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ABSTRACT

The worst-case behaviour of a general class of regularization algorithms is considered in the

case where only objective function values and associated gradient vectors are evaluated.

Upper bounds are derived on the number of such evaluations that are needed for the

algorithm to produce an approximate first-order critical point whose accuracy is within

a user-defined threshold. The analysis covers the entire range of meaningful powers in

the regularization term as well as for the Hölder exponent for the gradient. The resulting

complexity bounds vary according to the regularization power and the assumed Hölder

exponent, recovering known results when available.
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1 Introduction

The complexity analysis of algorithms for smooth, possibly non-convex, unconstrained

optimization has been the subject of a burgeoning literature over the past few years (see

the contributions by Nesterov [8, 10], Gratton, Sartenaer and Toint [7], Cartis, Gould and

Toint [1, 2, 3, 4], Ueda [11], Ueda and Yamashita[12, 13, 14], Grapiglia, Yuan and Yuan

[5, 6], and Vicente [15], for instance). The present contribution belongs to this active trend

and focuses on the analysis of the worst-case behaviour of regularization methods where

only objective function values and associated gradient vectors are evaluated. It proposes

upper bounds on the number of such evaluations that are needed for the algorithm to

produce an approximate first-order critical point whose accuracy is within a user-defined

threshold.

An analysis of this type is already available for the case where the objective function’s

gradient is assumed to be Lipschitz-continuous and where the regularization uses the second

or third power of the norm of the computed step at a given iteration (see the paper by

Nesterov [9] for the former and those of Cartis et al. [2, 3] for both cases). The novelty of

the present approach is to extend the analysis to cover problems whose objective gradients

are simply Hölder continuous and methods that allow weaker regularization than in the

Lipschitz case. The resulting complexity bounds vary according to the regularization power

and the assumed Hölder exponent, providing a unified view and recovering known results

when available.

The paper is organized as follows. Section 2 presents the problem and the class of

algorithms considered. The complexity analysis itself is given in Section 3 and briefly

discussed in Section 4.

2 The problem and algorithm

We consider the problem of finding an approximate solution of the optimization problem

min
x

f(x) (2.1)

where x ∈ IRn is the vector of optimization variables and f is a function from IRn into IR

that is assumed to be bounded below and continuously differentiable with Hölder contin-

uous gradients. If we denote g(x)
def
= ∇xf(x), the latter says that the inequality

‖g(x)− g(y)‖ ≤ Lβ‖x− y‖β (2.2)

holds for all x, y ∈ IRn, where Lβ ≥ 0 and β > 0 are constants independent of x and y

and where ‖ · ‖ is the Euclidean norm on IRn. As explained in Lemma 3.1 below, we will

assume, without loss of generality, that β ≤ 1. In our context, an approximate solution

for problem (2.1) is a vector xǫ such that

‖g(xǫ)‖ ≤ ǫ or f(x) ≤ ftarget (2.3)
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where ǫ > 0 is a user-specified accuracy threshold and ftarget ≤ f(x0) is a threshold value

under which the reduction of the objective function is deemed sufficient by the user. The

first case in (2.3) corresponds to finding an approximate first-order-critical point. If a

suitable value for ftarget is not known, minus infinity can be used instead, in effect reducing

(2.3) to its first part.

The class of regularization methods that we consider for computing an x satisfying

(2.3) consists of iterative algorithms where, at each iteration, a local (linear or quadratic)

model of f around the current iterate xk is constructed, regularized by a term using the

p-th power of the norm of the step, and then approximately minimized (in the ”Cauchy

point” sense) to provide a trial step sk. The quality of this step is then measured in order

to accept the resulting trial point xk + sk as the next iterate, or to reject it and adjust the

strength of the regularization.

More specifically, a regularized model of f(xk + s) of the form

mk(xk + s) = f(xk) + gTk s+
1

2
sTBks+

σk

p
‖s‖p (2.4)

is considered around the k-th iterate xk, where we have defined gk
def
= g(xk), where Bk is

a symmetric n × n matrix, where σk > 0 is the regularization parameter at iteration k

and where p > 1 is the (iteration independent) regularization power. This model is the

approximately minimized in the sense that the trial step sk is computed such that

mk(xk + sk) ≤ mk(xk + sCk ), (2.5)

where the ”Cauchy step” sCk is defined by

sCk = −αC
k gk with αC

k = argmin
α≥0

mk(xk − αgk). (2.6)

We will choose the regularization power p in (2.4) in order to guarantee that mk is bounded

below and grows at infinity, thereby ensuring that (2.6) is well-defined. In particular, this

imposes the restriction p > 1 and furthermore

p > 2 whenever Bk is allowed to not be positive semi-definite. (2.7)

Notice that (2.5) and (2.6) together imply that

mk(xk + sk) ≤ mk(xk + sCk ) < f(xk) (2.8)

provided g(xk) 6= 0. We may now describe our class of algorithms more formally as

Algorithm 2.1 on the facing page.

