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Abstract

The worst-case evaluation complexity of finding an approximate first-order critical point using

gradient-related non-monotone methods for smooth nonconvex and unconstrained problems is

investigated. The analysis covers a practical linesearch implementation of these popular methods,

allowing for an unknown number of evaluations of the objective function (and its gradient)

per iteration. It is shown that this class of methods shares the known complexity properties

of a simple steepest-descent scheme and that an approximate first-order critical point can be

computed in at most O(ǫ−2) function and gradient evaluations, where ǫ > 0 is the user-defined

accuracy threshold on the gradient norm.

Keywords: Nonlinear optimization, evaluation complexity, worst-case analysis, linesearch algorithms,

non-monotone methods.

1 Introduction

The worst-case evaluation complexity of optimization algorithms applied on nonlinear and po-

tentially nonconvex problems has been studied in a sequence of recent papers, both for the un-

constrained case (Nesterov, 2004, Gratton, Sartenaer and Toint, 2008, Nesterov and Polyak, 2006,

Cartis, Gould and Toint, 2011a ) and for the constrained one (Cartis, Gould and Toint, 2012a,

2013). Of particular interest here are the results of Nesterov (2004), page 29, in which this author

analyzes the worst-case behaviour of the steepest-descent method for unconstrained minimization

(both for exact and approximate linesearches) and shows that an approximate first-order critical

point, that is a point at which the norm of the gradient of the objective function is less than ǫ > 0,

must be obtained in at most O(ǫ−2) iterations. Nesterov’s analysis of the steepest-descent variants

therefore effectively assumes that a single objective function value per iteration is computed, or

at least that the number of such evaluations in the course of a single iteration is bounded. His

bounds thus specify iteration-complexity rather than evaluation complexity. At variance, more
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typical implementations use a linesearch (which makes no explicit use of the Lipschitz constant) to

compute a suitable steplength, with the possible drawback that an unknown number of additional

function evaluations may be required during the course of a single iteration. The question of the

worst-case objective-function evaluation complexity of linesearch implementations of this type has

not yet been considered specifically. Interestingly, a worst-case complexity analysis is available for

other first-order algorithms, such as first-order trust-region methods (Gratton et al., 2008) and

first-order regularization algorithms (Cartis, Gould and Toint, 2011b).

In parallel, it has long been known that “gradient related” minimization methods share a number

of their convergence properties with the steepest-descent algorithm (see Ortega and Rheinboldt,

1970 for an early reference). In these methods, a linesearch is performed along a direction whose

angle with the negative gradient is bounded away from orthogonality. This class covers a wide range

of practical algorithms, including for instance variable-metric techniques or finite-difference schemes

when Hessian approximations have bounded conditioning (see Nocedal and Wright, 1999, page 40,

for instance). Despite their close connection with steepest descent, their worst-case analysis remains

so far an open question.

Standard linesearch methods are usually defined in a way which ensures monotonically decreas-

ing objective-function values as the iterations proceed. However, “non-monotone” generalizations

of these algorithms, where this monotonicity property is abandoned, have gained respect in practice

because of their often better performance. We refer the reader to Grippo, Lampariello and Lucidi

1986, 1989, or Toint (1996) for more details on these methods. Again, the worst-case performance

of this interesting class of algorithms is so far unexplored.

The purpose of this paper is to bring together these three questions (standard linesearch,

gradient-related directions and non-monotonicity) and to provide an analysis which covers them

all. We therefore consider non-monotone gradient-related linesearch optimization methods and

show that, as for steepest-descent, their objective-function evaluation complexity is O(ǫ−2). Note

that standard monotone variants are also covered by this analysis.

Section 2 states the problem and describes the class of algorithms considered, while Section 3

provides an upper bound on their worst-case evaluation complexity. Some comments an perspectives

are finally presented in Section 4.

2 The problem and algorithm

We consider the nonlinear and possibly nonconvex smooth unconstrained minimization problem

min
x∈IRn

f(x) (2.1)

for which we assume the following.

