1 increases by at least one. By choosing α large
enough the invariants will become reestablished.
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If T2 is empty we cannot increase the rank t1, but this also implies that t1 is the node of
maximum rank so no large violations can be created and R2 cannot become violated.

6.4.5 Priority queue operations

In the following we describe how to implement the different priority queue operations such that the
invariants from Section 6.2 are maintained.

• MakeQueue is trivial. We return a pair of empty trees.

• FindMin(Q) returns t1.

• Insert(Q, e) is a special case of Meld where Q2 is a priority queue only containing one
element.

• Meld(Q1, Q2) involves at most four trees; two for each queue. The tree having the new
minimum element as root becomes the new T1 tree. This tree was either the T1 tree of Q1 or
of Q2. If this tree is the tree of maximum rank we just add the other trees below this tree as
described previously. In this case no violating node is created so no transformation is done
on the violating nodes.

Otherwise the tree of maximum rank becomes the new T2 tree and the remaining trees are
added below this node as described in Section 6.4.2, possibly delinking the new children once
if they have the same rank as t2. The violations created by this are treated as described in
Section 6.4.4. The guides and arrays used at the old roots that now are linked below the new
t2 node we just discard.

• DecreaseKey(Q, e, e′) replaces the element of e by e′ (e′ ≤ e). If e′ is less than t1 we swap
the elements in the two nodes. If e′ is a good node we stop, otherwise we proceed as described
in Section 6.4.4 to avoid having too many violations stored at t1.

• DeleteMin(Q) is allowed to take worst case time O(log n). First T2 is made empty by
moving all children of T2 to T1 and making the root t2 a rank zero child of t1. Then t1 is
deleted. This gives us at most O(log n) independent trees. The minimum element is then
found by looking at the sets V and W of the old root of T1 and all the roots of the independent
trees. If the minimum element is not a root we swap it with one of the independent trees of
equal rank. This at most creates one new violation. By making the independent trees children
of the new minimum element and performing O(log n) linking and delinking operations on
these children we can reestablish S1–S5 and R1 and R3. By merging the V and W sets at the
root to one set and merging the old minimum element’s V and W sets with the set we get
one new set of violations of size O(log n). Possibly we also have to add the single violation
created by the swapping. By doing at most O(log n) violation reducing transformations as
described previously we can reduce the set to contain at most one violation of each rank. We
make the resulting set the new W set of the new root and let the corresponding V set be
empty. This implies that O1–O5 and R2 are being reestablished. The guides involved are
initiated according to the new situation at the root of T1.

• Delete(Q, e). If we let −∞ denote the smallest possible element, then Delete can be
implemented as DecreaseKey(Q, e,−∞) followed by DeleteMin(Q).

6.5 Implementation details

In this section we summarize the required details of our new data structure.
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Each node we represent by a record having the following fields.

• The element associated with the node,

• the rank of the node,

• pointers to the node’s left and right brothers,

• a pointer to the parent node,

• a pointer to the leftmost child,

• pointers to the first node in the node’s V and W sets, and

• pointers to the next and the previous node in the violation list that the node belongs to. The
first node in a violation list V (x) or W (x) has its previous violation pointer pointing to x.

In addition to the above nodes we maintain the following three extendible arrays:

• An array of pointers to children of t1 of rank i = 0, . . . , r(t1)− 1,

• a similar array for t2, and

• an array of pointers to nodes in W (t1) of rank i = 0, . . . , r(t1)− 1 (if no node in W (t1) exist
of a given rank we let the corresponding pointer be null).

Finally we have five guides: Three to maintain the upper bounds on ni(t1), ni(t2) and wi(t1)
and two to maintain the lower bounds on ni(t1) and ni(t2).

6.6 Conclusion

From the construction presented in the previous sections we conclude that:

Theorem 13 An implementation of priority queues exists that supports the operations Make-

Queue, FindMin, Insert, Meld and DecreaseKey in worst case time O(1) and DeleteMin

and Delete in worst case time O(log n). The space required is linear in the number of elements
contained in the priority queues.

The data structure presented is quite complicated. An important issue for further work is to
simplify the construction to make it applicable in practice. It would also be interesting to see if it
is possible to remove the requirement for arrays from the construction.
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Abstract

We present time and work optimal priority queues for the CREW PRAM, supporting Find-

Min in constant time with one processor and MakeQueue, Insert, Meld, DeleteMin, Del-

ete and DecreaseKey in constant time with O(log n) processors. A priority queue can be
build in time O(log n) with O(n/ logn) processors and k elements can be inserted into a priority
queue in time O(log k) with O((log n + k)/ log k) processors. With a slowdown of O(log logn)
in time the priority queues adopt to the EREW PRAM by only increasing the required work
by a constant factor. A pipelined version of the priority queues adopt to a processor array of
size O(log n), supporting the operations MakeQueue, Insert, Meld, FindMin, DeleteMin,
Delete and DecreaseKey in constant time.

Category: E.1, F.1.2
Keywords: priority queues, meld, PRAM, worst case complexity

7.1 Introduction

The construction of priority queues is a classical topic in data structures. Some references are [15,
18, 43, 49, 52, 53, 108, 109]. A historical overview of implementations can be found in [76]. Recently
several papers have also considered how to implement priority queues on parallel machines [28, 32,
35, 70, 89, 90, 94, 95]. In this paper we focus on how to achieve optimal speedup for the individual
priority queue operations known from the sequential setting [90, 94]. The operations we support
are all the commonly needed priority queue operations from the sequential setting [76] and the
parallel insertion of several elements at the same time [28, 89].

MakeQueue Creates and returns a new empty priority queue.

Insert(Q, e) Inserts element e into priority queue Q.

Meld(Q1, Q2) Melds priority queues Q1 and Q2. The resulting priority queue is stored in Q1.

FindMin(Q) Returns the minimum element in priority queue Q.

DeleteMin(Q) Deletes and returns the minimum element in priority queue Q.

Delete(Q, e) Deletes element e from priority queue Q provided a pointer to e is given.

∗Supported by the Danish Natural Science Research Council (Grant No. 9400044). Partially supported by the
ESPRIT Long Term Research Program of the EU under contract #20244 (ALCOM-IT). This research was done
while visiting the Max-Planck Institut für Informatik, Saarbrücken, Germany.
†BRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.
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DecreaseKey(Q, e, e′) Replaces element e by e′ in priority queue Q provided e′ ≤ e and a pointer
to e is given.

Build(e1, . . . , en) Creates a new priority queue containing elements e1, . . . , en.

MultiInsert(Q, e1, . . . , ek) Inserts elements e1, . . . , ek into priority queue Q.

We assume that elements are taken from a totally ordered universe and that the only oper-
ation allowed on elements is the comparison of two elements that can be done in constant time.
Throughout this paper n denotes the maximum allowed number of elements in a priority queue.
We assume w.l.o.g. that n is of the form 2k. This guarantees that log n is an integer.1 Our main
result is:

Theorem 14 On a CREW PRAM priority queues exist supporting FindMin in constant time
with one processor, and MakeQueue, Insert, Meld, DeleteMin, Delete and DecreaseKey

in constant time with O(log n) processors. Build is supported in time O(log n) with O(n/ log n)
processors and MultiInsert in time O(log k) with O((log n+ k)/ log k) processors.

Table 7.1 lists the performance of different implementations adopting parallelism to priority
queues. Several papers consider how to build heaps [49] optimally in parallel [32, 35, 70, 95]. On
an EREW PRAM an optimal construction time of O(log n) is achieved in [95] and on a CRCW
PRAM an optimal construction time of O(log log n) is achieved in [35].

An immediate consequence of the CREW PRAM priority queues we present is that on an
EREW PRAM we achieve the bounds stated in Corollary 6, because the only bottleneck in the
construction requiring concurrent read is the broadcasting of information of constant size, that on
an O(log n/ log logn) processor EREW PRAM requires time O(log log n). The bounds we achieve
matches those of [28] for k equal one and those of [88]. See Table 7.1.

Corollary 6 On an EREW PRAM priority queues exist supporting FindMin in constant time
with one processor, and supporting MakeQueue, Insert, Meld, DeleteMin, Delete and
DecreaseKey in time O(log log n) with O(log n/ log log n) processors. With O(n/ log n) proces-
sors Build can be performed in time O(log n) and with O((k+ logn)/(log k+ log log n)) processors
MultiInsert can be performed in time O(log k + log log n).

That a systolic processor array with Θ(n) processors can implement a priority queue support-
ing the operations Insert and DeleteMin in constant time is parallel computing folklore, see
Exercise 1.119 in [72]. Recently Ranade et al. [94] showed how to achieve the same bounds on a
processor array with only O(log n) processors. In Section 7.5 we describe how the priority queues
can be modified to allow operations to be performed via pipelining. As a result we get an implemen-
tation of priority queues on a processor array with O(log n) processors, supporting the operations
MakeQueue, Insert, Meld, FindMin, DeleteMin, Delete and DecreaseKey in constant
time. This extends the result of [94].

The priority queues we present in this paper do not support the operation MultiDelete, that
deletes the k smallest elements from a priority queue (where k is fixed [28, 89]). However, a possible
solution is to apply the k-bandwidth idea used in [28, 89], by letting each node contain k elements
instead of one. If we apply the idea to the data structure in Section 7.2 we get the time bounds in
Theorem 15, improving upon the bounds achieved in [89], see Table 7.1. We omit the details and
refer the reader to [89].

1All logarithms in this paper are to the base two.
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[90] [88] [89] [28] [94] This paper
Model EREW EREW2 CREW EREW Array CREW
FindMin 1 log logn 1 1 1 1
Insert log logn log logn – – 1 1
DeleteMin log logn log logn – – 1 1
Meld – log logn log n

k + log log k log log n
k + log k – 1

Delete – log logn – – – 1
DecreaseKey – log logn – – – 1
Build logn – n

k log k log n
k log k – logn

MultiInsert – – log n
k

+ log k log log n
k

+ log k – log k
MultiDelete – – log n

k
+ log log k log log n

k
+ log k – –

Table 7.1: Performance of different parallel implementations of priority queues.

Theorem 15 On a CREW PRAM priority queues exist supporting MultiInsert in time O(log k),
MultiDelete and Meld in time O(log log k), and Build in time O(log k + log n

k log log k).

7.2 Meldable priority queues

In this section we describe how to implement the priority queue operations MakeQueue, Insert,
Meld, FindMin and DeleteMin in constant time on a CREW PRAM with O(log n) processors.
In Section 7.3 we describe how to extend the repertoire of priority queue operations to include
Delete and DecreaseKey.

The priority queues in this section are based on heap ordered binomial trees [108]. Throughout
this paper we assume a one to one mapping between tree nodes and priority queue elements.

Binomial trees are defined as follows. A binomial tree of rank zero is a single node. A binomial
tree of rank r > 0 is achieved from two binomial trees of rank r − 1 by making one of the roots a
child of the other root. It follows by induction that a binomial tree of rank r contains exactly 2r

nodes and that a node of rank r has exactly one child of each of the ranks 0, . . . , r−1. Throughout
this section a tree denotes a heap ordered binomial tree.

A priority queue is represented by a forest of binomial trees. In the following we let the largest
ranked tree be of rank r(Q), we let ni(Q) denote the number of trees of rank i and we let nmax(Q)
denote the value max0≤i≤r(Q) ni(Q). We require that a priority queue satisfies the constraints:

A1 : ni(Q) ∈ {1, 2, 3} for i = 0, . . . , r(Q), and

A2 : the minimum root of rank i is smaller than all roots of rank larger than i.

It follows from A2 that the minimum root of rank zero is the minimum element.

A priority queue is stored as follows. Each node v in a priority queue is represented by a record
consisting of:

e : the element associated to v,

r : the rank of v, and

L : a linked list of the children of v in decreasing rank order.

2The operations Delete and DecreaseKey require the CREW PRAM and require amortized time O(log log n).
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Proc ParLink(Q)
for p := 0 to logn− 1 pardo

if np(Q) ≥ 3 then
Link two trees from Q.L[p] \min(Q.L[p]) and
add the resulting tree to Q.L[p+ 1]

Proc ParUnlink(Q)
for p := 1 to logn pardo

if np(Q) ≥ 1 then
Unlink min(Q.L[p]) and add the resulting two trees to Q.L[p− 1]

Figure 7.1: Parallel linking and unlinking binomial trees.

Proc FindMin(Q)
return min(Q.L[0])

Proc Insert(Q, e)
Q.L[0] := Q.L[0] ∪ {new-node(e)}
ParLink(Q)

Proc Meld(Q1, Q2)
for p := 0 to logn pardo
Q1.L[p] := Q1.L[p] ∪Q2.L[p]

do 3 times ParLink(Q1)

Proc MakeQueue

Q :=new-queue
for p := 0 to log n pardo Q.L[p] := ∅
return Q

Proc DeleteMin(Q)
e := min(Q.L[0])
Q.L[0] := Q.L[0] \ {e}
ParUnlink(Q)
ParLink(Q)
return e

Figure 7.2: CREW PRAM priority queue operations.

For each priority queue Q an array Q.L is maintained of size 1 + log n of pointers to linked
lists of roots of equal rank. By A1, |Q.L[i]| ≤ 3 for all i. Notice that the chosen representation for
storing the children of a node allows two nodes of equal rank to be linked in constant time by one
processor. The required space for a priority queue is O(n).