Iterations of Algorithm 2.1 where ρk ≥ η1 are called ”successful” and their index set

is denoted by S. Note that the mechanism of the algorithm ensures that σk > 0 for

all k ≥ 0. Note also that each iteration of the algorithm involves a single evaluation of

the objective function and (for successful iterations only) of its gradient. The evaluation

complexity can therefore be carried out by measuring how many iterations are needed

before an approximate first-order critical point is found or the objective value decreases

below the required target.
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Algorithm 2.1: A Class of First-Order Adaptive Regularization Methods

Step 0: Initialization. An initial point x0 , a target objective function value

ftarget ≤ f(x0) and an initial regularization parameter σ0 > 0 are given, as

well as an accuracy level ǫ. The constants η1, η2, γ1, γ2 and γ3 are also given

and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (2.9)

Compute f(x0) and set k = 0.

Step 1: Test for termination. If ‖gk‖ ≤ ǫ or f(xk) ≤ ftarget, terminate with the

approximate solution xǫ = xk.

Step 2: Step calculation. Compute the step sk approximately by minimizing the

model (2.4) in the sense that conditions (2.5) and (2.6) hold.

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
. (2.10)

If ρk ≥ η1, then define xk+1 = xk + sk and evaluate g(xk+1); otherwise define

xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈







[γ1σk, σk] if ρk ≥ η2,

[σk, γ2σk] if ρk ∈ [η1, η2),

[γ2σk, γ3σk] if ρk < η1.

(2.11)

Increment k by one and go to Step 1.

3 Worst-case evaluation complexity analysis

In order to analyze the worst-case complexity of Algorithm 2.1, we need to specify our

assumptions.

AS.1 The objective function f is continuously differentiable on IRn.

AS.2 g = ∇xf is Hölder continuous in the sense that (2.2) holds for all x, y ∈ IRn and

some constants Lβ ≥ 0 and β > 0.

AS.3 There exists a constant flow (possibly equal to minus infinity) such that, for all

x ∈ IRn,

f(x) ≥ flow and f∗
def
= max[flow, ftarget] > −∞
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AS.4 There exists constants κgl ≥ 0 and κgu > 0 such that

κgl ≤ ‖g(x)‖ ≤ κgu for all x ∈ IRn such that f∗ ≤ f(x) ≤ f(x0).

AS.5 There exists a constant κB ≥ 0 such that, for all k ≥ 0,

‖Bk‖ ≤ κB.

AS.1 and AS.2 formalize our framework, as described in the introduction while AS.5

is standard in similar contexts and avoids possibly infinite curvature of the model, which

would make the regularization irrelevant. AS.3 states that, if no target value is specified

by the user, then there must exists a global lower bound on the objective function’s values

to make the minimization problem meaningful. The role of AS.4 is discussed below, but

we immediately note that, when f∗ = ftarget > flow, it may well happen that no single

x ∈ IRn satisfies both conditions in (2.3), and thus that that the first termination criterion

in (2.3) cannot be satisfied by our minimization algorithm before the second. We take

this possibility into account by allowing κgl > 0, and expresssing the complexity results in

terms of

ǫ∗
def
= max [ ǫ, κgl] (3.1)

which is the ”attainable” gradient accuracy for the problem.

We start by deriving consequences of our assumptions, which are independent of the

algorithm. The first is intended to explore the consequence of a value of β exceeding 1.

Lemma 3.1. Suppose that AS.1 holds and that AS.2 holds for some β > 1. Then

f is linear in IRn , AS.2 holds for all β > 0 with Lβ = 0 and AS.4 holds with

κgl = κgu = ‖g(x0)‖.