AF0 f(x) is bounded below on IRn, that is there exists a constant(1) κlbf such that, for all

x ∈ IRn, f(x) ≥ κlbf.

(1)“lbf” stands for “lower bound on the objective function”.
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AF1 f(x) is continuously differentiable on IRn.

As stated in the introduction, we consider a class of algorithm in which the search directions

are “gradient-related” (see Ortega and Rheinboldt, 1970, and Bertsekas, 2008, page 35). This ter-

minology means that, at iteration k, an approximate unidimensional minimization of the objective

function is performed along a direction dk whose angle with the steepest descent is controlled by

the condition

〈gk, dk〉 ≤ −κ1‖gk‖
2 and ‖dk‖ ≤ κ2‖gk‖, (2.2)

where gk
def
= g(xk)

def
= ∇xf(xk), xk is the k-th iterate, 〈·, ·〉 and ‖ · ‖ are the Euclidean inner product

and norm, respectively, and κ1 and κ2 are positive constants independent of k.

Once the direction is fixed, it is then used in a non-monotone linesearch. We choose here a

Goldstein-Armijo variant (see Grippo et al., 1986, or Nocedal and Wright, 1999, pages 33-37), in

which a stepsize tk (yielding a new iterate xk+1 = xk + tkdk) is accepted whenever the conditions

f(xk + tkdk) ≤ max
0≤j≤M

[f(xk−j)] + α tk〈gk, dk〉, (2.3)

and

f(xk + tkdk) ≥ max
0≤j≤M

[f(xk−j)] + β tk〈gk, dk〉 (2.4)

hold, where M ≥ 0, α ∈ (0, 1) and β ∈ (α, 1) are constants independent of k, and where, by

convention, x−M = . . . x−1 = x0. Note that M = 0 corresponds to the monotone case.

The class of algorithms of interest may now be stated formally as Algorithm 2.1 on the following

page.

Note that the successive phases of the Goldstein-Armijo technique are apparent in the algorithm’s

description: a bracket containing the desired step is first identified by bactracking (Step 4) or

look-ahead (Step 5), and the final step is then computed by bisection (Step 6).

3 Worst-case evaluation complexity analysis

We now analyze the worst-case behaviour of Algorithm 2.1. A first step in this analysis is to

specify our assumptions.

AF2 g(x) is Lipschitz continuous on IRn, that is there exists a constant Lg > 0 such that, for

all x, y ∈ IRn,

‖g(x)− g(y)‖ ≤ Lg‖x− y‖.

The first simple but crucial property that can be deduced from these assumptions is that the

stepsize is bounded below by a constant inversely proportional to the Lipschitz constant Lg.
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Algorithm 2.1: A gradient-related non-monotone linesearch algorithm.

Step 0: Initialization. An initial point x0 is given, as well as an accuracy level ǫ > 0. The
constants tini, M , α and β are also given, satisfying tini > 0, M ≥ 0 and 0 < α < β < 1.
Compute f(x0), g0 and set k = 0.

Step 1: Test for termination. If ‖gk‖ ≤ ǫ, terminate.

Step 2: Select a search direction. Choose dk such that (2.2) holds.

Step 3: Linesearch: test initial stepsize.

1. Set tk = tini > 0, tlow = 0 and compute f(xk + tkdk).

2. If (2.3) fails, go to Step 4.

3. If (2.4) fails, go to Step 5.

4. Else go to Step 7.

Step 4: Linesearch: backtracking.

1. While (2.3) fails, set tup ←− tk, tk ←− 1
2
tk and compute f(xk + tkdk).

2. If (2.4) holds, go to Step 7, or set tlow ←− tk and go to Step 6 otherwise.

Step 5: Linesearch: look ahead.

1. While (2.4) fails, set tlow ←− tk, tk ←− 2tk and compute f(xk + tkdk).

2. If (2.3) holds, go to Step 7, or set tup ←− tk and go to Step 6 otherwise.

Step 6: Linesearch: bisect inside bracket.