Two essential procedures used by our algorithms are the procedures ParLink and ParUnlink

in Figure 7.1. In parallel ParLink for each rank i links two trees of rank i to one tree of rank
i + 1, if possible. By requiring that the trees of rank i that are linked together are different from
min(Q.L[i]), A2 does not become violated. Let n′i(Q) denote the value of ni(Q) after performing
ParLink. If ni(Q) ≥ 3 before performing ParLink then n′i(Q) ≤ ni(Q)− 2 + 1, because processor
i removes two trees of rank i and processor i − 1 adds at most one tree of rank i. Otherwise
n′i(Q) ≤ ni(Q) + 1. This implies that n′max(Q) ≤ max{3, nmax(Q)− 1}. The equality states that if
the maximum number of trees of equal rank is larger than three, then an application of ParLink

decreases this value by at least one. The procedure ParUnlink unlinks the minima of all Q.L[i].
All ni(Q) at most increase by one except for n0(Q) that can increase by two. Notice that the new
minimum of Q.L[i] is less than or equal to the old minimum of Q.L[i + 1]. This implies that if
A2 is satisfied before performing ParUnlink then A2 is also satisfied after the unlinking. Notice
that ParLink and ParUnlink can be performed on an EREW PRAM with O(log n) processors
in constant time if all processors know Q.

The priority queue operations can now be implemented as:

MakeQueue The list Q.L is allocated and in parallel all Q.L[i] are assigned the empty set.

Insert(Q, e) A new tree of rank zero containing e is created and added to Q.L[0]. To avoid
nmax(Q) > 3, ParLink(Q) is performed once.
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Meld(Q1, Q2) First Q2.L is merged into Q1.L by letting processor p set Q1.L[p] to Q1.L[p] ∪
Q2.L[p]. The resulting forest satisfies nmax(Q1) ≤ 6. Performing ParLink(Q1) three times
reestablishes A1.

FindMin(Q) The minimum element in priority queue Q is min(Q.L[0]).

DeleteMin(Q) First the minimum element min(Q.L[0]) is removed. Performing ParUnlink

once guarantees that A2 is satisfied, especially that the new minimum element is contained in
Q.L[0], because the new minimum element was either already contained in Q.L[0] or it was
the minimum element in Q.L[1]. Finally ParLink performed once reestablishes A1.

A pseudo code implementation for a CREW PRAM based on the previous discussion is shown
in Figure 7.2. Notice that the only part of the code requiring concurrent read is to “broadcast” the
values of Q,Q1 and Q2 to all the processors. Otherwise the code only requires an EREW PRAM.
From the fact that ParLink and ParUnlink can be performed in constant time with O(log n)
processors we get:

Theorem 16 On a CREW PRAM priority queues exist supporting FindMin in constant time with
one processor, and MakeQueue, Insert, Meld and DeleteMin in constant time with O(log n)
processors.

7.3 Priority queues with deletions

In this section we extend the repertoire of supported priority queue operations to include Delete

and DecreaseKey. Notice that DecreaseKey(Q, e, e′) can be implemented as Delete(Q, e)
followed by Insert(Q, e′).

The priority queues in this section are based on heap ordered trees defined as follows. A rank
zero tree is a single node. A rank r tree is a tree where the root has exactly five children of each
of the ranks 0, 1, . . . , r − 1. A tree of rank r can be created by linking six trees of rank r − 1 by
making the five larger roots children of the smallest root.

The efficiency we achieve for Delete and DecreaseKey is due to the concept of holes. A
hole of rank r in a tree is a location in the tree where a child of rank r is missing.

We represent a priority queue by a forest of trees with holes. Let r(Q), ni(Q) and nmax(Q) be
defined as in Section 7.2. We require that:

B1 : ni(Q) ∈ {1, 2, . . . , 7}, for i = 1, . . . , r(Q),

B2 : the minimum root of rank i is smaller than all roots of rank larger than i,

B3 : at most two holes have equal rank.

Temporary while performing Meld we allow the number of holes of equal rank to be at most
four. The requirement that a node of rank r has five children of each of the ranks 0, . . . , r − 1
implies that at least one child of each rank is not replaced by a hole. This implies that the subtree
rooted at a node has at least size 2r and therefore the largest possible rank is at most log n.

A priority queue is stored as follows. Each node v of a tree is represented by a record consisting
of:

e : the element associated to v,

r : the rank of v,
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f : a pointer to the parent of v, and

L : an array of size log n of pointers to linked lists of children of equal rank.

For each priority queue Q two arrays Q.L and Q.H are maintained of size 1+log n. Q.L contains
pointers to linked lists of trees of equal rank and Q.H contains pointers to linked lists of “holes”
of equal rank. More precisely Q.H[i] is a linked list of nodes such that for each missing child of
rank i of node v, v appears once in Q.H[i]. By B1 and B3, |Q.L[i]| ≤ 7 and |Q.H[i]| ≤ 2 for all i.
Notice that the space required is O(n log n). By using worst case constant time extendible arrays
to store the required arrays such that |v.L| = v.r, the space requirement can be reduced to O(n).
For simplicity we in the following assume that |v.L| = log n for all v.

The procedures ParLink and ParUnlink have to be modified such that linking and unlinking
involves six trees and such that ParUnlink catches holes to be removed from Q.H. ParLink

now satisfies n′max(Q) ≤ max{7, nmax(Q) − 5}, and ParUnlink n′i(Q) ≤ ni(Q) + 5 for i > 0 and
n′0(Q) ≤ n0(Q) + 6.

We now describe a procedure FixHoles that reduces the number of holes similar to how Par-

Link reduces the number of trees. The procedure is constructed such that processor p takes care
of holes of rank p. The work done by processor p is the following. If |Q.H[p]| < 2 the processor
does nothing. Otherwise it considers two holes in Q.H[p]. Recall that all holes have at least one
real tree node of rank p as a brother. If the two holes have different parents, we swap one of the
holes with a brother of the other hole. This makes both holes have the same parent f . By choosing
the largest node among the two holes’ brothers as the swap node we are guaranteed to satisfy heap
order after the swap.

There are now two cases to consider. The first case is when the two holes have a brother b of
rank p+1. Notice that b has at least three children of rank p because we allowed at most four holes
of rank p. We can now cut off b and all children of b of rank p. By assigning b the rank p we only
create one hole of rank p+ 1. We can now eliminate the two original holes by replacing them with
two previous children of b. At most four trees remain to be added to Q.L[p]. The second case is
when f has rank p+ 1. Assume first that f 6= min(Q.L[p+ 1]). In this case the subtree rooted at
f can be cut off without violating B2. This creates a new hole of rank p+ 1. We can now cut off
all children of f that have rank p and assign f the rank p. This eliminates the two holes. At most
four trees now need to be added to Q.L[p]. Finally there is the case where f = min(Q.L[p + 1]).
By performing ParUnlink and ParLink once the two holes disappear. To compensate for the
created new trees we finally perform ParLink once.

The priority queue operations can now be implemented as follows.

MakeQueue Allocate a new priority queue Q and assign the empty set to all Q.L[i] and Q.H[i].

Insert(Q, e) Create a tree of rank zero containing e and add this tree to Q.L[0]. Perform Par-

Link(Q) once to reestablish B1. Notice that Insert does not affect the number of holes in
Q.

Meld(Q1, Q2) Merge Q2.L into Q1.L, and Q2.H into Q1.H. We now have |Q1.L| ≤ 14 and
|Q1.H[i]| ≤ 4 for all i. That B2 is satisfied follows from that Q1 and Q2 satisfied B2. Per-
forming ParLink(Q1) twice followed by FixHoles(Q2) twice reestablishes B1 and B3.

FindMin(Q) Return min(Q.L[0]).

DeleteMin(Q) First perform FindMin and then perform Delete on the found minimum.

Delete(Q, e) Let v be the node containing e. Remove the subtree with root v. If this creates a
hole then add the hole to Q.H. Merge v.L into Q.L and remove all appearances of v from
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Proc MakeQueue

Q :=new-queue
for p := 0 to logn pardo
Q.L[p], Q.H[p] := ∅

return Q

Proc FindMin(Q)
return min(Q.L[0])

Proc Insert(Q, e)
Q.L[0] := Q.L[0] ∪ {new-node(e)}
ParLink(Q)

Proc Meld(Q1, Q2)
for p := 0 to logn pardo
Q1.L[p] := Q1.L[p] ∪Q2.L[p]
Q1.H[p] := Q1.H[p] ∪Q2.H[p]

do 2 times ParLink(Q1)
do 2 times FixHoles(Q1)

Proc DecreaseKey(Q, e, e′)
Delete(Q, e)
Insert(Q, e′)

Proc DeleteMin(Q)
e := FindMin(Q)
Delete(Q, e)
return e

Proc Delete(Q, e)
v := the node containing e
if v.f 6= null then
Q.H[v.r] := Q.H[v.r] ∪ {v.f}
v.f.L[v.r] := v.f.L[v.r] \ {v}

for p := 0 to logn pardo
for u ∈ v.L[p] do u.f := null

Q.L[p] := Q.L[p] ∪ v.L[p]
Q.H[p] := Q.H[p] \ {v}

for p := 0 to logn pardo
if np(Q) ≥ 1 and p > v.r then
Q.H[p− 1] := Q.H[p− 1] \min(Q.L[p])
Unlink min(Q.L[p]) and
add the resulting trees to Q.L[p− 1]

do 2 times ParLink(Q)
FixHoles(Q)

Figure 7.3: CREW PRAM priority queue operations.

Q.H. Notice that only for i = v.r, min(Q.L[i]) can change and this only happens if e was
min(Q.L[i]). Unlinking min(Q.L[i]) for i = v.r+1, . . . , r(Q) reestablishes B2. Finally perform
ParLink twice to reestablish B1 and FixHoles once to reestablish B3.

DecreaseKey(Q, e, e′) Perform Delete(Q, e) followed by Insert(Q, e′).

A pseudo code implementation for a CREW PRAM based on the previous discussion is shown in
Figure 7.3. Notice that the only part of the code that requires concurrent read is the “broadcasting”
of the parameters of the procedures and v.r in Delete. The rest of the code does very local
computing, in fact processor p only accesses entries p and p ± 1 of arrays, and that these local
computations can be done in constant time with O(log n) processors on an EREW PRAM.

Theorem 17 On a CREW PRAM priority queues exist supporting FindMin in constant time
with one processor, and MakeQueue, Insert, Meld, DeleteMin, Delete and DecreaseKey

in constant time with O(log n) processors.

7.4 Building priority queues

In this section we describe how to perform Build(e1, . . . , en) for the priority queues in Section 7.3.
Because our priority queues can report a minimum element in constant time and that there is lower
bound of Ω(logn) for finding the minimum of a set of elements on a CREW PRAM [66] we have
an Ω(log n) lower bound on the construction time on a CREW PRAM. We now give a matching
upper bound on an EREW PRAM.

First a collection of trees is constructed satisfying B1 and B3 but not B2. We partition the
elements into b(n − 1)/6c blocks of size six. In parallel we now construct a rank one tree from
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each block. The remaining 1–6 elements are stored in Q.L[0]. The same block partitioning and
linking is now done for the rank one trees. The remaining rank one trees are stored in Q.L[1].
This process continues until no tree remains. There are at most O(log n) iterations because each
iteration reduces the number of trees by a factor six. The resulting forest satisfies B1 and B3. It is
easy to see that the above construction can be done in time O(log n) with O(n/ log n) processors
on an EREW PRAM.

To establish B2 we log n times perform ParUnlink followed by ParLink. By induction it
follows that in the ith iteration all Q.L[j] where j ≥ log n− i satisfy B2. This finishes the construc-
tion of the priority queue. The last step of the construction requires time O(log n) with O(log n)
processors. We conclude that:

Theorem 18 On an EREW PRAM a priority queue containing n elements can be constructed
optimally with O(n/ log n) processors in time O(log n).

Because Meld(Q,Build(e1, . . . , ek)) implements the priority queue operation MultiInsert

(Q, e1, . . . , ek) we have the corollary below. Notice that k does not have to be fixed as in [28, 89].

Corollary 7 On a CREW PRAM MultiInsert can be performed in time O(log k) with O((log n+
k)/ log k) processors.

7.5 Pipelined priority queue operations

The priority queues in Section 7.2, 7.3 and 7.4 require the CREW PRAM to achieve constant time
per operation. In this section we address how to perform priority queue operations in a pipelined
fashion. As a consequence we get an implementation of priority queues on a processor array of
size O(log n) supporting priority queue operations in constant time. On a processor array we
assume that all requests are entered at processor zero and that output is generated at processor
zero too [94].

The basic idea is to represent a priority queue by a forest of heap ordered binomial trees as in
Section 7.2, and to perform the operations sequentially in a loop that does constant work for each
rank in increasing rank order. This approach then allows us to pipeline the operations. We require
that a forest of binomial trees representing a priority queue satisfies:

C1 : ni(Q) ∈ {1, 2}, for i = 1, . . . , r(Q),

C2 : the minimum root of rank i is smaller than all roots of rank larger than i.

Notice that C1 is stronger than A1 in Section 7.2. Sequential implementations of the priority
queue operations are shown in Figure 7.4. We assume a similar representation as in Section 7.3.
The pseudo code uses the following two procedures similar to those used in Section 7.2.

Link(Q, i) Links two trees from Q.L[i] \ min(Q.L[i]) to one tree of rank i + 1 that is added to
Q.L[i+ 1], provided i ≥ 0 and |Q.L[i]| ≥ 3.

Unlink(Q, i) Unlinks the tree min(Q.L[i]) and adds the resulting two trees to Q.L[i−1], provided
i ≥ 1 and |Q.L[i]| ≥ 1.