Proof. If ei is the i-th vector of the canonical basis, we have, using the Cauchy-

Schwarz inequality and the Hölder condition (2.2), that, for all i = 1, . . . , n and all

x ∈ IRn,
|(gi(x+ tei)− gi(x)|

|t|
≤

‖g(x+ tei)− g(x)‖

‖x+ tei − x‖
≤ Lβ|t|

β−1

and β−1 > 0. Taking the limit when t → 0 gives that the directional derivative of each

gi exists and is zero for all i and all x. Thus the gradient is constant in IRn, f is linear

and AS.2 obviously holds with Lβ = 0 for all β > 0 since ‖g(x)− g(y)‖ is identically

zero for all x, y ∈ IRn. ✷

This justifies our choice to restrict our attention to the case where β ∈ (0, 1] for the rest

of our analysis. The second result indicates common circumstances in which AS.4 holds.



Complexity of unconstrained optimization of C1,β functions 5

Lemma 3.2. Suppose that AS.1, AS.2 and that there exists a constant flow > −∞

such that

f(x) ≥ flow (3.2)

for all x ∈ L0
def
= {x ∈ IRn | f(x) ≤ f(x0)} for all x ∈ IRn. Then AS.4 holds.

Proof. Let x ∈ L0. AS.1, the mean-value theorem, and AS.2 then ensure that, for

all s,
flow ≤ f(x+ s)

≤ f(x) + g(x)Ts+
∫ 1

0
(g(x+ ξs)− g(x))Ts dξ

≤ f(x) + g(x)Ts+
Lβ

1 + β
‖s‖β+1 def

= h(s)

(3.3)

Given that the minimizer of the convex function h(s) is given by

s∗ = −
g(x)

L
1/β
β

‖g(x)‖
1−β

β ,

we obtain that

min
s

h(s) = h(s∗) = f(x)−
βL

− 1

β

β

1 + β
‖g(x)‖1+

1

β .

As a consequence, we obtain, using the fact that f(x) ≤ f(x0) since x ∈ L0 and (3.3),

that

flow ≤ f(x0)−
βL

− 1

β

β

1 + β
‖g(x)‖1+

1

β ,

which in turn implies that

‖g(x)‖ ≤



Lβ

(

1 +
1

β

)β

(f(x0)− flow)
β





1

1+β

def
= κgu,

yielding the desired conclusion, irrespective of the value of ftarget. ✷

Note that (3.2) is indeed very common. For instance, flow = 0 for all nonlinear least-

squares problems. Hence the form of AS.4 should not be viewed as overly restrictive and

also allows for the case where (3.2) fails but the objective function’s gradient remains

reasonably well-behaved.

We now turn to the analysis of the algorithm’s properties. But, before we start in

earnest, it is useful to introduce some specific notation. In a number of occurrences,

we need to include some of the terms in formulae only if certain conditions apply. We

will indicate this by underbracing the conditional part of the formula, the text below the
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underbrace then specifying the relevant condition. For instance we may have an expression

of the type

max[a−1
︸︷︷︸

a>0

, b, c],

meaning that the maximum should include the first term if and only if a > 0 (making the

term well-defined in this case).

We first derive two bounds of the step length.

Lemma 3.3. We have that, for all k ≥ 0,

‖sk‖ ≤ max

[ (
p

σk
‖Bk‖

) 1

p−2

︸ ︷︷ ︸

Bk 6�0

,
(
2p

σk
‖gk‖

) 1

p−1

]

. (3.4)

Moreover,

‖sk‖ ≤
(
2p

σk

‖gk‖
) 1

p−1

(3.5)

provided

σk ≥
(p‖Bk‖)

p−1

(2p‖gk‖)p−2
. (3.6)

Proof. Observe first that (2.8) and gk 6= 0 ensure that

mk(xk + sk)− f(xk) = gTk sk +
1

2
sTkBksk +

σk

p
‖sk‖

p < 0 (3.7)

Assume first that sTkBksk > 0. Then we must have that

gTk sk +
σk

p
‖sk‖

p < 0,

and therefore (remembering that σk > 0 and that gTk sk ≥ −‖gk‖ ‖sk‖)

‖sk‖ <
(
p

σk
‖gk‖

) 1

p−1

<
(
2p

σk
‖gk‖

) 1

p−1

. (3.8)

If sTkBksk ≤ 0, we may rewrite (3.7) as
[

gTk sk +
σk

2p
‖sk‖

p

]

+

[

1

2
sTkBksk +

σk

2p
‖sk‖

p

]

< 0

and the left-hand side of this inequality can only be negative if at least one of the

bracketed expressions is negative, giving that

‖sk‖ ≤ max

[ (
p

σk
‖Bk‖

) 1

p−2

,
(
2p

σk
‖gk‖

) 1

p−1

]

,
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where we also used that gTk sk ≥ −‖gk‖ ‖sk‖ and sTkBksk ≥ −‖Bk‖ ‖sk‖
2. Combining

this with (3.8) then yields (3.4). Checking (3.5) subject to (3.6) is straightforward. ✷

We now turn to the task of finding a lower bound on the model decrease f(xk)−mk(xk+sk)

resulting from (2.5)-(2.6). The first step is to find a suitable positive lower bound on the

step αC
k as defined in (2.6).