1. Set tk ←− 1
2
(tlow + tup) and compute f(xk + tkdk).

2. If (2.3) fails, set tup ←− tk and return to Step 6.

3. If (2.4) fails, set tlow ←− tk and return to Step 6.

Step 7: Compute the new iterate and gradient. Set xk+1 = xk + tkdk and compute
gk+1 = g(xk+1). Increment k by one and return to Step 1.

Lemma 3.1 Suppose that AF0–AF2 hold. Then any value of t > 0 such that (2.4) holds for

tk = t also satisfies the inequality

t ≥
2(1− β)κ1

Lgκ22
. (3.1)

Proof. We successively use the mean value theorem, the Cauchy-Schwarz inequality and AF2
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to obtain that

f(xk + tdk) = f(xk) + t〈gk, dk〉+

∫ 1

0
〈g(xk + τtdk)− gk, tdk〉dτ

≤ f(xk) + t〈gk, dk〉+ t‖dk‖

∫ 1

0
‖g(xk + τtdk)− gk‖dτ

≤ f(xk) + t〈gk, dk〉+
1
2 t

2Lg‖dk‖
2

≤ max
0≤j≤M

[f(xk−j)] + t〈gk, dk〉+
1

2
t2Lg‖dk‖

2.

(3.2)

Combining this relation with (2.4) and (2.2), we have that

t ≥
2〈gk, dk〉(β − 1)

Lg‖dk‖2
≥

2(1− β)κ1‖gk‖
2

Lg‖gk‖2κ
2
2

=
2(1− β)κ1

Lgκ22
. (3.3)

2

We now prove that there is a finite and non-empty interval of acceptable stepsizes.

Lemma 3.2 Suppose that AF0-AF1 hold and that gk 6= 0. Then there exists an interval

[tβk , t
α
k ] such that

0 < tβk < tαk < +∞ (3.4)

and (2.3)-(2.4) hold for every value of tk ∈ [tβk , t
α
k ].

Proof. Observe first that the slope of f(xk + tdk) is steeper than that of the straight lines

f(xk) + αt〈gk, dk〉 and f(xk) + βt〈gk, dk〉, (t ≥ 0), since α < 1 and β < 1. Thus, for all t > 0

sufficiently small,

f(xk + tdk) < f(xk) + αt〈gk, dk〉 ≤ max
0≤j≤M

f(xk−j) + αt〈gk, dk〉 (3.5)

and

f(xk + tdk) < f(xk) + βt〈gk, dk〉 ≤ max
0≤j≤M

f(xk−j) + βt〈gk, dk〉. (3.6)

It follows from (3.5) that (2.3) holds for all tk sufficiently small. Furthermore, (2.3) does not

hold in the limit as tk = t→∞ since f(xk) + αt〈gk, dk〉 ≤ f(xk)− αtκ1‖gk‖
2 → −∞ (because

of (2.2)), while f(xk + tdk) ≥ κlbf for all t due to AF0. Thus there exists a value 0 < tαk < ∞

such that

f(xk + tαkdk) = max
0≤j≤M

f(xk−j) + αtαk 〈gk, dk〉. (3.7)

For simplicity, let us choose the smallest tαk that satisfies (3.7) so that (3.5) holds for all t ∈
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(0, tαk ). Since α < β < 1, we note that

max
0≤j≤M

f(xk−j) + βt〈gk, dk〉 < max
0≤j≤M

f(xk−j) + αt〈gk, dk〉 for all t > 0.

Letting t = tαk in this inequality and using (3.7), we deduce that (2.4) must continue to hold for

0 < tk = t < tαk sufficiently close to tαk . However, (3.6) implies that (2.4) must fail for sufficiently

small t > 0, and using again AF1, we conclude that there exists 0 < tβk < tαk such that

f(xk + tβkdk) = max
0≤j≤M

f(xk−j) + βtβk〈gk, dk〉, (3.8)

and (2.4) holds for all tk ∈ [tβk , t
α
k ]. (Clearly, t

β
k must be distinct from tαk <∞ due to (3.7), (3.8)

and α < β.) This conclude the proof since (2.3) holds for tk in the same interval due to (3.5)

and the definition of tαk . 2

Having proved the existence of an interval of acceptable stepsizes, we now verify that the measure

of this interval is bounded below by some positive constant.