Each of the priority queue operations can be viewed as running in steps i = 0, . . . , log n. Step i
only accesses, creates and destroys nodes of rank i and i + 1. Notice that requirement C1 implies
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Proc MakeQueue

Q :=new-queue
for p := 0 to logn do Q.L[p] := ∅
return Q

Proc FindMin(Q)
return min(Q.L[0])

Proc Insert(Q, e)
Q.L[0] := Q.L[0] ∪ {new-node(e)}
for i := 0 to logn do Link(Q, i)

Proc Meld(Q1, Q2)
for i := 0 to logn do
Q1.L[i] := Q1.L[i] ∪Q2.L[i]
do 2 times Link(Q1, i)

Proc DecreaseKey(Q, e, e′)
Delete(Q, e)
Insert(Q, e′)

Proc DeleteMin(Q)
e := FindMin(Q)
Delete(Q, e)
return e

Proc Delete(Q, e)
v := the node containing e
for i := 0 to v.r − 1 do

Move v.L[i] to Q.L[i]
Link(Q, i)

r, f := v.r, v.f
Remove node v
while f 6= null do

if f.r = r + 1 then
f.r := f.r − 1
Move f to Q.L[r] and
f := f.f

else
Unlink f.L[r + 1] and add
one tree to f.L[r] and
one tree to Q.L[r]

Link(Q, i)
r := r + 1

for i := r to logn do
Unlink(Q, i+ 1)
do 2 times Link(Q, i)

Figure 7.4: A sequential implementation allowing pipelining.

that Meld only has to perform Link two times for each rank, whereas the implementation of
Meld in Figure 7.2 has to do the corresponding linking three times. Otherwise the only interesting
procedure is Delete. Procedure Delete proceeds in three phases. First all children of the node
to be removed are cut off and moved to Q.L. In the second phase the hole created is eliminated by
moving it up thru the tree by unlinking the brother node of the hole’s current position or unlinking
the parent node of the hole. Finally the third phase reestablishes C2 in case phase two removed
min(Q.L[i]) for some i. This phase is similar to the last for loop in the implementation of Delete

in Figure 7.3.

The pseudo code given in Figure 7.4 assumes the same representation for nodes as in Sec-
tion 7.3. To implement the priority queues on a processors array a representation is required that
is distributed among the processors. The canonical distribution is to let processor p store nodes of
rank p.

The representation we distribute is the following. Assume that the children of a node are
ordered from right-to-left in increasing rank order (this allows us to talk about the leftmost and
rightmost children of a node). A node v is represented by a record with the fields:

e : the element associated to v,

r : the rank of v,

left, right : pointers to the left and right brothers of v,

leftmost-child : a pointer to the leftmost child of v,

f : a pointer to the parent of v, if v is the leftmost child. Otherwise null.
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The array Q.L is replaced by linked lists. Finally an array rightmost-child is maintained that
for each node stores a pointer to the rank zero child of the node or to the node itself if it has rank
zero. Notice that this representation only has pointers between nodes with rank difference at most
one.

It is straightforward to modify the code given in Figure 7.4 to this new representation. The
only essential difference is when performing Delete. The first rank zero child of v to be moved to
Q.L is found by using the array rightmost-child. The succeeding children are found by using the
left pointers.

On a processor array we let processor p store all nodes of rank p. In addition processor p
stores Q.L[p] for all priority queues Q. The array rightmost-child is stored at processor zero. The
“locations” that Delete and DecreaseKey refer to are now not the nodes but the corresponding
entries in the rightmost-child array.

With the above described representation step i of an operation only involves information stored
at processors {i−1, i, i+1, i+2} (processor i−1 and i+2 because back pointers have to be updated
in the involved linked lists) that can be accessed in constant time. This immediately allows us to
pipeline the operations, such that we for each new operation perform exactly four steps of each of
the previous operations. Notice that no latency is involved in performing the queries: The answer
to a FindMin query is known immediately.

Theorem 19 On a processor array of size O(log n) each of the operations MakeQueue, Insert,
Meld, FindMin, DeleteMin, Delete and DecreaseKey can be supported in constant time.
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Chapter 8

A Parallel Priority Data Structure
with Applications
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Abstract

We present a parallel priority data structure that improves the running time of certain algo-
rithms for problems that lack a fast and work efficient parallel solution. As a main application,
we give a parallel implementation of Dijkstra’s algorithm for the single-source shortest path
problem which runs in O(n) time while performing O(m log n) work on a CREW PRAM. This
is a logarithmic factor improvement for the running time compared with previous approaches.
The main feature of our data structure is that the operations needed in each iteration of Dijk-
stra’s algorithm can be supported in O(1) time.

Keywords: Parallel algorithms, network optimization, graph algorithms, data structures.

8.1 Introduction

Developing work efficient parallel algorithms for graph and network optimization problems continues
to be an important area of research in parallel computing. Despite much effort a number of basic
problems have tenaciously resisted a very fast (i.e., NC) parallel solution that is simultaneously
work efficient. A notorious example is the single-source shortest path problem.

The best sequential algorithm for the single-source shortest path problem on directed graphs
with non-negative real valued edge weights is Dijkstra’s algorithm [37]. For a given digraph
G = (V,E) the algorithm iteratively steps through the set of vertices, in each iteration fixing
the distance of a vertex for which a shortest path has been found, while maintaining in the pro-
cess, for each of the remaining vertices, a tentative distance from the source. For an n-vertex,
m-edge digraph the algorithm can be implemented to run in O(m + n log n) operations by using
efficient priority queues like Fibonacci heaps [53] for maintaining tentative distances, or other prior-
ity queue implementations supporting deletion of the minimum key element in amortized or worst
case logarithmic time, and decrease key in amortized or worst case constant time [18, 43, 63].

∗This work was partially supported by the EU ESPRIT LTR Project No. 20244 (ALCOM-IT), and by the DFG
project SFB 124-D6 (VLSI Entwurfsmethoden und Parallelität).
†Supported by the Danish Natural Science Research Council (Grant No. 9400044).
‡BRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.
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The single-source shortest path problem is in NC (by virtue of the all-pairs shortest path
problem being in NC), and thus a fast parallel algorithm exists, but for general digraphs no work
efficient algorithm in NC is known. The best NC algorithm runs in O(log2 n) time and performs
O(n3(log log n/ log n)1/3) work on an EREW PRAM [61]. Moreover, work efficient algorithms which
are (at least) sublinearly fast are also not known for general digraphs.

Dijkstra’s algorithm is highly sequential, and can probably not be used as a basis for a fast (NC)
parallel algorithm. However, it is easy to give a parallel implementation of the algorithm that runs
in O(n log n) time [87]. The idea is to perform the distance updates within each iteration in parallel
by associating a local priority queue with each processor. The vertex of minimum distance for the
next iteration is determined (in parallel) as the minimum of the minima in the local priority queues.
For this parallelization it is important that the priority queue operations have worst case running
time, and therefore the original Fibonacci heap cannot be used to implement the local queues.
This was first observed in [43] where a new data structure, called relaxed heaps, was developed to
overcome this problem. Using relaxed heaps, an O(n log n) time and O(m+n log n) work(-optimal)
parallel implementation of Dijkstra’s algorithm is obtained. This seems to be the currently fastest
work efficient parallel algorithm for the single-source shortest path problem. The parallel time
spent in each iteration of the above implementation of Dijkstra’s algorithm is determined by the
(processor local) priority queue operations of finding a vertex of minimum distance and deleting an
arbitrary vertex, plus the time to find and broadcast a global minimum among the local minima.
Either or both of the priority queue operations take O(log n) time, as does the parallel minimum
computation; for the latter Ω(logn) time is required, even on a CREW PRAM. Hence, the approach
with processor local priority queues does not seem to make it possible to improve the running time
beyond O(n log n) without resorting to a more powerful PRAM model. This was considered in [87]
where two faster (but not work efficient) implementations of Dijkstra’s algorithm were given on
a CRCW PRAM: the first (resp. second) algorithm runs in O(n log logn) (resp. O(n)) time, and
performs O(n2) (resp. O(n2+ε), ∀0 < ε < 1) work.

An alternative approach would be to use a parallel global priority queue supporting some form
of multi-decrease key operation. Unfortunately, no known parallel priority queues support such
an operation; they only support a multi-delete operation which assumes that the k elements to be
deleted are the k elements with smallest priority in the priority queue (see e.g., [17, 28, 35, 88, 89,
90, 94]). A different idea is required to improve upon the running time.

We present a parallel priority data structure that speeds up the parallel implementation of
Dijkstra’s algorithm, by supporting the operations required at each iteration in O(1) time. Using
this data structure we give an alternative implementation of Dijkstra’s algorithm that runs in
O(n) time and performs O(m log n) work on a CREW PRAM. More specifically, by sorting the
adjacency lists after weight it is possible in constant time both to determine a vertex of minimum
distance, as well as to add in parallel any number of new vertices and/or update the distance of
vertices maintained by the priority data structure. It should also be mentioned that the PRAM
implementation of the data structure requires concurrent read only for broadcasting constant size
information to all processors in constant time.

The idea of the parallel priority data structure is to perform a pipelined merging of keys. We
illustrate the idea by first giving a simple implementation using a linear pipeline, which requires
O(n2+m log n) work (Section 8.2). We then show how the pipeline can be dynamically restructured
in a tree like fashion and how to schedule the available processors over the tree such that only
O(m log n) operations are required (Section 8.3). Further applications are discussed in Section 8.4.

82



8.2 A parallel priority data structure

In this section we introduce our new parallel priority data structure, and show how to use it to give
an alternative, parallel implementation of Dijkstra’s algorithm. Let G = (V,E) be an n-vertex,
m-edge directed graph with edge weights c : E → IR+

0 , represented as a collection of adjacency
lists. For a set S ⊆ V of vertices, define Γ(S) to be the neighbors of the vertices in S, excluding
vertices in S, i.e., Γ(S) = {w ∈ V \ S|∃v ∈ S, (v,w) ∈ E}. We associate with each vertex
v ∈ S a (fixed) real valued label ∆v. For a vertex w ∈ Γ(S), define the distance from S to w

as dist(S,w) = minu∈S{∆u + c(u,w)}. The distance has the property that dist(S ∪ {v}, w) =
min{dist(S,w),∆v + c(v,w)}. We define the vertex closest to S to be the vertex z ∈ Γ(S) that
attains the minimum minw∈Γ(S){dist(S,w)} (with ties broken arbitrarily).

Assume that a processor Pv is associated with each vertex v ∈ V of G. Among the processors
associated with vertices in S at any given instant one will be designated as the master processor.
Our data structure supports the following four operations:

• Init: initializes the priority data structure.

• Eject(S): deletes the vertex v of Γ(S) that is closest to S, and returns the pair (v,Dv) to
the master processor, where Dv = dist(S, v).

• Extend(S, v,∆, Pv): adds a vertex v associated with processor Pv to S, and assigns it label ∆.
Processor Pv becomes the new master processor.

• Empty(S): returns true to the master processor of S if Γ(S) = ∅.

Performing |Γ(S)| successive Eject-operations on a set S ejects the vertices in Γ(S) in non-
decreasing order of closeness, and leaves the priority data structure empty. Each vertex of Γ(S)
is ejected once. Note also that there is no operation to change the labels associated with vertices
in S.

These operations suffice for an alternative, parallel implementation of Dijkstra’s algorithm. Let
s ∈ V be a distinguished source vertex. The algorithm computes for each vertex v ∈ V the length of
a shortest path from s to v, where the length of a path is the sum of the weights of the edges on the
path. Dijkstra’s algorithm maintains a set S of vertices for which a shortest path have been found,
in each iteration adding one more vertex to S. Each vertex w ∈ V \ S has a tentative distance
which is equal to dist(S,w) as defined above. Hence, instead of the usual priority queue with
DeleteMin to select the vertex closest to S, and DecreaseKey operations to update tentative
distances for the vertices in V \ S, we use the priority data structure above to determine in each
iteration a vertex closest to the current set S of correct vertices. The Extend-operation replaces
the updating of tentative distances. Let Pv be the processor associated with vertex v.

Our main result in this section is that the New-Parallel-Dijkstra algorithm runs in linear time
in parallel.

Theorem 20 Dijkstra’s algorithm can be implemented to run in O(n) time and O(n2 + m log n)
work using O(n+m) space on a CREW PRAM.

The proof of Theorem 20 is based on the following lemma. The space bound of Theorem 20 is
discussed at the end of this section.

Lemma 10 Operation Init takes O(m log n) work and O(log n) time. After initialization, each
Eject(S)-operation takes constant time using |S| processors, and each Extend(S, v,∆, Pv)-oper-
ation takes constant time using |S|+ degin(v) processors, where degin(v) is the in-degree of v. The
Empty(S)-operation takes constant time per processor. The space required per processor is O(n).
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Algorithm New-Parallel-Dijkstra
/* Initialization */
Init; d(s)← 0; S ← ∅;
Extend(S, s, d(s), Ps);
/* Main loop */
while ¬Empty(S) do

(v,Dv)← Eject(S); /* instead of DeleteMin */
d(v)← Dv;
Extend(S, v, d(v), Pv);
/* replaces the update step */

od

Figure 8.1: The O(n) time parallel Dijkstra algorithm.

The remainder of this section will be devoted to provide a proof for Lemma 10.

In the Init-operation the adjacency lists of G are sorted in non-decreasing order after edge
weight, i.e., on the adjacency list of v vertex w1 appears before w2 if c(v,w1) ≤ c(v,w2) (with ties
broken arbitrarily). The adjacency lists are assumed to be implemented as doubly linked lists, such
that any vertex w on v’s adjacency list can be removed in constant time. For each vertex v we also
associate an array of vertices uj to which v is adjacent, i.e., vertices uj for which (uj , v) ∈ E. In the
array of v we store for each such uj a pointer to the position of v in the adjacency list of uj . This
enables us to delete all occurrences of v in adjacency lists of such vertices uj ∈ S = V \S in constant
time. Sorting of the adjacency lists takes O(log n) time and O(m log n) work [29]. Constructing
links and building the required arrays can then be done in constant time using O(m) operations.
This completes the description of the Init operation.