Lemma 3.4. We have that

mk(xk + sCk ) ≤ mk(xk − α∗
kgk) < f(xk) (3.9)

where

α∗
k

def
= min

[

‖gk‖
2

2gTk Bkgk
︸ ︷︷ ︸

gT
k
Bkgk>0

,

(

p

2σk

1

‖gk‖p−2

) 1

p−1
]

Proof. Substituting the definition s = −αgk into (2.4), we obtain from (2.5)-(2.6)

that, for all α > 0,

mk(xk − αgk)− f(xk) = α

(

−‖gk‖
2 + 1

2
αgTk Bkgk +

σk

p
αp−1‖gk‖

p

)

. (3.10)

Assume first that gTk Bkgk ≤ 0. Then

−‖gk‖
2 +

σk

p
αp−1‖gk‖

p < 0

for all α ∈ (0, ᾱk] where

ᾱk =

(

p

σk

1

‖gk‖p−2

) 1

p−1

. (3.11)

and, because α > 0 and gTk Bkgk ≤ 0, we also obtain from (3.10) that mk(xk − αgk) <

f(xk) for all α ∈ (0, ᾱk]. In particular, this yields that mk(xk − α∗
kgk) < f(xk), where

α∗
k =

(

p

2σk

1

‖gk‖p−2

) 1

p−1

. (3.12)

Condition (2.6) then ensures that (3.9) holds as desired.

Assume next that gTk Bkgk > 0 and, in this case, define

α∗
k

def
= min

[

‖gk‖
2

2gTk Bkgk
,

(

p

2σk

1

‖gk‖p−2

) 1

p−1
]

(3.13)
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Then it is easy to verify that both bracketed expressions in

[

− 1

2
‖gk‖

2+ 1

2
α∗
kg

T
k Bkgk

]

+
[

− 1

2
‖gk‖

2+
σk

p
(α∗

k)
p−1‖gk‖

p
]

=
1

α∗
k

(

mk(xk −α∗
kgk)− f(xk)

)

are negative and thus, because α∗
k > 0, that mk(xk − α∗

kgk) < f(xk). The desired

conclusion can now be obtained by invoking (2.6). ✷

We now translate the conclusions of the last lemma in terms of the model reduction at

the Cauchy point and beyond.

Lemma 3.5. We have that

f(xk)−mk(xk + sk) ≥
1

4
min

[

‖gk‖
4

2gTk Bkgk
︸ ︷︷ ︸

gT
k
Bkgk>0

,
(

p

2σk

‖gk‖
p
) 1

p−1

]

(3.14)

Proof. If gTk Bkgk ≤ 0, substituting (3.12) into (3.10) immediately yields that

f(xk)−mk(xk − α∗
kgk) ≥

(

p

2σk

1

‖gk‖p−2

) 1

p−1 [

‖gk‖
2 − 1

2
‖gk‖

2
]

=
1

2

(
p

2σk

‖gk‖
p
) 1

p−1

.

(3.15)

If gTk Bkgk > 0, we have from (3.10) and (3.13) that

f(xk)−mk(xk − α∗
kgk)

≥ α∗
k

[

‖gk‖
2 −

1

2

(

‖gk‖
2

2gTk Bkgk

)

gTk Bkgk −
σk

p

(

p

2σk

1

‖gk‖p−2

)

‖gk‖
p

]

= min




‖gk‖

2

2gTk Bkgk
,

(

p

2σk

1

‖gk‖p−2

) 1

p−1





[

‖gk‖
2 − 1

4
‖gk‖

2 − 1

2
‖gk‖

2
]

=
1

4
min

[

‖gk‖
4

2gTk Bkgk
,
(

p

2σk
‖gk‖

p
) 1

p−1

]

.

Combining this last inequality with (3.15) and using (2.5) then gives (3.14). ✷

The model decrease specified by (3.14) turns out to be useful if the value of σk (appearing at

the denominator of the second term in the min) can be bounded above across all iterations.