Lemma 3.3 Suppose that AF0-AF2 hold, and define tαk and tβk to be any solutions of (3.7)

and (3.8), respectively, such that (2.3) and (2.4) hold for each t ∈ [tβk , t
α
k ]. Then the interval

[tβk , t
α
k ] has a strictly positive measure in the sense that there exists a constant κint > 0 only

depending on α, β, κ1, κ2 and Lg such that

tαk − tβk ≥ κint. (3.9)

Proof. Assume first that f(xk + tαkdk) ≤ f(xk + tβkdk). Then (3.7) and (3.8) imply that

αtαk > βtβk , and so, using also Lemma 3.1,

tαk − tβk ≥
β − α

α
tβk ≥

2(β − α)(1− β)κ1
αLgκ22

. (3.10)

Suppose now that f(xk + tαkdk) > f(xk + tβkdk). Applying the mean value theorem to f(x+ td)

on [tβk , t
α
k ] yields that

f(xk + tαkdk)− f(xk + tβkdk) = (tαk − tβk)〈g(xk + tξdk), dk〉

≤ (tαk − tβk)‖g(xk + tξdk)‖ ‖dk‖

≤ (tαk − tβk)κ2‖g(xk + tξdk)‖ ‖gk‖,

where tξ ∈ (tβk , t
α
k ) and where the first inequality follows from the Cauchy-Schwarz inequality

and the second from (2.2). Furthermore, the Lipschitz continuity of g (AF2), (2.2) and the
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bound tξ < tαk give that

‖g(xk + tξdk)‖ ≤ ‖g(xk + tξdk)− gk‖+ ‖gk‖

≤ Lgtξ‖dk‖+ ‖gk‖

≤ Lgtξκ2‖gk‖+ ‖gk‖

≤ (Lgt
α
kκ2 + 1)‖gk‖.

Thus

f(xk + tαkdk)− f(xk + tβkdk) ≤ κ2(t
α
k − tβk)(Lgt

α
kκ2 + 1)‖gk‖

2. (3.11)

The definition of tαk and tβk in Lemma 3.2 then give that (3.7) and (3.8) both hold, and so

f(xk + tαkdk)− f(xk + tβkdk) = αtαk 〈gk, dk〉 − βtβk〈gk, dk〉

= (αtαk − βtβk)〈gk, dk〉

≥ (βtβk − αtαk )κ1‖gk‖
2,

(3.12)

where we again used the Cauchy-Schwartz inequality and (2.2) to deduce the last inequality.

From (3.11), we now deduce that

(βtβk − αtαk )κ1 ≤ κ2(t
α
k − tβk)(Lgt

α
kκ2 + 1). (3.13)

This inequality is equivalent to

κ22Lg(t
α
k )

2 + (κ2 + ακ1 − κ22Lgt
β
k)t

α
k − (κ2 + βκ1)t

β
k ≥ 0, (3.14)

and so, since tαk > 0, we deduce that

tαk ≥
κ22Lgt

β
k − κ2 − ακ1 +

√

(κ2 + ακ1 − κ22Lgt
β
k)

2 + 4(κ2 + βκ1)κ22Lgt
β
k

2κ22Lg

, (3.15)

and therefore that

2κ22Lg(t
α
k − tβk) ≥ −(κ2 + ακ1 + κ22Lgt

β
k) +

√

(κ2 + ακ1 − κ22Lgt
β
k)

2 + 4(κ2 + βκ1)κ22Lgt
β
k

=
−(κ2 + ακ1 + κ22Lgt

β
k)

2 + (κ2 + ακ1 − κ22Lgt
β
k)

2 + 4(κ2 + βκ1)κ
2
2Lgt

β
k

κ2 + ακ1 + κ22Lgt
β
k +

√

(κ2 + ακ1 − κ22Lgt
β
k)

2 + 4(κ2 + βκ1)κ22Lgt
β
k

=
4(β − α)κ1κ

2
2Lgt

β
k

κ2 + ακ1 + κ22Lgt
β
k +

√

(κ2 + ακ1 − κ22Lgt
β
k)

2 + 4(κ2 + βκ1)κ22Lgt
β
k

.