The processors associated with vertices in S at any given instant are organized in a linear
pipeline. Let vi be the ith vertex added to S, let Si denote S after the ith Extend(S, vi,∆i, Pi)-
operation where ∆i is the label to be associated with vi, and let Pi be the processor assigned to vi (in
the implementation of Dijkstra’s algorithm the label ∆i to be associated with vertex vi was d(v)).
Let finally Li be the sorted, doubly linked adjacency list of vi. Processor Pi which was assigned
at the ith Extend-operation receives input from Pi−1, and, after the (i+ 1)th Extend-operation,
will send output to Pi+1. The last processor assigned to S will be the master processor, and the
output from this processor will be the result of the next Eject-operation, i.e., the vertex closest
to S. The pipeline for i = 4 is shown in Figure 8.2. The input queue Q1 of processor P1 is empty
and not shown.

Assume now that Eject(Si−1) can be performed in constant time by the processors assigned
to the vertices in Si−1, and returns to the master processor of Si−1 the vertex in Γ(Si−1) that
is closest to Si−1. We show how to maintain this property after an Extend-operation; more
specifically, that the vertex v ejected by Eject(Si), immediately after Extend(Si−1, vi,∆i, Pi),
is produced in constant time, is indeed the vertex closest to Si, and that each vertex in Γ(Si) is
ejected exactly once.

Performing an Eject(Si−1) returns the vertex u closest to Si−1 with value Du = dist(Si−1, u).
Either this vertex, or the vertex closest to vi is the vertex to be ejected from Si. Let w be the
first vertex on the sorted adjacency list Li. If ∆i + c(vi, w) ≤ Du, then the result of Eject(Si)
is w with value Dw = ∆i + c(vi, w); otherwise, the result is u with value Du. In the first case, w
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Figure 8.2: The linear processor pipeline with the associated data structures.

Function Eject(S)
for all vi ∈ S do in parallel

/* processor Pi is associated with vertex vi */
(v′,D′)← Head(Qi);
v′′ ← Head(Li); D

′′ ← c(vi, v
′′) + ∆i;

if D′′ < D′ then (v′,D′)← (v′′,D′′) fi;
remove v′ from Li and Qi if present;
insert v′ into Fi;
if v′ /∈ Fi+1 then append (v′,D′) to Qi+1 fi

od;
if Pi is the master processor return Head(Qi+1)

Figure 8.3: The Eject-operation.

is ejected and simply removed from Li, but the ejected vertex of Si−1 must be saved for a later
Eject-operation. For this purpose we associate an input queue Qi with each Pi which stores the
vertices ejected from Si−1 by processor Pi−1. The Eject-operation of Pi thus consists in selecting
the smaller value from either the input queue Qi or the adjacency list Li of vi. In other words, Pi
performs one merging step of the two ordered lists Qi and Li. In case Pi exhausts its own adjacency
list Li, it always ejects from Qi. It must be shown that Qi never gets empty, unless all vertices of
Γ(Si−1) have been ejected, in which case processor Pi may terminate. The Empty(Si) thus has to
return true when both adjacency list Li and input queue Qi of the master processor are empty.

In order to ensure that a vertex output by Pi is never output at a later Eject-operation (i.e.,
inserted into Qi+1 with different priorities), we associate a set Fi of forbidden vertices with each Pi.
Each Fi set is implemented as a Boolean array (i.e., Fi[w] = true if and only if w has been ejected
from Li). When a vertex w is removed from Li and ejected, w is put into Fi and removed from Qi
(if it is there). A vertex ejected from Si−1 is only put into the input queue Qi of Pi if it is not in
the forbidden set Fi of Pi. In the case where a vertex u at the head of Qi (previously ejected from
Si−1) “wins” at Pi and is ejected, it is removed from Li (in case u is adjacent to vi), and is made
forbidden for Pi by putting it into Fi. In order to be able to remove vertices from Qi in constant
time, each Pi has an array of pointers into Qi, which is updated whenever Pi−1 outputs a vertex
into Qi. The Eject-operation is shown in Figure 8.3.
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Function Extend(S, v,∆, P )
connect the master processor of S to P ;
make P the (new) master processor;
(u,D′)← Eject(S);
append (u,D′) to the input queue Q of P ;
∆v ← ∆; S ← S ∪ {v};
remove v from S using pointers constructed by Init

Figure 8.4: The Extend-operation.

An Extend(Si−1, vi,∆i, Pi)-operation must first perform an Eject(Si−1) in order to get an
element into the input queue Qi of Pi. Since we must prevent that a vertex already in S is ever
ejected (as Γ(S) excludes S), once a vertex is appended to S it must be removed from the adjacency
lists of all vertices in S. This can be done in parallel in constant time using the array of pointers
constructed by the Init-operation (since v occurs at most once in any adjacency list), if concurrent
read is allowed: a pointer to the array of vertices uj to which v is adjacent must be made available
to all processors. In parallel they remove v from the adjacency lists of the uj’s, which takes constant
time using degin(v) processors, degin(v) being the in-degree of v. The required concurrent read is
of the restricted sort of broadcasting the same constant size information to all processors. The
Extend-operation is shown in Figure 8.4.

We now show that each input queue Qi 6= ∅ unless there are no more vertices to be ejected from
Γ(Si−1). We argue that it always holds that |Qi| > |Fi \ Fi−1| ≥ 0, and that Qi always contains
different vertices. The last claim follows by induction. Assume namely that Eject(Si−1) produces
each vertex in Γ(Si−1) once. Whenever a vertex from Γ(Si−1) is ejected by Pi it is removed from
Li, and hence by induction can never occur again; on the other hand, whenever a vertex is ejected
from Li it is removed from Qi and also put into the forbidden set Fi which prevents it from entering
Qi at any future Eject-operation on Si−1. After each new Extend(Si−1, vi,∆i, Pi) the queue of
Pi is not empty since the Extend-operation first performs an Eject(Si−1). It remains to show
that as long as there are still vertices in Γ(Si−1) the invariant that |Qi| > |Fi \ Fi−1| holds by all
subsequent Eject-operations. Consider the work of Pi at some Eject-operation. Either |Fi \Fi−1|
is increased by one, or |Qi| is decreased by one, but not both since in the case where Pi outputs
a vertex from Qi this vertex has been put into Fi−1 at some previous operation, and in the case
where Pi outputs a vertex from Li which was also in Qi, this vertex has again been put into Fi−1

at some previous operation. In both cases |Fi \ Fi−1| does not change when Pi puts the vertex
into Fi. The operation of Pi therefore maintains |Qi| ≥ |Fi \ Fi−1|; inequality is reestablished by
considering the work of Pi−1 which either increases |Qi| or, in the case where Pi−1 is not allowed
to put its ejected vertex u into Qi (because u ∈ Fi), decreases |Fi \Fi−1| (because u is inserted into
Fi−1).

The O(n2) space due to the forbidden sets and the arrays of pointers into the input queues can
actually be reduced to O(n + m). The idea is to maintain for each vertex v ∈ V a doubly linked
list of occurrences of v in the priority data structure in such a way that processor Pi−1 can still
determine in constant time whether v ∈ Fi, and such that Pi can in constant time remove v from
Qi when it is ejected from Li. We do this as follows. We maintain an array of size n of pointers,
which for each each v ∈ V points to the occurrence of v in the priority data structure which is
closest to the master processor (i.e., the highest index i for which either v ∈ Li or v ∈ Qi). Each v

can occur in either an Lj list of some processor Pj or an input queue Qj′ of some other processor
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Pj′ , where j′ > j; furthermore a vertex v in Qj′ is marked as forbidden for all processors Pj, . . . , Pj′ ,
assuming that v was at some instant ejected from the adjacency list Lj of Pj . Each occurrence of
v has information recording whether it is (still) in a list Lj or whether it has been moved to some
queue Qj′ , in which case it is also recorded that this occurrence of v is forbidden from processor
Pj . If v occurs in some Qj′ , the position in the queue is also kept such that v can eventually be
removed from Qj′ in constant time. Obviously, this information takes only constant space. For
each occurrence of v there is a pointer to the next occurrence of v closer to the master processor
(unless this v is the closest occurrence), and a pointer to the previous occurrence (unless this v is
the first occurrence).

We can now implement the Eject-operation for processor Pj as follows. This processor must
take the minimum vertex from either Qj or Lj, say v, and eject it to Qj+1, unless it is forbidden
by Pj+1. To check this, Pj looks at the next occurrence of v. If this is an occurrence in some
queue Qj′ , then Pj can immediately see if v was forbidden from Pj+1 (and onwards), in which case
v is not ejected; instead, the next occurrence of v is marked as forbidden from the processor Pj ,
from which v originated, if v was taken from Lj , or some earlier processor if v was taken from Qj .
This occurrence of v is then removed from the doubly linked list of v’s occurrences. If v is not
forbidden for processor Pj+1, v is put into Qj+1, marked as forbidden from Pj and its position in
Qj+1 is recorded. If v was taken from Lj, it has to be checked if an occurrence of v is also in the
input queue Qj of Pj , in which case it has to be removed from Qj . This can be done by looking
at the previous occurrence of v, which records where this previous occurrence can be found. In
case an occurrence of v was present and is removed from Qj, this occurrence is unlinked from the
occurrence list, updating the Qj+1 occurrence of v as forbidden from some previous processor. If
v was instead taken from Qj , a possible occurrence of v in Lj must be taken out of the occurrence
list.

The implementation of the Extend-operation is simple. Upon a call Extend(S, v,∆, P ) all
vertices adjacent to v just have to be linked up in their respective occurrence lists, which can be done
in constant time in parallel using the aforementioned array of pointers to the closest occurrence.
We have thus dispensed with all of the linear-sized arrays used in the previous implementation at
the expense of only one array of size O(n).

This concludes the proof of Lemma 10, Theorem 20 and the basic implementation of the priority
data structure.

Note that the n2 term in the work comes from the fact that once a processor is assigned to the
data structure it resides there until the end of the computation, even if its own adjacency list gets
empty. In order to reduce the work we need a way of removing processors whose adjacency list has
become empty.

8.3 A dynamic tree pipeline

We now describe how to decrease the amount of work required by the algorithm in Section 8.2.
Before doing so, we first make an observation about the merging part of the algorithm. The work
done by processor Pi is intuitively to output vertices by incrementally merging its adjacency list Li
with the incoming stream Qi of vertices output by processor Pi−1. Processor Pi terminates when
it has nothing left to merge. An alternative bound on the real work done by this algorithm is then
the sum of the distance each vertex v from an adjacency list Li travels, where the distance is the
number of processors that output v. Because each vertex v from Li can at most be output by a
prefix of the processors Pi, Pi+1, . . . , Pn, the distance v travels is at most n − i + 1. This gives a
total bound on the work done by the processors of O(mn). That the real work can actually be
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Figure 8.5: The tree arrangement of processors. Numbers denote processor ranks.

bounded by O(n2) is due to the fact that vertices get annihilated by forbidden sets.
Using this view of the work done by the algorithm during merging, we now describe a variation

of the data structure that basically bounds the distance a vertex can travel by O(log n), i.e., bounds
the work by O(m log n). The main idea is to replace the sequential pipeline of processors by a binary
tree pipeline of processors of height O(log n). What we prove is:

Theorem 21 Dijkstra’s algorithm can be implemented to run in O(n) time and O(m log n) work
on a CREW PRAM.

We first describe how to arrange the processors in a tree and how to dynamically change this
tree while adding new processors for each Extend-operation. We then describe how the work done
by the processors can be bounded by O(m log n) and finally how to perform the required processor
scheduling.

8.3.1 Tree structured processor connections

To arrange the processors in a tree we modify slightly the information stored at each processor.
Each processor Pi still maintains an adjacency list Li and a set of forbidden vertices Fi. The output
of processor Pi is still inserted into an input queue of a processor Pj , but Pi can now receive input
from two processors instead of one.

The basic organization of the processor connections are perfect binary trees. Each node corre-
sponds to a processor and the unique outgoing edge of a node corresponds to the output queue of
the node (and an input queue to the successor node). The rank of a node is the height of the node in
the perfect binary tree and the rank of a tree is the rank of the root. The nodes are connected such
that the incoming edges of a node v come from the left child of v and the sibling of v. Figure 8.5
shows trees of size 1, 3, 7 and 15 (processor local information is omitted). A tree of rank r+ 1 can
be constructed from two trees of rank r plus a single node, by connecting the two roots with the
new node. By induction a tree of rank r has size 2r − 1.

The processors are organized in a sequence of trees of rank rk, rk−1 . . . , r1, where the ith root
is connected to the i+ 1st root (see Figure 8.6). We maintain the invariant that

rk ≤ rk−1 < rk−2 < · · · < r2 < r1. (8.1)

When performing an Extend-operation a new processor is initialized. If rk < rk−1 the new
processor is inserted as a new rank one tree at the front of the list of trees (as in the sequential
pipeline case). That (8.1) is satisfied follows from 1 ≤ rk < rk−1 < · · · < r1. If rk = rk−1 we link
the kth and k − 1st tree with the new node to form a tree of rank 1 + rk−1. That (8.1) is satisfied
follows from 1 + rk−1 ≤ rk−2 < rk−3 < · · · < r1. Figure 8.6 illustrates the relinking for the case
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Figure 8.6: How to restructure the tree when performing Extend.

where rk = rk−1 = 2 and rk−2 = 4. Note that the only restructuring required is to make e an
incoming edge of the new node w.

The described approach for relinking has recently been applied in a different context to construct
purely functional random-access lists [83]. In [83] it is proved that a sequence of trees satisfying
(8.1) is unique for a given number of nodes.