We obtain this result in two stages, the first being to determine conditions under which

the regularized model (2.4) is an overestimation of the objective function at the trial point

xk + sk.
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Lemma 3.6. Suppose that AS.1 and AS.2 hold. Suppose also that

σk ≥ max

[

1,
(p‖Bk‖)

p−1

(2p‖gk‖)p−2
, κ1‖Bk‖

p−1

β ‖gk‖
2−p

β

︸ ︷︷ ︸

Bk 6�0

, κ2‖gk‖
1+β−p

β

]

(3.16)

where

κ1
def
= (2pp)

1

β and κ2
def
= 2p

p−1

β (2p)
p+β−1

β

(

Lβ

1 + β

)p−1

β

. (3.17)

Then we have that

f(xk + sk) ≤ mk(xk + sk). (3.18)

Proof. First notice that AS.1 and the mean-value theorem implies that

f(xk + sk)−mk(xk + sk) =
∫ 1

0
(g(xk + ξsk)− gk)

Tsk dξ − 1

2
sTkBksk −

σk

p
‖sk‖

p.

Using now AS.2, we obtain that

f(xk + sk)−mk(xk + sk) ≤
Lβ

1 + β
‖sk‖

1+β − 1

2
sTkBksk −

σk

p
‖sk‖

p. (3.19)

Assume first that B � 0. Then (3.18) holds if

σk ≥
pLβ

1 + β
‖sk‖

1+β−p,

which, in view of (3.4) and Bk � 0, holds if

σk ≥
pLβ

1 + β

(
2p

σk
‖gk‖

) 1+β−p

p−1

,

that is if

σk ≥ 2p
Lβ

1 + β

p−1

β

‖gk‖
1+β−p

β . (3.20)

Assume now that B 6� 0, in which case we cannot guarantee that sTkBksk ≥ 0 in (3.19).

Then, using the Cauchy-Schwarz inequality, (3.18) holds if

σk ≥
pLβ

1 + β
‖sk‖

1+β−p +
p

2
‖Bk‖ ‖sk‖

2−p.

If we now assume that σk is large enough to ensure (3.6), (3.5) ensures that (3.18) holds

if

σk ≥
2pLβ

1 + β

(

2p
‖gk‖

σk

) 1+β−p

p−1

+
p

2
‖Bk‖

(

2p
‖gk‖

σk

) 2−p

p−1
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Observe now that Bk 6� 0 and (2.7) imply that max[1, p− 1] = p − 1, and hence that

1 + β − p ≤ 2 − p ≤ 0 , which, if we additionally assume that σk ≥ 1, implies that

σ
−

1+β−p

p−1

k ≥ σ
−

2−p

p−1

k . Hence (3.18) holds if

σk ≥
2pLβ

1 + β
(2p‖gk‖)

1+β−p

p−1

(
1

σk

) 1+β−p

p−1

+
p

2
‖Bk‖(2p‖gk‖)

2−p

p−1

(
1

σk

) 1+β−p

p−1

which is equivalent to requiring that

σ
β

p−1

k ≥
2pLβ

1 + β
(2p‖gk‖)

1+β−p

p−1 +
p

2
‖Bk‖(2p‖gk‖)

2−p

p−1

Using the fact that

2pLβ

1 + β
(2p‖gk‖)

1+β−p

p−1 +
p

2
‖Bk‖(2p‖gk‖)

2−p

p−1 ≤ 4pmax

[

Lβ

1 + β
(2p‖gk‖)

1+β−p

p−1 , ‖Bk‖(2p‖gk‖)
2−p

p−1

]

and taking the β/(p− 1)-th root of this last inequality, we finally conclude that (3.18)

holds (in the case where B 6� 0) if the inequality

σk ≥ (4p)
p−1

β max





(

Lβ

1 + β

) p−1

β

(2p‖gk‖)
1+β−p

β , ‖Bk‖
p−1

β (2p‖gk‖)
2−p

β



 (3.21)

holds in addition to (3.6) and σk ≥ 1. The proof of the lemma is now completed by

combining these last two additional conditions, (3.20) and (3.21). ✷

We are now in position to prove an iteration-independent upper bound on the value of σk.