(3.16)

As a consequence, we obtain that

(tαk − tβk)

2(β − α)κ1
≥

tβk

κ2 + ακ1 + κ22Lgt
β
k +

√

(κ2 + ακ1 − κ22Lgt
β
k)

2 + 4(κ2 + βκ1)κ22Lgt
β
k

def
= E(tβk).

(3.17)
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Defining S(tβk)
def
=
√

(κ2 + ακ1 − κ22Lgt
β
k)

2 + 4(κ2 + βκ1)κ22Lgt
β
k , differentiating E(tβk) with re-

spect to tβk then gives that

E′(tβk) =

κ2 + ακ1 + κ22Lgt
β
k + S(tβk)− tβk

[

κ22Lg +
−(κ2 + ακ1 − κ22Lgt

β
k)κ

2
2Lg + 2(κ2 + βκ1)κ

2
2Lg

S(tβk)

]

[

κ2 + ακ1 + κ22Lgt
β
k + S(tβk)

]2

=
(κ2 + ακ1)S(t

β
k) + (κ2 + ακ1 − κ22Lgt

β
k)

2 + (κ2 + ακ1 − κ22Lgt
β
k)κ

2
2Lgt

β
k + 2(κ2 + βκ1)κ

2
2Lgt

β
k

[

κ2 + ακ1 + κ22Lgt
β
k + S(tβk)

]2
S(tβk)

=
(κ2 + ακ1)[S(t

β
k) + κ2 + ακ1 − κ22Lgt

β
k ] + 2(κ2 + βκ1)κ

2
2Lgt

β
k

[

κ2 + ακ1 + κ22Lgt
β
k + S(tβk)

]2
S(tβk)

.

(3.18)

It then follows that

E′(tβk) > 0 for all tβk > 0

since

S(tβk) + κ2 + ακ1 − κ22Lgt
β
k > |κ2 + ακ1 − κ22Lgt

β
k |+ κ2 + ακ1 − κ22Lgt

β
k ≥ 0

and each constant and variable in E′(tβk) is positive. Thus E(tβk) is increasing as a function of

tβk , and we obtain, because of Lemma 3.1 and the fact that (2.4) holds at tβk by construction,

that

E(tβk) ≥ E

(

2(1− β)κ1
Lgκ22

)

,

and we finally deduce from (3.18) that

tαk − tβk ≥ 2(β − α)κ1E

(

2(1− β)κ1
Lgκ22

)

.

Combining this with (3.10), we deduce that (3.9) holds with

κint

def
= 2(β − α)κ1min

[

(1− β)

αLgκ22
, E

(

2(1− β)κ1
Lgκ22

)]

,

where this lower bound only depends on α, β, κ1, κ2 and Lg, as desired. 2

We now turn to estimating the worst-case evaluation complexity of Algorithm 2.1 for the task of

finding an ǫ-first-order critical point.
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Theorem 3.4 Suppose that AF0-AF2 hold. Then there exists a constant κGNL > 0 such that,

for any ǫ ∈ (0, 1), Algorithm 2.1 needs at most

⌊

κGNL(f(x0)− κlbf)

ǫ2
+M

⌋

to produce an iterate xk such that ‖gk‖ ≤ ǫ, where κlbf and M are defined in AF0 and (2.3)-

(2.4), respectively, and where

κGNL

def
=

(M + 1)

ακ1
max

[

Lgκ
2
2max[n1, n2]

2(1− β)κ1
,
2(n2 + 1)

tini

]

with

n1
def
=

∣

∣

∣

∣

∣

log2

(

(1− β)κ1
tiniLgκ22

)∣

∣

∣

∣

∣

and n2
def
=

∣

∣

∣

∣

log2

(

κint

tini

)
∣

∣

∣

∣

.