8.3.2 A work efficient implementation

In the following we let the output queue of processor Pi be denoted Qout(i). Compared to the
sequential pipeline, processor Pi now only outputs a subset of Γ(Si) due to the dynamic relinking.
For the tree pipeline we basically only have to prove that all non-terminated processors have the
next vertex to output in one of its input queues. Let Pj be a processor connected to a processor
Pi, i > j, by the queue Qout(j). Let Jj denote the set of vertices ejected between the creation of
Pj and Pi (excluding calls to Eject internal to Extend). Our main invariant is

|(Fi ∪ Jj) \ Fj | < |Fj \ (Fi ∪ Jj)|. (8.2)

The important observation is that Jj are the vertices that can be output by Pj but are illegal
as input to Pi, because they already have been ejected prior to the creation of Pi. To guarantee
that Qout(j) does not contain any illegal input to Pi we maintain the invariant

|Qout(j) ∩ (Fi ∪ Jj)| = ∅. (8.3)

We now describe how to implement the Eject-operation such that the invariants (8.2) and (8.3)
remain satisfied. The implementation is basically the same as for the sequential pipeline. Processor
Pj first selects the vertex v with least priority in Lj and the input queues of Pj in constant time.
Then all occurrences of v is removed from Lj and the input queues of Pj , and v is added to Fj . If
Qout(j) is an input queue of Pi and v /∈ Fi ∪ Jj , then v is inserted in Qout(j). That (8.2) and (8.3)
are satisfied after an Eject-operation follows by the same arguments as for the sequential pipeline.

Invariant (8.2) allows Qout(j) to be empty throughout an Eject-operation (without Pj being
terminated) because Fj \ (Fi ∪ Jj) 6= ∅ implies that there exists a vertex v that has been output by
Pj that neither has been ejected from the data structure before Pi was created nor has been output
by Pi (yet). Because Qout(j) is assumed to be empty it is easily seen that v can only be stored in
an output queue of a processor in the subtree rooted at Pi due to how the dynamic relinking is
performed, i.e., v appears in a Qout(k), k ∈ {j + 1, . . . , i − 1}. It follows that v has to be output
by Pi (perhaps with a smaller priority because v gets annihilated by an appearance of v with less
priority) before the next vertex to be output by Pj can be output by Pi. This means that Pi can
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safely skip to consider input from the empty input queue Qout(j), even if Qout(j) later can become
nonempty. Note that (8.2) guarantees that a queue between Pi−1 and Pi always is nonempty.

We now describe how to implement the Extend-operation. The implementation is as for the
sequential pipeline case, except for the dynamic relinking of a connection (edge e in Figure 8.6).
Assume that Pi is the newly created processor. That Qout(i−1) satisfies (8.2) and (8.3) follows from
the fact that Ji−1 ⊂ Fi−1 (|Ji−1| + 1 = |Fi−1|) and Fi = ∅. What remains to be shown is how to
satisfy the invariants for the node Pj when Qout(j), j < i, is relinked to become an input queue
of Pi.

When Qout(j) is relinked, Pj has totally output |Jj |+ i− j vertices (|Jj | for Eject-operations
and i − j for Extend-operation). Because Fi = ∅ and i > j it follows that (8.2) is satisfied after
the relinking. To guarantee that (8.3) is satisfied we just have to perform the following updating
of Qout(j)

Qout(j) ← Qout(j) \ Jj .

Since Qout(j) and Jj can be arbitrary sets it seems hard to do this updating in constant time
without some kind of precomputation. Note that the only connections that can be relinked is the
connections between the tree roots. The approach we take is that for each Eject-operation, we
mark the ejected vertex v as “dirty” in all the output queues Qout(j) where Pj is a root. Whenever
a queue Qout(j) is relinked we just need to be able to delete all vertices marked dirty from Qout(j)

in constant time. When inserting a new vertex into a queue Qout(j) it can easily be checked if it is
dirty or not.

A reasonably simple solution to the above problem is the following. Note that each time Qout(j)

is relinked it is connected to a node having rank one higher, i.e., we can use this rank to count
the number of delete-dirty operations or as a time stamp t. We represent a queue as a sequence of
vertices where each vertex v has two time stamped links to vertices in each direction from v. The
link with the highest time stamp ≤ t is the current link in a direction. A link with time stamp
t+ 1 is a link that will become active when a delete-dirty command is performed. We ommit the
implementation details of the marking procedure.1

That the real work done by the processors is O(m log n) follows from the following argument.
Vertices can at most travel a distance of 2 log n in a tree (in the sense mentioned in the beginning
of this section) before they reach the root of the tree. The problem is that the root processors
move vertices to lower ranked vertices, but the total distance to travel increases at most by 2 log n
for each Eject-operation, because the increase in total distance to travel along the root path
results in a telescoping sum that is bounded by 2 log n. Because there are 2n calls to Eject by
Dijkstra’s algorithm (n internal to Extend), we conclude that the actual merging work is bounded
by O(2m log n+ 4n log n), i.e., O(m log n).

8.3.3 Processor scheduling

What remains is to divide the O(m log n) work among the available processors. Assuming that
O(m logn

n ) processors are available, the idea is to simulate the tree structured pipeline for O(log n)
time steps, after which we stop the simulation and in O(log n) time eliminate the (simulated)
terminated processors, and reschedule. By this scheme a terminated processor is kept alive for only
O(log n) time steps, and hence no superfluous work is done. In total the simulation takes linear
time.

1As described here the marking of dirty vertices requires concurrent read to know the ejected vertex, but by pipelin-
ing the dirty marking process along the tree roots, concurrent read can be avoided in this part of the construction.
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8.4 Further applications

The improved single-source shortest path algorithm immediately gives rise to corresponding im-
provements in algorithms in which the single-source shortest path problem occurs as a subproblem.
We mention here the assignment problem, the minimum cost flow problem, (for definitions see [3]),
and the single-source shortest path problem in planar digraphs.

The minimum cost flow problem (which is P-complete [57]) can be solved by O(m log n) calls
to Dijkstra’s algorithm (see e.g. [3, Section 10.7]). Using our implementation, we obtain a par-
allel algorithm that runs in O(nm log n) time and performs O(m2 log2 n) work. The assignment
problem can be solved by n calls to Dijkstra’s algorithm (see e.g. [3, Section 12.4]). Using our
implementation, we obtain a parallel algorithm that runs in O(n2) time and performs O(nm log n)
work. The assignment problem is not known to be in NC, but an RNC algorithm exists for the
special case of unary weights [81, 69], and a weakly polynomial CRCW PRAM algorithm exists
that that runs in O(n2/3 log2 n log(nC)) time and performs O(n11/3 log2 n log(nC)) work for the
case of integer weights in the range [−C,C] [56]. Our bounds are strongly polynomial and speed
up the best previous ones [43] by a logarithmic factor.

Greater parallelism for the single-source shortest path problem in the case of planar digraphs
can be achieved by plugging our implementation of Dijkstra’s algorithm into the algorithm of [103]
resulting in an algorithm which runs O(n2ε + n1−ε) time and performs O(n1+ε) work on a CREW
PRAM. With respect to work, this gives the best (deterministic) parallel algorithm known for the
single-source shortest path problem in planar digraphs that runs in sublinear time.
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Chapter 9
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Abstract

We consider the problem of maintaining a set of n integers in the range 0..2w − 1 under the
operations of insertion, deletion, predecessor queries, minimum queries and maximum queries on
a unit cost RAM with word size w bits. Let f(n) be an arbitrary nondecreasing smooth function
satisfying log logn ≤ f(n) ≤

√
logn. A data structure is presented supporting insertions and

deletions in worst case O(f(n)) time, predecessor queries in worst caseO((log n)/f(n)) time and
minimum and maximum queries in worst case constant time. The required space is O(n2εw) for
an arbitrary constant ε > 0. The RAM operations used are addition, arbitrary left and right bit
shifts and bit-wise boolean operations. The data structure is the first supporting predecessor
queries in worst case O(log n/ log logn) time while having worst case O(log logn) update time.

Category: E.1, F.2.2
Keywords: searching, dictionaries, priority queues, RAM model, worst case complexity

9.1 Introduction

We consider the problem of maintaining a set S of size n under the operations:

Insert(e) inserts element e into S,

Delete(e) deletes element e from S,

Pred(e) returns the largest element ≤ e in S, and

FindMin/FindMax returns the minimum/maximum element in S.

In the comparison model Insert, Delete and Pred can be supported in worst case O(log n)
time and FindMin and FindMax in worst case constant time by a balanced search tree, say
an (a, b)-tree [64]. For the comparison model a tradeoff between the operations has been shown
by Brodal et al. [20]. The tradeoff shown in [20] is that if Insert and Delete take worst case
O(t(n)) time then FindMin (and FindMax) requires at least worst case n/2O(t(n)) time. Because
predecessor queries can be used to answer member queries, minimum queries and maximum queries,
Pred requires worst case max{Ω(log n), n/2O(t(n))} time. For the sake of completeness we mention
that matching upper bounds can be achieved by a (2, 4)-tree of depth at most t(n) where each leaf
stores Θ(n/2t(n)) elements, provided Delete takes a pointer to the element to be deleted.

∗Supported by the Danish Natural Science Research Council (Grant No. 9400044). Partially supported by the
ESPRIT Long Term Research Program of the EU under contract #20244 (ALCOM-IT).
†BRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.
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In the following we consider the problem on a unit cost RAM with word size w bits allowing
addition, arbitrary left and right bit shifts and bit-wise boolean operations on words in constant
time. Miltersen [78] refers to this model as a Practical RAM. We assume the elements are integers
in the range 0..2w − 1. A tradeoff similar to the one for the comparison model [20] is not known
for a Practical RAM.

A data structure of van Emde Boas et al. [104, 106] supports the operations Insert, Delete,
Pred, FindMin and FindMax on a Practical RAM in worst case O(logw) time. For word size
logO(1) n this implies an O(log log n) time implementation.

Thorup [102] recently presented a priority queue supporting Insert and DeleteMin in worst
case O(log log n) time independently of the word size w. Thorup notes that by tabulating the multi-
plicity of each of the inserted elements the construction supports Delete in amortized O(log log n)
time by skipping extracted integers of multiplicity zero. The data structure of Thorup does not
support predecessor queries but Thorup mentions that an Ω(log1/3−o(1) n) lower bound for Pred

can be extracted from [77, 79]. The space requirement of Thorup’s data structure is O(n2εw) (if
the time bounds are amortized the space requirement is O(n+ 2εw)).

Andersson [5] has presented a Practical RAM implementation supporting insertions, deletions
and predecessor queries in worst case O(

√
log n) time and minimum and maximum queries in worst

case constant time. The space requirement of Andersson’s data structure is O(n + 2εw). Several
data structures can achieve the same time bounds as Andersson [5], but they all require constant
time multiplication [6, 54, 93].

The main result of this paper is Theorem 22 stated below. The theorem requires the notion of
smooth functions. Overmars [86] defines a nondecreasing function f to be smooth if and only if
f(O(n)) = O(f(n)).

Theorem 22 Let f(n) be a nondecreasing smooth function satisfying log log n ≤ f(n) ≤
√

log n.
On a Practical RAM a data structure exists supporting Insert and Delete in worst case O(f(n))
time, Pred in worst case O((log n)/f(n)) time and FindMin and FindMax in worst case constant
time, where n is the number of integers stored. The space required is O(n2εw) for any constant ε > 0.

If f(n) = log logn we achieve the result of Thorup but in the worst case sense, i.e., we can
support Insert, DeleteMin and Delete in worst case O(log log n) time. We can support Pred

queries in worst case O(log n/ log log n) time. The data structure is the first allowing predecessor
queries in O(log n/ log logn) time while having O(log log n) update time. If f(n) =

√
log n, we

achieve time bounds matching those of Andersson [5].
The basic idea of our construction is to apply the data structure of van Emde Boas et al. [104,

106] for O(f(n)) levels and then switch to a packed search tree of height O(log n/f(n)). This is
very similar to the data structure of Andersson [5]. But where Andersson uses O(log n/f(n)) time
to update his packed B-tree, we only need O(f(n)) time. The idea we apply to achieve this speedup
is to add buffers of delayed insertions and deletions to the search tree, such that we can work on
several insertions concurrently by using the word parallelism of the Practical RAM. The idea of
adding buffers to a search tree has in the context of designing I/O efficient data structures been
applied by Arge [7].

Throughout this paper we w.l.o.g. assume Delete only deletes integers actually contained in
the set and Insert never inserts an already inserted integer. This can be satisfied by tabulating
the multiplicity of each inserted integer.

In the description of our data structure we in the following assume n is a constant such that the
current number of integers in the set is Θ(n). This can be satisfied by using the general dynamization
technique described by Overmars [86], which requires f(n) to be smooth. In Section 9.2 if we write
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1 0 · · · 0 · · · 1 0 · · · 0 0 x` · · · 0 x1︸ ︷︷ ︸
field k

︸ ︷︷ ︸
field `+ 1

︸ ︷︷ ︸
field `

︸ ︷︷ ︸
field 1

Figure 9.1: The structure of a list of maximum capacity k, containing integers x1, . . . , x`.

log5 n ≤ k, we actually mean that k is a function of n, but because we assume n to be a constant
k is also assumed to be a constant.

In Section 9.2 we describe our packed search trees with buffers. In Section 9.3 we describe how
to perform queries in a packed search tree and in Section 9.4 how to update a packed search tree. In
Section 9.5 we combine the packed search trees with a range reduction based on the data structure
of van Emde Boas et al. [104, 106] to achieve the result stated in Theorem 22. Section 9.6 contains
some concluding remarks and lists some open problems.

9.2 Packed search trees with buffers

In this and the following two sections we describe how to maintain a set of integers of w/k bits
each, for k satisfying log5 n ≤ k ≤ w/ log n. The bounds we achieve are:

Lemma 11 Let k satisfy log5 n ≤ k ≤ w/ log n. If the integers to be stored are of w/k bits each
then on a Practical RAM Insert and Delete can be supported in worst case O(log k) time, Pred

in worst case O(log k+log n/ log k) time and FindMin and FindMax in worst case constant time.
The space required is O(n).

The basic idea is to store O(k) integers in each word and to use the word parallelism of the
Practical RAM to work on O(k) integers in parallel in constant time. In the following we w.l.o.g.
assume that we can apply Practical RAM operations to a list of O(k) integers stored in O(1) words
in worst cast constant time. Together with each integer we store a test bit, as in [4, 5, 102]. An
integer together with the associated test bit is denoted a field. Figure 9.1 illustrates the structure
of a list of maximum capacity k containing ` ≤ k integers x1, . . . , x`. A field containing the integer
xi has a test bit equal to zero. The remaining k − ` empty fields store the integer zero and a test
bit equal to one.