Lemma 3.7. Suppose that AS.1–AS.5 hold. Then, as long as the algorithm does not

terminate, and given the constants

κσ
1

def
= γ3max

[

1,
(pκB)

p−1

(2p)p−2
, κ1κ

p−1

β

B , κ2

]

and κσ
2

def
= max

[

σ0, γ3κ2κ
1+β−p

β
gu , κσ

1
︸︷︷︸

1+β<p

]

(3.22)

with κ1 and κ2 defined in (3.17), we have that

σk ≤ max
[

κσ
2 , κ

σ
1ǫ

1+β−p

β
∗

︸ ︷︷ ︸

1+β<p

]

. (3.23)

Proof. The mechanism of the algorithm ensures that σk is not increased at iteration

k if f(xk + sk) ≤ mk(xk + sk), which we know from Lemma 3.6 is ensured if (3.16)

holds.
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We now distinguish two cases. Assume first that

1 + β ≥ p,

which in turn implies that p ∈ (1, 2] and thus, in view of (2.7), that Bk � 0 for all k.

Then Lemma 3.2 and condition (3.16) imply that f(xk + sk) ≤ mk(xk + sk) provided

σk ≥ κ2κ
1+β−p

β
gu , (3.24)

which is a constant independent of k and ǫ. The second, more complicated case is when

1 + β < p,

in which we again distinguish two subcases. The first of these subcases in when p ∈

(1, 2], which, because of (2.7), implies that Bk � 0 for all k. In order to derive a suitable

iteration independent bound for the regularization parameter, we recall that, as long

as the algorithm has not terminated, we have that ‖gk‖ > ǫ∗ and thus, from (3.16),

that f(xk + sk) ≤ mk(xk + sk) provided

σk ≥ κ2ǫ
1+β−p

β
∗ . (3.25)

Consider now the second subcase, where p > 2, allowing Bk to be non positive semidef-

inite. Taking the inequality ‖gk‖ > ǫ∗ and AS.5 into account, we derive from (3.16)

that f(xk + sk) ≤ mk(xk + sk) provided

σk ≥ max

[

1,
(pκB)

p−1

(2p)p−2
ǫ2−p
∗ , κ1κ

p−1

β

B ǫ
2−p

β
∗ , κ2ǫ

1+β−p

β
∗

]

(3.26)

Note now that, because β ≤ 1,

0 > 2− p ≥
2− p

β
≥

1 + β − p

β
. (3.27)

We may then conclude from (3.26) and (3.27) that f(xk + sk) ≤ mk(xk + sk) provided

σk ≥ max

[

1,
(pκB)

p−1

(2p)p−2
, κ1κ

p−1

β

B , κ2

]

max

[

1, ǫ
1+β−p

β
∗

]

. (3.28)

We may combine all cases together and obtain from (3.24) , (3.25) and (3.28) that

f(xk + sk) ≤ mk(xk + sk) if

σk ≥ max

[

κ2κ
1+β−p

β
gu , κσ

1/γ3
︸ ︷︷ ︸

1+β<p

, (κσ
1/γ3)ǫ

1+β−p

β
∗

︸ ︷︷ ︸

1+β<p

]

, (3.29)

where κσ
1 is defined in (3.22). The proof of (3.23) is then completed by taking into

account that the initial parameter σ0 may exceed the bound given by the right-hand

side of (3.29), and also that (3.29) may just fail by a small margin at an unsuccessful

iteration, resulting in an increase of σk by a factor γ3 before (3.29) applies. ✷
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Having now derived an iteration independent upper bound on σk, we may return to the

model decrease given by Lemma 3.5.

Lemma 3.8. Suppose that AS.1– AS.5 hold. Then, as long as the algorithm does

not terminate, and given the constant

κm
def
=

1

4
min

[ 1

2κB
,

(

p

2κσ
2

) 1

p−1 ]

, (3.30)

• if 1 + β ≥ p, then

f(xk)−m(xk + sk) ≥ κmmin
(

ǫ2∗, ǫ
p

p−1

∗

)

. (3.31)

• if 1 + β < p, then

f(xk)−m(xk + sk) ≥ κmmin
(

ǫ2∗, ǫ
p

p−1 , ǫ
1+ 1

β
∗

)

. (3.32)

Proof. Assume first that 1 + β ≥ p This implies that p ∈ [1, 2] and hence, because

of (2.7), that gTk Bkgk ≥ 0. Taking into account that, when gTk Bksk > 0,

gTk Bkgk ≤ κB‖gk‖
2,

because of AS.5, substituting (3.23) into (3.14) and using (3.23) and the fact that

‖gk‖ ≥ ǫ∗ as long as the algorithm has not terminated, yields that

f(xk)−mk(xk + sk) ≥ 1
4
min

[

ǫ2∗
2κB

,

(

p

2κσ
2

) 1

p−1

ǫ
p

p−1

∗

]

≥ 1
4
min

[

1

2κB
,

(

p

2κσ
2

) 1

p−1
]

min
(

ǫ2∗, ǫ
p

p−1

∗

)

and (3.31) follows.