Proof. The proof proceeds by first establishing the minimum achieved decrease in the

objective function between iterate xk+1 and its “predecessor” xπ(k+1), where

π(k + 1) = k − arg max
0≤j≤M

f(xk−j) (3.19)

when using Algorithm 2.1.

• Assume first that both (2.3) and (2.4) hold for tk = tini (in Step 3). Then we obtain a

decrease

f(xπ(k+1))− f(xk+1) ≥ −α tini〈gk, dk〉 ≥ α tiniκ1‖gk‖
2, (3.20)

because of (2.3) and (2.2), and this decrease is obtained for a single additional function

evaluation.

• Assume now that (2.3) fails at Step 3.2, and Step 4 is therefore entered. Assume further-

more that j3 ≥ 1 backtracking steps are performed in Step 4.1. The j3 is the smallest

non-negative integer such that (2.3) holds for tk = tini2
−j3 , which means that j3 is the

largest integer for which this inequality is violated for t = tini2
−j3+1. Because α < β, we

deduce that (2.4) must hold for this value of tk. Using now Lemma 3.1, we obtain that

t = 2−j3+1tini ≥
2(1− β)κ1

Lgκ22
,

which in turn implies that

j3 ≤

∣

∣

∣

∣

∣

log2

(

(1− β)κ1
tiniLgκ22

)∣

∣

∣

∣

∣

def
= n1. (3.21)
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Step 4 therefore requires at most n1 function evaluations. If the linesearch is terminated

in Step 4.2 (i.e., branching occurs to Step 7), we obtain a decrease

f(xπ(k+1))− f(xk+1) ≥ −α tk〈gk, dk〉 ≥ α
2(1− β)κ1

Lgκ22
κ1‖gk‖

2, (3.22)

where we used (2.3), (2.4), the Cauchy-Schwarz inequality, (2.2) and Lemma 3.1 succes-

sively.

• If the linesearch is not terminated in Step 4, Step 6 must be entered, with a bracket [tlow, tup]

where

tlow = 2−j3tini =
1

2
tup.

Thus

tup − tlow =
1

2
2−j3+1tini = 2−j3tini.

We know from Lemma 3.3 that the length of the admissible interval is at least equal to

κint > 0, where this constant only depends on α, β and Lg. Thus the number j4 ≥ 1 of

bisection (and function evaluations) within Step 6 is bounded above by the smallest integer

such that

2−j4(tup − tlow) = 2−j42−j3tini ≥ κint,

which then yields that the total number of function evaluations in Step 4 and 6 is bounded

by

j3 + j4 ≤

∣

∣

∣

∣

log2

(

κint

tini

)
∣

∣

∣

∣

def
= n2.

If we know compute the decrease obtained, we deduce, again from (2.3), (2.4) and Lemma 3.1,

that (3.22) also holds in this case.

• Assume now that (2.4) fails in Step 3.3, and thus that Step 5 is entered. Assume fur-

thermore that j2 ≥ 1 doubling of tk (and j2 function evaluations) occur in Step 5.1 (we

know that j2 is finite because of (3.4)). If the lineasearch is terminated in Step 5.2 (i.e.,

branching to Step 7 occurs), we obtain that the function decrease obtained is bounded

below by

f(xπ(k+1))− f(xk+1) ≥ −αtk〈gk, dk〉 ≥ α2j2tiniκ1‖gk‖
2.

• The final case is when Step 6 is entered after Step 5, in which case the initial bracket for

Step 6 is given by [tlow, tup] where

tlow = 2j2−1tini =
1

2
tup.

Thus

tup − tlow =
1

2
2j2tini = 2j2−1tini.