Essential to the data structure to be described is the following lemma due to Albers and
Hagerup [4].

Lemma 12 (Albers and Hagerup) On a Practical RAM two sorted lists each of at most O(k)
integers stored in O(1) words can be merged into a single sorted list stored in O(1) words in O(log k)
time.

Albers and Hagerup’s proof of Lemma 12 is a description of how to implement the bitonic
merging algorithm of Batcher [10] in a constant number of words on the Practical RAM. The
algorithm of Albers and Hagerup does not handle partial full lists as defined (all test bits are
assumed to be zero), but it is straightforward to modify their algorithm to do so, by considering an
integer’s test bit as the integer’s most significant bit. A related lemma we need for our construction
is the following:
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Lemma 13 Let k satisfy k ≤ w/ log n. Let A and B be two sorted and repetition free lists each of
at most O(k) integers stored in O(1) words on a Practical RAM. Then the sorted list A \B can be
computed and stored in O(1) words in O(log k) time.

Proof. Let C be the list consisting of A merged with B twice. By Lemma 12 the merging can
be done in worst case O(log k) time. By removing all integers appearing at least twice from C

we get A \ B. In the following we outline how to eliminate these repetitions from C. Tedious
implementation details are omitted.

First a mask is constructed corresponding to the integers only appearing once in C. This can
be done in worst case constant time by performing the comparisons between neighbor integers in
C by subtraction like the mask construction described in [4]. The integers appearing only once in
C are compressed to form a single list as follows. First a prefix sum computation is performed to
calculate how many fields each integer has to be shifted to the right. This can be done in O(log k)
time by using the constructed mask. Notice that each of the calculated values is an integer in the
range 0, . . . , |A|+2|B|, implying that each field is required to contain at least O(log k) bits. Finally
we perform O(log k) iterations where we in the i’th iteration move all integers xj, 2i fields to the
right if the binary representation of the number of fields xj has to be shifted has the i’th bit set.
A similar approach has been applied in [4] to reverse a list of integers. 2

The main component of our data structure is a search tree T where all leaves have equal depth
and all internal nodes have degree at least one and at most ∆ ≤ k/ log4 n. Each leaf v stores a
sorted list Iv of between k/2 and k integers. With each internal node v of degree d(v) we store
d(v) − 1 keys to guide searches. The d(v) pointers to the children of v can be packed into a single
word because they require at most d(v) log n ≤ w bits, provided that the number of nodes is less
than n.

This part of the data structure is quite similar to the packed B-tree described by Andersson [5].
To achieve faster update times for Insert and Delete than Andersson, we add buffers of delayed
Insert and Delete operations to each internal node of the tree.

With each internal node v we maintain a buffer Iv containing a sorted list of integers to be
inserted into the leaves of the subtree Tv rooted at v, and a buffer Dv containing a sorted list
of integers to be deleted from Tv. We maintain the invariants that Iv and Dv are disjoint and
repetition free, and that

max{|Iv|, |Dv|} < ∆ log n. (9.1)

The set Sv of integers stored in a subtree Tv can recursively be defined as

Sv =

{
Iv if v is a leaf,
Iv ∪ ((

⋃
w a child of v Sw) \Dv) otherwise.

(9.2)

Finally we maintain two nonempty global buffers of integers L and R each of size O(k) to be
able to answer minimum and maximum queries in constant time. The integers in L are less than
all other integers stored, and the integers in R are greater than all other integers stored.

Let h denote the height of T . In Section 9.4 we show how to guarantee that h = O(log n/ log k),
implying that the number of nodes is O(hn/k) = O(n).

9.3 Queries in packed search trees

By explicitly remembering the minimum integer in L and the maximum integer in R it is trivial to
implement FindMin and FindMax in worst case constant time. A Pred(e) query can be answered
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as follows. If e ≤ max(L) then the predecessor of e is contained in L and can be found in worst
case O(log k) time by standard techniques. If min(R) ≤ e then the predecessor of e is contained in
R. Otherwise we have to search for the predecessor of e in T .

We first perform a search for e in the search tree T . The implementation of the search for e in
T is identical to how Andersson searches in a packed B-tree [5]. We refer to [5] for details. Let λ
be the leaf reached and w1, . . . , wh−1 be the internal nodes on the path from the root to λ. Define
wh = λ. Because we have introduced buffers at each internal node of T the predecessor of e does
not necessarily have to be stored in Iλ but can also be contained in one of the insert buffers Iwi .
An integer a ∈ Iwi can only be a predecessor of e if it has not been deleted by a delayed delete
operation, i.e., a /∈ Dwj for 1 ≤ j < i. It seems necessary to flush all buffers Iwi and Dwi for
integers which should be inserted in or deleted from Iλ to be able to find the predecessor of e. If
domλ denotes the interval of integers spanned by the leaf λ, the buffers Iwi and Dwi can be flushed
for elements in domλ by the following sequence of operations:

Iwi+1 ← Iwi+1 \ (Dwi ∩ domλ) ∪ (Iwi ∩ domλ) \Dwi+1 ,

Dwi+1 ← Dwi+1 \ (Iwi ∩ domλ) ∪ (Dwi ∩ domλ) \ Iwi+1,

Iwi ← Iwi \ domλ,

Dwi ← Dwi \ domλ.

Let Îλ denote the value of Iλ after flushing all buffers Iwi and Dwi for integers in the range
domλ. From (9.2) it follows that Îλ can also be computed directly by the expression

Îλ = domλ ∩ (((· · · ((Iλ \Dwh−1
) ∪ Iwh−1

) · · ·) \Dw1) ∪ Iw1). (9.3)

Based on Lemmas 12 and 13 we can compute this expression in O(h log k) time. This is unfor-
tunately O(log n) for the tree height h = logn/ log k. In the following we outline how to find the
predecessor of e in Îλ without actually computing Îλ in O(log k + log n/ log k) time.

Let I ′wi be Iwi ∩ domλ∩]∞, e] for i = 1, . . . , h. An alternative expression to compute the

predecessor of e in Îλ is

max
⋃

i=1,...,h

(I ′wi \
⋃

j=1,...,i−1

Dwj ). (9.4)

Because |⋃j=1,...,h−1Dwj | < ∆ log2 n we can w.l.o.g. assume |I ′wh | ≤ ∆ log2 n in (9.4) by restricting

our attention to the ∆ log2 n largest integers in I ′wh , i.e., all sets involved in (9.4) have size at most

∆ log2 n. The steps we perform to compute (9.4) are the following. All implementation details are
omitted.

• First all buffers Iwi and Dwi for i < h are inserted into a single word W where the contents
of W is considered as 2h− 2 independent lists each of maximum capacity ∆ log2 n. This can
be done in O(h) = O(log n/ log k) time.

• Using the word parallelism of the Practical RAM we now for all Iwi compute I ′wi . This can
be done in O(log k) time if min(domλ) is known. The integer min(domλ) can be computed
in the search phase determining the leaf λ. W now contains I ′wi and Dwi for i < h.

• The value of I ′wh is computed (satisfying |I ′wh | ≤ ∆ log2 n) and appended to W. This can be
done in O(log k) time. The contents of W is now

I ′whDwh−1
I ′wh−1

· · ·Dw1I
′
w1
.
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WI I ′wh · · · I ′wh I ′wh · · · I ′w1
· · · I ′w1

I ′w1

WD Dwh−1
· · · Dw2 Dw1 · · · Dwh−1

· · · Dw2 Dw1

WM Mh,h−1 · · · Mh,2 Mh,1 · · · M1,h−1 · · · M1,2 M1,1

Figure 9.2: The structure of the words WI , WD and WM .

• Let WI = (I ′wh)h−1 · · · (I ′w1
)h−1 and WD = (Dwh−1

· · ·Dw1)h. See Figure 9.2. The number

of fields required in each word is h(h − 1)∆ log2 n ≤ ∆ log4 n ≤ k. The two words can be
constructed from W in O(log k) time.

• From WI and WD we now construct h(h − 1) masks Mi,j such that Mi,j is a mask for the
fields of I ′wi which are not contained in Dwj . See Figure 9.2. The construction of a mask Mi,j

from the two list I ′wi and Dwj is very similar to the proof of Lemma 13 and can be done as
follows in O(log k) time.

First I is merged with D twice (we omit the subscripts while outlining the mask construction).
Let C be the resulting list. From C construct in constant time a mask C ′ that contains ones
in the fields in which C stores an integer only appearing once in C and zero in all other
fields. By removing all fields from C having exactly one identical neighbor we can recover
I from C. By removing the corresponding fields from C ′ we get the required mask M . As
an example assume I = (7, 5, 4, 3, 1) and D = (6, 5, 2). Then C = (7, 6, 6, 5, 5, 5, 4, 3, 2, 2, 1),
C ′ = (1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1) and M = (1, 0, 1, 1, 1) where underlined fields are the fields in
C having exactly one identical neighbor.

• We now compute masks Mi =
∧
j=1,...,i−1Mi,j for all i. By applying Mi to I ′wi we get

I ′wi \
⋃
j=1,...,i−1Dwj . This can be done in O(log k) time from WM and WI .

• Finally we in O(log k) time compute (9.4) as the maximum over all the integers in the sets
computed in the previous step. Notice that it can easily be checked if e has a predecessor in
Îλ by checking if all the sets computed in the previous step are empty.

We conclude that the predecessor of e in Îλ can be found in O(log k+h) = O(log k+log n/ log k)
time.

If e does not have a predecessor in Îλ there are two cases to consider. The first is if there exists
a leaf λ̄ to the left of λ. Then the predecessor of e is the largest integer in Îλ̄. Notice that Îλ̄ is
nonempty because |⋃j=1,...,h−1Dw̄j | < |Iλ̄|. If λ is the leftmost leaf the predecessor of e is the largest
integer in L. We conclude that Pred queries can be answered in worst case O(log k+ log n/ log k)
time on a Practical RAM.

9.4 Updating packed search trees

In the following we describe how to perform Insert and Delete updates. We first give a solution
achieving the claimed time bounds in the amortized sense. The amortized solution is then converted
into a worst case solution by standard techniques.

We first consider Insert(e). If e < max(L) we insert e into L in log k time, remove the maximum
from L such that |L| remains unchanged, and let e become the removed integer. If min(R) < e we
insert e in R, remove the minimum from R, and let e become the removed integer.
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Let r denote the root of T . If e ∈ Dr, remove e from Dr in worst case O(log k) time, i.e.,
Insert(e) cancels a delayed Delete(e) operation. Otherwise insert e into Ir.

If |Ir| < ∆ logn this concludes the Insert operation. Otherwise there must exist a child w of
r such that log n integers can be moved from Ir to the subtree rooted at w. The child w and the
log n integers X to be moved can be found by a binary search using the search keys stored at r
in worst case O(log k) time. We omit the details of the binary search in Ir. We first remove the
set of integers X from Ir such that |Ir| < ∆ logn. We next remove all integers in X ∩Dw from X

and from Dw in O(log k) time by Lemma 13, i.e., we let delayed deletions be cancel out by delayed
insertions. The remaining integers in X are merged into Iw in O(log k) time. Notice that Iw and
Dw are disjoint after the merging and that if w is an internal node then |Iw| < (∆ + 1) log n.

If |Iw| ≥ ∆ log n and w is not a leaf we recursively apply the above to Iw. If w is a leaf and
|Iw| ≤ k we are done. The only problem remaining is if w is a leaf and k < |Iw| ≤ k + log n ≤ 2k.
In this case we split the leaf w into two leaves each containing between k/2 and k integers, and
update the search keys and child pointers stored at the parent of w. If the parent p of w now has
∆ + 1 children we split p into two nodes of degree ≥ ∆/2 while distributing the buffers Ip and Dp

among the two nodes w.r.t. the new search key. The details of how to split a node is described
in [5]. If the parent of p gets degree ∆ + 1 we recursively split the parent of p.

The implementation of inserting e in T takes worst case O(h log k) time. Because the number
of leaves is O(n) and that T is similar to a B-tree if we only consider insertions we get that the
height of T is h = O(log n/ log ∆) = O(log n/ log(k/ log4 n)) = O(log n/ log k) because k ≥ log5 n.
It follows that the worst case insertion time in T is O(log n). But because we remove log n integers
from Ir every time |Ir| = ∆ logn we spend at most worst case O(log n) time once for every logn
insertion. All other insertions require worst case O(log k) time. We conclude that the amortized
insertion time is O(log k).

We now describe how to implement Delete(e) in amortized O(log k) time. If e is contained
in L we remove e from L. If L is nonempty after having removed e we are done. If L becomes
empty we proceed as follows. Let λ be the leftmost leaf of T . The basic idea is to let L become
Îλ. We do this as follows. First we flush all buffers along the leftmost path in the tree for integers
contained in domλ. Based on (9.3) this can be done in O(h log k) time. We can now assume
(Iw ∪Dw) ∩ domλ = ∅ for all nodes w on the leftmost path and that Iλ = Îλ. We can now assign
L the set Iλ and remove the leaf λ. If the parent p of λ gets degree zero we recursively remove
p. Notice that if p gets degree zero then Ip and Dp are both empty. Because the total size of
the of insertion and deletion buffers on the leftmost path is bounded by h∆ log n ≤ k/ log2 n it
follows that log n ≤ k/2 − k/ log2 n ≤ |L| ≤ k + k/ log2 n. It follows that L cannot become empty
throughout the next log n Delete operations. The case e ∈ R is handled symmetrically by letting
λ be the rightmost leaf.