Consider now the case where 1 + β < p. Again substituting (3.23) into (3.14), using

(3.23), the fact that κσ
2 ≥ κσ

1 because of (3.22), AS.5 and the fact that ‖gk‖ ≥ ǫ∗ as

long as the algorithm has not terminated, we obtain that

f(xk)−mk(xk + sk) ≥
1

4
min

[

ǫ2∗
2κB
︸ ︷︷ ︸

gT
k
Bkgk>0

,









p ǫp∗

2max

[

κσ
2 , κ

σ
1ǫ

1+β−p

β
∗

]









1

p−1

]

≥
1

4
min

[

1

2κB
,

(

p

2κσ
2

) 1

p−1
]

min
(

ǫ2∗, ǫ
p

p−1

∗ , ǫ
1+ 1

β
∗

)

.
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which is (3.32) . ✷

We now recall an important technical lemma which, in effect, gives a bound on the total

number of unsuccessful iterations before iteration k as a function of the number of successful

ones.

Lemma 3.9. The mechanism of Algorithm 2.1 guarantees that, if

σk ≤ σmax, (3.33)

for some σmax > 0, then

k ≤ |Sk|

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(
σmax

σ0

)

. (3.34)

Proof. See [2]. ✷

We are now ready to prove our main result on the worst-case complexity of Algorithm 2.1.

Theorem 3.10. Suppose that AS.1–AS.5 hold and define ǫ∗ as in (3.1).

1. If 1 + β ≥ p, there exist constants κs
p, κa

p and κc
p such that, for any ǫ > 0,

Algorithm 2.1 requires at most







κs
p

f(x0)− f∗

min
(

ǫ2∗, ǫ
p

p−1

∗

)








(3.35)

successful iterations (and gradient evaluations),and a total of







κa
p

f(x0)− f∗

min
(

ǫ2∗, ǫ
p

p−1

∗

) + κc
p








(3.36)

iterations (and objective function evaluations) before producing an iterate xǫ such

that ‖g(xǫ)‖ ≤ ǫ∗ or f(xǫ) ≤ ftarget.
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2. If 1 + β < p, there exist constants κs
β, κ

a
β , κ

b
β and κc

β such that, for all ǫ > 0,

Algorithm 2.1 requires at most







κs
β

f(x0)− f∗

min
(

ǫ2∗, ǫ
p

p−1

∗ , ǫ
1+ 1

β
∗

)








(3.37)

successful iterations (and gradient evaluations) and a total of







κa
β

f(x0)− f∗

min
(

ǫ2∗, ǫ
p

p−1

∗ , ǫ
1+ 1

β
∗

) + κb
β | log ǫ∗|+ κc

β








(3.38)

iterations (and objective function evaluations) before producing an iterate xǫ such

that ‖g(xǫ)‖ ≤ ǫ∗ or f(xǫ) ≤ ftarget.

In the above statements the constants are given by

κs
p = κs

β
def
=

1

η1κm
, (3.39)

κa
p

def
=

1

η1κm

(

1 +
| log γ1|

log γ2

)

, κc
p

def
=

1

log γ2
log

(
κσ
2

σ0

)

, (3.40)

κa
β

def
=

1

η1κm

(

1 +
| log γ1|

log γ2

)

, κb
β

def
=

p− β − 1

β log γ2
(3.41)

and

κc
β

def
=

1

log γ2

(

log (max[1, κσ
2 , κ

σ
1 ]) + | log(σ0)|

)

, (3.42)

where

κ1
def
= (2pp)

1

β , κ2
def
= 2p

p−1

β (2p)
p+β−1

β

(

Lβ

1 + β

) p−1

β

,

κσ
1

def
= γ3max

[

1,
(pκB)

p−1

(2p)p−2
, κ1κ

p−1

β

B , κ2

]

, κσ
2

def
= max

[

σ0, γ3κ2κ
1+β−p

β
gu , κσ

1
︸︷︷︸

1+β<p

]

and

κm
def
=

1

4
min

[ 1

2κB
,

(

p

2κσ
2

) 1

p−1 ]

.