Just as in the case where Step 6 is entered after Step 4, we now deduce that the number
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j4 of bisections and function evaluations needed to reduce this bracket to the minimum

possible value κint is limited by the inequality

2−j42j2−1tini = 2−j4(tup − tlow) ≥ κint,

yielding a maximum number of bisection (and function evaluation) in Step 6 bounded by

j4 ≤ j2 − 1 +

∣

∣

∣

∣

log2

(

κint

tini

)∣

∣

∣

∣

= j2 − 1 + n2 ≤ j2(n2 + 1).

In this final case, since tk ≥ tlow = 2j2−1tini and (2.3) holds at tk, the function decrease is

bounded below by

f(xπ(k+1))− f(xk+1) ≥ −αtk〈gk, dk〉 ≥ α2j2−1tiniκ1‖gk‖
2.

Gathering all cases together, we see that function decrease per function evaluation is given, in

the worst case, by

min

[

tini
1
,
2(1− β)κ1
Lgκ22n1

,
2(1− β)κ1
Lgκ22n2

,
2j2tini
j2

,
2j2−1tini

2j2(n2 + 1)

]

ακ1‖gk‖
2, (3.23)

where, by construction, n1 and n2 only depend on α, β, κ1, κ2, Lg and tini. Noting that, for

j2 ≥ 1,
2j2

j2
≥ 2 and

2j2−1

2j2
≥

1

2

and defining

κdecr

def
= ακ1min

[

2(1− β)κ1
Lgκ22max[n1, n2]

,
tini

2(n2 + 1)

]

,

we therefore deduce from (3.23) that, as long as the algorithm does not terminate (i.e., as long

as ‖gk‖ ≥ ǫ)

f(xπ(k+1))− f(xk+1) ≥ κdecr‖gk‖
2 ≥ κdecrǫ

2.

Tracing back the predecessors of iterate xk+1 up to x0 and denoting the composition of j

instances of the predecessor operator π(·) by πj(·), we also deduce that

f(xπj+1(k+1))− f(xπj(k+1)) ≥ κdecrǫ
2 (3.24)

for all j = 0, . . . , pk for pk such that xπpk (k+1) = x0 and where, by convention, π0(k+1)
def
= k+1.

Now the definition of π(·) in (3.19) implies that, for all ℓ,

0 ≤ ℓ+ 1− π(ℓ+ 1) ≤M + 1, (3.25)
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and we have, using AF0, that

f(x0)− κlbf ≥ f(x0)− f(xk+1) =
pk
∑

j=0

[f(xπj+1(k+1))− f(xπj(k+1))]). (3.26)

Using (3.25), we obtain that the sum in the right-side of this expression contains at least

⌊

k + 1

M + 1

⌋

terms. Substituting then (3.24) for each term, (3.26) gives that

f(x0)− κlbf ≥

⌊

k + 1

M + 1

⌋

κdecrǫ
2 ≥

(

k + 1

M + 1
− 1

)

κdecrǫ
2 =

k −M

M + 1
κdecrǫ

2.

As a consequence, we obtain that the total number of function evaluations in Algorithm 2.1 is

bounded above by
⌊

(M + 1)(f(x0)− κlbf)

κdecrǫ2
+M

⌋

yielding the desired conclusion with κGNL = (M + 1)/κdecr. 2

4 Conclusions and perspectives

We have shown that gradient-related methods using a non-monotone (and monotone) linesearch

will find an ǫ-approximate first-order critical point of a smooth function with Lipschitz gradient

in O(ǫ−2) function and gradient evaluations at most. Their worst-case behaviour is therefore, up

to a factor, equivalent to that of a simple monotone pure steepest-descent algorithm, albeit their

practical performance is often superior (see Toint, 1996). Moreover, it results from Cartis, Gould

and Toint (2010), that this bound is sharp.

In the same line of investigation, Cartis, Gould and Toint (2012b) show that the same complexity

order is obtained for the steepest-descent method with exact linesearch and that it is sharp. One

may expect that this result can be extended to the gradient-related algorithms analyzed in the

present note, although the construction of an example illustrating the sharpness of the complexity

bound is likely to be challenging without monotonicity.
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