If e /∈ L ∪ R we insert e in Dr provided e /∈ Ir. If e ∈ Ir we remove e from Ir in O(log k) time
and are done. If |Dr| ≥ ∆ log n we can move log n integers X from Dr to a child w of r. If w is
an internal node we first remove X ∩ Iw from X and Iw, i.e., delayed insertions cancels delayed
insertions, and then inserts the remaining elements in X into Dw. If |Dw| ≥ ∆ log n we recursively
move log n integers from Dw to a child of w. If w is a leaf λ we just remove the integers X from
Iλ. If |Iλ| ≥ k/2 we are done. Otherwise let λ̄ denote the leaf to the right or left of λ (If λ̄ does
not exist the set only contains O(k) integers and the problem is easy to handle. In the following
we w.l.o.g. assume λ̄ exists). We first flush all buffers on the paths from the root r to λ and λ̄ such
that the buffers do not contain elements from domλ ∪ domλ̄. This can be done in O(h log n) time
as previously described. From

k/2 + k/2− log n− 2h∆ log n ≤ |Iλ ∪ Iλ̄| ≤ k/2 + k − 1 + 2h∆ log n
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it follows that k/2 ≤ |Iλ ∪ Iλ̄| ≤ 2k. There are two cases to consider. If |λ+ λ̄| ≥ k we redistribute
Iλ and Iλ̄ such that they both have size at least k/2 and at most k. Because all buffers on the
path from λ (λ̄) to the root intersect empty with domλ ∪ domλ̄ we in addition only need to update
the search key stored at the nearest common ancestor of λ and λ̄ in T which separates domλ and
domλ̄. This can be done in O(h+ log k) time. The second case is if |λ+ λ̄| < k. We then move the
integers in Iλ to Iλ̄ and remove the leaf λ as described previously. The total worst case time for a
deletion becomes O(h log k) = O(log n). But again the amortized time is O(log k) because L and
R become empty for at most every log n’th Delete operation, and because Dr becomes full for at
most every logn’th Delete operation.

In the previous description of Delete we assumed the height of T is h = O(log n/ log k). We
argued that this was true if only Insert operations were performed because then our search tree is
similar to a B-tree. It is easy to see that if only O(n) leaves have been remove, then the height of T
is still h = O(log n/ log k). One way to see this is by assuming that all removed nodes still resist in
T . Then T has at most O(n) leaves and each internal node has degree at least ∆/2, which implies
the claimed height. By rebuilding T completely such that all internal nodes have degree Θ(∆) for
every n’th Delete operation we can guarantee that at most n leaves have been removed since T
was rebuild the last time. The rebuilding of T can easily be done in O(n log k) time implying that
the amortized time for Delete only increases by O(log k).

We conclude that Insert and Delete can be implemented in amortized O(log k) time. The
space required is O(n) because each node can be stored in O(1) words.

To convert the amortized time bounds into worst case time bounds we apply the standard
technique of incrementally performing a worst case expensive operation over the following sequence
of operations by moving the expensive operation into a shadow process that is executed in a quasi-
parallel fashion with the main algorithm. The rebuilding of T when O(n) Delete operations have
been performed can be handled by the general dynamization technique of Overmars [86] in worst
case O(log k) time per operation. For details refer to [86]. What remains to be described is how
to handle the cases when L or R becomes empty and when Ir or Dr becomes full. The basic idea
is to handle these cases by simply avoiding them. Below we outline the necessary changes to the
amortized solution.

The idea is to allow Ir and Dr to have size ∆ log n + O(log n) and to divide the sequence of
Insert and Delete operations into phases of log n/4 operations. In each phase we perform one of
the transformations below to T incrementally over the logn/4 operations of the phase by performing
worst case O(1) work per Insert or Delete operation. We cyclic choose which transformation
to perform, such that for each log n’th operation each transformation has been performed at least
once. Each of the transformations can be implemented in worst case O(log n) time as described in
the amortized solution.

• If |L| < k at the start of the phase and λ denotes the leftmost leaf of T we incrementally merge
L with Îλ and remove the leaf λ. It follows that L always has size at least k −O(log n) > 0.

• The second transformation similarly guarantees that |R| > 0 by merging R with Îλ where λ
is rightmost leaf of T if |R| < k.

• If |Ir| ≥ ∆ logn at the start of the phase we incrementally remove log n integers from Ir. It
follows that the size of Ir is bounded by ∆ log n+O(log n) = O(k).

• The last transformation similarly guarantees that the size of Dr is bounded by ∆ log n +
O(log n) by removing logn integers from Dr if |Dr| ≥ ∆ logn.

This finishes our description of how to achieve the bounds stated in Lemma 11.
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9.5 Range reduction

To prove Theorem 22 we combine Lemma 11 with a range reduction based on a data structure of
van Emde Boas et al. [104, 106]. This is similar to the data structure of Andersson [5], and for
details we refer to [5]. We w.l.o.g. assume w ≥ 2f(n) log n.

The idea is to use the topmost f(n) levels of the data structure of van Emde Boas et al. and
then switch to our packed search trees. If f(n) ≥ 5 log logn the integers we need to store are of
w/2f(n) ≤ w/ log5 n bits each and Lemma 11 applies for k = 2f(n). By explicitly remembering the
minimum and maximum integer stored FindMin and FindMax are trivial to support in worst case
constant time. The remaining time bounds follow from Lemma 11. The space bound of O(n2εw)
follows from storing the arrays at each of the O(n) nodes in the data structure of van Emde Boas
et al. as a trie of degree 2εw.

9.6 Conclusion

We have presented the first data structure for a Practical RAM allowing the update operations
Insert and Delete in worst case O(log log n) time while answering Pred queries in worst case
O(log n/ log logn) time. An interesting open problem is if it is possible to support Insert and
Delete in worst case O(log log n) time and Pred in worst case O(

√
log n) time. The general open

problem is to find a tradeoff between the update time and the time for predecessor queries on a
Practical RAM.
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Abstract

Given a set of n binary strings of length m each. We consider the problem of answering
d–queries. Given a binary query string α of length m, a d–query is to report if there exists a
string in the set within Hamming distance d of α.

We present a data structure of size O(nm) supporting 1–queries in time O(m) and the
reporting of all strings within Hamming distance 1 of α in time O(m). The data structure can
be constructed in time O(nm). A slightly modified version of the data structure supports the
insertion of new strings in amortized time O(m).

Category: F.2.2
Keywords: dictionaries, approximate queries, RAM model

10.1 Introduction

Let W = {w1, . . . , wn} be a set of n binary strings of length m each, i.e., wi ∈ {0, 1}m. The set
W is called the dictionary. We are interested in answering d–queries, i.e., for any query string
α ∈ {0, 1}m to decide if there is a string wi in W with at most Hamming distance d of α.

Minsky and Papert originally raised this problem in [80]. Recently a sequence of papers have
considered how to solve this problem efficiently [41, 42, 59, 74, 112]. Manber and Wu [74] considered
the application of approximate dictionary queries to password security and spelling correction of
bibliographic files. Their method is based on Bloom filters [12] and uses hashing techniques. Dolev
et al. [41, 42] and Greene, Parnas and Yao [59] considered approximate dictionary queries for the
case where d is large.

The initial effort towards a theoretical study of the small d case was given by Yao and Yao
in [112]. They present for the case d = 1 a data structure supporting queries in time O(m log logn)
with space requirement O(nm logm). Their solution was described in the cell-probe model of
Yao [111] with word size equal to 1. In this paper we adopt the standard unit cost RAM model [105].

For the general case where d > 1, d–queries can be answered in optimal space O(nm) doing∑d
i=0

(m
i

)
exact queries each requiring time O(m) by using the data structure of Fredman, Komlos
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and Szemeredi [51]. On the other hand d–queries can be answered in time O(m) when the size
of the data structure can be O(n

∑d
i=0

(m
i

)
). We present the corresponding data structure of size

O(nm) for the 1–query case.
We present a simple data structure based on tries [2, 50] which has optimal size O(nm) and

supports 1–queries in time O(m). Unfortunately, we do not know how to construct the data
structure in time O(nm) and we leave this as an open problem. However, we give a more involved
data structure of size O(nm), based on two tries, supporting 1–queries in time O(m) and which
can be constructed in time O(nm). Both data structures support the reporting of all strings
with Hamming distance at most one of the query string α in time O(m). For general d both data
structures support d–queries in time O(m

∑d−1
i=0

(m
i

)
). The second data structure can be made semi-

dynamic in terms of allowing insertions in amortized time O(m), when starting with an initially
empty dictionary. Both data structures work as well for larger alphabets |Σ| > 2, when the query
time is slowed down by a log |Σ| factor.

The paper is organized as follows. In Section 10.2 we give a simple O(nm) size data structure
supporting 1–queries in time O(m). In Section 10.3 we present an O(nm) size data structure
constructible in time O(nm) which also supports 1–queries in timeO(m). In Section 10.4 we present
a semi-dynamic version of the second data structure allowing insertions. Finally in Section 10.5 we
give concluding remarks and mention open problems.

10.2 A trie based data structure

We assume that all strings considered are over a binary alphabet Σ = {0, 1}. We let |w| denote the
length of w, w[i] denote the ith symbol of w and wR denote w reversed. The strings in the dictionary
W are called dictionary strings. We let distH(u, v) denote the Hamming distance between the two
strings u and v.

The basic component of our data structure is a trie [50]. A trie, also called a digital search tree,
is a tree representation of a set of strings. In a trie all edges are labeled by symbols such that every
string corresponds to a path in the trie. A trie is a prefix tree, i.e., two strings have a common
path from the root as long as they have the same prefix. Since we consider strings over a binary
alphabet the maximum degree of a trie is at most two.

Assume that all strings wi ∈ W are stored in a 2-dimensional array AW of size n×m, i.e., of
n rows and m columns, such that the ith string is stored in the ith row of the array AW . Notice
that AW [i, j] is the jth symbol wi. For every string wi ∈ W we define a set of associated strings
Ai = {v ∈ {0, 1}m|distH(v,wi) = 1}, where |Ai| = m, for i = 1, . . . , n. The main data structure
is a trie T containing all strings wi ∈ W and all strings from Ai, for all i = 1, . . . , n, i.e., every
path from the root to a leaf in the trie represents one of the strings. The leaves of T are labeled by
indices of dictionary strings such that a leaf representing a string s and labeled by index i satisfies
that s = wi or s ∈ Ai.

Given a query string α an 1–query can be answered as follows. The 1–query is answered
positively if there is an exact match, i.e., α = wi ∈ W , or α ∈ Aj, for some 1 ≤ j ≤ n. Thus
the 1–query is answered positively if and only if there is a leaf in the trie T representing the query
string α. This can be checked in time O(m) by a top-down traverse in T . If the leaf exists then
the index stored at the leaf is an index of a matched dictionary string.

Notice that T has at most O(nm) leaves because it contains at most O(nm) different strings.
Thus T has at most O(nm) internal vertices with degree greater than one. If we compress all
chains in T into single edges we get a compressed trie T ′ of size O(nm). Edges which correspond
to compressed chains are labeled by proper intervals of rows in the array AW . If a compressed
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chain is a substring of a string in the a Aj then the information about the corresponding substring
of wj is extended by the position of the changed bit. Since every entry in AW can be accessed in
constant time every 1–query can still be answered in time O(m).

A slight modification of the trie T ′ allows all dictionary strings which match the query string
α to be reported. At every leaf s representing a string u in T ′ instead of one index we store all
indices i of dictionary strings satisfying s = wi or s ∈ Ai. Notice that the total size of the trie is
still O(nm) since every index i, for i = 1, . . . , n, is stored at exactly m + 1 leaves. The reporting
algorithm first finds the leaf representing the query string α and then reports all indices stored
at that leaf. There are at most m+ 1 reported string thus the reporting algorithm works in time
O(m). Thus the following theorem holds.

Theorem 23 There exists a data structure of size O(nm) which supports the reporting of all
matched dictionary strings to an 1–query in time O(m).

The data structure above is quite simple, occupies optimally space O(nm) and allows 1–queries
to be answered optimally in time O(m). But we do not know how to construct it in time O(nm).
The straight forward approach gives a construction time of O(nm2) (this is the total size of the
strings in W and the associated strings from all Ai sets).

In the next section we give another data structure of size O(nm), supporting 1–queries in time
O(m) and constructible in optimal time O(nm).

10.3 A double-trie data structure

In the following we assume that all strings in W are enumerated according to their lexicographical
order. We can satisfy this assumption by sorting the strings in W , for example, by radix sort in
time O(nm). Let I = {1, . . . , n} denote the set of the indices of the enumerated strings from W .
We denote a set of consecutive indices (consecutive integers) an interval.

The new data structure is composed of two tries. The trie TW contains the set of stings W
whereas the trie TW contains all strings from the set W , where W = {wRi |wi ∈W}.

Since TW is a prefix trie every path from the root to a vertex u represents a prefix pu of a string
wi ∈ W . Denote by Wu the set {wi ∈ W |wi has prefix pu}. Since strings in W are enumerated
according to their lexicographical order those indices form an interval Iu, i.e., wi ∈Wu if and only
if i ∈ Iu. Notice that an interval of a vertex in the trie TW is the concatenation of the intervals of
its children. For each vertex u in TW we compute the corresponding interval Iu, storing at u the
first and last index of Iu.

Similarly every path from the root to a vertex v in TW represents a reversed suffix sRv of a string
wj ∈ W . Denote by W v the set {wi ∈ W |wi has suffix sv} and by Sv ⊆ I the set of indices of
strings in W v. We organize the indices of every set Sv in sorted lists Lv (in increasing order). At
the root r of the trie TW the list Lr is supported by a search tree maintaining the indices of all
the dictionary strings. For an index in a list Lv the neighbor with the smaller value is called left
neighbor and the one with greater value is called right neighbor. If a vertex x is the only child of
vertex v ∈ TW then Sx and Sv are identical. If vertex v ∈ TW has two children x and y (there are
at most two children since TW is a binary trie) the sets Sx and Sy form a partition of the set Sv.
Since indices in the set Sv are not consecutive (Sv is usually not an interval) we use additional links
to keep fast connection between the set Sv and its partition into Sx and Sy. Each element e in the
list Lv has one additional link to the closest element in the list Lx, i.e., to the smallest element er
in the list Lx such that e ≤ er or the greatest element el in the list Lx such that e ≥ el. Moreover
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in case vertex v has two children, element e has also one additional link to the analogously defined
element el ∈ Ly or er ∈ Ly.