Proof. Consider first the case where 1 + β ≥ p. We then deduce from (3.31)

in Lemma 3.8, AS.4 and the definition of a successful iteration, that, as long as the
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algorithm has not terminated,

f(x0)− f∗ ≥ f(x0)− f(xk+1)

=
∑

j∈Sk

[f(xj)− f(xj + sj)]

≥ η1
∑

j∈Sk

[f(xj)−mj(xj + sj)]

> η1 κm min
(

ǫ2∗, ǫ
p

p−1

∗

)

|Sk|,

(3.43)

where |Sk| is the cardinality of Sk
def
= {j ∈ S | j ≤ k}, that is the number of successful

iterations up to iteration k. This provides an upper bound on |Sk| which is independent

of k and ǫ, from which we obtain the bound (3.35) with (3.39). Calling now upon

Lemma 3.9 and (3.23), we deduce that the total number of iterations (and function

evaluations) cannot exceed

κs
p

f(x0)− f∗

ǫ
p

p−1

∗

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(
κσ
2

σ0

)

,

which then gives the bound (3.36) with (3.40).

The proof for the case where 1 + β < p is derived in a manner entirely similar to that

used for the case where 1 + β ≥ p , replacing ǫ
p

p−1 by ǫ1+
1

β in (3.43), the use of (3.31)

by that of (3.32) and taking into account that

max
[

κσ
2 , κ

σ
1ǫ

1+β−p

β
∗

]

≤ max[κσ
2 , κ

σ
1 ]ǫ

1+β−p

β
∗

(where κσ
2 and κσ

1 are defined by (3.17) and (3.22)) and thus that

log







max
[

κσ
2 , κ

σ
1ǫ

1+β−p

β
∗

]

σ0







≤

∣
∣
∣
∣
∣

1 + β − p

β

∣
∣
∣
∣
∣
| log ǫ∗|+ log(max[1, κσ

2 , κ
σ
1 ]) + | log(σ0)|.

We may thus deduce that (3.37) holds with (3.39) and that (3.38) holds with (3.41)–

(3.42). ✷

Which power of ǫ∗ dominates in the complexity bounds of the theorem is summarized in

Table 3.1 and illustrated in Figure 3.1.

Note that, when ǫ∗ ≤ 1, ǫ−
p

p−1 > ǫ−(1+ 1

β
) in the triangle for which 1 + β ≥ p and

p ≤ 2. If ǫ∗ > 1 the powers of ǫ∗ are bounded above by one and the complexity bounds

are dominated by the difference f(x0)− f∗ and the constants defined in (3.39)–(3.30).

4 Discussion

It is interesting to note that the worst-case evaluation complexity of our general class of

regularized method does depend on the relative values of p and β. In the bounds derived
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p ≤ 2 p > 2

1 + β ≥ p O
(

ǫ
−

p

p−1

∗

)

-

1 + β < p O
(

ǫ
−(1+ 1

β
)

∗

)

O
(

ǫ
−(1+ 1

β
)

∗

)

Table 3.1: The complexity order as a function of ǫ∗ ≤ 1 in the statement of Theorem 3.10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

1+β = p

O(ε
*
−(1+1/β))

O(ε
*
−p/(p−1))

O(1)

p

β

Figure 3.1: Worst-case evaluation complexity as a function of β and p in the cases where

ǫ∗ ≤ 1

in Theorem 3.10, the terms in ǫ−2
∗ dominate only if ǫ∗ > 1 that is if either ǫ > 1 or

κgl > 1. They can be ignored in the more standard case where κgl = 0 and ǫ is a small

number between 0 and 1, implying that ǫ∗ = ǫ. Finally note that Lemma 3.1 allows us

to equate β > 1 with β = 1 and κgl = ‖g(x0)‖. In this case, either ǫ∗ = ǫ > ‖g(x0)‖

and Algorithm 2.1 stops at iteration 0, or ǫ∗ = ‖g(x0)‖ and the bounds of Theorem 3.10

become independent of ǫ, resulting in a bound on the number of iterations and evaluations

directly proportional to f(x0)− ftarget, as expected.

We conclude by observing that the theory presented above recovers known results (see

[2] for the case where p = 3 and β = 1 and [9, 3] for the case where p = 2 and β = 1);

these cases correspond to the thick dots in the upper part of Figure 3.1.
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