Lemma 14 The tries TW and TW can be stored in O(nm) space and they can be constructed in
time O(nm).

Proof. The trie TW has at most O(nm) edges and vertices, i.e., the number of symbols in all strings
in W . Every vertex u ∈ TW keeps only information about the two ends of its interval Iu = [l..r].
For all u ∈ TW both indices l and r can be easily computed by a postorder traversal of TW in time
O(nm).

The number of vertices in TW is similarly bounded by O(nm). Moreover, for any level i =
1, . . . ,m in TW , the sum

∑ |Sv| over all vertices v at this level is exactly n since the sets of indices
stored at the children forms a partition of the set kept by their parent. Since TW has exactly m

levels and every index in an Lv list has at most two additional links the size of TW does not exceed
O(nm) too. The Lv lists are constructed by a postorder traversal of TW . A leaf representing the
string wRi has Lv = (i) and the Lv list of an internal vertex of TW can be constructed by merging
the corresponding disjoint lists at its children. The additional links are created along with the
merging. Thus the trie TW can be constructed in time O(nm). 2

Answering queries

In this section we show how to answer 1–queries in time O(m) assuming that both tries TW and TW
are already constructed. We present a sequence of three 1–query algorithms all based on the double-
trie structure. The first algorithm Query1 outlines how to use the presented data structure to
answer 1–queries. The second algorithm Query2 reports the index of a matched dictionary string.
The third algorithm Query3 reports all matched dictionary strings.

Let prefα be the longest prefix of the string α that is also a prefix of a string in W . The prefix
prefα is represented by a path from the root to a vertex u in the trie TW , i.e., pα = pu but for the
only child x of vertex u the string px is not a prefix of α. We call the vertex u the kernel vertex
for the string α and the path from the root of TW to the kernel vertex u the leading path in TW .
The interval Iα = Iu associated with the kernel vertex u is called the kernel interval for the string
α and the smallest element µα ∈ Iα is called the key for the query string α. Notice that the key
µα ∈ Iw, for every vertex w on the leading path in TW .

Similarly in the trie TW we define the kernel set Sv̂ which is associated with the vertex v̂, where
v̂ corresponds to the longest prefix of the string αR in TW . The vertex v̂ is called a kernel vertex
for the string αR, and the path from the root of TW to v̂ is called the leading path in TW .

The general idea of the algorithm is as follows. If the query string α has an exact match in the
set W , then there is a leaf in TW which represents the query string α. The proper leaf can be found
in time O(m) by a top-down traverse of TW , starting from its root.

If the query string α has no exact match in W but it has a match within distance one, we know
that there is a string wi ∈W which has a factorization παbτα, satisfying:

(1) πα is a prefix of α of length lα,

(2) τα is a suffix of α of length rα,

(3) b 6= α[lα + 1] and

(4) lα + rα + 1 = m.
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ALGORITHM Query1

begin
u := u — the kernel vertex in TW .
Find on the leading path in TW vertex v such that (u, v) is a feasible pair.
while vertex v exists do

if Iu ∩ Sv 6= ∅ then return “There is a match”
u :=Parent(u)
v :=Child-on-Leading-Path(v)

od
return “No match”
end.

Notice that prefix πα must be represented by a vertex u in the leading path in TW and suffix τα
must be represented by a vertex v in the leading path of TW . We call such a pair (u, v) a feasible
pair. To find the string wi within distance 1 of the query string α we have to search all feasible
pairs (u, v). Every feasible pair (u, v) for which Iu ∩ Sv 6= ∅, represents at least one string within
distance 1 of the query string α. The algorithm Query1 generates consecutive feasible pairs (u, v)
starting with u = u, the kernel vertex in TW . The algorithm Query1 stops with a positive answer
just after the first pair (u, v) with Iu∩Sv 6= ∅ is found. It stops with a negative answer if all feasible
pairs (u, v) have Iu ∩ Sv = ∅.

Notice that the steps before the while loop in the algorithm Query1 can be performed in time
O(m). The algorithm looks for the kernel vertex in TW going from the root along the leading path
(representing the prefix prefα) as long as possible. The last reached vertex u is the kernel vertex
u. Then the corresponding vertex v on the leading path in TW is found, if such a vertex exists.
Recall that a pair (u, v) must be a feasible pair. At this point the following problem arises. How
to perform the test Iu ∩ Sv 6= ∅ efficiently?

Recall that the smallest index µα in the kernel interval Iα is called the key for the query string α
and recall also that the key µα ∈ Iw, for every vertex w in the leading path in the trie TW . During
the first test Iu ∩ Sv 6= ∅ the position of the key µα in Sv is found in time log |Sv| ≤ log n ≤ m

(since W only contains binary strings we have log n ≤ m). Let Iu = [l..r], a be the left (a ≤ µα)
and b the right (b > µα) neighbors of µα in the set Sv. Now the test Iu ∩ Sv 6= ∅ can be stated as:

Iu ∩ Sv 6= ∅ ≡ l ≤ a ∨ b ≤ r.

If the above test is positive the algorithm Query2 reports the proper index among a and b and
stops. Otherwise, in the next round of the while loop the new neighbors a and b of the key µα in
the new list Lv are computed in constant time by using the additional links between the elements
of the old and new list Lv.

Theorem 24 1–queries to a dictionary W of n strings of length m can be answered in time O(m)
and space O(nm).

Proof. The initial steps of the algorithm (preceding the while loop) are performed in time O(m+
log n) = O(m). The feasible pair (u, v) (if such exists) is simply found in time O(m). Then the
algorithm finds in time O(log n) the neighbors of µα in the list Lr which is held at the root of TW .
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ALGORITHM Query2

begin
u := u — the kernel vertex in TW .
Find on the leading path in TW vertex v such that (u, v) is a feasible pair.
Find the neighbors a and b of the key µα in Sv.
while vertex v exists do

if l ≤ a then return “String a is matched”
if b ≤ r then return “String b is matched”
u :=Parent(u); Set l and r according to the new interval Iu.
v :=Child-on-Leading-Path(v)
Find new neighbors of µα, a and b, in the new list Lv.

od
return “No match”
end.

This is possible since the list Lr is supported by a search tree. Now the algorithm traverses the
leading path in TW recovering at each level neighbors of µα in constant time using the additional
links. There are at most m iterations of the while loop since there is exactly m levels in both tries
TW and TW . Every iteration of the while loop is done in constant time since both neighbors a and
b of the key µα in the new more sparse set Sv are found in constant time. Thus the total running
time of the algorithm is O(m). 2

We explain now how to modify the algorithm Query2 to an algorithm reporting all matches
to a query string. The main idea of the new algorithm is as follows. At any iteration of the while
loop instead of looking only for the left and the right neighbor of the key index µα the algorithm
Query3 searches one by one all indices to the left and right of µα which belong to the list Lv and
to the interval Iu. To avoid multiple reporting of the same index the algorithm searches only that
part of the new interval Iu which is an extension of the previous one. The variables a and b store
the leftmost and the rightmost searched indices in the list Lv.

Theorem 25 There exists a data structure of size O(nm) and constructible in time O(nm) which
supports the reporting of all matched dictionary strings to a 1–query in time O(m).

Proof. The algorithm Query3 works in time O(m + #matched), where #matched is the number
of all reported strings. Since there is at most m + 1 reported strings (one exact matching and at
most m matches with one error) the total time of the reporting algorithm is O(m). 2

10.4 A semi-dynamic data structure

In this section we describe how the data structure presented in Section 10.3 can be made semi-
dynamic such that new binary strings can be inserted into W in amortized time O(m). In the
following w′ denotes a string to be inserted into W .

The data structure described in Section 10.3 requires that the strings wi are lexicographically
sorted and that each string has assigned its rank with respect to the lexicographical ordering of the
strings. If we want to add w′ to W we can use TW to locate the position of w′ in the sorted list of
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ALGORITHM Query3

begin
u := u — the kernel vertex in TW .
Find on the leading path in TW vertex v such that (u, v) is a feasible pair.
Find the neighbors a and b of the key µα in Sv.
while vertex v exists do

while l ≤ a do
report “String a is matched”
a := left neighbor of a in Lv.

od
while b ≤ r do

report “String b is matched”
b := right neighbor of b in Lv.

od
u :=Parent(u); Set l and r according to new Iu.
v :=Child-on-Leading-Path(v)
Find a or the left neighbor of a in the new list Lv.
Find b or the right neighbor of b in the new list Lv.

od
end.

wis in time O(m). If we continue to maintain the ranks explicitly assigned to the strings we have
to reassign new ranks to all strings larger than w′. This would require time Ω(n). To avoid this
problem, observe that the indices are used to store the endpoints of the intervals Iu and to store
the sets Sv, and that the only operation performed on the indices is the comparison of two indices
to decide if one string is lexicographically less than another string in constant time.

Essentially what we need to know is if given the handles of two strings from W , which one of
the two strings is the lexicographically smallest. A solution to this problem was given by Dietz and
Sleator [36]. They presented a data structure that allows a new element to be inserted into a linked
list in constant time if the new element’s position is known, and that can answer order queries in
constant time.

By applying the data structure of Dietz and Sleator to maintain the ordering between the
strings, an insertion can now be implemented as follows. First insert w′ into TW . This requires
time O(m). The position of w′ in TW also determines its location in the lexicographically order
implying that the data structure of Dietz and Sleator can be updated too. By traversing the path
from the new leaf representing w′ in TW to the root of TW , the endpoints of the intervals Iu can
be updated in time O(m).

The insertion of w′R into TW without updating the associated fields can be done in time O(m).
Analogously to the query algorithm in Section 10.3, the positions in the Sv sets along the insertion
path of w′ in TW where to insert the handle of w′ can be found in time O(m).

The problem remaining is to update the additional links between the elements in the Lv lists.
For this purpose we change our representation to the following. Let v be a node with children x

and y. In the following we only consider how to handle the links between Lv and Lx. The links
between Lv and Ly are handled analogously. For each element e ∈ Lv ∩ Lx we maintain a pointer
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from the position of e in Lv to the position of e in Lx. For each element e ∈ Lv \ Lx the pointer is
null. Let e ∈ Lv. We can now find the closest element to e in Lx by finding the closest element in
Lv that has a non null pointer. We denote such an element to be marked. For this purpose we use
the Find-Split-Add data structure of Imai and Asano [65], an extension of a data structure by
Gabow and Tarjan [55]. The data structure supports the following operations: Given a pointer to
an element in a list, to find the closest marked element (Find); to mark an unmarked list element
(Split); and to insert a new unmarked element into the list adjacent to an element in the list
(Add). The operations Split and Add can be performed in amortized constant time and Find

in worst case constant time on a RAM. Going from e in Lv to e’s closest neighbor in Lx can still
be performed in worst case constant time, because this only requires one Find operation to be
performed. When a new element e is added to Lv we just perform Add once, and in case e is
added to Lx too we also perform Split on e. This requires amortized constant time. Totally we
can therefore update all the links between the Lv lists in amortized time O(m) when inserting a
new string into the dictionary.

Theorem 26 There exists a data structure which supports the reporting of all matched dictionary
strings to a 1–query in worst case time O(m) and that allows new dictionary strings to be inserted
in amortized time O(m).

10.5 Conclusion

We have presented a data structure for the approximate dictionary query problem that can be
constructed in time O(nm), stored in O(nm) space and that can answer 1–queries in time O(m).
We have also shown that the data structure can be made semi-dynamic by allowing insertions in
amortized time O(m), when we start with an initially empty dictionary. For the general d case
the presented data structure allows d–queries to be answered in time O(m

∑d−1
i=0

(m
i

)
) by asking

1–queries for all strings within Hamming distance d − 1 of the query string α. This improves the
query time of a näıve algorithm by a factor of m. We leave as an open problem if the above query
time for the general d case can be improved when the size of the data structure is O(nm). For
example, is there any o(m2) 2–query algorithm?

Another interesting problem which is related to the approximate query problem and the ap-
proximate string matching problem can be stated as follows. Given a binary string t of length n,
is it possible to create a data structure for t of size O(n) which allows 1–queries, i.e., queries for
occurrences of a query string with at most one mismatch, in time O(m), where m is the size of
the query string? By creating a compressed suffix tree of size O(n) for the string, 1–queries can be
answered in time O(m2) by an exhaustive search.

Acknowledgment

The authors thank Dany Breslauer for pointing out the relation to the Find-Split-Add problem.

114



Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design And Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, MA, 1983.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows. Prentice-Hall,
1993.

[4] Susanne Albers and Torben Hagerup. Improved parallel integer sorting without concurrent
writing. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 463–
472, 1992.

[5] Arne Andersson. Sublogarithmic searching without multiplications. In Proc. 36th Ann. Symp.
on Foundations of Computer Science (FOCS), pages 655–663, 1995.

[6] Arne Andersson. Faster deterministic sorting and searching in linear space. In Proc. 37th
Ann. Symp. on Foundations of Computer Science (FOCS), pages 135–141, 1996.

[7] Lars Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proc. 4th Work-
shop on Algorithms and Data Structures (WADS), volume 955 of Lecture Notes in Computer
Science, pages 334–345. Springer Verlag, Berlin, 1995.

[8] Mikhail J. Atallah and S. Rao Kosaraju. An adversary-based lower bound for sorting. Infor-
mation Processing Letters, 13:55–57, 1981.
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